1
|
Højgaard K, Kaadt E, Mumm BH, Pereira VS, Elfving B. Dysregulation of circadian clock gene expression patterns in a treatment-resistant animal model of depression. J Neurochem 2024; 168:1826-1841. [PMID: 38970299 DOI: 10.1111/jnc.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Circadian rhythm (CR) disturbances are among the most commonly observed symptoms during major depressive disorder, mostly in the form of disrupted sleeping patterns. However, several other measurable parameters, such as plasma hormone rhythms and differential expression of circadian clock genes (ccgs), are also present, often referred to as circadian phase markers. In the recent years, CR disturbances have been recognized as an essential aspect of depression; however, most of the known animal models of depression have yet to be evaluated for their eligibility to model CR disturbances. In this study, we investigate the potential of adrenocorticotropic hormone (ACTH)-treated animals as a disease model for research in CR disturbances in treatment-resistant depression. For this purpose, we evaluate the changes in several circadian phase markers, including plasma concentrations of corticosterone, ACTH, and melatonin, as well as gene expression patterns of 13 selected ccgs at 3 different time points, in both peripheral and central tissues. We observed no impact on plasma corticosterone and melatonin concentrations in the ACTH rats compared to vehicle. However, the expression pattern of several ccgs was affected in the ACTH rats compared to vehicle. In the hippocampus, 10 ccgs were affected by ACTH treatment, whereas in the adrenal glands, 5 ccgs were affected and in the prefrontal cortex, hypothalamus and liver 4 ccgs were regulated. In the blood, only 1 gene was affected. Individual tissues showed changes in different ccgs, but the expression of Bmal1, Per1, and Per2 were most generally affected. Collectively, the results presented here indicate that the ACTH animal model displays dysregulation of a number of phase markers suggesting the model may be appropriate for future studies into CR disturbances.
Collapse
Affiliation(s)
- Kristoffer Højgaard
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Erik Kaadt
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Birgitte Hviid Mumm
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vitor Silva Pereira
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Earnhardt-San AL, Baker EC, Riley DG, Ghaffari N, Long CR, Cardoso RC, Randel RD, Welsh TH. Differential Expression of Circadian Clock Genes in the Bovine Neuroendocrine Adrenal System. Genes (Basel) 2023; 14:2082. [PMID: 38003025 PMCID: PMC10670998 DOI: 10.3390/genes14112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Knowledge of circadian rhythm clock gene expression outside the suprachiasmatic nucleus is increasing. The purpose of this study was to determine whether expression of circadian clock genes differed within or among the bovine stress axis tissues (e.g., amygdala, hypothalamus, pituitary, adrenal cortex, and adrenal medulla). Tissues were obtained at an abattoir from eight mature nonpregnant Brahman cows that had been maintained in the same pasture and nutritional conditions. Sample tissues were stored in RNase-free sterile cryovials at -80 °C until the total RNA was extracted, quantified, assessed, and sequenced (NovaSeq 6000 system; paired-end 150 bp cycles). The trimmed reads were then mapped to a Bos taurus (B. taurus) reference genome (Umd3.1). Further analysis used the edgeR package. Raw gene count tables were read into RStudio, and low-expression genes were filtered out using the criteria of three minimum reads per gene in at least five samples. Normalization factors were then calculated using the trimmed mean of M values method to produce normalized gene counts within each sample tissue. The normalized gene counts important for a circadian rhythm were analyzed within and between each tissue of the stress axis using the GLM and CORR procedures of the Statistical Analysis System (SAS). The relative expression profiles of circadian clock genes differed (p < 0.01) within each tissue, with neuronal PAS domain protein 2 (NPAS2) having greater expression in the amygdala (p < 0.01) and period circadian regulator (PER1) having greater expression in all other tissues (p < 0.01). The expression among tissues also differed (p < 0.01) for individual circadian clock genes, with circadian locomotor output cycles protein kaput (CLOCK) expression being greater within the adrenal tissues and nuclear receptor subfamily 1 group D member 1 (NR1D1) expression being greater within the other tissues (p < 0.01). Overall, the results indicate that within each tissue, the various circadian clock genes were differentially expressed, in addition to being differentially expressed among the stress tissues of mature Brahman cows. Future use of these findings may assist in improving livestock husbandry and welfare by understanding interactions of the environment, stress responsiveness, and peripheral circadian rhythms.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - Ronald D. Randel
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| |
Collapse
|
3
|
Circadian regulation of memory under stress: Endocannabinoids matter. Neurosci Biobehav Rev 2022; 138:104712. [PMID: 35643119 DOI: 10.1016/j.neubiorev.2022.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Organisms ranging from plants to higher mammals have developed 24-hour oscillation rhythms to optimize physiology to environmental changes and regulate a plethora of neuroendocrine and behavioral processes, including neurotransmitter and hormone regulation, stress response and learning and memory function. Compelling evidence indicates that a wide array of memory processes is strongly influenced by stress- and emotional arousal-activated neurobiological systems, including the endocannabinoid system which has been extensively shown to play an integral role in mediating stress effects on memory. Here, we review findings showing how circadian rhythms and time-of-day influence stress systems and memory performance. We report evidence of circadian regulation of memory under stress, focusing on the role of the endocannabinoid system and highlighting its circadian rhythmicity. Our discussion illustrates how the endocannabinoid system mediates stress effects on memory in a circadian-dependent fashion. We suggest that endocannabinoids might regulate molecular mechanisms that control memory function under circadian and stress influence, with potential important clinical implications for both neurodevelopmental disorders and psychiatric conditions involving memory impairments.
Collapse
|
4
|
The role of clock genes in sleep, stress and memory. Biochem Pharmacol 2021; 191:114493. [DOI: 10.1016/j.bcp.2021.114493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022]
|
5
|
Knoedler JR, Sáenz de Miera C, Subramani A, Denver RJ. An Intact Krüppel-like factor 9 Gene Is Required for Acute Liver Period 1 mRNA Response to Restraint Stress. Endocrinology 2021; 162:6255381. [PMID: 33904929 PMCID: PMC8312639 DOI: 10.1210/endocr/bqab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
The clock protein period 1 (PER1) is a central component of the core transcription-translation feedback loop governing cell-autonomous circadian rhythms in animals. Transcription of Per1 is directly regulated by the glucocorticoid (GC) receptor (GR), and Per1 mRNA is induced by stressors or injection of GC. Circulating GCs may synchronize peripheral clocks with the central pacemaker located in the suprachiasmatic nucleus of the brain. Krüppel-like factor 9 (KLF9) is a zinc finger transcription factor that, like Per1, is directly regulated by liganded GR, and it associates in chromatin at clock and clock-output genes, including at Per1. We hypothesized that KLF9 modulates stressor-dependent Per1 transcription. We exposed wild-type (WT) and Klf9 null mice (Klf9-/-) of both sexes to 1 hour restraint stress, which caused similar 2- to 2.5-fold increases in plasma corticosterone (B) in each genotype and sex. Although WT mice of both sexes showed a 2-fold increase in liver Per1 mRNA level after restraint stress, this response was absent in Klf9-/- mice. However, injection of B in WT and Klf9-/- mice induced similar increases in Per1 mRNA. Our findings support that an intact Klf9 gene is required for liver Per1 mRNA responses to an acute stressor, but a possible role for GCs in this response requires further investigation.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2215, USA
- Current Affiliation: J. R. Knoedler’s current affiliation is the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Cristina Sáenz de Miera
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
- Current Affiliation: C. Sáenz de Miera’s current affiliation is the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2800, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
| | - Robert J Denver
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2215, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
- Correspondence: Robert J. Denver, PhD, Department of Molecular, Cellular and Developmental Biology, 1105 North University Avenue, University of Michigan, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
6
|
Jaumotte JD, Franks AL, Bargerstock EM, Kisanga EP, Menden HL, Ghersi A, Omar M, Wang L, Rudine A, Short KL, Silswal N, Cole TJ, Sampath V, Monaghan-Nichols AP, DeFranco DB. Ciclesonide activates glucocorticoid signaling in neonatal rat lung but does not trigger adverse effects in the cortex and cerebellum. Neurobiol Dis 2021; 156:105422. [PMID: 34126164 DOI: 10.1016/j.nbd.2021.105422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 11/15/2022] Open
Abstract
Synthetic glucocorticoids (sGCs) such as dexamethasone (DEX), while used to mitigate inflammation and disease progression in premature infants with severe bronchopulmonary dysplasia (BPD), are also associated with significant adverse neurologic effects such as reductions in myelination and abnormalities in neuroanatomical development. Ciclesonide (CIC) is a sGC prodrug approved for asthma treatment that exhibits limited systemic side effects. Carboxylesterases enriched in the lower airways convert CIC to the glucocorticoid receptor (GR) agonist des-CIC. We therefore examined whether CIC would likewise activate GR in neonatal lung but have limited adverse extra-pulmonary effects, particularly in the developing brain. Neonatal rats were administered subcutaneous injections of CIC, DEX or vehicle from postnatal days 1-5 (PND1-PND5). Systemic effects linked to DEX exposure, including reduced body and brain weight, were not observed in CIC treated neonates. Furthermore, CIC did not trigger the long-lasting reduction in myelin basic protein expression in the cerebral cortex nor cerebellar size caused by neonatal DEX exposure. Conversely, DEX and CIC were both effective at inducing the expression of select GR target genes in neonatal lung, including those implicated in lung-protective and anti-inflammatory effects. Thus, CIC is a promising, novel candidate drug to treat or prevent BPD in neonates given its activation of GR in neonatal lung and limited adverse neurodevelopmental effects. Furthermore, since sGCs such as DEX administered to pregnant women in pre-term labor can adversely affect fetal brain development, the neurological-sparing properties of CIC, make it an attractive alternative for DEX to treat pregnant women severely ill with respiratory illness, such as with asthma exacerbations or COVID-19 infections.
Collapse
Affiliation(s)
- Juliann D Jaumotte
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexis L Franks
- Department of Pediatrics, Division of Child Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bargerstock
- Department of Pediatrics, Division of Newborn Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwina Philip Kisanga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heather L Menden
- Department of Pediatrics, Division of Neonatology, Children's Mercy Kansas City, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Alexis Ghersi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mahmoud Omar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liping Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anthony Rudine
- Department of Neonatology, St. David's Medical Center, Austin, TX, USA
| | - Kelly L Short
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Neerupama Silswal
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Timothy J Cole
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Venkatesh Sampath
- Department of Pediatrics, Division of Neonatology, Children's Mercy Kansas City, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - A Paula Monaghan-Nichols
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021; 15:635304. [PMID: 33643013 PMCID: PMC7907173 DOI: 10.3389/fnhum.2021.635304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-natal exposure to acute maternal trauma or chronic maternal distress can confer increased risk for psychiatric disorders in later life. Acute maternal trauma is the result of unforeseen environmental or personal catastrophes, while chronic maternal distress is associated with anxiety or depression. Animal studies investigating the effects of pre-natal stress have largely used brief stress exposures during pregnancy to identify critical periods of fetal vulnerability, a paradigm which holds face validity to acute maternal trauma in humans. While understanding these effects is undoubtably important, the literature suggests maternal stress in humans is typically chronic and persistent from pre-conception through gestation. In this review, we provide evidence to this effect and suggest a realignment of current animal models to recapitulate this chronicity. We also consider candidate mediators, moderators and mechanisms of maternal distress, and suggest a wider breadth of research is needed, along with the incorporation of advanced -omics technologies, in order to understand the neurodevelopmental etiology of psychiatric risk.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Michelle Z. L. Kee
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
9
|
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network. J Mol Biol 2020; 432:3618-3638. [PMID: 31926953 DOI: 10.1016/j.jmb.2019.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
Collapse
Affiliation(s)
- Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Mariana Astiz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Keno Ole Heinen
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Oliver Rawashdeh
- The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
| |
Collapse
|
10
|
Bering T, Hertz H, Rath MF. Rhythmic Release of Corticosterone Induces Circadian Clock Gene Expression in the Cerebellum. Neuroendocrinology 2020; 110:604-615. [PMID: 31557761 DOI: 10.1159/000503720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022]
Abstract
Neurons of the cerebellar cortex contain a circadian oscillator, with circadian expression of clock genes being controlled by the master clock of the suprachiasmatic nucleus (SCN). However, the signaling pathway connecting the SCN to the cerebellum is unknown. Glucocorticoids exhibit a prominent SCN-dependent circadian rhythm, and high levels of the glucocorticoid receptor have been reported in the cerebellar cortex; we therefore hypothesized that glucocorticoids may control the rhythmic expression of clock genes in the cerebellar cortex. We here applied a novel methodology by combining the electrolytic lesion of the SCN with implantation of a micropump programmed to release corticosterone in a circadian manner mimicking the endogenous hormone profile. By use of this approach, we were able to restore the corticosterone rhythm in SCN-lesioned male rats. Clock gene expression in the cerebellum was abolished in rats with a lesioned SCN, but exogenous corticosterone restored the daily rhythm in clock gene expression in the cerebellar cortex, as revealed by quantitative real-time PCR and radiochemical in situ hybridization for the detection of the core clock genes Per1, Per2, and Arntl. On the contrary, exogenous hormone did not restore circadian rhythms in body temperature and running activity. RNAscope in situ hybridization further revealed that the glucocorticoid receptor colocalizes with clock gene products in cells of the cerebellar cortex, suggesting that corticosterone exerts its actions by binding directly to receptors in neurons of the cerebellum. However, rhythmic clock gene expression in the cerebellum was also detectable in adrenalectomized rats, indicating that additional control mechanisms exist. These data show that the cerebellar circadian oscillator is influenced by SCN-dependent rhythmic release of corticosterone.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hertz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,
| |
Collapse
|
11
|
Ketchesin KD, Becker-Krail D, McClung CA. Mood-related central and peripheral clocks. Eur J Neurosci 2020; 51:326-345. [PMID: 30402924 PMCID: PMC6502705 DOI: 10.1111/ejn.14253] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
Mood disorders, including major depression, bipolar disorder, and seasonal affective disorder, are debilitating disorders that affect a significant portion of the global population. Individuals suffering from mood disorders often show significant disturbances in circadian rhythms and sleep. Moreover, environmental disruptions to circadian rhythms can precipitate or exacerbate mood symptoms in vulnerable individuals. Circadian clocks exist throughout the central nervous system and periphery, where they regulate a wide variety of physiological processes implicated in mood regulation. These processes include monoaminergic and glutamatergic transmission, hypothalamic-pituitary-adrenal axis function, metabolism, and immune function. While there seems to be a clear link between circadian rhythm disruption and mood regulation, the mechanisms that underlie this association remain unclear. This review will touch on the interactions between the circadian system and each of these processes and discuss their potential role in the development of mood disorders. While clinical studies are presented, much of the review will focus on studies in animal models, which are attempting to elucidate the molecular and cellular mechanisms in which circadian genes regulate mood.
Collapse
Affiliation(s)
- Kyle D Ketchesin
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Darius Becker-Krail
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Mendoza J. Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res 2019; 376:112186. [PMID: 31473283 DOI: 10.1016/j.bbr.2019.112186] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
In depression, symptoms range from loss of motivation and energy to suicidal thoughts. Moreover, in depression alterations might be also observed in the sleep-wake cycle and in the daily rhythms of hormonal (e.g., cortisol, melatonin) secretion. Both, the sleep-wake cycle and hormonal rhythms, are regulated by the internal biological clock within the hypothalamic suprachiasmatic nucleus (SCN). Therefore, a dysregulation of the internal mechanism of the SCN might lead in the disturbance of temporal physiology and depression. Hence, circadian symptoms in mood disorders can be used as important biomarkers for the prevention and treatment of depression. Disruptions of daily rhythms in physiology and behavior are also observed in animal models of depression, giving thus an important tool of research for the understanding of the circadian mechanisms implicated in mood disorders. This review discusses the alterations of daily rhythms in depression, and how circadian perturbations might lead in mood changes and depressive-like behavior in humans and rodents respectively. The use of animal models with circadian disturbances and depressive-like behaviors will help to understand the central timing mechanisms underlying depression, and how treating the biological clock(s) it may be possible to improve mood.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212 University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
13
|
Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Front Neuroendocrinol 2019; 54:100746. [PMID: 31002895 PMCID: PMC9826732 DOI: 10.1016/j.yfrne.2019.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023]
Abstract
Synchronizing circadian (24 h) rhythms in physiology and behavior with the environmental light-dark cycle is critical for maintaining optimal health. Dysregulation of the circadian system increases susceptibility to numerous pathological conditions including major depressive disorder. Stress is a common etiological factor in the development of depression and the circadian system is highly interconnected to stress-sensitive neurotransmitter systems such as the serotonin (5-hydroxytryptamine, 5-HT) system. Thus, here we propose that stress-induced perturbation of the 5-HT system disrupts circadian processes and increases susceptibility to depression. In this review, we first provide an overview of the basic components of the circadian system. Next, we discuss evidence that circadian dysfunction is associated with changes in mood in humans and rodent models. Finally, we provide evidence that 5-HT is a critical factor linking dysregulation of the circadian system and mood. Determining how these two systems interact may provide novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Rachel A Daut
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- University of Texas at Austin, Division of Pharmacology and Toxicology, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Itakura T, Webster A, Chintala SK, Wang Y, Gonzalez JM, Tan JC, Vranka JA, Acott T, Craft CM, Sibug Saber ME, Jeong S, Stamer WD, Martemyanov KA, Fini ME. GPR158 in the Visual System: Homeostatic Role in Regulation of Intraocular Pressure. J Ocul Pharmacol Ther 2019; 35:203-215. [PMID: 30855200 DOI: 10.1089/jop.2018.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose: GPR158 is a newly characterized family C G-protein-coupled receptor, previously identified in functional screens linked with biological stress, including one for susceptibility to ocular hypertension/glaucoma induced by glucocorticoid stress hormones. In this study, we investigated GPR158 function in the visual system. Methods: Gene expression and protein immunolocalization analyses were performed in mouse and human brain and eye to identify tissues where GPR158 might function. Gene expression was perturbed in mice, and in cultures of human trabecular meshwork cells of the aqueous outflow pathway, to investigate function and mechanism. Results: GPR158 is highly expressed in the brain, and in this study, we show prominent expression specifically in the visual center of the cerebral cortex. Expression was also observed in the eye, including photoreceptors, ganglion cells, and trabecular meshwork. Protein was also localized to the outer plexiform layer of the neural retina. Gpr158 deficiency in knockout (KO) mice conferred short-term protection against the intraocular pressure increase that occurred with aging, but this was reversed over time. Most strikingly, the pressure lowering effect of the acute stress hormone, epinephrine, was negated in KO mice. In contrast, no disruption of the electroretinogram was observed. Gene overexpression in cell cultures enhanced cAMP production in response to epinephrine, suggesting a mechanism for intraocular pressure regulation. Overexpression also increased survival of cells subjected to oxidative stress linked to ocular hypertension, associated with TP53 pathway activation. Conclusions: These findings implicate GPR158 as a homeostatic regulator of intraocular pressure and suggest GPR158 could be a pharmacological target for managing ocular hypertension.
Collapse
Affiliation(s)
- Tatsuo Itakura
- 1 USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Andrew Webster
- 1 USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Shravan K Chintala
- 1 USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Yuchen Wang
- 2 Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Jose M Gonzalez
- 3 Doheny Eye Institute and Department of Ophthalmology, University of California Los Angeles, Los Angeles, California
| | - J C Tan
- 3 Doheny Eye Institute and Department of Ophthalmology, University of California Los Angeles, Los Angeles, California
| | - Janice A Vranka
- 4 Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Ted Acott
- 4 Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Cheryl Mae Craft
- 5 USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California.,6 Department of Integrative Anatomical Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Maria E Sibug Saber
- 7 Department of Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Shinwu Jeong
- 8 USC Institute for Genetic Medicine, Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - W Daniel Stamer
- 9 Department of Ophthalmology, Duke University, Durham, North Carolina
| | | | - M Elizabeth Fini
- 1 USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| |
Collapse
|
15
|
Brogi R, Brivio F, Bertolucci C, Benazzi M, Luccarini S, Cappai N, Bottero E, Pedrazzoli C, Columbano N, Apollonio M, Grignolio S. Capture effects in wild boar: a multifaceted behavioural investigation. WILDLIFE BIOLOGY 2019. [DOI: 10.2981/wlb.00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Rudy Brogi
- R. Brogi (http://orcid.org/0000-0002-2326-600X)
| | | | | | - Michele Benazzi
- M. Benazzi, Dept of Life Sciences and Biotechnology, Univ. of Ferrara, Ferrara, Italy
| | - Siriano Luccarini
- S. Luccarini, E. Bottero, N. Columbano, M. Apollonio and S. Grignolio (http://orcid.org/0000-0002-0786-2004), Dept of Veterinary Medicine, Univ. of Sassari, Via Vienna 2, IT-07100 Sassari, Italy
| | - Nadia Cappai
- N. Cappai and C. Pedrazzoli, Foreste Casentinesi National Park, Pratovecchio (AR), Italy
| | - Elisa Bottero
- S. Luccarini, E. Bottero, N. Columbano, M. Apollonio and S. Grignolio (http://orcid.org/0000-0002-0786-2004), Dept of Veterinary Medicine, Univ. of Sassari, Via Vienna 2, IT-07100 Sassari, Italy
| | - Carlo Pedrazzoli
- N. Cappai and C. Pedrazzoli, Foreste Casentinesi National Park, Pratovecchio (AR), Italy
| | - Nicolò Columbano
- S. Luccarini, E. Bottero, N. Columbano, M. Apollonio and S. Grignolio (http://orcid.org/0000-0002-0786-2004), Dept of Veterinary Medicine, Univ. of Sassari, Via Vienna 2, IT-07100 Sassari, Italy
| | - Marco Apollonio
- S. Luccarini, E. Bottero, N. Columbano, M. Apollonio and S. Grignolio (http://orcid.org/0000-0002-0786-2004), Dept of Veterinary Medicine, Univ. of Sassari, Via Vienna 2, IT-07100 Sassari, Italy
| | - Stefano Grignolio
- S. Luccarini, E. Bottero, N. Columbano, M. Apollonio and S. Grignolio (http://orcid.org/0000-0002-0786-2004), Dept of Veterinary Medicine, Univ. of Sassari, Via Vienna 2, IT-07100 Sassari, Italy
| |
Collapse
|
16
|
Spencer RL, Chun LE, Hartsock MJ, Woodruff ER. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Front Neuroendocrinol 2018; 49:52-71. [PMID: 29288075 DOI: 10.1016/j.yfrne.2017.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
17
|
Sutton LP, Orlandi C, Song C, Oh WC, Muntean BS, Xie K, Filippini A, Xie X, Satterfield R, Yaeger JDW, Renner KJ, Young SM, Xu B, Kwon H, Martemyanov KA. Orphan receptor GPR158 controls stress-induced depression. eLife 2018; 7:33273. [PMID: 29419376 PMCID: PMC5823542 DOI: 10.7554/elife.33273] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/06/2018] [Indexed: 01/23/2023] Open
Abstract
Stress can be a motivational force for decisive action and adapting to novel environment; whereas, exposure to chronic stress contributes to the development of depression and anxiety. However, the molecular mechanisms underlying stress-responsive behaviors are not fully understood. Here, we identified the orphan receptor GPR158 as a novel regulator operating in the prefrontal cortex (PFC) that links chronic stress to depression. GPR158 is highly upregulated in the PFC of human subjects with major depressive disorder. Exposure of mice to chronic stress also increased GPR158 protein levels in the PFC in a glucocorticoid-dependent manner. Viral overexpression of GPR158 in the PFC induced depressive-like behaviors. In contrast GPR158 ablation, led to a prominent antidepressant-like phenotype and stress resiliency. We found that GPR158 exerts its effects via modulating synaptic strength altering AMPA receptor activity. Taken together, our findings identify a new player in mood regulation and introduce a pharmacological target for managing depression.
Collapse
Affiliation(s)
- Laurie P Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Won Chan Oh
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Alice Filippini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | | | - Jazmine D W Yaeger
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, United States.,Department of Biology, University of South Dakota, Vermillion, United States
| | - Kenneth J Renner
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, United States.,Department of Biology, University of South Dakota, Vermillion, United States
| | - Samuel M Young
- Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa, United States.,Aging Mind and Brain Initiative, University of Iowa, Iowa, United States.,Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa, United States
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Hyungbae Kwon
- Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
18
|
Hood S, Amir S. Biological Clocks and Rhythms of Anger and Aggression. Front Behav Neurosci 2018; 12:4. [PMID: 29410618 PMCID: PMC5787107 DOI: 10.3389/fnbeh.2018.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
The body’s internal timekeeping system is an under-recognized but highly influential force in behaviors and emotions including anger and reactive aggression. Predictable cycles or rhythms in behavior are expressed on several different time scales such as circadian (circa diem, or approximately 24-h rhythms) and infradian (exceeding 24 h, such as monthly or seasonal cycles). The circadian timekeeping system underlying rhythmic behaviors in mammals is constituted by a network of clocks distributed throughout the brain and body, the activity of which synchronizes to a central pacemaker, or master clock. Our daily experiences with the external environment including social activity strongly influence the exact timing of this network. In the present review, we examine evidence from a number of species and propose that anger and reactive aggression interact in multiple ways with circadian clocks. Specifically, we argue that: (i) there are predictable rhythms in the expression of aggression and anger; (ii) disruptions of the normal functioning of the circadian system increase the likelihood of aggressive behaviors; and (iii) conversely, chronic expression of anger can disrupt normal rhythmic cycles of physiological activities and create conditions for pathologies such as cardiovascular disease to develop. Taken together, these observations suggest that a comprehensive perspective on anger and reactive aggression must incorporate an understanding of the role of the circadian timing system in these intense affective states.
Collapse
Affiliation(s)
- Suzanne Hood
- Department of Psychology, Bishop's University, Sherbrooke, QC, Canada
| | - Shimon Amir
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
19
|
Ohta Y, Kubo H, Yashiro K, Ohashi K, Tsuzuki Y, Wada N, Yamamoto Y, Saito K. Effect of water-immersion restraint stress on tryptophan catabolism through the kynurenine pathway in rat tissues. J Physiol Sci 2017; 67:361-372. [PMID: 27364617 PMCID: PMC10717894 DOI: 10.1007/s12576-016-0467-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
The aim of this study was to clarify the effect of water-immersion restraint stress (WIRS) on tryptophan (Trp) catabolism through the kynurenine (Kyn) pathway in rat tissues. The tissues of rats subjected to 6 h of WIRS (+WIRS) had increased tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) activities and increased TDO and IDO1 (one of two IDO isozymes in mammals) mRNA expression levels, with decreased Trp and increased Kyn contents in the liver. +WIRS rats had unchanged TDO and IDO activities in the kidney, decreased TDO activity and unchanged IDO activity in the brain, and unchanged IDO activity in the lung and spleen, with increased Kyn content in all of these tissues. Pretreatment of stressed rats with RU486, a glucocorticoid antagonist, attenuated the increased TOD activity, but not the increased IDO activity, with partial recoveries of the decreased Trp and increased Kyn contents in the liver. These results indicate that WIRS enhances hepatic Trp catabolism by inducing both IDO1 and TDO in rats.
Collapse
Affiliation(s)
- Yoshiji Ohta
- Department of Chemistry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| | - Hisako Kubo
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, 666-8507, Japan
| | - Koji Yashiro
- Department of Chemistry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Aichi, 470-1192, Japan
| | - Yuji Tsuzuki
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, 666-8507, Japan
| | - Naoya Wada
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, 666-8507, Japan
| | - Yasuko Yamamoto
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, 666-8507, Japan
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi, 470-1192, Japan
| | - Kuniaki Saito
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, 666-8507, Japan
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
20
|
Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S. Decreased Numbers of Somatostatin-Expressing Neurons in the Amygdala of Subjects With Bipolar Disorder or Schizophrenia: Relationship to Circadian Rhythms. Biol Psychiatry 2017; 81:536-547. [PMID: 27259817 PMCID: PMC5065936 DOI: 10.1016/j.biopsych.2016.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Growing evidence points to a key role for somatostatin (SST) in schizophrenia (SZ) and bipolar disorder (BD). In the amygdala, neurons expressing SST play an important role in the regulation of anxiety, which is often comorbid in these disorders. We tested the hypothesis that SST-immunoreactive (IR) neurons are decreased in the amygdala of subjects with SZ and BD. Evidence for circadian SST expression in the amygdala and disrupted circadian rhythms and rhythmic peaks of anxiety in BD suggest a disruption of rhythmic expression of SST in this disorder. METHODS Amygdala sections from 12 SZ, 15 BD, and 15 control subjects were processed for immunocytochemistry for SST and neuropeptide Y, a neuropeptide partially coexpressed in SST-IR neurons. Total numbers (Nt) of IR neurons were measured. Time of death was used to test associations with circadian rhythms. RESULTS SST-IR neurons were decreased in the lateral amygdala nucleus in BD (Nt, p = .003) and SZ (Nt, p = .02). In normal control subjects, Nt of SST-IR neurons varied according to time of death. This pattern was altered in BD subjects, characterized by decreases of SST-IR neurons selectively in subjects with time of death corresponding to the day (6:00 am to 5:59 pm). Numbers of neuropeptide Y-IR neurons were not affected. CONCLUSIONS Decreased SST-IR neurons in the amygdala of patients with SZ and BD, interpreted here as decreased SST expression, may disrupt responses to fear and anxiety regulation in these individuals. In BD, our findings raise the possibility that morning peaks of anxiety depend on a disruption of circadian regulation of SST expression in the amygdala.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Jason T Wiseman
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Lucy Ehrenfeld
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr Rev 2017; 38:3-45. [PMID: 27749086 PMCID: PMC5563520 DOI: 10.1210/er.2015-1080] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has long been recognized that this 24-hour rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus. In the past decade, secondary circadian clocks based on the same molecular machinery as the central master pacemaker were found in other brain areas as well as in most peripheral tissues, including the adrenal glands. Evidence is rapidly accumulating to indicate that misalignment between central and peripheral clocks has a host of adverse effects. The robust rhythm in circulating glucocorticoid levels has been recognized as a major internal synchronizer of the circadian system. The present review examines the scientific foundation of these novel advances and their implications for health and disease prevention and treatment.
Collapse
Affiliation(s)
- Henrik Oster
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Etienne Challet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Volker Ott
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Emanuela Arvat
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - E Ronald de Kloet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Derk-Jan Dijk
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Stafford Lightman
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Alexandros Vgontzas
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Eve Van Cauter
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
22
|
Verwey M, Dhir S, Amir S. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease. F1000Res 2016; 5. [PMID: 27635233 PMCID: PMC5007753 DOI: 10.12688/f1000research.9180.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
Circadian clock proteins form an autoregulatory feedback loop that is central to the endogenous generation and transmission of daily rhythms in behavior and physiology. Increasingly, circadian rhythms in clock gene expression are being reported in diverse tissues and brain regions that lie outside of the suprachiasmatic nucleus (SCN), the master circadian clock in mammals. For many of these extra-SCN rhythms, however, the region-specific implications are still emerging. In order to gain important insights into the potential behavioral, physiological, and psychological relevance of these daily oscillations, researchers have begun to focus on describing the neurochemical, hormonal, metabolic, and epigenetic contributions to the regulation of these rhythms. This review will highlight important sites and sources of circadian control within dopaminergic and striatal circuitries of the brain and will discuss potential implications for psychopathology and disease
. For example, rhythms in clock gene expression in the dorsal striatum are sensitive to changes in dopamine release, which has potential implications for Parkinson’s disease and drug addiction. Rhythms in the ventral striatum and limbic forebrain are sensitive to psychological and physical stressors, which may have implications for major depressive disorder. Collectively, a rich circadian tapestry has emerged that forces us to expand traditional views and to reconsider the psychopathological, behavioral, and physiological importance of these region-specific rhythms in brain areas that are not immediately linked with the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Michael Verwey
- Center for Studies in Behavioural Neurobiology, FRQS Groupe de Recherche en Neurobiologie Comportementale, Concorida University, Montreal, Quebec, Canada
| | | | - Shimon Amir
- Center for Studies in Behavioural Neurobiology, FRQS Groupe de Recherche en Neurobiologie Comportementale, Concorida University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Fan BS, Zhang EH, Cheng MH, Wu ZT, Han B, Yu JG. Diurnal Variation of the Peripheral Cholinergic Antiinflammatory Function in Mice. CNS Neurosci Ther 2016; 22:764-70. [PMID: 27306582 DOI: 10.1111/cns.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022] Open
Abstract
AIMS Cholinergic antiinflammatory (CAI) pathway functions importantly in inflammation via α7 nicotinic acetylcholine receptors (α7nAChR). The present work tested circadian rhythm in peripheral CAI activity and validities of CAI activity and glucocorticoids in chronotherapy for lipopolysaccharide (LPS)-induced shock. METHODS Vesicular acetylcholine transporter (VAChT) expressed in liver and kidney was examined every 3 h in C57BL/6 mice. Proinflammatory cytokines in serum and survival time in shock were monitored after LPS injection every 3 h. Mifepristone, antagonist of glucocorticoid receptors, and methyllycaconitine (MLA), antagonist of α7nAChR, were administrated before LPS to block antiinflammatory function of endogenous glucocorticoids and acetylcholine. RESULTS Both levels of tumor necrosis factor α, interleukin 1β, and interleukin 6 and mortality exhibited diurnal variations with prominent peaks when LPS was given at 15:00, and the minimum mortality occurred at 00:00. Expression of VAChT increased during resting period. MLA increased serum proinflammatory cytokines slightly, but not affected survival rate. Both differences in cytokines and in survival times between LPS injection at 15:00 and 00:00 were eliminated by mifepristone, but not by MLA. CONCLUSION Peripheral CAI pathway exerts more powerful antiinflammatory effect during resting period. Glucocorticoids appear to be efficient in chronotherapy for septic shock.
Collapse
Affiliation(s)
- Bo-Shi Fan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhao-Tang Wu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Abstract
In the face of chronic stress, some individuals can maintain normal function while others go on to develop mental illness. Addiction, affecting one in every twelve people in America, is a substance use disorder long associated with stressful life events and disruptions in the sleep/wake cycle. The circadian and stress response systems have evolved to afford adaptability to environmental changes and allow for maintenance of functional stability, or homeostasis. This mini-review will discuss how circadian rhythms and stress individually affect drug response, affect each other, and how their interactions may regulate reward-related behavior. In particular, we will focus on the interactions between the circadian clock and the regulation of glucocorticoids by the hypothalamic-pituitary-adrenal (HPA) axis. Determining how these two systems act on dopaminergic reward circuitry may not only reveal the basis for vulnerability to addiction, but may also illuminate potential therapeutic targets for future investigation.
Collapse
Affiliation(s)
- Darius Becker-Krail
- School of Medicine, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Colleen McClung
- School of Medicine, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Mohammed MM, Sallam AE, Hussein AA, Marrez DA, Ibrahim ZN. The cyanobacteriumOscillatoria brevisβ-carotene extract modulates alterations of biochemical and hematological circadian patterns in stress-induced rat. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1116740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Performing a hepatic timing signal: glucocorticoids induce gper1a and gper1b expression and repress gclock1a and gbmal1a in the liver of goldfish. J Comp Physiol B 2015; 186:73-82. [DOI: 10.1007/s00360-015-0936-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
|