1
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Sasiain I, Nacer D, Aine M, Veerla S, Staaf J. Tumor purity estimated from bulk DNA methylation can be used for adjusting beta values of individual samples to better reflect tumor biology. NAR Genom Bioinform 2024; 6:lqae146. [PMID: 39498434 PMCID: PMC11532792 DOI: 10.1093/nargab/lqae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
Epigenetic deregulation through altered DNA methylation is a fundamental feature of tumorigenesis, but tumor data from bulk tissue samples contain different proportions of malignant and non-malignant cells that may confound the interpretation of DNA methylation values. The adjustment of DNA methylation data based on tumor purity has been proposed to render both genome-wide and gene-specific analyses more precise, but it requires sample purity estimates. Here we present PureBeta, a single-sample statistical framework that uses genome-wide DNA methylation data to first estimate sample purity and then adjust methylation values of individual CpGs to correct for sample impurity. Purity values estimated with the algorithm have high correlation (>0.8) to reference values obtained from DNA sequencing when applied to samples from breast carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Methylation beta values adjusted based on purity estimates have a more binary distribution that better reflects theoretical methylation states, thus facilitating improved biological inference as shown for BRCA1 in breast cancer. PureBeta is a versatile tool that can be used for different Illumina DNA methylation arrays and can be applied to individual samples of different cancer types to enhance biological interpretability of methylation data.
Collapse
Affiliation(s)
- Iñaki Sasiain
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Deborah F Nacer
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden
| | - Mattias Aine
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden
| | - Srinivas Veerla
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden
| | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden
| |
Collapse
|
3
|
Talari FF, Bozorg A, Zeinali S, Zali M, Mohsenifar Z, Asadzadeh Aghdaei H, Baghaei K. Low incidence of microsatellite instability in gastric cancers and its association with the clinicopathological characteristics: a comparative study. Sci Rep 2023; 13:21743. [PMID: 38065969 PMCID: PMC10709324 DOI: 10.1038/s41598-023-48157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer is a complex heterogeneous disease with different molecular subtypes that have clinical implications. It is characterized by high mortality rates and limited effective therapies. Microsatellite instability (MSI) has been recognized as a subgroup with a good prognosis based on TCGA and ACRG categorizations. Besides its prognostic and predictive value, gastric cancers with high MSI exhibit different clinical behaviors. The prevalence of high MSI has been assessed in gastric cancer worldwide, especially in East Asia, but there is a lack of such information in the Middle East. Therefore, this study aimed to investigate the incidence and status of MSI in Iranian gastric cancer patients using 53 samples collected from 2015 to 2020 at Taleghani Hospital Medical Center. DNA from tumoral and normal tissues were extracted and assessed through multiplex-PCR based on five mononucleotide repeats panel. Clinicopathological variables, including age, sex, Lauren classification, lymph node involvement, TNM stage, differentiation, localization, and tumor size, were also analyzed. With 2 males and 2 females, high microsatellite instability represented a small subgroup of almost 7.5% of the samples with a median age of 60.5 years. High microsatellite instability phenotypes were significantly associated with patients aged 68 years and older (p‑value of 0.0015) and lower lymph node involvement (p‑value of 0.0004). Microsatellite instability was also more frequent in females, with distal gastric location, bigger tumor size, and in the intestinal type of gastric cancer rather than the diffuse type.
Collapse
Affiliation(s)
| | - Ali Bozorg
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran.
| | - Sirous Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammadreza Zali
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhale Mohsenifar
- Department of Pathology, School of Medicine, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yamamoto G, Ito T, Suzuki O, Kamae N, Kakuta M, Takahashi A, Iuchi K, Arai T, Ishida H, Akagi K. Concordance between microsatellite instability testing and immunohistochemistry for mismatch repair proteins and efficient screening of mismatch repair deficient gastric cancer. Oncol Lett 2023; 26:494. [PMID: 37854865 PMCID: PMC10579988 DOI: 10.3892/ol.2023.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
Microsatellite instability (MSI) testing, an established technique that has gained prominence in recent years for its predictive potential regarding the efficacy of immune checkpoint inhibitors, is used to evaluate DNA mismatch repair (MMR) deficiency (dMMR). As with other methods, the immunohistochemistry (IHC) of MMR proteins is also widely adopted. Although both techniques have been validated, their concordance rate remains unknown, particularly regarding non-colorectal cancer. Therefore, the aim of the present study was to explore and elucidate their concordance in the context of gastric cancer (GC). A total of 489 surgically resected primary GC tissues were analyzed to compare the results yielded by the MSI test and those from IHC. Of 488 GC cases, 56 (11.5%) exhibited a loss of MMR proteins, whereas 52 (10.7%) were classified as high-frequency MSI (MSI-H). The concordance rate between these two categories was 99.2%. The microsatellite markers BAT26 and MONO27 demonstrated 100% sensitivity and 99.5% specificity in detecting dMMR GC. In addition, histopathological analysis revealed that MSI-H was more prevalent in GCs exhibiting coexisting Tub2 and Por1 subtypes. However, four discordant cases were observed. All four cases were microsatellite-stable cases but exhibited loss of MLH1 protein expression with hypermethylation of the MLH1 promoter. The results of the present study highlight that while there is a strong concordance between MSI and IHC testing results for determining dMMR status, IHC testing may offer superior efficacy in detecting dMMR.
Collapse
Affiliation(s)
- Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Tetsuya Ito
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| | - Nao Kamae
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| | - Miho Kakuta
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Akemi Takahashi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Katsuya Iuchi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| | - Kiwamu Akagi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| |
Collapse
|
5
|
Shin HJ, Hua JT, Li H. Recent advances in understanding DNA methylation of prostate cancer. Front Oncol 2023; 13:1182727. [PMID: 37234978 PMCID: PMC10206257 DOI: 10.3389/fonc.2023.1182727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Epigenetic modifications, such as DNA methylation, is widely studied in cancer. DNA methylation patterns have been shown to distinguish between benign and malignant tumors in various cancers, including prostate cancer. It may also contribute to oncogenesis, as it is frequently associated with downregulation of tumor suppressor genes. Aberrant patterns of DNA methylation, in particular the CpG island hypermethylator phenotype (CIMP), have shown associative evidence with distinct clinical features and outcomes, such as aggressive subtypes, higher Gleason score, prostate-specific antigen (PSA), and overall tumor stage, overall worse prognosis, as well as reduced survival. In prostate cancer, hypermethylation of specific genes is significantly different between tumor and normal tissues. Methylation patterns could distinguish between aggressive subtypes of prostate cancer, including neuroendocrine prostate cancer (NEPC) and castration resistant prostate adenocarcinoma. Further, DNA methylation is detectable in cell-free DNA (cfDNA) and is reflective of clinical outcome, making it a potential biomarker for prostate cancer. This review summarizes recent advances in understanding DNA methylation alterations in cancers with the focus on prostate cancer. We discuss the advanced methodology used for evaluating DNA methylation changes and the molecular regulators behind these changes. We also explore the clinical potential of DNA methylation as prostate cancer biomarkers and its potential for developing targeted treatment of CIMP subtype of prostate cancer.
Collapse
Affiliation(s)
- Hyun Jin Shin
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Okuno K, Watanabe S, Roy S, Kanda M, Tokunaga M, Kodera Y, Kinugasa Y, Goel A. A liquid biopsy signature for predicting early recurrence in patients with gastric cancer. Br J Cancer 2023; 128:1105-1116. [PMID: 36631634 PMCID: PMC10006424 DOI: 10.1038/s41416-022-02138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) patients who experience recurrence within the first year following surgery (early recurrence [ER]) exhibit worse prognosis. Herein, we established a microRNA-based liquid biopsy assay to predict ER in GC patients. METHODS A comprehensive biomarker discovery was performed by analysing miRNA expression profiling in 271 primary GC tumours. Thereafter, the expression of these biomarkers was validated in 290 GC cases, which included 218 tissues and 72 pre-treatment sera, from two independent institutions. RESULTS A panel of 8 miRNAs was identified during the initial biomarker discovery, and this panel could robustly predict ER in a tissue-based clinical cohort (area under the curve [AUC]: 0.81). Furthermore, a model combining the miRNA panel, microsatellite instability (MSI) status and tumour size exhibited superior predictive performance (AUC: 0.86), and was defined as a Prediction of Early Recurrence in GC (PERGC) signature, which was successfully validated in another independent cohort (AUC: 0.82). Finally, the PERGC signature was translated into a liquid biopsy assay (AUC: 0.81), and a multivariate regression analysis revealed this signature to be an independent predictor for ER (odds ratio: 11.20). CONCLUSION We successfully established a miRNA-based liquid biopsy signature that robustly predicts the risk of ER in GC patients.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuichi Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Souvick Roy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
7
|
Gao SS, Zhang ZK, Wang XB, Ma Y, Yin GQ, Guo XB. Role of transcribed ultraconserved regions in gastric cancer and therapeutic perspectives. World J Gastroenterol 2022; 28:2900-2909. [PMID: 35978878 PMCID: PMC9280734 DOI: 10.3748/wjg.v28.i25.2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. The occurrence and development of GC is a complex process involving multiple biological mechanisms. Although traditional regulation modulates molecular functions related to the occurrence and development of GC, the comprehensive mechanisms remain unclear. Ultraconserved region (UCR) refers to a genome sequence that is completely conserved in the homologous regions of the human, rat and mouse genomes, with 100% identity, without any insertions or deletions, and often located in fragile sites and tumour-related genes. The transcribed UCR (T-UCR) is transcribed from the UCR and is a new type of long noncoding RNA. Recent studies have found that the expression level of T-UCRs changes during the occurrence and development of GC, revealing a new mechanism underlying GC. Therefore, this article aims to review the relevant research on T-UCRs in GC, as well as the function of T-UCRs and their regulatory role in the occurrence and development of GC, to provide new strategies for GC diagnosis and treatment.
Collapse
Affiliation(s)
- Shen-Shuo Gao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Zhi-Kai Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Xu-Bin Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Yan Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Guo-Qing Yin
- Department of Anus and Intestine Surgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Qingzhou 262500, Shandong Province, China
| | - Xiao-Bo Guo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
8
|
Díaz Del Arco C, Estrada Muñoz L, Ortega Medina L, Fernández Aceñero MJ. [Update on gastric cancer. New molecular classifications]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2021; 54:102-113. [PMID: 33726886 DOI: 10.1016/j.patol.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 06/12/2023]
Abstract
Gastric cancer (GC) is an aggressive tumor, which is usually diagnosed at an advanced stage and shows high mortality rates. Several GC classifications have been published, based on features such as tumor location, endoscopic features or microscopic architecture. However, TNM stage remains the mainstay of GC management and treatment. In the last years, technical advances have allowed us to investigate the biological heterogeneity of GC and develop new molecular classifications. This knowledge may enhance current classifications, and has the potential to refine GC management and aid in the identification of new molecular targets. In this literature review we have summarized the main findings in epidemiology, screening, classification systems and treatment of GC, focusing on the molecular alterations and new molecular classifications published in the last years.
Collapse
Affiliation(s)
- Cristina Díaz Del Arco
- Universidad Complutense de Madrid, España; Anatomía Patológica, Hospital Clínico San Carlos, Madrid, España.
| | | | - Luis Ortega Medina
- Universidad Complutense de Madrid, España; Anatomía Patológica, Hospital Clínico San Carlos, Madrid, España
| | - Ma Jesús Fernández Aceñero
- Universidad Complutense de Madrid, España; Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
9
|
Bian J, Long JY, Yang X, Yang XB, Xu YY, Lu X, Sang XT, Zhao HT. Signature based on molecular subtypes of deoxyribonucleic acid methylation predicts overall survival in gastric cancer. World J Gastroenterol 2020; 26:6414-6430. [PMID: 33244202 PMCID: PMC7656213 DOI: 10.3748/wjg.v26.i41.6414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks as the third leading cause of cancer-related death worldwide. Epigenetic alterations contribute to tumor heterogeneity in early stages.
AIM To identify the specific deoxyribonucleic acid (DNA) methylation sites that influence the prognosis of GC patients and explore the prognostic value of a model based on subtypes of DNA methylation.
METHODS Patients were randomly classified into training and test sets. Prognostic DNA methylation sites were identified by integrating DNA methylation profiles and clinical data from The Cancer Genome Atlas GC cohort. In the training set, unsupervised consensus clustering was performed to identify distinct subgroups based on methylation status. A risk score model was built based on Kaplan-Meier, least absolute shrinkage and selector operation, and multivariate Cox regression analyses. A test set was used to validate this model.
RESULTS Three subgroups based on DNA methylation profiles in the training set were identified using 1061 methylation sites that were significantly associated with survival. These methylation subtypes reflected differences in T, N, and M category, age, stage, and prognosis. Forty-one methylation sites were screened as specific hyper- or hypomethylation sites for each specific subgroup. Enrichment analysis revealed that they were mainly involved in pathways related to carcinogenesis, tumor growth, and progression. Finally, two methylation sites were chosen to generate a prognostic model. The high-risk group showed a markedly poor prognosis compared to the low-risk group in both the training [hazard ratio (HR) = 2.24, 95% confidence interval (CI): 1.28-3.92, P < 0.001] and test (HR = 2.12, 95%CI: 1.19-3.78, P = 0.002) datasets.
CONCLUSION DNA methylation-based classification reflects the epigenetic heterogeneity of GC and may contribute to predicting prognosis and offer novel insights for individualized treatment of patients with GC.
Collapse
Affiliation(s)
- Jin Bian
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun-Yu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
He H, Chen D, Cui S, Wu G, Piao H, Wang X, Ye P, Jin S. HDNA methylation data-based molecular subtype classification related to the prognosis of patients with hepatocellular carcinoma. BMC Med Genomics 2020; 13:118. [PMID: 32831081 PMCID: PMC7447581 DOI: 10.1186/s12920-020-00770-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background DNA methylation is a common chemical modification of DNA in the carcinogenesis of hepatocellular carcinoma (HCC). Methods In this bioinformatics analysis, 348 liver cancer samples were collected from the Cancer Genome Atlas (TCGA) database to analyse specific DNA methylation sites that affect the prognosis of HCC patients. Results 10,699 CpG sites (CpGs) that were significantly related to the prognosis of patients were clustered into 7 subgroups, and the samples of each subgroup were significantly different in various clinical pathological data. In addition, by calculating the level of methylation sites in each subgroup, 119 methylation sites (corresponding to 105 genes) were selected as specific methylation sites within the subgroups. Moreover, genes in the corresponding promoter regions in which the above specific methylation sites were located were subjected to signalling pathway enrichment analysis, and it was discovered that these genes were enriched in the biological pathways that were reported to be closely correlated with HCC. Additionally, the transcription factor enrichment analysis revealed that these genes were mainly enriched in the transcription factor KROX. A naive Bayesian classification model was used to construct a prognostic model for HCC, and the training and test data sets were used for independent verification and testing. Conclusion This classification method can well reflect the heterogeneity of HCC samples and help to develop personalized treatment and accurately predict the prognosis of patients.
Collapse
Affiliation(s)
- Hui He
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Lianhe Road 193#, Shahekou District, Dalian, 116000, Liaoning Province, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian, 116023, China
| | - Shimeng Cui
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Gang Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian, 116023, China
| | - Xun Wang
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Lianhe Road 193#, Shahekou District, Dalian, 116000, Liaoning Province, China
| | - Peng Ye
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Shi Jin
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Lianhe Road 193#, Shahekou District, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
11
|
Canale M, Casadei-Gardini A, Ulivi P, Arechederra M, Berasain C, Lollini PL, Fernández-Barrena MG, Avila MA. Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. Int J Mol Sci 2020; 21:E5500. [PMID: 32752096 PMCID: PMC7432799 DOI: 10.3390/ijms21155500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Andrea Casadei-Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
12
|
Bai Y, Wei C, Zhong Y, Zhang Y, Long J, Huang S, Xie F, Tian Y, Wang X, Zhao H. Development and Validation of a Prognostic Nomogram for Gastric Cancer Based on DNA Methylation-Driven Differentially Expressed Genes. Int J Biol Sci 2020; 16:1153-1165. [PMID: 32174791 PMCID: PMC7053317 DOI: 10.7150/ijbs.41587] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/16/2020] [Indexed: 01/17/2023] Open
Abstract
Background/Aims: The incidence of gastric cancer (GC) ranks fifth among common tumors and GC is the third leading cause of cancer-related death worldwide. The aim of this study was to develop and validate a nomogram for predicting the overall survival (OS) of patients with GC. Methods: DNA methylation (DNAm)-driven genes were identified by integrating DNAm and gene expression profiling analyses from The Cancer Genome Atlas (TCGA) GC cohort. Then, a risk score model was built based on Kaplan-Meier (K-M), least absolute shrinkage and selector operation (LASSO), and multivariate Cox regression analyses. After analyzing the clinical parameters, a nomogram was constructed and assessed. Another cohort (GSE62254) was used for external validation. Results: Thirteen differentially expressed DNAm-driven genes were narrowed down to a six-gene signature (PODN, NPY, MICU3, TUBB6 and RHOJ were hypermethylated, and MYO1A was hypomethylated), which was associated with OS (P < 0.05) after survival and LASSO regression analyses. These differentially expressed genes (DEGs) with altered DNAm statuses were included in the prognostic risk score model. The univariate Cox regression analysis indicated that risk score, age, and number of positive lymph nodes were significantly associated with survival time in GC patients. The multivariate Cox regression analysis also indicated that these variables were significant prognostic factors for GC. A nomogram including these variables was constructed, and its performance in predicting the 1-, 3- and 5-year survival outcomes of GC patients was estimated through time-dependent receiver operating characteristic (ROC) curves. In addition, the clinical benefit of this model was revealed by decision curve analysis (DCA). Pathway enrichment analysis suggested that these DNAm-driven genes might impact tumor progression by affecting signaling pathways such as the "ECM RECEPTOR INTERACTION" and "DNA REPLICATION" pathways. Conclusions: The altered status of the DNAm-driven gene signature (PODN, MYO1A, NPY, MICU3, TUBB6 and RHOJ) was significantly associated with the OS of GC patients. A nomogram incorporating risk score, age and number of positive lymph nodes can be conveniently used to facilitate the individualized prediction of OS in patients with GC.
Collapse
Affiliation(s)
- Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.,Department of Hepatobiliary Surgery, First Central Hospital, Tianjin, China
| | - Chunlian Wei
- Department of Immunology, Beijing Key Laboratory for Cancer Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, First Central Hospital, Tianjin, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shan Huang
- Department of Immunology, Beijing Key Laboratory for Cancer Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fucun Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Wang
- Department of Immunology, Beijing Key Laboratory for Cancer Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
13
|
Li Q, Hong J, Shen Z, Deng H, Shen Y, Wu Z, Zhou C. A systematic review and meta-analysis approach on diagnostic value of MLH1 promoter methylation for head and neck squamous cell carcinoma. Medicine (Baltimore) 2019; 98:e17651. [PMID: 31651887 PMCID: PMC6824735 DOI: 10.1097/md.0000000000017651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the leading histological type among head and neck cancers. Several studies have explored an association between aberrant methylation of MutL homolog-1 (MLH1) promoter and HNSCC risk. We aimed to explore the associations between MLH1 promoter methylation and HNSCC by using a meta-analysis. METHODS Systematic literature search was conducted among PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure, and Wanfang databases to retrieve relevant articles published up to June 30, 2018. A total of 12 studies were included in this meta-analysis (including 717 HNSCC and 609 controls). RESULTS The results demonstrated that MLH1 promoter methylation was notably higher in patients with HNSCC than in controls (odds ratios [ORs] = 2.52, 95% confidence intervals [CIs] = 1.33-4.79). Besides, MLH1 promoter methylation was not associated with tumor stage, lymph node status, smoking behavior, age, clinical stage, gender, and differentiation grade (all P > .05). The pooled sensitivity and specificity rates of MLH1 methylation for HNSCC were 0.23 (95% CI = 0.12-0.38) and 0.95 (95% CI, 0.82-0.99), respectively. The area under the receiver operating characteristic (ROC) curve was presented as 0.64 (95% CI = 0.60-0.68). CONCLUSION The results of this meta-analysis suggested that hypermethylation of MLH1 promoter was associated with HNSCC. Methylated MLH1 could be a potential diagnostic biomarker for diagnose of HNSCC.
Collapse
Affiliation(s)
- Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Jinjiong Hong
- Department of Hand Surgery, Ningbo 6th Hospital, Ningbo University
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| |
Collapse
|
14
|
Potential of epigenetic events in human thyroid cancer. Cancer Genet 2019; 239:13-21. [PMID: 31472323 DOI: 10.1016/j.cancergen.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Thyroid cancer remains the highest prevailing endocrine malignancy, and its incidence rate has progressively increased in the previous years. Above 95% of thyroid tumor are follicular cells types of carcinoma in which are considered invasive type of tumor. The pathogenesis and molecular mechanism of thyroid tumors are yet remains elucidated, in spite of activating RET, RAS and BRAF carcinogenesis have been well introduced. Nemours molecular alterations have been defined and have revealed promise for their diagnostic, prognostic and therapeutic capacity but still need further confirmation. Among different types of mechanisms, the current article reviews the importance of epigenetic modifications in thyroid cancer. Increasing data from previous reports demonstrate that acquired epigenetic abnormalities together with genetic changes plays an important role in alteration of gene expression patterns. Aberrant DNA methylation has been well known in the CpG regions and profile of microRNAs (mi-RNAs) expression also involved in cancer development. In addition, the gene expression through epigenetic control contribution to thyroid cancer is analyzed and it is semi considered in the clinic. However the epigenetic of the thyroid cancer is yet remains in its early stages, and it carries encouraging potential thyroid cancer detections in its early stages, assessment of prognosis and targeted cancer treatment.
Collapse
|
15
|
Comprehensive profiling of JMJD3 in gastric cancer and its influence on patient survival. Sci Rep 2019; 9:868. [PMID: 30696880 PMCID: PMC6351656 DOI: 10.1038/s41598-018-37340-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/04/2018] [Indexed: 01/19/2023] Open
Abstract
Histone methylation is thought to control the regulation of genetic program and the dysregulation of it has been found to be closely associated with cancer. JMJD3 has been identified as an H3K27 demethylase and its role in cancer development is context specific. The role of JMJD3 in gastric cancer (GC) has not been examined. In this study, JMJD3 expression was determined. The prognostic significance of JMJD3 and its association with clinical parameters were evaluated. JMJD3 dysregulation mechanism and targets were analyzed. The effect of JMJD3 mutation was determined by functional study. Results showed that JMJD3 was overexpressed in different patient cohorts and also by bioinformatics analysis. High JMJD3 expression was correlated with shortened overall survival in patients with GC and was an independent prognosis predictor. Genetic aberration and DNA methylation might be involved in the deregulation of JMJD3 in GC. Downstream network of JMJD3 was analyzed and several novel potential targets were identified. Furthermore, functional study discovered that both demethylase-dependent and demethylase-independent mechanisms were involved in the oncogenic role of JMJD3 in GC. Importantly, histone demethylase inhibitor GSK-J4 could reverse the oncogenic effect of JMJD3 overexpression. In conclusion, our study report the oncogenic role of JMJD3 in GC for the first time. JMJD3 might serve as an important epigenetic therapeutic target and/or prognostic predictor in GC.
Collapse
|
16
|
Powell AGMT, Soul S, Christian A, Lewis WG. Meta-analysis of the prognostic value of CpG island methylator phenotype in gastric cancer. Br J Surg 2018; 105:e61-e68. [PMID: 29341152 DOI: 10.1002/bjs.10742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/24/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) has been identified as a distinct molecular subtype of gastric cancer, yet associations with survival are conflicting. A meta-analysis was performed to estimate the prognostic significance of CIMP. METHODS Embase, MEDLINE, PubMed, PubMed Central and Cochrane databases were searched systematically for studies related to the association between CIMP and survival in patients undergoing potentially curative resection for gastric cancer. RESULTS A total of 918 patients from ten studies were included, and the median proportion of tumours with CIMP-high (CIMP-H) status was 40·9 (range 4·8-63) per cent. Gene panels for assessing CIMP status varied between the studies. Pooled analysis suggested that specimens exhibiting CIMP-H were associated with poorer 5-year survival (odds ratio (OR) for death 1·48, 95 per cent c.i. 1·10 to 1·99; P = 0·009). Significant heterogeneity was observed between studies (I2 = 88 per cent, P < 0·001). Subgroup analysis according to whether studies showed a tendency towards poor (5 studies) or improved (5) outcomes for patients with CIMP-H tumours, revealed that CIMP-H was associated with both poor (OR for death 8·15, 4·65 to 14·28, P < 0·001; heterogeneity I2 = 52 per cent, P = 0·08) and improved (OR 0·42, 0·27 to 0·65; P < 0·001, heterogeneity I2 = 0 per cent, P = 0·960) survival. CONCLUSION There was heterogeneity in the gene panels used to identify CIMP, which may explain the survival differences.
Collapse
Affiliation(s)
- A G M T Powell
- Division of Cancer and Genetics, Cardiff University, Cardiff, UK
| | - S Soul
- Department of Surgery, Cardiff and Vales University Health Board, Cardiff, UK
| | - A Christian
- Department of Pathology, Cardiff and Vales University Health Board, Cardiff, UK
| | - W G Lewis
- Department of Surgery, Cardiff and Vales University Health Board, Cardiff, UK
| |
Collapse
|
17
|
Xiao H, Fu J, Abe M, Ji J, Zong L. Prognostic value of CpG island methylator phenotype in gastric cancer. Cancer Sci 2018; 109:2623-2625. [PMID: 30155960 PMCID: PMC6113443 DOI: 10.1111/cas.13705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Huashi Xiao
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China.,Clinical Medical College, Dalian Medical University, Dalian, China
| | - Jiaxin Fu
- Medical Research Center, Northern Jingsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Masanobu Abe
- Division for Health Service Promotion, University of Tokyo, Tokyo, Japan
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Zong
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: The current state and clinical perspectives. Semin Cancer Biol 2018; 51:36-49. [PMID: 29253542 PMCID: PMC7286571 DOI: 10.1016/j.semcancer.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Each year, almost 4.1 million people are diagnosed with gastrointestinal (GI) cancers. Due to late detection of this disease, the mortality is high, causing approximately 3 million cancer-related deaths annually, worldwide. Although the incidence and survival differs according to organ site, earlier detection and improved prognostication have the potential to reduce overall mortality burden from these cancers. Epigenetic changes, including aberrant promoter DNA methylation, are common events in both cancer initiation and progression. Furthermore, such changes may be identified non-invasively with the use of PCR based methods, in bodily fluids of cancer patients. These features make aberrant DNA methylation a promising substrate for the development of disease biomarkers for early detection, prognosis and for predicting response to therapy. In this article, we will provide an update and current clinical perspectives for DNA methylation alterations in patients with colorectal, gastric, pancreatic, liver and esophageal cancers, and discuss their potential role as cancer biomarkers.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
19
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Yang J, Bo L, Han T, Ding D, Nie M, Yin K. Pathway- and clinical-factor-based risk model predicts the prognosis of patients with gastric cancer. Mol Med Rep 2018. [PMID: 29532879 PMCID: PMC5928624 DOI: 10.3892/mmr.2018.8722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gastric cancer (GC) has a high incidence and mortality rate. If discovered late, GC tends to have a poor prognosis. Improvements in the prognostic accuracy of GC through combined analysis of multiple relevant genes and clinical factors may solve this problem. In the present study, GSE62254 (including 300 GC tissues), obtained from the Gene Expression Omnibus database, was used as a training set, and the mRNA-sequencing data of GC (including 384 GC tissues) downloaded from the Cancer Genome Atlas database served as a validation set. Based on the t-test and Wilcoxon test, the significantly differentially expressed genes (DEGs) were obtained by screening the intersecting DEGs. The prognosis-associated genes and clinical factors were identified using Cox regression analysis in the R survival package. The optimal prognosis-associated pathways were examined using the Cox-proportional hazards (Cox-PH) model in the R penalized package. Finally, risk prediction models were constructed and validated using the Cox-PH model and the Kaplan-Meier method, respectively. There were a total of 382 significant DEGs, including 268 upregulated genes and 114 downregulated genes. A total of 50 prognosis-associated genes were identified, 16 optimal prognosis-associated pathways (including mitochondrial pathway and the tyrosine-protein kinase JAK-signal transducer and activator of transcription signaling pathway, which involve caspase 7, phosphoinositide-3-kinase regulatory subunit 3, peroxisome proliferator-activated receptor γ and collagen triple helix repeat containing 1) and four prognosis-associated clinical factors [including Pathologic_N, Pathologic_stage, mutL homolog 1 (MLH1) mutation and recurrence]. The pathway- and clinical-factor-based risk prediction model exhibited marked prognostic accuracy. The clinical-factor-based risk prediction model with improved P-values for prognosis prediction may be superior to the pathway-based risk prediction model in predicting the prognosis of GC patients.
Collapse
Affiliation(s)
- Junchi Yang
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Lumin Bo
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Ting Han
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Dan Ding
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
21
|
Wei M, Shen D, Mulmi Shrestha S, Liu J, Zhang J, Yin Y. The Progress of T Cell Immunity Related to Prognosis in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3201940. [PMID: 29682534 PMCID: PMC5848132 DOI: 10.1155/2018/3201940] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Gastric cancer is the fifth most common malignancy all over the world, and the factors that can affect progress and prognosis of the gastric cancer patients are various, such as TNM stages, invasive depth, and lymph node metastasis ratio. T cell immunity is important component of human immunity system and immunity responding to tumor and dysfunction or imbalance of T cell immunity will lead to serious outcomes for body. T cell immunity includes many different types of cells, CD4+ T cell, CD8+ T cell, memory cell, and so on, and each of them has special function on antitumor response or tumor immune escape which is revealed in lung cancer, colorectal cancer, breast cancer, ovarian cancer, and so on. But its correlation with gastric cancer is not clear. Our review was preformed to explore the relationship between the progress and prognosis of gastric cancer (GC) and T cell immunity. According to recent researches, T cell immunity may have an important role in the progress and prognosis of GCs, but its function is affected by location, category, related molecule, and interaction between the cells, and some effects still are controversial. More researches are needed to clarify this correlation.
Collapse
Affiliation(s)
- Ming Wei
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Duo Shen
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Sachin Mulmi Shrestha
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Juan Liu
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Junyi Zhang
- Department of Critical Care Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ying Yin
- Gastroenterology Department, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
22
|
Yuza K, Nagahashi M, Watanabe S, Takabe K, Wakai T. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 2017; 8:112103-112115. [PMID: 29340115 PMCID: PMC5762383 DOI: 10.18632/oncotarget.22783] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Recent progress in cancer genome analysis using next-generation sequencing has revealed a high mutation burden in some tumors. The particularly high rate of somatic mutation in these tumors correlates with the generation of neo-antigens capable of eliciting an immune response. Identification of hypermutated tumors is therefore clinically valuable for selecting patients suitable for immunotherapy treatment. There are several known causes of hypermutation in tumors, such as ultraviolet light in melanoma, tobacco smoke in lung cancer, and excessive APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) activity in breast and gastric cancer. In gastrointestinal cancers, one of the leading causes of hypermutation is a defect in DNA mismatch repair, which results in microsatellite instability (MSI). This review will focus on the frequency, characteristics and genomic signature of hypermutated gastrointestinal cancers with MSI. Detection of tumor hypermutation in cancer is expected to not only predict the clinical benefit of immune checkpoint inhibitor treatment, but also to provide better surgical strategies for the patients with hypermutated tumors. Thus, in an era of precision medicine, identification of hypermutation and MSI will play an important role directing surgical and chemotherapeutic treatment.
Collapse
Affiliation(s)
- Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| |
Collapse
|
23
|
Polom K, Marano L, Marrelli D, De Luca R, Roviello G, Savelli V, Tan P, Roviello F. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br J Surg 2017; 105:159-167. [PMID: 29091259 DOI: 10.1002/bjs.10663] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/03/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several associations between microsatellite instability (MSI) and other clinicopathological factors have been reported in gastric cancer, but the results have been ambiguous. This systematic review and meta-analysis investigated the relationship between MSI and overall survival and clinicopathological characteristics of patients with gastric cancer. METHODS A systematic literature search of the PubMed, Cochrane and Ovid databases until 31 January 2016 was performed in accordance with the PRISMA statement. The articles were screened independently according to PICO (population, intervention, comparator, outcome) eligibility criteria. All eligible articles were evaluated independently by two reviewers for risk of bias according to the Quality In Prognosis Study tool. RESULTS Overall, 48 studies with a total of 18 612 patients were included. MSI was found in 9·2 per cent of patients (1718 of 18 612), and was associated with female sex (odds ratio (OR) 1·57, 95 per cent c.i. 1·31 to 1·89; P < 0·001), older age (OR 1·58, 2·20 to 1·13; P < 0·001), intestinal Laurén histological type (OR 2·23, 1·94 to 2·57; P < 0·001), mid/lower gastric location (OR 0·38, 0·32 to 0·44; P < 0·001), lack of lymph node metastases (OR 0·70, 0·57 to 0·86, P < 0·001) and TNM stage I-II (OR 1·77, 1·47 to 2·13; P < 0·001). The pooled hazard ratio for overall survival of patients with MSI versus those with non-MSI gastric cancer from 21 studies was 0·69 (95 per cent c.i. 0·56 to 0·86; P < 0·001). CONCLUSION MSI in gastric cancer was associated with good overall survival, reflected in several favourable clinicopathological tumour characteristics.
Collapse
Affiliation(s)
- K Polom
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - L Marano
- General, Minimally Invasive and Robotic Surgery, Department of Surgery, San Matteo degli Infermi Hospital, Spoleto, Italy
| | - D Marrelli
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| | - R De Luca
- Department of Surgical Oncology, National Cancer Research Centre-Istituto Tumori G. Paolo II, Bari, Italy
| | - G Roviello
- Department of Oncology, Medical Oncology Unit, San Donato Hospital, Arezzo, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - V Savelli
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| | - P Tan
- Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Genome Institute of Singapore, Cancer Science Institute of Singapore, National University of Singapore, and Cellular and Molecular Research, National Cancer Centre, Singapore
| | - F Roviello
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| |
Collapse
|
24
|
Ma Y, Chen Y, Petersen I. Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer. Pathol Res Pract 2017; 213:333-338. [PMID: 28214209 DOI: 10.1016/j.prp.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
AIMS Aberrant DNA methylation is a common molecular feature in human cancer. The aims of this study were to analyze the methylation status of MLH1, one of the DNA mismatch repair (MMR) genes, in human colorectal and lung cancer and to evaluate its clinical relevance. METHODS The expression of MLH1 was analyzed in 8 colorectal cancer (CRC) and 8 lung cancer cell lines by real-time RT-PCR and western blotting. The MLH1 protein expression was evaluated by immunohistochemistry on tissue microarrays including 121 primary CRC and 90 lung cancer patient samples. In cancer cell lines, the methylation status of MLH1 promoter and exon 2 was investigated by bisulfite sequencing (BS). Methylation-specific-PCR (MSP) was used to evaluate methylation status of MLH1. RESULTS The expression of MLH1 mRNA was detected in 8 CRC cell lines as well as normal colonic fibroblast cells CCD-33Co. At protein levels, MLH1 was lost in one CRC cell line HCT-116 and normal cells CCD-33Co. No methylation was found in the promoter and exon 2 of MLH1 in CRC cell lines. MLH1 was expressed in 8 lung cancer cell lines at both mRNA and protein levels. Compared to cancer cells, normal bronchial epithelial cells (HBEC) had lower expression of MLH1 protein. In primary CRC, 54.5% of cases exhibited positive staining, while 47.8% of lung tumors were positive for MLH1 protein. MSP analysis showed that 58 out of 92 (63.0%) CRC and 41 out of 73 (56.2%) lung cancer exhibited MLH1 methylation. In CRC, the MLH1 methylation was significantly associated with tumor invasion in veins (P=0.012). However, no significant links were found between MLH1 expression and promoter methylation in both tumor entities. CONCLUSIONS MLH1 methylation is a frequent molecular event in CRC and lung cancer patients. In CRC, methylation of MLH1 could be linked to vascular invasiveness.
Collapse
Affiliation(s)
- Yunxia Ma
- Institute of Pathology, University Hospital Jena, Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07740 Jena, Germany
| | - Yuan Chen
- Institute of Pathology, University Hospital Jena, Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07740 Jena, Germany
| | - Iver Petersen
- Institute of Pathology, University Hospital Jena, Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07740 Jena, Germany.
| |
Collapse
|
25
|
Giampieri R, Maccaroni E, Mandolesi A, Del Prete M, Andrikou K, Faloppi L, Bittoni A, Bianconi M, Scarpelli M, Bracci R, Scartozzi M, Cascinu S. Mismatch repair deficiency may affect clinical outcome through immune response activation in metastatic gastric cancer patients receiving first-line chemotherapy. Gastric Cancer 2017; 20:156-163. [PMID: 26796888 DOI: 10.1007/s10120-016-0594-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/09/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The microsatellite-instable gastric cancer subtype, because of its supposed high antigenic potential, is a promising candidate for immunotherapy. We analyzed if the presence of a defective mismatch repair (MMR) system is associated with other markers of immune response and their relationship with outcome in advanced gastric cancer patients. METHODS We analyzed the relationship between clinical outcome and MMR status, the presence of tumor-infiltrating lymphocytes (TIL), lymphocytosis, and neutrophil-to-lymphocyte ratio (NLR) in metastatic gastric cancer patients treated with a chemotherapy doublet in the first-line setting. Other stratification factors were sex, age, Eastern Cooperative Oncology Group performance status, adjuvant/neoadjuvant chemotherapy, metastatic sites, and histotype. RESULTS One hundred three patients were eligible for analysis. Defective MMR was found in 15 patients (14 %), TILs were found in 18 patients (17 %), lymphocytosis was found in 24 patients (23 %), and high NLR was found in 75 patients (72 %). Significant correlations were found between defective MMR and TIL positivity (p = 0.0004), between defective MMR and lymphocytosis (p = 0.0062), between defective MMR and low NLR (p = 0.000069), and between TIL positivity and lymphocytosis (p = 0.000147). All factors had a statistically significant impact on overall survival, although on multivariate analysis only defective MMR (p = 0.0001) and TIL positivity (p = 0.0192) maintained their independent prognostic role. Similar results were observed for progression-free survival, with defective MMR (p = 0.0001) and TIL positivity (p = 0.0195) maintaining their prognostic role on multivariate analysis. CONCLUSIONS Our analysis confirms the favorable prognosis of metastatic gastric cancer patients with a defective MMR system and suggests that expression of TILs might also be linked to better outcome. Because of the correlation between defective MMR status and measures of immune system activity, this group of patients would be the best candidates for novel immunotherapy-based therapies.
Collapse
Affiliation(s)
- Riccardo Giampieri
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Maccaroni
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy.
| | | | - Michela Del Prete
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Kalliopi Andrikou
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Faloppi
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandro Bittoni
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Maristella Bianconi
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Marina Scarpelli
- Department of Pathology, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaella Bracci
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Mario Scartozzi
- Department of Medical Oncology, Università di Cagliari, Cagliari, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
26
|
Llorca-Cardeñosa MJ, Fleitas T, Ibarrola-Villava M, Peña-Chilet M, Mongort C, Martinez-Ciarpaglini C, Navarro L, Gambardella V, Castillo J, Roselló S, Navarro S, Ribas G, Cervantes A. Epigenetic changes in localized gastric cancer: the role of RUNX3 in tumor progression and the immune microenvironment. Oncotarget 2016; 7:63424-63436. [PMID: 27566570 PMCID: PMC5325374 DOI: 10.18632/oncotarget.11520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) pathogenesis involves genetic, epigenetic and environmental factors. Epigenetic alterations, such as DNA methylation are considered pivotal in the inactivation of tumor-related genes. We assessed a methylation panel of 5 genes to study their association to GC progression and microsatellite instability (MSI), and studied the role of RUNX3 in GC pathogenesis and the tumor immune microenvironment.The methylation status of 47 promoter-CpG islands was studied through MALDI-TOF mass spectrometry analysis in 35 Microsatellite stable (MSS) GC, 26 MSI, and 18 cancer-free samples (CFS), and 6 MSS GC and 4 MSI GC cell lines. We also studied RUNX3 expression by immunohistochemistry (IHC) in 40 samples, and validated differences in methylation levels between tumor, normal, and immune tissue in 14 additional samples.Unsupervised hierarchical clustering of methylation levels revealed no distinct subgroups between MSI and MSS samples or cell lines. CFSs clustered together showing higher levels of RUNX3 methylation compared to GC samples. RUNX3 showed protein silencing in cancer and normal mucosa, compared to inflammatory peritumoural infiltrate in almost all cases, showing a non-lymphocytic predominant pattern and being correlated with epigenetic silencing.Our results show aberrant promoter's methylation in APC, CDH1, CDKN2A, MLH1 and RUNX3 associated with GC, as well as a non-lymphocytic predominant infiltrate with high expression of RUNX3. Deep study of RUNX3 inflammation signaling could help in understanding inflammation and immune activation in the tumor microenvironment.
Collapse
Affiliation(s)
| | - Tania Fleitas
- Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Maider Ibarrola-Villava
- Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - María Peña-Chilet
- Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Cristina Mongort
- Department of Pathology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | | | - Lara Navarro
- Department of Pathology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Valentina Gambardella
- Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Josefa Castillo
- Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Susana Roselló
- Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Samuel Navarro
- Department of Pathology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Gloria Ribas
- Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| |
Collapse
|
27
|
Kenyon J, Nickel-Meester G, Qing Y, Santos-Guasch G, Drake E, PingfuFu, Sun S, Bai X, Wald D, Arts E, Gerson SL. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing. ACTA ACUST UNITED AC 2016; 3. [PMID: 27570841 PMCID: PMC4996274 DOI: 10.23937/2469-570x/1410031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Jonathan Kenyon
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA; Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gabrielle Nickel-Meester
- Division of Infectious Disease, Department of Medicine, Case School of Medicine and the Center for AIDS Research, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yulan Qing
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gabriela Santos-Guasch
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ellen Drake
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - PingfuFu
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shuying Sun
- Department of Mathematics, Texas State University, San Marcos, TX, 78666, USA
| | - Xiaodong Bai
- RNA Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David Wald
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA; Center for Stem Cell and Regenerative Medicine, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Eric Arts
- Division of Infectious Disease, Department of Medicine, Case School of Medicine and the Center for AIDS Research, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stanton L Gerson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA; Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA; Center for Stem Cell and Regenerative Medicine, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA; Seidman Cancer Center, University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| |
Collapse
|
28
|
Bockorny B, Pectasides E. The emerging role of immunotherapy in gastric and esophageal adenocarcinoma. Future Oncol 2016; 12:1833-46. [PMID: 27166503 DOI: 10.2217/fon-2016-0103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gastric and esophageal adenocarcinomas are aggressive malignancies. Systemic therapy for these tumors relies primarily on cytotoxic chemotherapy but outcomes remain poor. In recent years, immunotherapy has emerged as a new, promising therapeutic approach for a variety of solid tumors. Characterization of gastroesophageal cancers has revealed genomic and immune features of these tumors that may predict response to immunotherapy. Indeed, preliminary results from the initial trials of immune checkpoint inhibitors have been encouraging, with objective response rates of 20% in heavily pretreated patient populations. Based on these results, additional trials of single-agent checkpoint inhibitors as well as combinations with chemotherapy and targeted therapies are currently ongoing. Further work to identify predictive biomarkers will be crucial for the successful implementation of immunotherapy.
Collapse
Affiliation(s)
- Bruno Bockorny
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eirini Pectasides
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
29
|
Ma K, Cao B, Guo M. The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma. Clin Epigenetics 2016; 8:43. [PMID: 27110300 PMCID: PMC4840959 DOI: 10.1186/s13148-016-0210-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies.
Collapse
Affiliation(s)
- Kai Ma
- />Department of Thoracic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baoping Cao
- />Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- />Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
30
|
Croes L, Op de Beeck K, Van Camp G. Role of DFNA5 in hearing loss and cancer - a comment on Rakusic et al. Onco Targets Ther 2015; 8:2613-5. [PMID: 26457054 PMCID: PMC4592022 DOI: 10.2147/ott.s91168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Lieselot Croes
- Center of Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium ; Center for Oncological Research (CORE), Department of Medicine, University of Antwerp, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium ; Center for Oncological Research (CORE), Department of Medicine, University of Antwerp, Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
Abstract
Methylation data are continuous variables with most values in a sample lying in a narrow range. In a research project they can either be the outcome, or a variable potentially explaining some of the variation in other outcomes. A range of statistical methods are appropriate depending on the experimental questions. Before the formal analysis is carried out, it is important that data are checked and cleaned. Where batch effects may be present, this should be accounted for in the analysis. Where many methylation sites are investigated in a study, attention should be given to multiple comparisons and false discovery rates, and multivariate methods such as principal component analysis may be useful.
Collapse
Affiliation(s)
- Graham W Horgan
- Biomathematics and Statistics, University of Aberdeen, Aberdeen, UK.
| | - Sok-Peng Chua
- Biomathematics and Statistics, University of Aberdeen, Aberdeen, UK
| |
Collapse
|