1
|
Renoult O, Laurent-Blond M, Awada H, Oliver L, Joalland N, Croyal M, Paris F, Gratas C, Pecqueur C. Metabolic profiling of glioblastoma stem cells reveals pyruvate carboxylase as a critical survival factor and potential therapeutic target. Neuro Oncol 2024; 26:1572-1586. [PMID: 38869884 PMCID: PMC11376449 DOI: 10.1093/neuonc/noae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive tumor with unmet therapeutic needs, which can be explained by extensive intra-tumoral heterogeneity and plasticity. In this study, we aimed to investigate the specific metabolic features of Glioblastoma stem cells (GSC), a rare tumor subpopulation involved in tumor growth and therapy resistance. METHODS We conducted comprehensive analyses of primary patient-derived GBM cultures and GSC-enriched cultures of human GBM cell lines using state-of-the-art molecular, metabolic, and phenotypic studies. RESULTS We showed that GSC-enriched cultures display distinct glycolytic profiles compared with differentiated tumor cells. Further analysis revealed that GSC relies on pyruvate carboxylase (PC) activity for survival and self-renewal capacity. Interestingly, inhibition of PC led to GSC death, particularly when the glutamine pool was low, and increased differentiation. Finally, while GSC displayed resistance to the chemotherapy drug etoposide, genetic or pharmacological inhibition of PC restored etoposide sensitivity in GSC, both in vitro and in orthotopic murine models. CONCLUSIONS Our findings demonstrate the critical role of PC in GSC metabolism, survival, and escape to etoposide. They also highlight PC as a therapeutic target to overcome therapy resistance in GBM.
Collapse
Affiliation(s)
- Ophélie Renoult
- Nantes Université, Inserm 1307, CNRS 6075, Université d'Angers, Nantes, France
| | | | - Hala Awada
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
- Nantes Université, Inserm 1307, CNRS 6075, Université d'Angers, Nantes, France
| | - Lisa Oliver
- Centre Hospitalier Universitaire de Nantes, Nantes, France
- Nantes Université, Inserm 1307, CNRS 6075, Université d'Angers, Nantes, France
| | - Noémie Joalland
- Nantes Université, Inserm 1307, CNRS 6075, Université d'Angers, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - François Paris
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France
- Nantes Université, Inserm 1307, CNRS 6075, Université d'Angers, Nantes, France
| | - Catherine Gratas
- Centre Hospitalier Universitaire de Nantes, Nantes, France
- Nantes Université, Inserm 1307, CNRS 6075, Université d'Angers, Nantes, France
| | - Claire Pecqueur
- Nantes Université, Inserm 1307, CNRS 6075, Université d'Angers, Nantes, France
| |
Collapse
|
2
|
Schneider N, Gilreath K, Henriksen NM, Donaldson WA, Chaudhury S, St. Maurice M. Synthesis and Evaluation of 1,3-Disubstituted Imidazolidine-2,4,5-triones as Inhibitors of Pyruvate Carboxylase. ACS Med Chem Lett 2024; 15:1088-1093. [PMID: 39015262 PMCID: PMC11247459 DOI: 10.1021/acsmedchemlett.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Substituted imidazolidinetriones (IZTs) have been identified as potent inhibitors of pyruvate carboxylase (PC) through an in silico screening approach. Alkyl 2-(2,4,5-trioxo-3-substituted imidazolidin-1-yl)acetates (6i-6r) are the most potent of the series, with IC50 values between 3 and 12 μM, and several IZTs demonstrate high passive permeability across an artificial membrane. IZTs are mixed-type inhibitors with respect to pyruvate and noncompetitive with respect to ATP. This class of inhibitors appears to be selective for PC. Inhibitors in the IZT series do not inhibit the metalloenzymes human carbonic anhydrase II and matrix metalloprotease-12, and they do not inhibit the related biotin-dependent enzyme, guanidine carboxylase. Altogether, IZTs offer promise as PC inhibitors with potential downstream applications in cellular and in vivo systems.
Collapse
Affiliation(s)
- Nicholas
O. Schneider
- Department
of Biological Science, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Kendra Gilreath
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Niel M. Henriksen
- Atomwise,
Inc., 250 Sutter St, Suite 650, San Francisco, California 94108, United States
| | - William A. Donaldson
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Subhabrata Chaudhury
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Martin St. Maurice
- Department
of Biological Science, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
3
|
Luís C, Fernandes R, Soares R. Exploring variations in glycolytic and gluconeogenic enzymes and isoforms across breast cancer cell lines and tissues. Carbohydr Res 2024; 541:109169. [PMID: 38838492 DOI: 10.1016/j.carres.2024.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
It is well established that tumour cells undergo metabolic changes to acquire biological advantage over normal cells with activation of the glycolytic pathway, a process termed "Warburg effect". Enzyme isoforms are alternative enzymatic forms with the same function but with different biochemical or epigenetic features. Moreover, isoforms may have varying impacts on different metabolic pathways. We challenge ourselves to analyse the glycolytic and gluconeogenic enzymes and isoforms in breast cancer, a complex and heterogeneous pathology, associated with high incidence and mortality rates especially among women. We analysed epithelial and tumour cell lines by RT-PCR and compared values to a publicly available database for the expression profile of normal and tumour tissues (Gepia) of enzymes and enzymatic isoforms from glycolytic and gluconeogenic pathways. Additionally, GeneMANIA was used to evaluate interactions, pathways, and attributes of each glycolytic/gluconeogenic steps. The findings reveal that the enzymes and enzymatic isoforms expressed in cell culture were somewhat different from those in breast tissue. We propose that the tumor microenvironment plays a crucial role in the expression of glycolytic and gluconeogenic enzymes and isoforms in tumour cells. Nonetheless, they not only participate in glycolytic and gluconeogenic enzymatic activities but may also influence other pathways, such as the Pentose-Phosphate-Pathway, TCA cycle, as well as other carbohydrate, lipid, and amino acid metabolism.
Collapse
Affiliation(s)
- Carla Luís
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Rúben Fernandes
- Faculty of Health Sciences, University Fernando Pessoa, Fernando Pessoa Hospital School (FCS/HEFP/UFP), Porto, Portugal
| | - Raquel Soares
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Merteroglu M, Santoro MM. Exploiting the metabolic vulnerability of circulating tumour cells. Trends Cancer 2024; 10:541-556. [PMID: 38580535 DOI: 10.1016/j.trecan.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Metastasis has a major part in the severity of disease and lethality of cancer. Circulating tumour cells (CTCs) represent a reservoir of metastatic precursors in circulation, most of which cannot survive due to hostile conditions in the bloodstream. Surviving cells colonise a secondary site based on a combination of physical, metabolic, and oxidative stress protection states required for that environment. Recent advances in CTC isolation methods and high-resolution 'omics technologies are revealing specific metabolic pathways that support this selection of CTCs. In this review, we discuss recent advances in our understanding of CTC biology and discoveries of adaptations in metabolic pathways during their selection. Understanding these traits and delineating mechanisms by which they confer acquired resistance or vulnerability in CTCs is crucial for developing successful prognostic and therapeutic strategies in cancer.
Collapse
|
5
|
Ariaans G, Tiersma JF, Evers B, Gerding A, Waaijer SJH, Koster RA, Touw DJ, Bakker BM, Reijngoud DJ, de Jong S, Jalving M. Everolimus decreases [U- 13C]glucose utilization by pyruvate carboxylase in breast cancer cells in vitro and in vivo. Biomed Pharmacother 2024; 173:116362. [PMID: 38432130 DOI: 10.1016/j.biopha.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Reprogrammed metabolism is a hallmark of cancer, but notoriously difficult to target due to metabolic plasticity, especially in response to single metabolic interventions. Combining mTOR inhibitor everolimus and mitochondrial complex 1 inhibitor metformin results in metabolic synergy in in vitro models of triple-negative breast cancer. Here, we investigated whether the effect of this drug combination on tumor size is reflected in changes in tumor metabolism using [U-13C]glucose labeling in an MDA-MB-231 triple negative breast cancer xenograft model. The in vitro effects of everolimus and metformin treatment on oxidative phosphorylation and glycolysis reflected changes in 13C-labeling of metabolites in MDA-MB-231 cells. Treatment of MDA-MB-231 xenografts in SCID/Beige mice with everolimus resulted in slower tumor growth and reduced tumor size and tumor viability by 35%. Metformin treatment moderately inhibited tumor growth but did not enhance everolimus-induced effects. High serum levels of everolimus were reached, whereas levels of metformin were relatively low. Everolimus decreased TCA cycle metabolite labeling and inhibited pyruvate carboxylase activity. Metformin only caused a mild reduction in glycolytic metabolite labeling and did not affect pyruvate carboxylase activity or TCA cycle metabolite labeling. In conclusion, treatment with everolimus, but not metformin, decreased tumor size and viability. Furthermore, the efficacy of everolimus was reflected in reduced 13C-labeling of TCA cycle intermediates and reduced pyruvate carboxylase activity. By using in-depth analysis of drug-induced changes in glucose metabolism in combination with measurement of drug levels in tumor and plasma, effects of metabolically targeted drugs can be explained, and novel targets can be identified.
Collapse
Affiliation(s)
- Gerke Ariaans
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jiske F Tiersma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernardus Evers
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert Gerding
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stijn J H Waaijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Remco A Koster
- Department of Clinical Pharmacy and Pharmacology, Laboratory for Clinical and Forensic Toxicology and Drugs Analysis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, Laboratory for Clinical and Forensic Toxicology and Drugs Analysis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Mathilde Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Li L, Qin Y, Chen Y. The enzymes of serine synthesis pathway in cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119697. [PMID: 38382845 DOI: 10.1016/j.bbamcr.2024.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Metastasis, the major cause of cancer mortality, requires cancer cells to reprogram their metabolism to adapt to and thrive in different environments, thereby leaving metastatic cells metabolic characteristics different from their parental cells. Mounting research has revealed that the de novo serine synthesis pathway (SSP), a glycolytic branching pathway that consumes glucose carbons for serine makeup and α-ketoglutarate generation and thus supports the proliferation, survival, and motility of cancer cells, is one such reprogrammed metabolic pathway. During different metastatic cascades, the SSP enzyme proteins or their enzymatic activity are both dynamically altered; manipulating their expression or catalytic activity could effectively prevent the progression of cancer metastasis; and the SSP enzymatic proteins could even conduce to metastasis via their nonenzymatic functions. In this article we overview the SSP dynamics during cancer metastasis and put the focuses on the regulatory role of the SSP in metastasis and the underlying mechanisms that mainly involve cellular anabolism/catabolism, redox balance, and epigenetics, aiming to provide a theoretical basis for the development of therapeutic strategies for targeting metastatic lesions.
Collapse
Affiliation(s)
- Lei Li
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Sukjoi W, Young C, Acland M, Siritutsoontorn S, Roytrakul S, Klingler-Hoffmann M, Hoffmann P, Jitrapakdee S. Proteomic analysis of holocarboxylase synthetase deficient-MDA-MB-231 breast cancer cells revealed the biochemical changes associated with cell death, impaired growth signaling, and metabolism. Front Mol Biosci 2024; 10:1250423. [PMID: 38283944 PMCID: PMC10812114 DOI: 10.3389/fmolb.2023.1250423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
We have previously shown that the holocarboxylase synthetase (HLCS) is overexpressed in breast cancer tissue of patients, and silencing of its expression in triple-negative cancer cell line inhibits growth and migration. Here we investigated the global biochemical changes associated with HLCS knockdown in MDA-MB-231 cells to discern the pathways that involve HLCS. Proteomic analysis of two independent HLCS knockdown cell lines identified 347 differentially expressed proteins (DEPs) whose expression change > 2-fold (p < 0.05) relative to the control cell line. GO enrichment analysis showed that these DEPs were mainly associated with the cellular process such as cellular metabolic process, cellular response to stimulus, and cellular component organization or biogenesis, metabolic process, biological regulation, response to stimuli, localization, and signaling. Among the 347 identified DEPs, 64 proteins were commonly found in both HLCS knockdown clones, confirming their authenticity. Validation of some of these DEPs by Western blot analysis showed that plasminogen activator inhibitor type 2 (SerpinB2) and interstitial collagenase (MMP1) were approximately 90% decreased in HLCS knockdown cells, consistent with a 50%-60% decrease in invasion ability of knockdown cells. Notably, argininosuccinate synthase 1 (ASS1), one of the enzymes in the urea cycle, showed approximately a 10-fold increase in the knockdown cells, suggesting the crucial role of HLCS in supporting the urea cycle in the triple-negative cancer cell line. Collectively, our proteomic data provide biochemical insights into how suppression of HLCS expression perturbs global changes in cellular processes and metabolic pathways, impairing cell growth and invasion.
Collapse
Affiliation(s)
- Witchuda Sukjoi
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mitchell Acland
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Agency, Pathumthani, Thailand
| | | | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Phannasil P, Akekawatchai C, Jitrapakdee S. MicroRNA expression profiles associated with the metastatic ability of MDA‑MB‑231 breast cancer cells. Oncol Lett 2023; 26:339. [PMID: 37427352 PMCID: PMC10326657 DOI: 10.3892/ol.2023.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023] Open
Abstract
Breast cancer is an important worldwide public health concern. The incidence rate of breast cancer increases every year. The primary cause of death is metastasis, a process by which cancer cells spread from a primary site to secondary organs. MicroRNAs (miRs/miRNAs) are small non-coding RNAs that control gene expression at the post-transcriptional level. Dysregulation of certain miRNAs is involved in carcinogenesis, cancer cell proliferation and metastasis. Therefore, the present study assessed miRNAs associated with breast cancer metastasis using two breast cancer cell lines, the low-metastatic MCF-7 and the highly metastatic MDA-MB-231. miRNA array analysis of both cell lines indicated that 46 miRNAs were differentially expressed when compared between the two cell lines. A total of 16 miRNAs were upregulated in MDA-MB-231 compared with MCF-7 cells, which suggested that their expression levels may be associated with the highly invasive phenotype of MDA-MB-231 cells. Among these miRNAs, miR-222-3p was selected for further study and its expression was confirmed by reverse transcription-quantitative PCR (RT-qPCR). Under both non-adherent and adherent culture conditions, the expression levels of miR-222-3p in the MDA-MB-231 cell line were higher than those noted in the MCF-7 cell line under the same conditions. Suppression of endogenous miR-222-3p expression in MDA-MB-231 cells using a miR-222-3p inhibitor resulted in a 20-40% reduction in proliferation, and a ~30% reduction in migration, which suggested that the aggressive phenotype of MDA-MB-231 cells was partly regulated by miR-222-3p. Bioinformatic analysis of miR-222-3p using TargetScan 8.0, miRDB and PicTar identified 25 common mRNA targets, such as cyclin-dependent kinase inhibitor 1B, ADP-ribosylation factor 4, iroquois homeobox 5 and Bcl2 modifying factor. The results of the present study indicated that miR-222-3p was potentially associated with the proliferation and migratory ability of the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12121, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Yang X, Zhang W, Zhu W. Profiling of immune responses by lactate modulation in cervical cancer reveals key features driving clinical outcome. Heliyon 2023; 9:e14896. [PMID: 37151676 PMCID: PMC10161385 DOI: 10.1016/j.heliyon.2023.e14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Cervical cancer is still an important problem perplexing health management in developing countries. Previous studies have shown that cervical cancer cells show markers of aerobic glycolysis, suggesting that these tumors may secrete lactic acid. Through the biological characterization of lactate gene in tumor and its relationship with immune cells in tumor microenvironment, a lactate scoring system capable of evaluating cancer prognosis was constructed to explore the molecular mechanism of lactate metabolism disorder affecting prognosis. 29 hub genes in this study were differentially expressed in cervical cancer, including 24 genes related to lactate metabolism, LDHA in Lactate dehydrogenase (LDH) group, SLC16A3 in Monocarboxylate transporters (MCT) group and three Histone lactation modification related genes (EP300, ACAT1, ACACA). More importantly, we found that from an epigenetic point of view, histone lactation plays an important role in the pathogenesis and prognosis of cervical cancer. Mainly affect the prognosis of the disease through changes in the infiltration of plasmacytoid Dendritic Cell (pDC) and Central Memory T cell (Tcm) in the tumor immune microenvironment. Lactate inhibition may be a useful tool for anticancer therapy.
Collapse
|
10
|
Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic Reprogramming of Breast Tumor-Educated Macrophages Revealed by NMR Metabolomics. Cancers (Basel) 2023; 15:cancers15041211. [PMID: 36831553 PMCID: PMC9954003 DOI: 10.3390/cancers15041211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The metabolic crosstalk between tumor cells and tumor-associated macrophages (TAMs) has emerged as a critical contributor to tumor development and progression. In breast cancer (BC), the abundance of immune-suppressive TAMs positively correlates with poor prognosis. However, little is known about how TAMs reprogram their metabolism in the BC microenvironment. In this work, we have assessed the metabolic and phenotypic impact of incubating THP-1-derived macrophages in conditioned media (CM) from two BC cell lines cultured in normoxia/hypoxia: MDA-MB-231 cells (highly metastatic, triple-negative BC), and MCF-7 cells (less aggressive, luminal BC). The resulting tumor-educated macrophages (TEM) displayed prominent differences in their metabolic activity and composition, compared to control cells (M0), as assessed by exo- and endometabolomics. In particular, TEM turned to the utilization of extracellular pyruvate, alanine, and branched chain keto acids (BCKA), while exhibiting alterations in metabolites associated with several intracellular pathways, including polyamines catabolism (MDA-TEM), collagen degradation (mainly MCF-TEM), adenosine accumulation (mainly MDA-TEM) and lipid metabolism. Interestingly, following a second-stage incubation in fresh RPMI medium, TEM still displayed several metabolic differences compared to M0, indicating persistent reprogramming. Overall, this work provided new insights into the metabolic plasticity of TEM, revealing potentially important nutritional exchanges and immunoregulatory metabolites in the BC TME.
Collapse
Affiliation(s)
- Ana S. Dias
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina R. Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luisa A. Helguero
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iola F. Duarte
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-234-401-418
| |
Collapse
|
11
|
Immunodetection of Pyruvate Carboxylase Expression in Human Astrocytomas, Glioblastomas, Oligodendrogliomas, and Meningiomas. Neurochem Res 2023; 48:1728-1736. [PMID: 36662405 PMCID: PMC10119210 DOI: 10.1007/s11064-023-03856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Pyruvate carboxylase (PC) is an enzyme catalyzing the carboxylation of pyruvate to oxaloacetate. The enzymatic generation of oxaloacetate, an intermediate of the Krebs cycle, could provide the cancer cells with the additional anaplerotic capacity and promote their anabolic metabolism. Recent studies revealed that several types of cancer cells express PC. The gained anaplerotic capability of cells mediated by PC correlates with their expedited growth, higher aggressiveness, and increased metastatic potential. By immunohistochemical staining and immunoblotting analysis, we investigated PC expression among samples of different types of human brain tumors. Our results show that PC is expressed by the cells in glioblastoma, astrocytoma, oligodendroglioma, and meningioma tumors. The presence of PC in these tumors suppose that PC could support the anabolic metabolism of their cellular constituents by its anaplerotic capability.
Collapse
|
12
|
Chen P, Tian J, Zhou Y, Chen Y, Zhang H, Jiao T, Huang M, Zhang H, Huang P, Yu AM, Gonzalez FJ, Bi H. Metabolic Flux Analysis Reveals the Roles of Stearate and Oleate on CPT1C-mediated Tumor Cell Senescence. Int J Biol Sci 2023; 19:2067-2080. [PMID: 37151873 PMCID: PMC10158022 DOI: 10.7150/ijbs.80822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
Cellular senescence is a state of proliferative arrest, and the development of carcinoma can be suppressed by conferring tumor cell senescence. Recently, we found that carnitine palmitoyltransferase 1C (CPT1C) controls tumor cell proliferation and senescence via regulating lipid metabolism and mitochondrial function. Here, 13C-metabolic flux analysis (13C-MFA) was performed and the results revealed that CPT1C knockdown in MDA-MB-231 cells significantly induced cellular senescence accompanied by altered fatty acid metabolism. Strikingly, stearate synthesis was decreased while oleate was increased. Furthermore, stearate significantly inhibited proliferation while oleate reversed the senescent phenotype induced by silencing CPT1C in MDA-MB-231 cells as well as PANC-1 cells. A939572, an inhibitor of stearoyl-Coenzyme A desaturase 1, had the same effect as stearate to inhibit cellular proliferation. These results demonstrated that stearate and oleate are involved in CPT1C-mediated tumor cellular senescence, and the regulation of stearate/oleate rate via inhibition of SCD-1 could be an additional strategy with depletion of CPT1C for cancer therapy.
Collapse
Affiliation(s)
- Panpan Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Jingyu Tian
- Guangdong University of Technology, Guangzhou 510006, China
- Sun Yat-Sen University Cancer Center, Guangzhou 510275, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingying Jiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Zhang
- Guangdong University of Technology, Guangzhou 510006, China
- Sun Yat-Sen University Cancer Center, Guangzhou 510275, China
- ✉ Corresponding authors: Dr. Huichang Bi and Dr. Hui Zhang, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai Nan Rd, Baiyun District, Guangzhou 510515, P. R. China. ; Tel: +86-20-61648530
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, Guangzhou 510275, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- ✉ Corresponding authors: Dr. Huichang Bi and Dr. Hui Zhang, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai Nan Rd, Baiyun District, Guangzhou 510515, P. R. China. ; Tel: +86-20-61648530
| |
Collapse
|
13
|
Targeting hypoxia-related metabolism molecules: How to improve tumour immune and clinical treatment? Biomed Pharmacother 2022; 156:113917. [DOI: 10.1016/j.biopha.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
|
14
|
Ngamkham J, Siritutsoontorn S, Saisomboon S, Vaeteewoottacharn K, Jitrapakdee S. CRISPR Cas9-mediated ablation of pyruvate carboxylase gene in colon cancer cell line HT-29 inhibits growth and migration, induces apoptosis and increases sensitivity to 5-fluorouracil and glutaminase inhibitor. Front Oncol 2022; 12:966089. [DOI: 10.3389/fonc.2022.966089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Pyruvate carboxylase (PC) is an important anaplerotic enzyme that replenishes the tricarboxylic acid cycle (TCA) intermediates. It prevents the collapse of the TCA cycle upon its intermediates are removed during high anabolic demand. We have recently shown that overexpression of PC protein was associated with staging, metastasis and poor survival of colorectal cancer patients. Herein, we generated the PC knockout (PC KO) colon cancer cell lines, HT-29, by CRISPR-Cas9 technique, as a model to understand the role of this enzyme in colorectal cancer. The PC KO HT-29 cell lines had no detectable PC protein and did not show abnormal cellular or nuclear structures. However, PC KO HT-29 cells showed a 50-60% reduction in their growth rate and a 60-70% reduction in migration. The deficient growth phenotype of PC KO HT-29 cells was associated with apoptotic induction with no apparent cell cycle disruption following five days of growth. Down-regulation of key lipogenic enzymes, including acetyl-CoA carboxylase-1 and fatty acid synthase, was also associated with growth inhibition, suggesting that the de novo lipogenesis is impaired. Furthermore, PC KO HT-29 cells were 50% and 60% more sensitive to 5-fluorouracil and glutaminase inhibitor, CB-839, at their IC50 concentrations, respectively, following 48 h exposure. The increased cytotoxicity of CB-839 to PC KO HT-29 cells was associated with increased poly (ADP-ribose) polymerase cleavage. However, this was not observed with PC KO cells exposed to 5-fluorouracil, suggesting that PC KO HT-29 cells were prone to CB-839-induced apoptosis. Collectively, these findings indicate that ablation of PC expression in HT-29 cells disrupts the metabolic homeostasis of cells and inhibits proliferation and migration, accompanied by apoptotic induction. This study highlights the crucial role of PC in supporting the survival of HT-29 cells during exposure to chemotherapeutic drugs.
Collapse
|
15
|
Sheeley MP, Kiesel VA, Andolino C, Lanman NA, Donkin SS, Hursting SD, Wendt MK, Teegarden D. 1α,25-dihydroxyvitamin D reduction of MCF10A-ras cell viability in extracellular matrix detached conditions is dependent on regulation of pyruvate carboxylase. J Nutr Biochem 2022; 109:109116. [DOI: 10.1016/j.jnutbio.2022.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
16
|
Duan L, Cooper DE, Scheidemantle G, Locasale JW, Kirsch DG, Liu X. 13C tracer analysis suggests extensive recycling of endogenous CO 2 in vivo. Cancer Metab 2022; 10:11. [PMID: 35799202 PMCID: PMC9264524 DOI: 10.1186/s40170-022-00287-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/16/2022] [Indexed: 12/11/2022] Open
Abstract
Background 13C tracer analysis is increasingly used to monitor cellular metabolism in vivo and in intact cells, but data interpretation is still the key element to unveil the complexity of metabolic activities. The distinct 13C labeling patterns (e.g., M + 1 species in vivo but not in vitro) of metabolites from [U-13C]-glucose or [U-13C]-glutamine tracing in vivo and in vitro have been previously reported by multiple groups. However, the reason for the difference in the M + 1 species between in vivo and in vitro experiments remains poorly understood. Methods We have performed [U-13C]-glucose and [U-13C]-glutamine tracing in sarcoma-bearing mice (in vivo) and in cancer cell lines (in vitro). 13C enrichment of metabolites in cultured cells and tissues was determined by LC coupled with high-resolution mass spectrometry (LC-HRMS). All p-values are obtained from the Student’s t-test two-tailed using GraphPad Prism 8 unless otherwise noted. Results We observed distinct enrichment patterns of tricarboxylic acid cycle intermediates in vivo and in vitro. As expected, citrate M + 2 or M + 4 was the dominant mass isotopologue in vitro. However, citrate M + 1 was unexpectedly the dominant isotopologue in mice receiving [U-13C]-glucose or [U-13C]-glutamine infusion, but not in cultured cells. Our results are consistent with a model where the difference in M + 1 species is due to the different sources of CO2 in vivo and in vitro, which was largely overlooked in the past. In addition, a time course study shows the generation of high abundance citrate M + 1 in plasma of mice as early as few minutes after [U-13C]-glucose infusion. Conclusions Altogether, our results show that recycling of endogenous CO2 is substantial in vivo. The production and recycling of 13CO2 from the decarboxylation of [U-13C]-glucose or [U-13C]-glutamine is negligible in vitro partially due to dilution by the exogenous HCO3−/CO2 source, but in vivo incorporation of endogenous 13CO2 into M + 1 metabolites is substantial and should be considered. These findings provide a new paradigm to understand carbon atom transformations in vivo and should be taken into account when developing mathematical models to better reflect carbon flux. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-022-00287-8.
Collapse
Affiliation(s)
- Likun Duan
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Daniel E Cooper
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27708, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
17
|
Hahm ER, Mathan SV, Singh RP, Singh SV. Breast Cancer Selective Disruption of Actin Cytoskeleton by Diallyl Trisulfide. J Cancer Prev 2022; 27:101-111. [PMID: 35864856 PMCID: PMC9271405 DOI: 10.15430/jcp.2022.27.2.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022] Open
Abstract
Diallyl trisulfide (DATS) is an attractive anti-cancer phytochemical with in vitro and in vivo growth inhibitory effects against different solid tumors including breast cancer. We have shown previously that an immortalized mammary epithelial cell line (MCF-10A) is resistant to growth inhibition by DATS. In this study, we performed RNA-seq analysis using a breast cancer cell line (SK-BR-3) and MCF-10A cells to gain insights into cancer selective effects of DATS. The Gene Ontology analysis revealed upregulation of genes associated with actin cytoskeleton but downregulation of mitochondria-related genes in the SK-BR-3 human breast cancer cell line but not in the non-oncogenic MCF-10A cell line upon treatment with DATS. Quantitative real-time reverse transcription polymerase chain reaction confirmed DATS-mediated upregulation of several actin cytoskeleton-related genes in the SK-BR-3 cell line. The DATS treatment dose-dependently disrupted actin cytoskeleton in the SK-BR-3 cell line, whereas the MCF-10A cell line was more resistant to this effect. The DATS treatment caused a marked increase in phosphorylation of dynamin-1-like (DRP1) protein in the SK-BR-3 cell line. However, the DATS-mediated apoptosis was not affected by genetic deletion of DRP1 protein. The Reactome pathway analysis showed downregulation of genes associated with citric acid cycle in the SK-BR-3 cell line but not in the MCF-10A cells. However, expression of aconitase 2 or dihydrolipoamide S-succinyltransferase was not affected by DATS treatment. In conclusion, this study reveals that actin cytoskeleton is a novel target of DATS in the SK-BR-3 cell line, which may explain its inhibitory effect on breast cancer cell migration.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sivapar V. Mathan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Chen W, Liu Y, Kang S, Lv X, Fu W, Zhang J, Song C. LINC00092 Modulates Oxidative Stress and Glycolysis of Breast Cancer Cells via Pyruvate Carboxylase-Mediated AKT/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5215748. [PMID: 35799892 PMCID: PMC9256459 DOI: 10.1155/2022/5215748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
Background The discovery of noncoding RNAs (ncRNAs) offers new options for cancer-targeted therapy. This study is aimed at exploring the regulatory function of LINC00092 on breast cancer (BC) oxidative stress and glycolysis, along with internal mechanism concerning pyruvate carboxylase (PC). Methods Bioinformatics analysis was used to explore LINC00092 (or friend leukemia virus integration 1 (FLI1)) expression on BC progression, as well as oxidative stress and glycolysis in BC. After LINC00092 overexpression or silence, BC cell viability, proliferation, migration, invasion, oxidative stress, glycolysis, and AKT/mTOR pathway were detected. Following 2-DG, SC79, or MK2206 treatment, effects of LINC00092 on BC cells were measured. Moreover, regulatory activity of LINC00092 in PC expression was analyzed. Whether PC participated in the modulation of LINC00092 on BC cell functions was explored. Results LINC00092 was lowly expressed in BC and negatively related to BC progression. FLI1 bound to LINC00092 promoter to positively modulate LINC00092. LINC00092 overexpression inhibited BC cell proliferation, migration, invasion, oxidative stress, glycolysis, and AKT/mTOR pathway and likewise suppressed BC growth in vivo. Silence of LINC00092 had opposite influences. 2-DG partially reversed the LINC00092 silence-resulted increase of BC cell proliferation. SC79 alleviated the function of LINC00092 overexpression on BC cell functions. MK2206 had the contrary influence of SC79. Besides, LINC00092 bound to PC to modulate ubiquitination degradation of PC protein. PC took part in the influences of LINC00092 on BC cell functions. Conclusions LINC0092 modulates oxidative stress and glycolysis of BC cells via the PC-mediated AKT/mTOR pathway, which is possibly a target for BC diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Yushan Liu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Shaohong Kang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Xinying Lv
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Wenfen Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| |
Collapse
|
19
|
Siritutsoontorn S, Sukjoi W, Polyak SW, Akekawatchai C, Jitrapakdee S. Differential growth inhibition, cell cycle arrest and apoptosis of MCF-7 and MDA-MB-231 cells to holocarboxylase synthetase suppression. Biochem Biophys Res Commun 2022; 593:108-115. [PMID: 35063765 DOI: 10.1016/j.bbrc.2022.01.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin onto the biotin-dependent carboxylases. Recent studies have shown that HLCS is over-expressed in breast cancer patients. Here we investigated the functional roles of free biotin and HLCS in supporting growth and migration of breast cancer cell lines. Depletion of biotin from culture medium markedly reduced biotinylation of the two most abundant biotin-carboxylases, acetyl-CoA carboxylase and pyruvate carboxylase. This was accompanied by a marked decrease in cell growth. Suppression of HLCS expression in the low invasive breast cancer cell line MCF-7 resulted in an 80% reduction of biotinylated ACC, but not PC. HLCS knockdown MCF-7 cell lines showed 40-50% reduction of proliferation and 35% reduction of migration, accompanied by G1 cell cycle-arrest-induced apoptosis. In contrast, knockdown of HLCS expression in the highly invasive cell line MDA-MB-231 resulted in only marginal reduction of biotinylation of both ACC and PC, accompanied by 30% reduction of proliferation and 30% reduction of migration. Our studies provide new insights to use HLCS as a novel anti-cancer drug target.
Collapse
Affiliation(s)
| | - Witchuda Sukjoi
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Steven W Polyak
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia, 5001
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
20
|
Cheng L, Hu S, Ma J, Shu Y, Chen Y, Zhang B, Qi Z, Wang Y, Zhang Y, Zhang Y, Cheng P. Long noncoding RNA RP11-241J12.3 targeting pyruvate carboxylase promotes hepatocellular carcinoma aggressiveness by disrupting pyruvate metabolism and the DNA mismatch repair system. MOLECULAR BIOMEDICINE 2022; 3:4. [PMID: 35122182 PMCID: PMC8816999 DOI: 10.1186/s43556-021-00065-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Accumulating evidence indicates that hepatitis B virus X protein (HBx) plays a key role in HBV-related hepatocellular carcinoma (HCC) aggressiveness; however, the underlying mechanisms are not entirely clear. Long non-coding RNAs (lncRNAs), which participate in the regulation of diverse biological processes, may be critical for the function of HBx. Our research indicated that HBx induced changes in the expression of numerous lncRNAs and implicated the novel lncRNA RP11-241J12.3 in HBx-mediated HCC aggressiveness. Although RP11-241J12.3 expression was downregulated in transient HBx-expressing HCC cells (similar to the early stage of HBV infection), its oncogenic properties remained. The results showed that RP11-241J12.3 not only accelerated DNA synthesis and upregulated the expression of pyruvate carboxylase (PC) and MSH3, which is a key protein in pyruvate metabolism and DNA mismatch repair (MMR), but also promoted tumor growth in vitro and in vivo, thus promoting HCC aggressiveness. More importantly, we revealed that RP11-241J12.3 may interact with PC and identified its location in the cytoplasm close to the nucleus using fluorescence in situ hybridization (FISH). We also observed RP11-241J12.3 expression was upregulated in HCC tissues compared with the paracarcinomatous tissues. Furthermore, RP11-241J12.3 expression levels showed a close relationship with clinical stage and tumor size and that low RP11-241J12.3 expression was significantly correlated with longer HCC patient survival. These results further our understanding of the lncRNAs regulated by HBx in HCC, and provide evidence that dysregulation of RP11-241J12.3 contributes to HCC aggressiveness.
Collapse
Affiliation(s)
- Liuliu Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Yunmeng Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yuwei Zhang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
21
|
Hong J, Xie Z, Yang F, Jiang L, Jian T, Wang S, Guo Y, Huang X. Erianin suppresses proliferation and migration of cancer cells in a pyruvate carboxylase-dependent manner. Fitoterapia 2022; 157:105136. [PMID: 35093481 DOI: 10.1016/j.fitote.2022.105136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 01/04/2023]
Abstract
Erianin is a natural small molecule dibenzyl compound extracted from Dendrobium officinale or Dendrobium chrysotoxum. Studies show erianin has many pharmacological functions such as antioxidant, antibacterial, antiviral, improving diabetic nephropathy, relaxing bronchial smooth muscle and anti-tumor. However, the erianin-mediated molecular mechanism is elusive, and the target protein of erianin is not clear yet. Here, we screened and identified that the target protein of erianin in human hepatoma HepG2 cells is human pyruvate carboxylase, and explored the anti-tumor signal pathway regulated by erianin in several cell lines. Firstly, the interaction between human pyruvate carboxylase and erianin was studied by bioinformatics and biochemical methods. Secondly, in vitro, erianin can specifically inhibit the activity of human pyruvate carboxylase, and the purified human pyruvate carboxylase can specifically bind to the activity probe of erianin. Thirdly, human pyruvate carboxylase is highly expressed in a variety of malignant tumors, and the inhibitory effect of erianin on tumor cells is positively correlated with the expression of human pyruvate carboxylase, and erianin can selectively inhibit the activity of pyruvate carboxylase. Finally, erianin can regulate the pyruvate carboxylase-mediated Wnt/ β- Catenin pathway. All of which provide important data for the further study of the anticancer mechanism of erianin, and lay a solid foundation for the further development and utilization of erianin.
Collapse
Affiliation(s)
- Jing Hong
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Zeyu Xie
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Fangyao Yang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Lixiang Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Tiantian Jian
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Siyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Yuanbiao Guo
- Medical Research Center, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xinhe Huang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China.
| |
Collapse
|
22
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
23
|
Sheng Y, Chen Y, Zeng Z, Wu W, Wang J, Ma Y, Lin Y, Zhang J, Huang Y, Li W, Zhu Q, Wei X, Li S, Wisanwattana W, Li F, Liu W, Suksamrarn A, Zhang G, Jiao W, Wang F. Identification of Pyruvate Carboxylase as the Cellular Target of Natural Bibenzyls with Potent Anticancer Activity against Hepatocellular Carcinoma via Metabolic Reprogramming. J Med Chem 2021; 65:460-484. [PMID: 34931827 DOI: 10.1021/acs.jmedchem.1c01605] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer cell proliferation in some organs often depends on conversion of pyruvate to oxaloacetate via pyruvate carboxylase (PC) for replenishing the tricarboxylic acid cycle to support biomass production. In this study, PC was identified as the cellular target of erianin using the photoaffinity labeling-click chemistry-based probe strategy. Erianin potently inhibited the enzymatic activity of PC, which mediated the anticancer effect of erianin in human hepatocellular carcinoma (HCC). Erianin modulated cancer-related gene expression and induced changes in metabolic intermediates. Moreover, erianin promotes mitochondrial oxidative stress and inhibits glycolysis, leading to insufficient energy required for cell proliferation. Analysis of 14 natural analogs of erianin showed that some compounds exhibited potent inhibitory effects on PC. These results suggest that PC is a cellular target of erianin and reveal the unrecognized function of PC in HCC tumorigenesis; erianin along with its analogs warrants further development as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongqiu Zeng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuling Ma
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuan Lin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Sichuan Xincheng Biological Co., LTD, Chengdu 611731, China
| | - Jichao Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhua Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiyu Zhu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao Wei
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wisanee Wisanwattana
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Wei Jiao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
24
|
Helenius IT, Madala HR, Yeh JRJ. An Asp to Strike Out Cancer? Therapeutic Possibilities Arising from Aspartate's Emerging Roles in Cell Proliferation and Survival. Biomolecules 2021; 11:1666. [PMID: 34827664 PMCID: PMC8615858 DOI: 10.3390/biom11111666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
A better understanding of the metabolic constraints of a tumor may lead to more effective anticancer treatments. Evidence has emerged in recent years shedding light on a crucial aspartate dependency of many tumor types. As a precursor for nucleotide synthesis, aspartate is indispensable for cell proliferation. Moreover, the malate-aspartate shuttle plays a key role in redox balance, and a deficit in aspartate can lead to oxidative stress. It is now recognized that aspartate biosynthesis is largely governed by mitochondrial metabolism, including respiration and glutaminolysis in cancer cells. Therefore, under conditions that suppress mitochondrial metabolism, including mutations, hypoxia, or chemical inhibitors, aspartate can become a limiting factor for tumor growth and cancer cell survival. Notably, aspartate availability has been associated with sensitivity or resistance to various therapeutics that are presently in the clinic or in clinical trials, arguing for a critical need for more effective aspartate-targeting approaches. In this review, we present current knowledge of the metabolic roles of aspartate in cancer cells and describe how cancer cells maintain aspartate levels under different metabolic states. We also highlight several promising aspartate level-modulating agents that are currently under investigation.
Collapse
Affiliation(s)
| | - Hanumantha Rao Madala
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02125, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02125, USA
| |
Collapse
|
25
|
Zhang Y, Ding J, Liu C, Luo S, Gao X, Wu Y, Wang J, Wang X, Wu X, Shen W, Zhu J. Genetics Responses to Hypoxia and Reoxygenation Stress in Larimichthys crocea Revealed via Transcriptome Analysis and Weighted Gene Co-Expression Network. Animals (Basel) 2021; 11:ani11113021. [PMID: 34827754 PMCID: PMC8614329 DOI: 10.3390/ani11113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia, which occurs frequently in aquaculture, can cause serious harm to all aspects of the growth, reproduction and metabolism of cultured fish. Due to the intolerance of Larimichthys crocea to hypoxia, Larimichthys crocea often floats head or even dies under hypoxic environment. However, the molecular mechanism of hypoxia tolerance in Larimichthys crocea has not been fully described. Therefore, the aim of this study was to explore the hub regulatory genes under hypoxic stress environment by transcriptome analysis of three key tissues (liver, blood and gill) in Larimichthys crocea. We identified a number of important genes that exercise different regulatory functions. Overall, this study will provide important clues to the molecular mechanisms of hypoxia tolerance in Larimichthys crocea. Abstract The large yellow croaker (Larimichthys crocea) is an important marine economic fish in China; however, its intolerance to hypoxia causes widespread mortality. To understand the molecular mechanisms underlying hypoxia tolerance in L. crocea, the transcriptome gene expression profiling of three different tissues (blood, gills, and liver) of L. crocea exposed to hypoxia and reoxygenation stress were performed. In parallel, the gene relationships were investigated based on weighted gene co-expression network analysis (WGCNA). Accordingly, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that several pathways (e.g., energy metabolism, signal transduction, oxygen transport, and osmotic regulation) may be involved in the response of L. crocea to hypoxia and reoxygenation stress. In addition, also, four key modules (darkorange, magenta, saddlebrown, and darkolivegreen) that were highly relevant to the samples were identified by WGCNA. Furthermore, some hub genes within the association module, including RPS16, EDRF1, KCNK5, SNAT2, PFKL, GSK-3β, and PIK3CD, were found. This is the first study to report the co-expression patterns of a gene network after hypoxia stress in marine fish. The results provide new clues for further research on the molecular mechanisms underlying hypoxia tolerance in L. crocea.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Cheng Liu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Shengyu Luo
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Yuanjie Wu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xuelei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Xiongfei Wu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Weiliang Shen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| |
Collapse
|
26
|
Zhang D, Li Y, Yang S, Wang M, Yao J, Zheng Y, Deng Y, Li N, Wei B, Wu Y, Zhai Z, Dai Z, Kang H. Identification of a glycolysis-related gene signature for survival prediction of ovarian cancer patients. Cancer Med 2021; 10:8222-8237. [PMID: 34609082 PMCID: PMC8607265 DOI: 10.1002/cam4.4317] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer (OV) is deemed the most lethal gynecological cancer in women. The aim of this study was to construct an effective gene prognostic model for predicting overall survival (OS) in patients with OV. Methods The expression profiles of glycolysis‐related genes (GRGs) and clinical data of patients with OV were extracted from The Cancer Genome Atlas (TCGA) database. Univariate, multivariate, and least absolute shrinkage and selection operator Cox regression analyses were conducted, and a prognostic signature based on GRGs was constructed. The predictive ability of the signature was analyzed using training and test sets. Results A gene risk signature based on nine GRGs (ISG20, CITED2, PYGB, IRS2, ANGPTL4, TGFBI, LHX9, PC, and DDIT4) was identified to predict the survival outcome of patients with OV. The signature showed a good prognostic ability for OV, particularly high‐grade OV, in the TCGA dataset, with areas under the curve (AUC) of 0.709 and 0.762 for 3‐ and 5‐year survival, respectively. Similar results were found in the test sets, and the AUCs of 3‐, 5‐year OS were 0.714 and 0.772 in the combined test set. And our signature was an independent prognostic factor. Moreover, a nomogram combining the prediction model and clinical factors was developed. Conclusion Our study established a nine‐GRG risk model and nomogram to better predict OS in patients with OV. The risk model represents a promising and independent prognostic predictor for patients with OV. Moreover, our study on GRGs could offer guidance for the elucidation of underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Dai Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Yiche Li
- Department of Tumor Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bajin Wei
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Silva G, Sales-Dias J, Casal D, Alves S, Domenici G, Barreto C, Matos C, Lemos AR, Matias AT, Kucheryava K, Ferreira A, Moita MR, Braga S, Brito C, Cabral MG, Casalou C, Barral DC, Sousa PMF, Videira PA, Bandeiras TM, Barbas A. Development of Dl1.72, a Novel Anti-DLL1 Antibody with Anti-Tumor Efficacy against Estrogen Receptor-Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13164074. [PMID: 34439228 PMCID: PMC8392387 DOI: 10.3390/cancers13164074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Over 70% of breast cancers (BCs) are estrogen receptor-positive (ER+). The development of endocrine therapy has considerably improved patient outcomes. However, there is a clinical need for novel effective therapies against ER+ BCs, since many of these do not respond to standard therapy, and more than one-third of responders acquire resistance, experience relapse and metastasize. The Notch ligand Delta-like 1 (DLL1) is a key player in ER+ BC development and aggressiveness. Contrary to complete Notch pharmacological inhibitors, antibody-targeting of individual Notch components is expected to have superior therapeutic efficacy and be better tolerated. In this study, we developed and characterized a novel specific anti-DLL1 antibody with efficacy in inhibiting BC cell proliferation, mammosphere formation and angiogenesis, as well as anti-tumor and anti-metastatic efficacy in an ER+ BC mouse model without side effects. Thus, our data suggest that this anti-DLL1 antibody is a promising candidate for ER+ BC treatment. Abstract The Notch-signaling ligand DLL1 has emerged as an important player and promising therapeutic target in breast cancer (BC). DLL1-induced Notch activation promotes tumor cell proliferation, survival, migration, angiogenesis and BC stem cell maintenance. In BC, DLL1 overexpression is associated with poor prognosis, particularly in estrogen receptor-positive (ER+) subtypes. Directed therapy in early and advanced BC has dramatically changed the natural course of ER+ BC; however, relapse is a major clinical issue, and new therapeutic strategies are needed. Here, we report the development and characterization of a novel monoclonal antibody specific to DLL1. Using phage display technology, we selected an anti-DLL1 antibody fragment, which was converted into a full human IgG1 (Dl1.72). The Dl1.72 antibody exhibited DLL1 specificity and affinity in the low nanomolar range and significantly impaired DLL1-Notch signaling and expression of Notch target genes in ER+ BC cells. Functionally, in vitro treatment with Dl1.72 reduced MCF-7 cell proliferation, migration, mammosphere formation and endothelial tube formation. In vivo, Dl1.72 significantly inhibited tumor growth, reducing both tumor cell proliferation and liver metastases in a xenograft mouse model, without apparent toxicity. These findings suggest that anti-DLL1 Dl1.72 could be an attractive agent against ER+ BC, warranting further preclinical investigation.
Collapse
Affiliation(s)
- Gabriela Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Correspondence: ; Tel.: +351-214-469-419
| | - Joana Sales-Dias
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diogo Casal
- Departamento de Anatomia, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (D.C.); (S.A.)
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Sara Alves
- Departamento de Anatomia, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (D.C.); (S.A.)
- Serviço de Anatomia Patológica, Centro Hospitalar de Lisboa Central-Hospital de São José, 1150-199 Lisbon, Portugal
| | - Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Clara Barreto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Carolina Matos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Ana R. Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana T. Matias
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Khrystyna Kucheryava
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Andreia Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Maria Raquel Moita
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sofia Braga
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
- Unidade de Mama, Instituto CUF de Oncologia, 1998-018 Lisbon, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - M. Guadalupe Cabral
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Cristina Casalou
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Pedro M. F. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula A. Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Tiago M. Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| |
Collapse
|
28
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
29
|
Liu Y, Dong Y, He X, Gong A, Gao J, Hao X, Wang S, Fan Y, Wang Z, Li M, Xu W. piR-hsa-211106 Inhibits the Progression of Lung Adenocarcinoma Through Pyruvate Carboxylase and Enhances Chemotherapy Sensitivity. Front Oncol 2021; 11:651915. [PMID: 34249688 PMCID: PMC8260943 DOI: 10.3389/fonc.2021.651915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/01/2021] [Indexed: 12/09/2022] Open
Abstract
Although the importance of PIWI-interacting RNAs (piRNAs) in cancer has recently been recognized, studies on the role and functional mechanism of piRNAs in lung adenocarcinoma (LUAD) development and progression are limited. In this study, we identified 10 differently expressed piRNAs in LUAD tissues compared to normal tissues, among which, piR-hsa-211106 expression levels were downregulated in LUAD tissues and cell lines. Furthermore, the effects of piR-hsa-211106 on the malignant phenotypes and chemosensitivity of LUAD cells were detected by gain- and loss-of-function analyses in vitro and in vivo, which showed that piR-hsa-211106 inhibited LUAD cell proliferation, tumor growth, and migration, but promoted apoptosis. Moreover, our finding indicated that piR-hsa-211106 is a potential therapeutic target that synergistically imparts anticancer effects with a chemotherapeutic agent for LUAD-cisplatin. Further mechanistic investigation indicated that piR-hsa-211106 could bind to pyruvate carboxylase (PC) by RNA pull down and RNA immunoprecipitation assays and inhibited PC mRNA and protein expression. Our study demonstrates that piR-hsa-211106 inhibits LUAD progression by hindering the expression and function of PC and enhances chemotherapy sensitivity, suggesting that piR-hsa-211106 is a novel diagnostic and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yanhan Dong
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Xinjia He
- Department of Radiation Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinning Gao
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Xiaodan Hao
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Shuai Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yuqiao Fan
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Zibo Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Meng Li
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Kiesel VA, Sheeley MP, Coleman MF, Cotul EK, Donkin SS, Hursting SD, Wendt MK, Teegarden D. Pyruvate carboxylase and cancer progression. Cancer Metab 2021; 9:20. [PMID: 33931119 PMCID: PMC8088034 DOI: 10.1186/s40170-021-00256-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/04/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate carboxylase (PC) is a mitochondrial enzyme that catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate (OAA), serving to replenish the tricarboxylic acid (TCA) cycle. In nonmalignant tissue, PC plays an essential role in controlling whole-body energetics through regulation of gluconeogenesis in the liver, synthesis of fatty acids in adipocytes, and insulin secretion in pancreatic β cells. In breast cancer, PC activity is linked to pulmonary metastasis, potentially by providing the ability to utilize glucose, fatty acids, and glutamine metabolism as needed under varying conditions as cells metastasize. PC enzymatic activity appears to be of particular importance in cancer cells that are unable to utilize glutamine for anaplerosis. Moreover, PC activity also plays a role in lipid metabolism and protection from oxidative stress in cancer cells. Thus, PC activity may be essential to link energy substrate utilization with cancer progression and to enable the metabolic flexibility necessary for cell resilience to changing and adverse conditions during the metastatic process.
Collapse
Affiliation(s)
- Violet A Kiesel
- Department of Nutrition Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Madeline P Sheeley
- Department of Nutrition Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Eylem Kulkoyluoglu Cotul
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Shawn S Donkin
- Department of Animal Science, Purdue University, West Lafayette, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Dorothy Teegarden
- Department of Nutrition Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
31
|
Ma R, Wu Y, Li S, Yu X. Interplay Between Glucose Metabolism and Chromatin Modifications in Cancer. Front Cell Dev Biol 2021; 9:654337. [PMID: 33987181 PMCID: PMC8110832 DOI: 10.3389/fcell.2021.654337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cells reprogram glucose metabolism to meet their malignant proliferation needs and survival under a variety of stress conditions. The prominent metabolic reprogram is aerobic glycolysis, which can help cells accumulate precursors for biosynthesis of macromolecules. In addition to glycolysis, recent studies show that gluconeogenesis and TCA cycle play important roles in tumorigenesis. Here, we provide a comprehensive review about the role of glycolysis, gluconeogenesis, and TCA cycle in tumorigenesis with an emphasis on revealing the novel functions of the relevant enzymes and metabolites. These functions include regulation of cell metabolism, gene expression, cell apoptosis and autophagy. We also summarize the effect of glucose metabolism on chromatin modifications and how this relationship leads to cancer development. Understanding the link between cancer cell metabolism and chromatin modifications will help develop more effective cancer treatments.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
32
|
Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett 2021; 502:133-142. [PMID: 33444690 PMCID: PMC8158653 DOI: 10.1016/j.canlet.2020.12.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The ability of tumor cells to adapt to changes in oxygen tension is essential for tumor development. Low oxygen concentration influences cellular metabolism and, thus, affects proliferation, migration, and invasion. A focal point of the cell's adaptation to hypoxia is the transcription factor HIF1α (hypoxia-inducible factor 1 alpha), which affects the expression of specific gene networks involved in cellular energetics and metabolism. This review illustrates the mechanisms by which HIF1α-induced metabolic adaptation promotes angiogenesis, participates in the escape from immune recognition, and increases cancer cell antioxidant capacity. In addition to hypoxia, metabolic inhibition of 2-oxoglutarate-dependent dioxygenases regulates HIF1α stability and transcriptional activity. This phenomenon, known as pseudohypoxia, is frequently used by cancer cells to promote glycolytic metabolism to support biomass synthesis for cell growth and proliferation. In this review, we highlight the role of the most important metabolic intermediaries that are at the center of cancer's biology, and in particular, the participation of these metabolites in HIF1α retrograde signaling during the establishment of pseudohypoxia. Finally, we will discuss how these changes affect both the development of cancers and their resistance to treatment.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021; 10:cells10040762. [PMID: 33808495 PMCID: PMC8066905 DOI: 10.3390/cells10040762] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15213, USA
- The Hillman Cancer Center, UPMC, Pittsburgh, PA 15213, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-692-6795
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
34
|
Feuerecker B, Biechl P, Seidl C, Bruchertseifer F, Morgenstern A, Schwaiger M, Eisenreich W. Diverse metabolic response of cancer cells treated with a 213Bi-anti-EGFR-immunoconjugate. Sci Rep 2021; 11:6227. [PMID: 33737524 PMCID: PMC7973706 DOI: 10.1038/s41598-021-84421-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Evaluation of treatment response is among the major challenges in modern oncology. We herein used a monoclonal antibody targeting the EGF receptor (EGFR) labelled with the alpha emitter 213Bi (213Bi-anti-EGFR-MAb). EJ28Luc (bladder) and LN18 (glioma) cancer cells, both overexpressing EGFR, were incubated for 3 h with the radioimmunoconjugate. To assess the responses in the core carbon metabolism upon this treatment, these cancer cell lines were subsequently cultivated for 18 h in the presence of [U-13C6]glucose. 13C-enrichment and isotopologue profiles of key amino acids were monitored by gas chromatography–mass spectrometry (GC/MS), in order to monitor the impacts of the radionuclide-treatment upon glucose metabolism. In comparison to untreated controls, treatment of EJ28Luc cells with 213Bi-anti-EGFR-MAb resulted in a significantly decreased incorporation of 13C from [U-13C6]glucose into alanine, aspartate, glutamate, glycine, proline and serine. In sharp contrast, the same amino acids did not display less 13C-enrichments during treatment of the LN18 cells. The data indicate early treatment response of the bladder cancer cells, but not of the glioma cells though cell lines were killed following 213Bi-anti-EGFR-MAb treatment. The pilot study shows that the 13C-labelling approach is a valid tool to assess the responsiveness of cancer cells upon radionuclide-treatment in considerable metabolic detail.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany. .,Deutsches Konsortium für translationale Krebsforschung (DKTK), Heidelberg, partnersite München and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiology, School of Medicine, Technische Universität München, Munich, Germany.
| | - Philipp Biechl
- Department of Chemistry, Bavarian NMR Center-Structural Membrane Biochemistry, Technische Universität München, Garching, Germany
| | - Christof Seidl
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Bavarian NMR Center-Structural Membrane Biochemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
35
|
Abstract
Metastasis formation is the major cause of death in most patients with cancer. Despite extensive research, targeting metastatic seeding and colonization is still an unresolved challenge. Only recently, attention has been drawn to the fact that metastasizing cancer cells selectively and dynamically adapt their metabolism at every step during the metastatic cascade. Moreover, many metastases display different metabolic traits compared with the tumours from which they originate, enabling survival and growth in the new environment. Consequently, the stage-dependent metabolic traits may provide therapeutic windows for preventing or reducing metastasis, and targeting the new metabolic traits arising in established metastases may allow their eradication.
Collapse
Affiliation(s)
- Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
- UCSF Comprehensive Cancer Center, Department of Neurological Surgery, UCSF, San Francisco, CA, USA.
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
36
|
Rattanapornsompong K, Khattiya J, Phannasil P, Phaonakrop N, Roytrakul S, Jitrapakdee S, Akekawatchai C. Impaired G2/M cell cycle arrest induces apoptosis in pyruvate carboxylase knockdown MDA-MB-231 cells. Biochem Biophys Rep 2021; 25:100903. [PMID: 33490650 PMCID: PMC7806519 DOI: 10.1016/j.bbrep.2020.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/02/2022] Open
Abstract
Background Previous studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown. Methods We generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics. Results PC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP. Conclusions Suppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells. General significance Our results highlight the possibility of the use of PC as an anti-cancer drug target.
Collapse
Affiliation(s)
| | - Janya Khattiya
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand.,Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon-Pathom, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
37
|
Wang H, Lu J, Chen X, Schwalbe M, Gorka JE, Mandel JA, Wang J, Goetzman ES, Ranganathan S, Dobrowolski SF, Prochownik EV. Acquired deficiency of peroxisomal dicarboxylic acid catabolism is a metabolic vulnerability in hepatoblastoma. J Biol Chem 2021; 296:100283. [PMID: 33450224 PMCID: PMC7948956 DOI: 10.1016/j.jbc.2021.100283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic reprogramming provides transformed cells with proliferative and/or survival advantages. Capitalizing on this therapeutically, however, has been only moderately successful because of the relatively small magnitude of these differences and because cancers may further adapt their metabolism to evade metabolic pathway inhibition. Mice lacking the peroxisomal bifunctional enzyme enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh) and supplemented with the 12-carbon fatty acid lauric acid (C12) accumulate the toxic metabolite dodecanedioic acid (DDDA), which causes acute hepatocyte necrosis and liver failure. We noted that, in a murine model of pediatric hepatoblastoma (HB) and in primary human HBs, downregulation of Ehhadh occurs in association with the suppression of mitochondrial β- and endosomal/peroxisomal ω-fatty acid oxidation pathways. This suggested that HBs might be more susceptible than normal liver tissue to C12 dietary intervention. Indeed, HB-bearing mice provided with C12- and/or DDDA-supplemented diets survived significantly longer than those on standard diets. In addition, larger tumors developed massive necrosis following short-term DDDA administration. In some HBs, the eventual development of DDDA resistance was associated with 129 transcript differences, ∼90% of which were downregulated, and approximately two-thirds of which correlated with survival in numerous human cancers. These transcripts often encoded extracellular matrix components, suggesting that DDDA resistance arises from reduced Ehhadh uptake. Lower Ehhadh expression was also noted in murine hepatocellular carcinomas and in subsets of certain human cancers, supporting the likely generality of these results. Our results demonstrate the feasibility of C12 or DDDA dietary supplementation that is nontoxic, inexpensive, and likely compatible with more standard chemotherapies.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Lu
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaoguang Chen
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Marie Schwalbe
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joanna E Gorka
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jordan A Mandel
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jinglin Wang
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Central South University Xiangya School of Medicine, Changsha, Hunan, People's Republic of China
| | - Eric S Goetzman
- Division of Medical Genetics, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Steven F Dobrowolski
- Division of Medical Genetics, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; The Hillman Cancer Center, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; The Pittsburgh Liver Research Institute, Pittsburgh, Pennsylvania, USA; The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
38
|
Shang H, Zheng J, Tong J. Integrated analysis of transcriptomic and metabolomic data demonstrates the significant role of pyruvate carboxylase in the progression of ovarian cancer. Aging (Albany NY) 2020; 12:21874-21889. [PMID: 33177242 PMCID: PMC7695408 DOI: 10.18632/aging.104004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to explore prognosis-related biomarkers and underlying mechanisms during ovarian carcinoma progression and development. mRNA expression profiles and GSE49997 dataset were downloaded. Survival analyses were performed for genes with high expression levels. Expression level of candidate genes was explored in four ovarian cancer cells lines. Pyruvate carboxylase (PC) was found to be one of significantly differentially expressed gene (DEG). The role of PC knockdown was analyzed in SKOV cells using cell proliferation, flow cytometric, and Transwell migration and invasion assays. DEGs and metabolites in PC-shRNA (shPC)-treated samples vs. control groups were identified. PC was a prognosis-related gene and related to metabolic pathway. Knockdown of PC regulated cell proliferation, cell cycle progression, and migration and invasion of SKOV-3 cells. Transcriptome sequencing analyses showed STAT1 and TP53 gained higher degrees in PPI network. A total of 44 metabolites were identified. These DEGs and metabolites in PC samples were related with neuroactive ligands receptor interaction, glycine, serine and threonine metabolism, and ABC transporter pathways. PC may affect the tumor biology of ovarian cancer through the dysregulation of glycine, serine, and threonine metabolism, and ABC transporter pathways, as well as STAT1 and TP53 expression.
Collapse
Affiliation(s)
- Hongkai Shang
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Jianfeng Zheng
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Jinyi Tong
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China.,Department of Gynecology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
39
|
Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front Oncol 2020; 10:722. [PMID: 32528879 PMCID: PMC7256186 DOI: 10.3389/fonc.2020.00722] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
40
|
Lin Q, He Y, Wang X, Zhang Y, Hu M, Guo W, He Y, Zhang T, Lai L, Sun Z, Yi Z, Liu M, Chen Y. Targeting Pyruvate Carboxylase by a Small Molecule Suppresses Breast Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903483. [PMID: 32382484 PMCID: PMC7201266 DOI: 10.1002/advs.201903483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 05/29/2023]
Abstract
Rapid metabolism differentiates cancer cells from normal cells and relies on anaplerotic pathways. However, the mechanisms of anaplerosis-associated enzymes are rarely understood. The lack of potent and selective antimetabolism drugs restrains further clinical investigations. A small molecule ZY-444 ((N 4-((5-(4-(benzyloxy)phenyl)-2-thiophenyl)methyl)-N 2-isobutyl-2,4-pyrimidinediamine) is discovered to inhibit cancer cell proliferation specifically, having potent efficacies against tumor growth, metastasis, and recurrence. ZY-444 binds to cellular pyruvate carboxylase (PC), a key anaplerotic enzyme of the tricarboxylic acid cycle, and inactivates its catalytic activity. PC inhibition suppresses breast cancer growth and metastasis through inhibiting the Wnt/β-catenin/Snail signaling pathway. Lower PC expression in patient tumors is correlated with significant survival benefits. Comparative profiles of PC expression in cancer versus normal tissues implicate the tumor selectivity of ZY-444. Overall, ZY-444 holds promise therapeutically as an anti-cancer metabolism agent.
Collapse
Affiliation(s)
- Qingxiang Lin
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yuan He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Xue Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yong Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Meichun Hu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Weikai Guo
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yundong He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Tao Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Li Lai
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Zhenliang Sun
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| |
Collapse
|
41
|
Pechalrieu D, Assemat F, Halby L, Marcellin M, Yan P, Chaoui K, Sharma S, Chiosis G, Burlet-Schiltz O, Arimondo PB, Lopez M. Bisubstrate-Type Chemical Probes Identify GRP94 as a Potential Target of Cytosine-Containing Adenosine Analogs. ACS Chem Biol 2020; 15:952-961. [PMID: 32191434 DOI: 10.1021/acschembio.9b00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We synthesized affinity-based chemical probes of cytosine-adenosine bisubstrate analogs and identified several potential targets by proteomic analysis. The validation of the proteomic analysis identified the chemical probe as a specific inhibitor of glucose-regulated protein 94 (GRP94), a potential drug target for several types of cancers. Therefore, as a result of the use of bisubstrate-type chemical probes and a chemical-biology methodology, this work opens the way to the development of a new family of GRP94 inhibitors that could potentially be of therapeutic interest.
Collapse
Affiliation(s)
- Dany Pechalrieu
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Fanny Assemat
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Ludovic Halby
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR no. 3523, 28 rue du Dr Roux, 75015 Paris, France
| | - Marlene Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pengrong Yan
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sahil Sharma
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Paola B. Arimondo
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR no. 3523, 28 rue du Dr Roux, 75015 Paris, France
| | - Marie Lopez
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM UMR 5247, 240 Avenue du Prof. E. Jeanbrau, 34296 Montpellier Cedex 5, France
| |
Collapse
|
42
|
Lao-On U, Rojvirat P, Chansongkrow P, Phannasil P, Siritutsoontorn S, Charoensawan V, Jitrapakdee S. c-Myc directly targets an over-expression of pyruvate carboxylase in highly invasive breast cancer. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165656. [PMID: 31874204 DOI: 10.1016/j.bbadis.2019.165656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
Here we showed that the c-Myc oncogene is responsible for overexpression of pyruvate carboxylase (PC) in highly invasive MDA-MB-231 cells. Pharmacological inhibition of c-Myc activity with 10074-G5 compound, resulted in a marked reduction of PC mRNA and protein, concomitant with reduced cell growth, migration and invasion. This growth inhibition but not migration and invasion can be partly restored by overexpression of PC, indicating that PC is a c-Myc-regulated pro-proliferating enzyme. Analysis of chromatin immunoprecipitation sequencing of c-Myc bound promoters revealed that c-Myc binds to two canonical c-Myc binding sites, locating at nucleotides -417 to -407 and -301 to -291 in the P2 promoter of human PC gene. Mutation of either c-Myc binding site in the P2 promoter-luciferase construct resulted in 50-60% decrease in luciferase activity while double mutation of c-Myc binding sites further decreased the luciferase activity in MDA-MB-231 cells. Overexpression of c-Myc in HEK293T cells that have no endogenous c-Myc resulted in 250-fold increase in luciferase activity. Mutation of either E-boxes lowered luciferase activity by 50% and 25%, respectively while double mutation of both sites abolished the c-Myc transactivation response. An electrophoretic mobility shift assay using nuclear proteins from MDA-MB-231 confirmed binding of c-Myc to both c-Myc binding sites in the P2 promoter. Bioinformatic analysis of publicly available transcriptomes from the cancer genome atlas (TCGA) dataset revealed an association between expression of c-Myc and PC in primary breast, as well as in lung and colon cancer tissues, suggesting that overexpression of PC is deregulated by c-Myc in these cancers.
Collapse
Affiliation(s)
- Udom Lao-On
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pinnara Rojvirat
- Division of Interdisciplinary, Mahidol University at Kanjanaburi campus, Thailand
| | - Pakkanan Chansongkrow
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
43
|
Pinweha P, Phillips CA, Gregory PA, Li X, Chuayboonya P, Mongkolsiri P, Goodall GJ, Jitrapakdee S. MicroRNA-143-3p targets pyruvate carboxylase expression and controls proliferation and migration of MDA-MB-231 cells. Arch Biochem Biophys 2019; 677:108169. [DOI: 10.1016/j.abb.2019.108169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 01/06/2023]
|
44
|
Gkiouli M, Biechl P, Eisenreich W, Otto AM. Diverse Roads Taken by 13C-Glucose-Derived Metabolites in Breast Cancer Cells Exposed to Limiting Glucose and Glutamine Conditions. Cells 2019; 8:cells8101113. [PMID: 31547005 PMCID: PMC6829299 DOI: 10.3390/cells8101113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
In cancers, tumor cells are exposed to fluctuating nutrient microenvironments with limiting supplies of glucose and glutamine. While the metabolic program has been related to the expression of oncogenes, only fractional information is available on how variable precarious nutrient concentrations modulate the cellular levels of metabolites and their metabolic pathways. We thus sought to obtain an overview of the metabolic routes taken by 13C-glucose-derived metabolites in breast cancer MCF-7 cells growing in combinations of limiting glucose and glutamine concentrations. Isotopologue profiles of key metabolites were obtained by gas chromatography/mass spectrometry (GC/MS). They revealed that in limiting and standard saturating medium conditions, the same metabolic routes were engaged, including glycolysis, gluconeogenesis, as well as the TCA cycle with glutamine and pyruvate anaplerosis. However, the cellular levels of 13C-metabolites, for example, serine, alanine, glutamate, malate, and aspartate, were highly sensitive to the available concentrations and the ratios of glucose and glutamine. Notably, intracellular lactate concentrations did not reflect the Warburg effect. Also, isotopologue profiles of 13C-serine as well as 13C-alanine show that the same glucose-derived metabolites are involved in gluconeogenesis and pyruvate replenishment. Thus, anaplerosis and the bidirectional flow of central metabolic pathways ensure metabolic plasticity for adjusting to precarious nutrient conditions.
Collapse
Affiliation(s)
- Maria Gkiouli
- Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany.
| | - Philipp Biechl
- Munich School of BioEngineering, and Department of Chemistry, Chair of Biochemistry, Technical University of Munich, 85748 Garching, Germany.
| | - Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technical University of Munich, 85748 Garching, Germany.
| | - Angela M Otto
- Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
45
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
46
|
Stuani L, Sabatier M, Sarry JE. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biol 2019; 17:57. [PMID: 31319822 PMCID: PMC6637566 DOI: 10.1186/s12915-019-0670-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Changes in cell metabolism and metabolic adaptation are hallmark features of many cancers, including leukemia, that support biological processes involved into tumor initiation, growth, and response to therapeutics. The discovery of mutations in key metabolic enzymes has highlighted the importance of metabolism in cancer biology and how these changes might constitute an Achilles heel for cancer treatment. In this Review, we discuss the role of metabolic and mitochondrial pathways dysregulated in acute myeloid leukemia, and the potential of therapeutic intervention targeting these metabolic dependencies on the proliferation, differentiation, stem cell function and cell survival to improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| |
Collapse
|
47
|
Jiang W, Han X, Wang J, Wang L, Xu Z, Wei Q, Zhang W, Wang H. miR-22 enhances the radiosensitivity of small-cell lung cancer by targeting the WRNIP1. J Cell Biochem 2019; 120:17650-17661. [PMID: 31190355 PMCID: PMC6771739 DOI: 10.1002/jcb.29032] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 02/03/2023]
Abstract
Small‐cell lung cancer (SCLC) is an aggressive malignancy characterized by high cellular proliferation and early distant metastasis. Our study aimed to explore the effect of miR‐22‐3p (miR‐22, for short) on SCLC radiosensitivity and its molecular mechanisms. The expression level of miR‐22 was evaluated in a human normal lung epithelial cell line and a human SCLC cell line, and cell apoptosis and migration were detected. The expression of the miR‐22 direct target WRNIP1 mRNA and protein were explored. Five differentially expressed genes were detected. The miR‐22 expression in NCI‐H446 was significantly decreased, and miR‐22 overexpression significantly promoted cell apoptosis. miR‐22 overexpression could significantly inhibit the cell migration of SCLC cells, and miR‐22 had a negative regulatory effect on WRNIP1 mRNA and protein levels. KLK8 was downregulated, and the messenger RNA (mRNA) of four other genes (PC, SCUBE1, STC1, and GPM6A) was upregulated mRNA in cells overexpressing miR‐22, which was in accordance with the bioinformatics analysis. miR‐22 could enhance the radiosensitivity of SCLC by targeting WRNIP1.
Collapse
Affiliation(s)
- Wenhua Jiang
- Department of Radiotherapy, Tianjin Medical University Second Hospital, Tianjin, China
| | - Xuemei Han
- Department of Respiration, Tianjin Medical University Second Hospital, Tianjin, China
| | - Jingrui Wang
- Tianjin Marvelbio Technology Co, Ltd, Tianjin, China
| | - Lin Wang
- Department of Radiotherapy, Tianjin Medical University Second Hospital, Tianjin, China
| | - Zanmei Xu
- Tianjin Marvelbio Technology Co, Ltd, Tianjin, China
| | - Qiao Wei
- Department of Radiotherapy, Tianjin Medical University Second Hospital, Tianjin, China
| | - Wenpan Zhang
- Tianjin Marvelbio Technology Co, Ltd, Tianjin, China
| | - Haitao Wang
- Department of Radiotherapy, Tianjin Medical University Second Hospital, Tianjin, China
| |
Collapse
|
48
|
Strickaert A, Corbet C, Spinette SA, Craciun L, Dom G, Andry G, Larsimont D, Wattiez R, Dumont JE, Feron O, Maenhaut C. Reprogramming of Energy Metabolism: Increased Expression and Roles of Pyruvate Carboxylase in Papillary Thyroid Cancer. Thyroid 2019; 29:845-857. [PMID: 30990120 DOI: 10.1089/thy.2018.0435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Energy metabolism is described to be deregulated in cancer, and the Warburg effect is considered to be a major hallmark. Recently, cellular heterogeneity in tumors and the tumor microenvironment has been recognized to play an important role in several metabolic pathways in cancer. However, its contribution to papillary thyroid cancer (PTC) development and metabolism is still poorly understood. Methods: A proteomic analysis of five PTC was performed, and the cellular distribution of several upregulated metabolic proteins was investigated in the cancerous and stromal cells of these tumors. Results: Tandem mass spectrometry analysis revealed the upregulation of many metabolism-related proteins, among them pyruvate carboxylase (PC). PC knockdown in thyroid cell lines alters their proliferative and motility capacities, and measurements of oxygen consumption rates show that this enzyme is involved in the replenishment of the tricarboxylic acid cycle. Immunostainings of several upregulated metabolic proteins show that thyroid cancer cells have an increased mitochondrial oxidative metabolism compared to stromal cells. Conclusions: PTC has a very active tricarboxylic acid cycle, continuously replenished by a PC-mediated anaplerosis. This is specifically observed in the tumor cells.
Collapse
Affiliation(s)
- Aurélie Strickaert
- 1 Institute of Interdisciplinary Research (IRIBHM); Université libre de Bruxelles, Brussels, Belgium
| | - Cyril Corbet
- 2 Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Selim-Alex Spinette
- 3 Department of Pathology, Jules Bordet Institute; Université libre de Bruxelles, Brussels, Belgium
| | - Ligia Craciun
- 3 Department of Pathology, Jules Bordet Institute; Université libre de Bruxelles, Brussels, Belgium
| | - Geneviève Dom
- 1 Institute of Interdisciplinary Research (IRIBHM); Université libre de Bruxelles, Brussels, Belgium
| | - Guy Andry
- 4 Department of Thoracic Surgery, Jules Bordet Institute; Université libre de Bruxelles, Brussels, Belgium
| | - Denis Larsimont
- 3 Department of Pathology, Jules Bordet Institute; Université libre de Bruxelles, Brussels, Belgium
| | - Ruddy Wattiez
- 5 Proteomics and Microbiology Laboratory, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Jacques E Dumont
- 1 Institute of Interdisciplinary Research (IRIBHM); Université libre de Bruxelles, Brussels, Belgium
| | - Olivier Feron
- 2 Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Carine Maenhaut
- 1 Institute of Interdisciplinary Research (IRIBHM); Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
49
|
Sales-Dias J, Silva G, Lamy M, Ferreira A, Barbas A. The Notch ligand DLL1 exerts carcinogenic features in human breast cancer cells. PLoS One 2019; 14:e0217002. [PMID: 31107884 PMCID: PMC6527237 DOI: 10.1371/journal.pone.0217002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
CONCLUSIONS These findings provide further evidence that DLL1 exerts carcinogenic effects in BC cells. The dissimilar effects of DLL1 downregulation observed amongst MCF-7, BT474, and MDA-MB-231 cells is likely due to their distinctive genetic and biologic characteristics, suggesting that DLL1 contributes to BC through various mechanisms.
Collapse
Affiliation(s)
- Joana Sales-Dias
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB—Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Gabriela Silva
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- * E-mail:
| | - Márcia Lamy
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Andreia Ferreira
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ana Barbas
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Bayer Portugal, Carnaxide, Portugal
| |
Collapse
|
50
|
Sheng X, Hou Q, Liu Y. Computational evidence for the importance of lysine carboxylation in the reaction catalyzed by carboxyl transferase domain of pyruvate carboxylase: a QM/MM study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|