1
|
Souza-Tavares H, Santana-Oliveira DA, Vasques-Monteiro IML, Silva-Veiga FM, Mandarim-de-Lacerda CA, Souza-Mello V. Exercise enhances hepatic mitochondrial structure and function while preventing endoplasmic reticulum stress and metabolic dysfunction-associated steatotic liver disease in mice fed a high-fat diet. Nutr Res 2024; 126:180-192. [PMID: 38759501 DOI: 10.1016/j.nutres.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.
Collapse
Affiliation(s)
- Henrique Souza-Tavares
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Tincknell JB, Kugler BA, Spicuzza H, Berger N, Yan H, You T, Zou K. High-intensity interval training attenuates impairment in regulatory protein machinery of mitochondrial quality control in skeletal muscle of diet-induced obese mice. Appl Physiol Nutr Metab 2024; 49:236-249. [PMID: 37852013 DOI: 10.1139/apnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of high-intensity interval training (HIIT) on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were assigned to low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD + HIIT) groups for another 10 weeks (n = 9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration, and protein markers of mitochondrial quality control processes were determined. HFD-fed mice exhibited lower ADP-stimulated mitochondrial respiration (p < 0.05). However, 10 weeks of HIIT prevented this impairment (p < 0.05). Importantly, the ratio of Drp1(Ser616) over Drp1(Ser637) phosphorylation, an indicator of mitochondrial fission, was significantly higher in HFD-fed mice (p < 0.05), but such increase was attenuated in HFD-HIIT compared to HFD (-35.7%, p < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in the HFD group than the LFD group (-35.1%, p < 0.05); however, such reduction was disappeared in the HFD + HIIT group. In addition, LC3B II/I ratio was higher in the HFD group than the LFD group (15.5%, p < 0.05) but was ameliorated in the HFD + HIIT group (-29.9%, p < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 phosphorylations and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
Affiliation(s)
- James B Tincknell
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Benjamin A Kugler
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Haley Spicuzza
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicolas Berger
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Huimin Yan
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Tongjian You
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kai Zou
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
3
|
Pengam M, Goanvec C, Moisan C, Simon B, Albacète G, Féray A, Guernec A, Amérand A. Moderate intensity continuous versus high intensity interval training: Metabolic responses of slow and fast skeletal muscles in rat. PLoS One 2023; 18:e0292225. [PMID: 37792807 PMCID: PMC10550171 DOI: 10.1371/journal.pone.0292225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
The healthy benefits of regular physical exercise are mainly mediated by the stimulation of oxidative and antioxidant capacities in skeletal muscle. Our understanding of the cellular and molecular responses involved in these processes remain often uncomplete particularly regarding muscle typology. The main aim of the present study was to compare the effects of two types of exercise training protocol: a moderate-intensity continuous training (MICT) and a high-intensity interval training (HIIT) on metabolic processes in two muscles with different typologies: soleus and extensor digitorum longus (EDL). Training effects in male Wistar rats were studied from whole organism level (maximal aerobic speed, morphometric and systemic parameters) to muscle level (transcripts, protein contents and enzymatic activities involved in antioxidant defences, aerobic and anaerobic metabolisms). Wistar rats were randomly divided into three groups: untrained (UNTR), n = 7; MICT, n = 8; and HIIT, n = 8. Rats of the MICT and HIIT groups ran five times a week for six weeks at moderate and high intensity, respectively. HIIT improved more than MICT the endurance performance (a trend to increased maximal aerobic speed, p = 0.07) and oxidative capacities in both muscles, as determined through protein and transcript assays (AMPK-PGC-1α signalling pathway, antioxidant defences, mitochondrial functioning and dynamics). Whatever the training protocol, the genes involved in these processes were largely more significantly upregulated in soleus (slow-twitch fibres) than in EDL (fast-twitch fibres). Solely on the basis of the transcript changes, we conclude that the training protocols tested here lead to specific muscular responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Annie Féray
- EA 4324 ORPHY, Université de Brest, Brest, France
| | | | | |
Collapse
|
4
|
Tincknell JB, Kugler B, Spicuzza H, Yan H, You T, Zou K. High-Intensity Interval Training Attenuates Impairment in Regulatory Protein Machinery of Mitochondrial Quality Control in Skeletal Muscle of Diet-Induced Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546902. [PMID: 37425824 PMCID: PMC10326985 DOI: 10.1101/2023.06.28.546902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of HIIT on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were randomly assigned to a low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD+HIIT) groups and remained on HFD for another 10 weeks (n=9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration and regulatory protein markers of mitochondrial quality control processes were determined by immunoblots. Ten weeks of HIIT enhanced ADP-stimulated mitochondrial respiration in diet-induced obese mice (P < 0.05) but did not improve whole-body insulin sensitivity. Importantly, the ratio of Drp1(Ser 616 ) over Drp1(Ser 637 ) phosphorylation, an indicator of mitochondrial fission, was attenuated in HFD-HIIT compared to HFD (-35.7%, P < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in HFD group than LFD group (-35.1%, P < 0.05), however, such reduction was disappeared in HFD+HIIT group. In addition, LC3B II/I ratio was higher in HFD than LFD group (15.5%, P < 0.05) but was ameliorated in HFD+HIIT group (-29.9%, P < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 activity and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
|
5
|
Amirazodi M, Daryanoosh F, Mehrabi A, Gaeini A, Koushkie Jahromi M, Salesi M, Zarifkar AH. Interactive Effects of Swimming High-Intensity Interval Training and Resveratrol Supplementation Improve Mitochondrial Protein Levels in the Hippocampus of Aged Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8638714. [PMID: 36536955 PMCID: PMC9759392 DOI: 10.1155/2022/8638714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2023]
Abstract
Mitochondrial dysfunction and increased oxidative stress cause damage to cells which can lead to the aging process and age-related diseases. Antioxidants such as resveratrol and high-intensity exercise can benefit oxidative damage prevention. This study is aimed at evaluating the effects of swimming high-intensity interval training and resveratrol on mitochondrial metabolism key proteins, SIRT5, SOD1, and PDH-E1α, and the level of NAD+ as a cofactor in the deacetylation process in aged rat hippocampus. Forty-five male Wistar rats, aged 20 months, were randomly divided into five groups: control (C), Swimming High-Intensity Interval Training (HIIT) (S-HIIT), Swimming HIIT with resveratrol supplementation (S-HIIT-R), resveratrol supplementation (R), and solvent of resveratrol supplementation (SR). S-HIIT and resveratrol groups performed the exercise and received resveratrol (10 mg/kg/day, gavage) for six weeks. Western blot analysis was performed to determine the protein level in the hippocampus. The amount of SIRT5 and SOD1 proteins in the hippocampus increased. S-HIIT with resveratrol or resveratrol alone increased the PDH-E1α level significantly. The amount of NAD+ was analyzed by assay kit that was reduced in S-HIIT, S-HIIT-R, and SR groups compared to controls. The results showed that resveratrol and S-HIIT attenuated the age-related brain changes by increasing the expression of SOD1 and SIRT5 and reducing the level of NAD+ in the hippocampus. Considering these findings, S-HIIT and resveratrol supplementation could be proposed as strategies to attenuate age-related brain changes. Resveratrol alone and exercise through the regulation of crucial proteins and cofactors can influence mitochondrial metabolism and oxidative stress in the hippocampus of aged rats.
Collapse
Affiliation(s)
- Maryam Amirazodi
- Department of Sport Sciences, Shiraz University, Shiraz, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Amin Mehrabi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Sport Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Abbasali Gaeini
- Department of Exercise Physiology, Faculty of Physical Education, University of Tehran, Tehran, Iran
| | | | - Mohsen Salesi
- Department of Sport Sciences, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
6
|
Amirazodi M, Mehrabi A, Rajizadeh MA, Bejeshk MA, Esmaeilpour K, Daryanoosh F, Gaeini A. The effects of combined resveratrol and high intensity interval training on the hippocampus in aged male rats: An investigation into some signaling pathways related to mitochondria. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:254-262. [PMID: 35655601 PMCID: PMC9124540 DOI: 10.22038/ijbms.2022.57780.12853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
Objectives High-intensity interval training (HIIT) is a shape of interval training that provides ameliorated athletic capacity and has a good effect on health. Resveratrol is a natural polyphenol abundant in grapes and red wine and has been demonstrated to apply various useful health impacts on the body. This research aimed to evaluate the interactive effects of swimming HIIT and resveratrol consumption on SIRTs 3 & 4, NAD+/NADH, AMPK and SOD2 expression in aged rats. Materials and Methods In total, forty-five old male albino rats (Wistar) with the age of twenty months were allocated into 5 groups randomly. Control group (Ctrl), Swimming HIIT group (Ex: Exercise), Swimming HIIT with Resveratrol consumption group (R+Ex), Resveratrol consumption group (R) and solvent of resveratrol consumption group (vehicle). R+Ex group accomplished the exercise and consumed resveratrol (10 mg/kg/day, gavage) for 6 weeks. Results HIIT & resveratrol significantly increased NAD+/NADH, SOD 2 and AMPK in the aged rats. HIIT increased SIRT3, but resveratrol reduced it. As for SIRT4, HIIT decreased it, while resveratrol positively affected it. Conclusion Resveratrol and HIIT, especially their combination, have anti-oxidant and anti-aging effects on the hippocampus of old rats.
Collapse
Affiliation(s)
- Maryam Amirazodi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Shiraz University International Division, Shiraz University, Shiraz, Iran
| | - Amin Mehrabi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Kish International Campus, University of Tehran, Kish, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abbasali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Vieira-Souza LM, Aidar FJ, Matos DGD, Silva AND, Miguel-dos-Santos R, Santos JLD, Costa RDA, Marçal AC, Lauton-Santos S, Cabral BGDAT, Estevam CDS, Araújo SSD. SHORT-TERM HIIT DOES NOT PROMOTE OXIDATIVE STRESS OR MUSCLE DAMAGE. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127022019_0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: High intensity interval training (HIIT) is a method that is widely used today. Objective: The present study aimed to evaluate the effects of HIIT on markers of oxidative stress and muscle damage in rats. Methods: The sample consisted of 60-day-old Wistar rats, divided into two groups: a control group (n=8) and an HIIT group (n=8). The training consisted of fourteen 20-second swimming sessions (loaded with weights equivalent to 14% of their body weight) with 10-second intervals between each session, performed for 12 consecutive days. Results: HIIT induced a reduction (−17.75%) in thiobarbituric acid reactive substances (an oxidative stress marker) in hepatic tissue (p=0.0482). There was also a reduction (−31.80%) in the HIIT group in the level of superoxide dismutase enzyme activity in the liver (p=0.0375). However, there were no differences between the groups in catalase, glutathione peroxidase, glutathione reductase, the total content of SH sulfhydryls, hydroperoxides, or carbonylated proteins in the hepatic tissue. No significant differences were found in any of these markers in the gastrocnemius muscle. The muscle damage markers creatinine kinase and lactate dehydrogenase were also similar between the groups in the gastrocnemius. Conclusion: The conclusion was that that short-term HIIT does not cause oxidative stress or muscle damage. Level of evidence I; High-quality randomized clinical trial with or without statistically significant difference, but with narrow confidence intervals.
Collapse
Affiliation(s)
| | - Felipe J. Aidar
- Universidade Federal de Sergipe, Brazil; Universidade Federal de Sergipe, Brazil; Universidade Federal de Sergipe, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Costa LR, de Castro CA, Marine DA, Fabrizzi F, Furino VDO, Malavazi I, Anibal FDF, Duarte ACGDO. High-Intensity Interval Training Does Not Change Vaspin and Omentin and Does Not Reduce Visceral Adipose Tissue in Obese Rats. Front Physiol 2021; 12:564862. [PMID: 33716759 PMCID: PMC7952996 DOI: 10.3389/fphys.2021.564862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to determine the expression of omentin and vaspin, inflammatory markers, body composition, and lipid profile in diet-induced obese rats and high-intensity interval training (HIIT). Forty Wistar rats were divided into four groups: untrained normal diet, trained normal diet (T-ND), untrained high-fat diet (Unt-HFD), and trained high-fat diet (T-HFD). For the animals of the Unt-HFD and T-HFD groups, a high-fat diet was offered for 4 weeks. After that, all the animals in the T-ND and T-HFD groups were submitted to HITT, three times per week, for 10 weeks (2 weeks of adaptation and 8 weeks of HIIT). Muscle (gastrocnemius), liver, epididymal adipose tissue, retroperitoneal adipose tissue, visceral adipose tissue (VAT), and serum were collected to analyze TNF-α, IL-6, PCR, IL-8, IL-10, IL-4, vaspin, and omentin. A body composition analysis was performed before adaptation to HIIT protocol and after the last exercise session using dual-energy X-ray absorptiometry. Omentin and vaspin in the VAT were quantified using Western blotting. The results showed that, when fed a high-fat diet, the animals obtained significant gains in body fat and elevated serum concentrations of vaspin and blood triglycerides. The HIIT was able to minimize body fat gain but did not reduce visceral fat despite the increase in maximum exercise capacity. Moreover, there was a reduction in the serum levels of adiponectin, IL-6, and IL-10. Finally, we concluded that, although the training protocol was able to slow down the weight gain of the animals, there was no reduction in visceral fat or an improvement in the inflammatory profile, including no changes in omentin and vaspin.
Collapse
Affiliation(s)
- Leandro Ribeiro Costa
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Cynthia Aparecida de Castro
- Department of Morphology and Pathology – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Diego Adorna Marine
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Fernando Fabrizzi
- Faculty of Philosophy, Sciences and Letters of Penápolis-Brazil, Penápolis, Brazil
| | - Vanessa de Oliveira Furino
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Fernanda de Freitas Anibal
- Department of Morphology and Pathology – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Ana Cláudia Garcia de Oliveira Duarte
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| |
Collapse
|
9
|
Vieira-Souza LM, Santos JLD, Marçal AC, Voltarelli FA, Aidar FJ, Miguel-dos-Santos R, Costa RDA, Matos DGD, Santos SL, Araújo SSD. Biomarker responses of cardiac oxidative stress to high intensity interval training in rats. MOTRIZ: REVISTA DE EDUCACAO FISICA 2021. [DOI: 10.1590/s1980-65742021021420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Yasunobe Y, Takeya Y, Yamamoto K, Hirabayashi T, Fujino H, Rakugi H. Differential effects of pre-exercise on cancer cachexia-induced muscle atrophy in fast- and slow-twitch muscles. FASEB J 2020; 34:14389-14406. [PMID: 32892438 DOI: 10.1096/fj.202001330r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
We hypothesized that pre-exercise may effectively prevent cancer cachexia-induced muscle atrophy in both fast- and slow-twitch muscle types. Additionally, the fast-twitch muscle may be more affected by cancer cachexia than slow-twitch muscle. This study aimed to evaluate the effects of pre-exercise on cancer cachexia-induced atrophy and on atrophy in fast- and slow-twitch muscles. Twelve male Wistar rats were randomly divided into sedentary and exercise groups, and another 24 rats were randomly divided into control, pre-exercise, cancer cachexia induced by intraperitoneal injections of ascites hepatoma AH130 cells, and pre-exercise plus cancer cachexia groups. We analyzed changes in muscle mass and in gene and protein expression levels of major regulators and indicators of muscle protein degradation and synthesis pathways, angiogenic factors, and mitochondrial function in both the plantaris and soleus muscles. Pre-exercise inhibited muscle mass loss, rescued protein synthesis, prevented capillary regression, and suppressed hypoxia in the plantaris and soleus muscles. Pre-exercise inhibited mitochondrial dysfunction differently in fast- and slow-twitch muscles. These results suggested that pre-exercise has the potential to inhibit cancer-cachexia-induced muscle atrophy in both fast- and slow-twitch muscles. Furthermore, the different progressions of cancer-cachexia-induced muscle atrophy in fast- and slow-twitch muscles are related to differences in mitochondrial function.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keyu Xie
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimasa Takahashi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Akasaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Yasunobe
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
11
|
High-intensity exercise training induces mitonuclear imbalance and activates the mitochondrial unfolded protein response in the skeletal muscle of aged mice. GeroScience 2020; 43:1513-1518. [PMID: 32737758 DOI: 10.1007/s11357-020-00246-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
The impairment of mitochondrial metabolism is a hallmark of aging. Mitonuclear imbalance and the mitochondrial unfolded protein response (UPRmt) are two conserved mitochondrial mechanisms that play critical roles in ensuring mitochondrial proteostasis and function. Here, we combined bioinformatics, physiological, and molecular analyses to examine the role of mitonuclear imbalance and UPRmt in the skeletal muscle of aged rodents and humans. The analysis of transcripts from the skeletal muscle of aged humans (60-70 years old) revealed that individuals with higher levels of UPRmt-related genes displayed a consistent increase in several mitochondrial-related genes, including the OXPHOS-associated genes. Interestingly, high-intensity interval training (HIIT) was effective in stimulating the mitonuclear imbalance and UPRmt in the skeletal muscle of aged mice. Furthermore, these results were accompanied by higher levels of several mitochondrial markers and improvements in physiological parameters and physical performance. These data indicate that the maintenance or stimulation of the mitonuclear imbalance and UPRmt in the skeletal muscle could ensure mitochondrial proteostasis during aging, revealing new insights into targeting mitochondrial metabolism by using physical exercise.
Collapse
|
12
|
Amirazodi F, Mehrabi A, Amirazodi M, Parsania S, Rajizadeh MA, Esmaeilpour K. The Combination Effects of Resveratrol and Swimming HIIT Exercise on Novel Object Recognition and Open-field Tasks in Aged Rats. Exp Aging Res 2020; 46:336-358. [PMID: 32324489 DOI: 10.1080/0361073x.2020.1754015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Resveratrol, a natural polyphenol abundant in grapes and red wine, has been reported to exert numerous beneficial health effects in the body. High-Intensity Interval Exercise (HIIT) is a form of interval training that provides improved athletic capacity and has a protective effect on health. The purpose of this study was to investigate the interactive effects of swimming HIIT and Resveratrol supplementation on behavioral function in Novel object recognition and open-field tests in aged rats. METHODS A total of 45 aged male Wistar rats with an age of 20 months were randomly assigned into five groups of control (C), swimming HIIT (SW-HIIT), swimming HIIT with Resveratrol supplementation (SW-HIIT-R), Resveratrol supplementation (R), and solvent of Resveratrol supplementation (SR). There was also another group that included young animals (2-month-old) and was used to compare with older animals. Swimming HIIT and Resveratrol supplementation groups performed the exercise and received Resveratrol (10 mg/kg/day, gavage) for six weeks. Novel object recognition and open-field tests were used for evaluating the behavioral functions in animals. RESULTS The results showed that HIIT and Resveratrol significantly improved recognition memory compared to old animals. Moreover, it seems that HIIT and Resveratrol partly could modulate anxiety-like behaviors compared to old animals in the open-field test.
Collapse
Affiliation(s)
- Fatemeh Amirazodi
- Department of Education, Department of Foundations of Education, International Division, Shiraz University , Shiraz, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran
| | - Amin Mehrabi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Department of Exercise Physiology, Kish International Campus, University of Tehran , Kish, Iran
| | - Maryam Amirazodi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Shiraz University International Division, Shiraz University , Shiraz, Iran
| | - Shahrnaz Parsania
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Department of Physiology & Pharmacology, Kerman Medical University of Sciences , Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Department of Physiology & Pharmacology, Kerman Medical University of Sciences , Kerman, Iran
| |
Collapse
|
13
|
Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2019; 1:24-32. [PMID: 35782463 PMCID: PMC9219277 DOI: 10.1016/j.smhs.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased cardiovascular fitness, V˙O2max, is associated with enhanced endurance capacity and a decreased rate of mortality. High intensity interval training (HIIT) is one of the best methods to increase V˙O2max and endurance capacity for top athletes and for the general public as well. Because of the high intensity of this type of training, the adaptive response is not restricted to Type I fibers, as found for moderate intensity exercise of long duration. Even with a short exercise duration, HIIT can induce activation of AMPK, PGC-1α, SIRT1 and ROS pathway as well as by the modulation of Ca2+ homeostasis, leading to enhanced mitochondrial biogenesis, and angiogenesis. The present review summarizes the current knowledge of the adaptive response of HIIT.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Corresponding author. Alkotas u. 44, Budapest, H-1123, Hungary.
| |
Collapse
|
14
|
Ohba T, Domoto S, Tanaka M, Nakamura S, Shimazawa M, Hara H. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Induced by Repeated Forced Swimming in Mice. Biol Pharm Bull 2019; 42:1140-1145. [DOI: 10.1248/bpb.b19-00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takuya Ohba
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Shinichi Domoto
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Miyu Tanaka
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Shinsuke Nakamura
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| |
Collapse
|
15
|
Beleza J, Albuquerque J, Santos-Alves E, Fonseca P, Santocildes G, Stevanovic J, Rocha-Rodrigues S, Rizo-Roca D, Ascensão A, Torrella JR, Magalhães J. Self-Paced Free-Running Wheel Mimics High-Intensity Interval Training Impact on Rats' Functional, Physiological, Biochemical, and Morphological Features. Front Physiol 2019; 10:593. [PMID: 31139096 PMCID: PMC6527817 DOI: 10.3389/fphys.2019.00593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Free-running wheel (FRW) is an animal exercise model that relies on high-intensity interval moments interspersed with low-intensity or pauses apparently similar to those performed in high-intensity interval training (HIIT). Therefore, this study, conducted over a 12-weeks period, aimed to compare functional, thermographic, biochemical and morphological skeletal and cardiac muscle adaptations induced by FRW and HIIT. Twenty-four male Wistar rats were assigned into three groups: sedentary rats (SED), rats that voluntarily exercise in free wheels (FRW) and rats submitted to a daily HIIT. Functional tests revealed that compared to SED both FRW and HIIT increased the ability to perform maximal workload tests (MWT-cm/s) (45 ± 1 vs. 55 ± 2 and vs. 65 ± 2). Regarding thermographic assays, FRW and HIIT increased the ability to lose heat through the tail during MWT. Histochemical analyzes performed in tibialis anterior (TA) and soleus (SOL) muscles showed a general adaptation toward a more oxidative phenotype in both FRW and HIIT. Exercise increased the percentage of fast oxidative glycolytic (FOG) in medial fields of TA (29.7 ± 2.3 vs. 44.9 ± 4.4 and vs. 45.2 ± 5.3) and slow oxidative (SO) in SOL (73.4 ± 5.7 vs. 99.5 ± 0.5 and vs. 96.4 ± 1.2). HITT decreased fiber cross-sectional area (FCSA-μm2) of SO (4350 ± 286.9 vs. 4893 ± 325 and vs. 3621 ± 237.3) in SOL. Fast glycolytic fibers were bigger across all the TA muscle in FRW and HIIT groups. The FCSA decrease in FOG fibers was accompanied by a circularity decrease of SO from SOL fibers (0.840 ± 0.005 vs. 0.783 ± 0.016 and vs. 0.788 ± 0.010), and a fiber and global field capillarization increase in both FRW and HIIT protocols. Moreover, FRW and HIIT animals exhibited increased cardiac mitochondrial respiratory control ratio with complex I-driven substrates (3.89 ± 0.14 vs. 5.20 ± 0.25 and vs. 5.42 ± 0.37). Data suggest that FRW induces significant functional, physiological, and biochemical adaptations similar to those obtained under an intermittent forced exercise regimen, such as HIIT.
Collapse
Affiliation(s)
- Jorge Beleza
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - João Albuquerque
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Estela Santos-Alves
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Pedro Fonseca
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Garoa Santocildes
- Departament de Biologia Cel ⋅ lular, de Fisiologia i d'Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jelena Stevanovic
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - David Rizo-Roca
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Joan Ramon Torrella
- Departament de Biologia Cel ⋅ lular, de Fisiologia i d'Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Brunetta HS, de Paula GC, de Oliveira J, Martins EL, Dos Santos GJ, Galina A, Rafacho A, de Bem AF, Nunes EA. Decrement in resting and insulin-stimulated soleus muscle mitochondrial respiration is an early event in diet-induced obesity in mice. Exp Physiol 2019; 104:306-321. [PMID: 30578638 DOI: 10.1113/ep087317] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the temporal responses of mitochondrial respiration and mitochondrial responsivity to insulin in soleus muscle fibres from mice during the development of obesity and insulin resistance? What is the main finding and its importance? Short- and long-term feeding with a high-fat diet markedly reduced soleus mitochondrial respiration and mitochondrial responsivity to insulin before any change in glycogen synthesis. Muscle glycogen synthesis and whole-body insulin resistance were present after 14 and 28 days, respectively. Our findings highlight the plasticity of mitochondria during the development of obesity and insulin resistance. ABSTRACT Recently, significant attention has been given to the role of muscle mitochondrial function in the development of insulin resistance associated with obesity. Our aim was to investigate temporal alterations in mitochondrial respiration, H2 O2 emission and mitochondrial responsivity to insulin in permeabilized skeletal muscle fibres during the development of obesity in mice. Male Swiss mice (5-6 weeks old) were fed with a high-fat diet (60% calories from fat) or standard diet for 7, 14 or 28 days to induce obesity and insulin resistance. Diet-induced obese (DIO) mice presented with reduced glucose tolerance and hyperinsulinaemia after 7 days of high-fat diet. After 14 days, the expected increase in muscle glycogen content after systemic injection of glucose and insulin was not observed in DIO mice. At 28 days, blood glucose decay after insulin injection was significantly impaired. Complex I (pyruvate + malate) and II (succinate)-linked respiration and oxidative phosphorylation (ADP) were decreased after 7 days of high-fat diet and remained low in DIO mice after 14 and 28 days of treatment. Moreover, mitochondria from DIO mice were incapable of increasing respiratory coupling and ADP responsivity after insulin stimulation in all observed periods. Markers of mitochondrial content were reduced only after 28 days of treatment. The mitochondrial H2 O2 emission profile varied during the time course of DIO, with a reduction of H2 O2 emission in the early stages of DIO and an increased emission after 28 days of treatment. Our data demonstrate that DIO promotes transitory alterations in mitochondrial physiology during the early and late stages of insulin resistance related to obesity.
Collapse
Affiliation(s)
- Henver Simionato Brunetta
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Gabriela Cristina de Paula
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Jade de Oliveira
- Graduate Program in Health Sciences, University of Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Eduarda Lopes Martins
- Graduate Program in Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Jorge Dos Santos
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Antonio Galina
- Graduate Program in Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Rafacho
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Andreza Fabro de Bem
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil.,Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Everson Araújo Nunes
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| |
Collapse
|
17
|
Kohoutová M, Dejmek J, Tůma Z, Kuncová J. Variability of mitochondrial respiration in relation to sepsis-induced multiple organ dysfunction. Physiol Res 2019; 67:S577-S592. [PMID: 30607965 DOI: 10.33549/physiolres.934050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ample experimental evidence suggests that sepsis could interfere with any mitochondrial function; however, the true role of mitochondrial dysfunction in the pathogenesis of sepsis-induced multiple organ dysfunction is still a matter of controversy. This review is primarily focused on mitochondrial oxygen consumption in various animal models of sepsis in relation to human disease and potential sources of variability in experimental results documenting decrease, increase or no change in mitochondrial respiration in various organs and species. To date, at least three possible explanations of sepsis-associated dysfunction of the mitochondrial respiratory system and consequently impaired energy production have been suggested: 1. Mitochondrial dysfunction is secondary to tissue hypoxia. 2. Mitochondria are challenged by various toxins or mediators of inflammation that impair oxygen utilization (cytopathic hypoxia). 3. Compromised mitochondrial respiration could be an active measure of survival strategy resembling stunning or hibernation. To reveal the true role of mitochondria in sepsis, sources of variability of experimental results based on animal species, models of sepsis, organs studied, or analytical approaches should be identified and minimized by the use of appropriate experimental models resembling human sepsis, wider use of larger animal species in preclinical studies, more detailed mapping of interspecies differences and organ-specific features of oxygen utilization in addition to use of complex and standardized protocols evaluating mitochondrial respiration.
Collapse
Affiliation(s)
- M Kohoutová
- Institute of Physiology, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic.
| | | | | | | |
Collapse
|
18
|
Real-Hohn A, Navegantes C, Ramos K, Ramos-Filho D, Cahuê F, Galina A, Salerno VP. The synergism of high-intensity intermittent exercise and every-other-day intermittent fasting regimen on energy metabolism adaptations includes hexokinase activity and mitochondrial efficiency. PLoS One 2018; 13:e0202784. [PMID: 30576325 PMCID: PMC6303071 DOI: 10.1371/journal.pone.0202784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Visceral lipid accumulation, organ hypertrophy and a reduction in skeletal muscle strength are all signs associated with the severity of obesity-related disease. Intermittent fasting (IF) and high-intensity intermittent exercise (HIIE) are natural strategies that, individually, can prevent and help treat obesity along with metabolic syndrome and its associated diseases. However, the combinatorial effect of IF and HIIE on energetic metabolism is currently not well understood. We hypothesized that their combination could have a potential for more than strictly additive benefits. Here, we show that two months of every-other-day intermittent fasting regimen combined with a high-intensity intermittent exercise protocol (IF/HIIE) produced a synergistic effect, enhancing physical endurance (vs. control, HIIE and IF) and optimizing metabolic pathways of energy production in male Wistar rats. The IF/HIIE group presented enhanced glucose tolerance (vs. control, HIIE and IF), lower levels of plasma insulin (vs. control and HIIE), and a global activation of low Km hexokinases in liver (vs. control, HIIE and IF), heart (vs. control and HIIE) and skeletal muscle (vs. control, HIIE and IF). The IF/HIIE synergism, rather than a simply additive effect, is evidenced by increase in muscle mass and cross-section area, activation of the FoF1 ATP synthase, and the gain of characteristics suggestive of augmented mitochondrial mass and efficiency observed in this group. Finally, important reductions in plasma oxidative stress markers were present preferentially in IF/HIIE group. These findings provide new insights for the implementation of non-pharmaceutical strategies to prevent/treat metabolic syndrome and associated diseases.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
- * E-mail: (VPS); (ARH)
| | - Clarice Navegantes
- Laboratory of Exercise Biochemistry and Molecular Motors, Bioscience Department, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Ramos
- Laboratory of Exercise Biochemistry and Molecular Motors, Bioscience Department, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dionisio Ramos-Filho
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Cahuê
- Laboratory of Exercise Biochemistry and Molecular Motors, Bioscience Department, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica P. Salerno
- Laboratory of Exercise Biochemistry and Molecular Motors, Bioscience Department, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (VPS); (ARH)
| |
Collapse
|
19
|
Shi M, Ellingsen Ø, Bathen TF, Høydal MA, Koch LG, Britton SL, Wisløff U, Stølen TO, Esmaeili M. Skeletal muscle metabolism in rats with low and high intrinsic aerobic capacity: Effect of aging and exercise training. PLoS One 2018; 13:e0208703. [PMID: 30533031 PMCID: PMC6289443 DOI: 10.1371/journal.pone.0208703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose Exercise training increases aerobic capacity and is beneficial for health, whereas low aerobic exercise capacity is a strong independent predictor of cardiovascular disease and premature death. The purpose of the present study was to determine the metabolic profiles in a rat model of inborn low versus high capacity runners (LCR/HCR) and to determine the effect of inborn aerobic capacity, aging, and exercise training on skeletal muscle metabolic profile. Methods LCR/HCR rats were randomized to high intensity low volume interval treadmill training twice a week or sedentary control for 3 or 11 months before they were sacrificed, at 9 and 18 months of age, respectively. Magnetic resonance spectra were acquired from soleus muscle extracts, and partial least square discriminative analysis was used to determine the differences in metabolic profile. Results Sedentary HCR rats had 54% and 30% higher VO2max compared to sedentary LCR rats at 9 months and 18 months, respectively. In HCR, exercise increased running speed significantly, and VO2max was higher at age of 9 months, compared to sedentary counterparts. In LCR, changes were small and did not reach the level of significance. The metabolic profile was significantly different in the LCR sedentary group compared to the HCR sedentary group at the age of 9 and 18 months, with higher glutamine and glutamate levels (9 months) and lower lactate level (18 months) in HCR. Irrespective of fitness level, aging was associated with increased soleus muscle concentrations of glycerophosphocholine and glucose. Interval training did not influence metabolic profiles in LCR or HCR rats at any age. Conclusion Differences in inborn aerobic capacity gave the most marked contrasts in metabolic profile, there were also some changes with ageing. Low volume high intensity interval training twice a week had no detectable effect on metabolic profile.
Collapse
Affiliation(s)
- Mingshu Shi
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Ellingsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway.,Clinic of Cardiothoracic Surgery, St Olavs Hospital, Trondheim, Norway
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, Ohio, United States of America
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, St.Lucia, Queensland, Australia
| | - Tomas O Stølen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway.,Clinic of Cardiothoracic Surgery, St Olavs Hospital, Trondheim, Norway
| | - Morteza Esmaeili
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
20
|
Dupas J, Feray A, Guernec A, Pengam M, Inizan M, Guerrero F, Mansourati J, Goanvec C. Effect of personalized moderate exercise training on Wistar rats fed with a fructose enriched water. Nutr Metab (Lond) 2018; 15:69. [PMID: 30305835 PMCID: PMC6171221 DOI: 10.1186/s12986-018-0307-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background Metabolic Syndrom has become a public health problem. It mainly results from the increased consumption of fat and sugar. In this context, the benefits of personalized moderate exercise training were investigated on a metabolic syndrome male wistar rat model food with fructose drinking water (20–25% w/v). Different markers including body weight, metabolic measurements, blood biochemistry related to metabolic syndrome complications have been evaluated. Methods Male Wistar rats were randomly allocated to 4 groups: control (sedentary (C, n = 8) and exercise trained (Ex, n = 8)), fructose fed (sedentary (FF, n = 8) and exercise trained fructose fed rats (ExFF, n = 10)). ExFF and Ex rats were trained at moderate intensity during the last 6 weeks of the 12 weeks-long protocol of fructose enriched water. Metabolic control was determined by measuring body weight, fasting blood glucose, HOMA 2-IR, HIRI, MISI, leptin, adiponectin, triglyceridemia and hepatic dysfunction. Results After 12 weeks of fructose enriched diet, rats displayed on elevated fasting glycaemia and insulin resistance. A reduced food intake, as well as increased body weight, total calorie intake and heart weight were also observed in FF group. Concerning biochemical markers, theoretical creatinine clearance, TG levels and ASAT/ALAT ratio were also affected, without hepatic steatosis. Six weeks of 300 min/week of moderate exercise training have significantly improved overweight, fasting glycaemia, HOMA 2-IR, MISI without modify HIRI. Exercise also decreased the plasma levels of leptin, adiponectin and the ratio leptin/adiponectin. Regarding liver function and dyslipidemia, the results were less clear as the effects of exercise and fructose-enriched water interact together, and, sometimes counteract each other. Conclusion Our results indicated that positive health effects were achieved through a personalized moderate training of 300 min per week (1 h/day and 5 days/week) for 6 weeks. Therefore, regular practice of aerobic physical exercise is an essential triggering factor to attenuate MetS disorders induced by excessive fructose consumption.
Collapse
Affiliation(s)
- Julie Dupas
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Annie Feray
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Anthony Guernec
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Morgane Pengam
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Manon Inizan
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,2UFR Sciences et Techniques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29237 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - François Guerrero
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Jacques Mansourati
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,4Département de Cardiologie, Centre Hospitalo-Universitaire de Brest, Boulevard Tanguy Prigent, 29200 Brest, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Christelle Goanvec
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,2UFR Sciences et Techniques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29237 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| |
Collapse
|
21
|
Zhang J, Wallace SJ, Shiu MY, Smith I, Rhind SG, Langlois VS. Human hair follicle transcriptome profiling: a minimally invasive tool to assess molecular adaptations upon low-volume, high-intensity interval training. Physiol Rep 2017; 5. [PMID: 29212859 PMCID: PMC5727284 DOI: 10.14814/phy2.13534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/22/2022] Open
Abstract
High‐intensity interval training (HIIT) has become a popular fitness training approach under both civilian and military settings. Consisting of brief and intense exercise intervals, HIIT requires less time commitment yet is able to produce the consistent targeted physical adaptations as conventional endurance training. To effectively characterize and monitor HIIT‐induced cellular and molecular responses, a highly accessible yet comprehensive biomarker discovery source is desirable. Both gene differential expression (DE) and gene set (GS) analyses were conducted using hair follicle transcriptome established from pre and postexercise subjects upon a 10‐day HIIT program by RNA‐Seq, Comparing between pre and posttraining groups, differentially expressed protein coding genes were identified. To interpret the functional significance of the DE results, a comprehensive GS analysis approach featuring multiple algorithms was used to enrich gene ontology (GO) terms and KEGG pathways. The GS analysis revealed enriched themes such as energy metabolism, cell proliferation/growth/survival, muscle adaptations, and cytokine–cytokine interaction, all of which have been previously proposed as HIIT responses. Moreover, related cell signaling pathways were also measured. Specifically, G‐protein‐mediated signal transduction, phosphatidylinositide 3‐kinases (PI3K) – protein kinase B (PKB) and Janus kinase (JAK) – Signal Transducer and Activator of Transcription (STAT) signaling cascades were over‐represented. Additionally, the RNA‐Seq analysis also identified several HIIT‐responsive microRNAs (miRNAs) that were involved in regulating hair follicle‐specific processes, such as miR‐99a. For the first time, this study demonstrated that both existing and new biomarkers like miRNA can be explored for HIIT using the transcriptomic responses exhibited by the hair follicle.
Collapse
Affiliation(s)
- Jing Zhang
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| | - Sarah J Wallace
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| | - Maria Y Shiu
- Defense Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Ingrid Smith
- Defense Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G Rhind
- Defense Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| |
Collapse
|
22
|
Maternal intake of trans-unsaturated or interesterified fatty acids during pregnancy and lactation modifies mitochondrial bioenergetics in the liver of adult offspring in mice. Br J Nutr 2017; 118:41-52. [DOI: 10.1017/s0007114517001817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.
Collapse
|
23
|
Zeidler JD, Fernandes-Siqueira LO, Carvalho AS, Cararo-Lopes E, Dias MH, Ketzer LA, Galina A, Da Poian AT. Short-term starvation is a strategy to unravel the cellular capacity of oxidizing specific exogenous/endogenous substrates in mitochondria. J Biol Chem 2017; 292:14176-14187. [PMID: 28663370 DOI: 10.1074/jbc.m117.786582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/28/2017] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system.
Collapse
Affiliation(s)
- Julianna D Zeidler
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil,.
| | - Lorena O Fernandes-Siqueira
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana S Carvalho
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eduardo Cararo-Lopes
- Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo 05503-900, Brazil; Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Matheus H Dias
- Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Luisa A Ketzer
- Universidade Federal do Rio de Janeiro, Pólo de Xerém, Duque de Caxias 25245-390, Brazil
| | - Antonio Galina
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andrea T Da Poian
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil,.
| |
Collapse
|
24
|
Wyckelsma VL, Levinger I, McKenna MJ, Formosa LE, Ryan MT, Petersen AC, Anderson MJ, Murphy RM. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. J Physiol 2017; 595:3345-3359. [PMID: 28251664 DOI: 10.1113/jp273950] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. ABSTRACT Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole muscle and Mfn2 content decreased in type II fibres. Increases in citrate synthase activity (55%) and mitochondrial respiratory chain subunits COXIV (37%) and NDUFA9 (48%) and mitochondrial respiratory chain complexes (∼70-100%) were observed in homogenates and/or single fibres. These findings reveal (i) a similar amount of mitochondria in muscle from young and healthy older adults and (ii) a robust increase of mitochondrial content following 12 weeks of HIT exercise in older adults.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Mitchell J Anderson
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Bocco BMLC, Louzada RAN, Silvestre DHS, Santos MCS, Anne-Palmer E, Rangel IF, Abdalla S, Ferreira AC, Ribeiro MO, Gereben B, Carvalho DP, Bianco AC, Werneck-de-Castro JP. Thyroid hormone activation by type 2 deiodinase mediates exercise-induced peroxisome proliferator-activated receptor-γ coactivator-1α expression in skeletal muscle. J Physiol 2016; 594:5255-69. [PMID: 27302464 PMCID: PMC5023700 DOI: 10.1113/jp272440] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In skeletal muscle, physical exercise and thyroid hormone mediate the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1a) expression that is crucial to skeletal muscle mitochondrial function. The expression of type 2 deiodinase (D2), which activates thyroid hormone in skeletal muscle is upregulated by acute treadmill exercise through a β-adrenergic receptor-dependent mechanism. Pharmacological block of D2 or disruption of the Dio2 gene in skeletal muscle fibres impaired acute exercise-induced PGC-1a expression. Dio2 disruption also impaired muscle PGC-1a expression and mitochondrial citrate synthase activity in chronically exercised mice. ABSTRACT Thyroid hormone promotes expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1a), which mediates mitochondrial biogenesis and oxidative capacity in skeletal muscle (SKM). Skeletal myocytes express the type 2 deiodinase (D2), which generates 3,5,3'-triiodothyronine (T3 ), the active thyroid hormone. To test whether D2-generated T3 plays a role in exercise-induced PGC-1a expression, male rats and mice with SKM-specific Dio2 inactivation (SKM-D2KO or MYF5-D2KO) were studied. An acute treadmill exercise session (20 min at 70-75% of maximal aerobic capacity) increased D2 expression/activity (1.5- to 2.7-fold) as well as PGC-1a mRNA levels (1.5- to 5-fold) in rat soleus muscle and white gastrocnemius muscle and in mouse soleus muscle, which was prevented by pretreatment with 1 mg (100 g body weight)(-1) propranolol or 6 mg (100 g body weight)(-1) iopanoic acid (5.9- vs. 2.8-fold; P < 0.05), which blocks D2 activity . In the SKM-D2KO mice, acute treadmill exercise failed to induce PGC-1a fully in soleus muscle (1.9- vs. 2.8-fold; P < 0.05), and in primary SKM-D2KO myocytes there was only a limited PGC-1a response to 1 μm forskolin (2.2- vs. 1.3-fold; P < 0.05). Chronic exercise training (6 weeks) increased soleus muscle PGC-1a mRNA levels (∼25%) and the mitochondrial enzyme citrate synthase (∼20%). In contrast, PGC-1a expression did not change and citrate synthase decreased by ∼30% in SKM-D2KO mice. The soleus muscle PGC-1a response to chronic exercise was also blunted in MYF5-D2KO mice. In conclusion, acute treadmill exercise increases SKM D2 expression through a β-adrenergic receptor-dependent mechanism. The accelerated conversion of T4 to T3 within myocytes mediates part of the PGC-1a induction by treadmill exercise and its downstream effects on mitochondrial function.
Collapse
Affiliation(s)
- Barbara M L C Bocco
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
- Department of Translational Medicine, Federal University of São Paulo, Brazil
| | - Ruy A N Louzada
- Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Brazil
| | - Diego H S Silvestre
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
- Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Brazil
| | - Maria C S Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Elena Anne-Palmer
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
| | - Igor F Rangel
- Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Brazil
| | - Sherine Abdalla
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea C Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological and Health Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Denise P Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
| | - João P Werneck-de-Castro
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA.
- Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
de Carvalho AK, da Silva S, Serafini E, de Souza DR, Farias HR, de Bem Silveira G, Silveira PCL, de Souza CT, Portela LV, Muller AP. Prior Exercise Training Prevent Hyperglycemia in STZ Mice by Increasing Hepatic Glycogen and Mitochondrial Function on Skeletal Muscle. J Cell Biochem 2016; 118:678-685. [DOI: 10.1002/jcb.25658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Afonso Kopczynski de Carvalho
- Departamento de Bioquímica; ICBS; UFRGS; Programa de Pós Graduação em Ciências Biológicas-Bioquímica; Rua Ramiro Barcelos, 2600 anexo Porto Alegre Rio Grande do Sul CEP 90035-003 Brazil
| | - Sabrina da Silva
- Unidade de Ciências da Saúde; Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC; Av. Universitária, 1105-Bairro Universitário Criciúma Santa Catarina CEP 88806-000 Brazil
| | - Edenir Serafini
- Unidade de Ciências da Saúde; Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC; Av. Universitária, 1105-Bairro Universitário Criciúma Santa Catarina CEP 88806-000 Brazil
| | - Daniela Roxo de Souza
- Unidade de Ciências da Saúde; Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC; Av. Universitária, 1105-Bairro Universitário Criciúma Santa Catarina CEP 88806-000 Brazil
| | - Hemelin Resende Farias
- Unidade de Ciências da Saúde; Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC; Av. Universitária, 1105-Bairro Universitário Criciúma Santa Catarina CEP 88806-000 Brazil
| | - Gustavo de Bem Silveira
- Unidade de Ciências da Saúde; Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC; Av. Universitária, 1105-Bairro Universitário Criciúma Santa Catarina CEP 88806-000 Brazil
| | - Paulo Cesar Lock Silveira
- Unidade de Ciências da Saúde; Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC; Av. Universitária, 1105-Bairro Universitário Criciúma Santa Catarina CEP 88806-000 Brazil
| | - Claudio Teodoro de Souza
- Unidade de Ciências da Saúde; Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC; Av. Universitária, 1105-Bairro Universitário Criciúma Santa Catarina CEP 88806-000 Brazil
| | - Luis Valmor Portela
- Departamento de Bioquímica; ICBS; UFRGS; Programa de Pós Graduação em Ciências Biológicas-Bioquímica; Rua Ramiro Barcelos, 2600 anexo Porto Alegre Rio Grande do Sul CEP 90035-003 Brazil
| | - Alexandre Pastoris Muller
- Unidade de Ciências da Saúde; Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC; Av. Universitária, 1105-Bairro Universitário Criciúma Santa Catarina CEP 88806-000 Brazil
| |
Collapse
|
27
|
Batacan RB, Duncan MJ, Dalbo VJ, Connolly KJ, Fenning AS. Light-intensity and high-intensity interval training improve cardiometabolic health in rats. Appl Physiol Nutr Metab 2016; 41:945-52. [DOI: 10.1139/apnm-2016-0037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p < 0.01) and slower cardiac conduction (p = 0.04) compared with the CTL group. LIT and HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p < 0.05). LIT had significant improvements in insulin sensitivity and cardiac conduction compared with the CTL and SED groups whilst HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p < 0.05). LIT and HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.
Collapse
Affiliation(s)
- Romeo B. Batacan
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Centre for Physical Activity Studies, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Mitch J. Duncan
- School of Medicine & Public Health, Priority Research Centre for Physical Activity and Nutrition, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Vincent J. Dalbo
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Clinical Biochemistry Laboratory, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Kylie J. Connolly
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Andrew S. Fenning
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Centre for Physical Activity Studies, Central Queensland University, Rockhampton, QLD 4702, Australia
| |
Collapse
|
28
|
Kikusato M, Toyomizu M. Moderate dependence of reactive oxygen species production on membrane potential in avian muscle mitochondria oxidizing glycerol 3-phosphate. J Physiol Sci 2015; 65:555-9. [PMID: 26335765 PMCID: PMC10717725 DOI: 10.1007/s12576-015-0395-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Mitochondria are a major source of reactive oxygen species production in cells, and the production level is sensitive to the magnitude of the membrane potential (ΔΨ). The present study investigated the level of superoxide production in mitochondria oxidizing glycerol 3-phosphate (GP) and its dependence on ΔΨ in isolated avian muscle mitochondria. The levels of superoxide produced in mitochondria oxidizing GP were lower than those obtained with succinate and were similar to those obtained with NADH-linked substrates (glutamate/malate/pyruvate). The dependence of superoxide production on ΔΨ in mitochondria oxidizing GP was lower than that of mitochondria oxidizing succinate, and a weak dependence of GP-supported superoxide production on ΔΨ was observed in the presence of NADH-linked substrates or succinate. These results suggest that the levels of superoxide generated in response to GP are quantitatively low, but they are unsusceptible to changes in ΔΨ in avian muscle mitochondria.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan.
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| |
Collapse
|
29
|
Macedo LW, Cararo JH, Maravai SG, Gonçalves CL, Oliveira GMT, Kist LW, Guerra Martinez C, Kurtenbach E, Bogo MR, Hipkiss AR, Streck EL, Schuck PF, Ferreira GC. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats. Mol Neurobiol 2015; 53:5582-90. [DOI: 10.1007/s12035-015-9475-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
|