1
|
Zou S, Liu B, Feng Y. CCL17, CCL22 and their receptor CCR4 in hematologic malignancies. Discov Oncol 2024; 15:412. [PMID: 39240278 PMCID: PMC11379839 DOI: 10.1007/s12672-024-01210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Hematological malignancies (HM) are common malignant tumors with high morbidity and mortality rates, and are malignant diseases that seriously affect human health, with chemotherapy prone to recurrence and toxic side effects. Therefore, the development of precise, effective, and safe targeted therapeutic agents has become a hotspot in the current research of antitumor technology. More and more studies have shown that the interaction of C-C chemokine ligand 17 (CCL17) and C-C chemokine ligand 22 (CCL22) with the receptor C-C chemokine receptor type 4 (CCR4) promotes the immune escape of tumors and is closely related to the occurrence, development, and prognosis of hematological tumors. In this regard, we present a review on the expression and role of the CCL17/CCL22-CCR4 axis in HM, including lymphoma, leukemia, and multiple myeloma, with the aim of providing latest ideas and directions for the diagnosis and treatment of HM. In addition, we discuss the role and related mechanisms of HM therapeutic agents targeting the CCL17/CCL22-CCR4 axis and the potential of humanized anti-CCR4 antibodies for the treatment of HM.
Collapse
Affiliation(s)
- Shasha Zou
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bo Liu
- Department of Key, Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yonghuai Feng
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Department of Hematology, Dongguan People's Hospital, Dongguan, China.
| |
Collapse
|
2
|
Giannoni P, Marini C, Cutrona G, Sambuceti GM, Fais F, de Totero D. Unraveling the Bone Tissue Microenvironment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5058. [PMID: 37894425 PMCID: PMC10605026 DOI: 10.3390/cancers15205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in Western countries. Although characterized by the progressive expansion and accumulation of leukemic B cells in peripheral blood, CLL cells develop in protective niches mainly located within lymph nodes and bone marrow. Multiple interactions between CLL and microenvironmental cells may favor the expansion of a B cell clone, further driving immune cells toward an immunosuppressive phenotype. Here, we summarize the current understanding of bone tissue alterations in CLL patients, further addressing and suggesting how the multiple interactions between CLL cells and osteoblasts/osteoclasts can be involved in these processes. Recent findings proposing the disruption of the endosteal niche by the expansion of a leukemic B cell clone appear to be a novel field of research to be deeply investigated and potentially relevant to provide new therapeutic approaches.
Collapse
Affiliation(s)
- Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, 16132 Genova, Italy;
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- CNR Institute of Bioimages and Molecular Physiology, 20054 Milano, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
| | - Gian Mario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Daniela de Totero
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| |
Collapse
|
3
|
Andreescu M, Berbec N, Tanase AD. Assessment of Impact of Human Leukocyte Antigen-Type and Cytokine-Type Responses on Outcomes after Targeted Therapy Currently Used to Treat Chronic Lymphocytic Leukemia. J Clin Med 2023; 12:jcm12072731. [PMID: 37048814 PMCID: PMC10094967 DOI: 10.3390/jcm12072731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Tumor growth and metastasis are reliant on intricate interactions between the host immune system and various counter-regulatory immune escape mechanisms employed by the tumor. Tumors can resist immune surveillance by modifying the expression of human leukocyte antigen (HLA) molecules, which results in the impaired presentation of tumor-associated antigens, subsequently evading detection and destruction by the immune system. The management of chronic lymphocytic leukemia (CLL) is based on symptom severity and includes various types of targeted therapies, including rituximab, obinutuzumab, ibrutinib, acalabrutinib, zanubrutinib, idelalisib, and venetoclax. These therapies rely on the recognition of specific peptides presented by HLAs on the surface of tumor cells by T cells, leading to an immune response. HLA class I molecules are found in most human cell types and interact with T-cell receptors (TCRs) to activate T cells, which play a vital role in inducing adaptive immune responses. However, tumor cells may evade T-cell attack by downregulating HLA expression, limiting the efficacy of HLA-dependent immunotherapy. The prognosis of CLL largely depends on the presence or absence of genetic abnormalities, such as del(17p), TP53 point mutations, and IGHV somatic hypermutation status. These oral targeted therapies alone or in combination with anti-CD20 antibodies have replaced chemoimmunotherapy as the primary treatment for CLL. In this review, we summarize the current clinical evidence on the impact of HLA- and cytokine-type responses on outcomes after targeted therapies currently used to treat CLL.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Department of Clinical Sciences, Hematology, Faculty of Medicine, Titu Maiorescu University of Bucharest, 040051 Bucharest, Romania
- Department of Hematology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Nicoleta Berbec
- Department of Hematology, Coltea Clinical Hospital, 020125 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Bucharest, 040051 Bucharest, Romania
| | - Alina Daniela Tanase
- Faculty of Medicine, Carol Davila University of Bucharest, 040051 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
4
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
5
|
Tettamanti S, Rotiroti MC, Attianese GMPG, Arcangeli S, Zhang R, Banerjee P, Galletti G, McManus S, Mazza M, Nicolini F, Martinelli G, Ivan C, Rodriguez TV, Barbaglio F, Scarfò L, Ponzoni M, Wierda W, Gandhi V, Keating MJ, Biondi A, Caligaris-Cappio F, Biagi E, Ghia P, Bertilaccio MTS. Lenalidomide enhances CD23.CAR T cell therapy in chronic lymphocytic leukemia. Leuk Lymphoma 2022; 63:1566-1579. [PMID: 35259043 PMCID: PMC9828187 DOI: 10.1080/10428194.2022.2043299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chimeric antigen receptors (CAR)-modified T cells are an emerging therapeutic tool for chronic lymphocytic leukemia (CLL). However, in patients with CLL, well-known T-cell defects and the inhibitory properties of the tumor microenvironment (TME) hinder the efficacy of CAR T cells. We explored a novel approach combining CARs with lenalidomide, an immunomodulatory drug that tempers the immunosuppressive activity of the CLL TME. T cells from patients with CLL were engineered to express a CAR specific for CD23, a promising target antigen. Lenalidomide maintained the in vitro effector functions of CD23.CAR+ T cells effector functions in terms of antigen-specific cytotoxicity, cytokine release and proliferation. Overall, lenalidomide preserved functional CAR T-CLL cell immune synapses. In a Rag2-/-γc-/--based xenograft model of CLL, we demonstrated that, when combined with low-dose lenalidomide, CD23.CAR+ T cells efficiently migrated to leukemic sites and delayed disease progression when compared to CD23.CAR+ T cells given with rhIL-2. These observations underline the therapeutic potential of this novel CAR-based combination strategy in CLL.
Collapse
Affiliation(s)
- Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy
| | - Maria Caterina Rotiroti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy
| | - Greta Maria Paola Giordano Attianese
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy;,GMPGA is presently at Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Silvia Arcangeli
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy
| | - Ronghua Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyanka Banerjee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,P.B. is presently at Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Giovanni Galletti
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,GG is presently at Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sheighlah McManus
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences (GSBS), Houston, Texas, USA
| | - Massimiliano Mazza
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori, Meldola, Italy
| | - Fabio Nicolini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori, Meldola, Italy
| | - Giovanni Martinelli
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori, Meldola, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Federica Barbaglio
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lydia Scarfò
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy,Università Vita-Salute San Raffaele, Milan, Italy,Strategic Research Program on CLL, IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurilio Ponzoni
- Università Vita-Salute San Raffaele, Milan, Italy,Strategic Research Program on CLL, IRCCS San Raffaele Hospital, Milan, Italy;,Pathology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy
| | - Federico Caligaris-Cappio
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy,FCC is presently scientific director of AIRC (Associazione Italiana per la Ricerca sul Cancro), 20123 Milan, Italy
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy;,EB is presently at BMS/Celgene, Boudry, Canton Neuchâtel, Switzerland
| | - Paolo Ghia
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy,Università Vita-Salute San Raffaele, Milan, Italy,Strategic Research Program on CLL, IRCCS San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
6
|
In Vitro and In Vivo Models of CLL–T Cell Interactions: Implications for Drug Testing. Cancers (Basel) 2022; 14:cancers14133087. [PMID: 35804862 PMCID: PMC9264798 DOI: 10.3390/cancers14133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) cells in the peripheral blood and lymphoid microenvironment display substantially different gene expression profiles and proliferative capaci-ty. It has been suggested that CLL–T-cell interactions are key pro-proliferative stimuli in immune niches. We review in vitro and in vivo model systems that mimic CLL-T-cell interactions to trigger CLL proliferation and study therapy resistance. We focus on studies describing the co-culture of leukemic cells with T cells, or supportive cell lines expressing T-cell factors, and simplified models of CLL cells’ stimulation with recombinant factors. In the second part, we summarize mouse models revealing the role of T cells in CLL biology and implications for generating patient-derived xenografts by co-transplanting leukemic cells with T cells. Abstract T cells are key components in environments that support chronic lymphocytic leukemia (CLL), activating CLL-cell proliferation and survival. Here, we review in vitro and in vivo model systems that mimic CLL–T-cell interactions, since these are critical for CLL-cell division and resistance to some types of therapy (such as DNA-damaging drugs or BH3-mimetic venetoclax). We discuss approaches for direct CLL-cell co-culture with autologous T cells, models utilizing supportive cell lines engineered to express T-cell factors (such as CD40L) or stimulating CLL cells with combinations of recombinant factors (CD40L, interleukins IL4 or IL21, INFγ) and additional B-cell receptor (BCR) activation with anti-IgM antibody. We also summarize strategies for CLL co-transplantation with autologous T cells into immunodeficient mice (NOD/SCID, NSG, NOG) to generate patient-derived xenografts (PDX) and the role of T cells in transgenic CLL mouse models based on TCL1 overexpression (Eµ-TCL1). We further discuss how these in vitro and in vivo models could be used to test drugs to uncover the effects of targeted therapies (such as inhibitors of BTK, PI3K, SYK, AKT, MEK, CDKs, BCL2, and proteasome) or chemotherapy (fludarabine and bendamustine) on CLL–T-cell interactions and CLL proliferation.
Collapse
|
7
|
MicroRNA-30b Is Both Necessary and Sufficient for Interleukin-21 Receptor-Mediated Angiogenesis in Experimental Peripheral Arterial Disease. Int J Mol Sci 2021; 23:ijms23010271. [PMID: 35008699 PMCID: PMC8745227 DOI: 10.3390/ijms23010271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
The interleukin-21 receptor (IL-21R) can be upregulated in endothelial cells (EC) from ischemic muscles in mice following hind-limb ischemia (HLI), an experimental peripheral arterial disease (PAD) model, blocking this ligand–receptor pathway-impaired STAT3 activation, angiogenesis, and perfusion recovery. We sought to identify mRNA and microRNA transcripts that were differentially regulated following HLI, based on the ischemic muscle having intact, or reduced, IL-21/IL21R signaling. In this comparison, 200 mRNAs were differentially expressed but only six microRNA (miR)/miR clusters (and among these only miR-30b) were upregulated in EC isolated from ischemic muscle. Next, myoglobin-overexpressing transgenic (MgTG) C57BL/6 mice examined following HLI and IL-21 overexpression displayed greater angiogenesis, better perfusion recovery, and less tissue necrosis, with increased miR-30b expression. In EC cultured under hypoxia serum starvation, knock-down of miR-30b reduced, while overexpression of miR-30b increased IL-21-mediated EC survival and angiogenesis. In Il21r−/− mice following HLI, miR-30b overexpression vs. control improved perfusion recovery, with a reduction of suppressor of cytokine signaling 3, a miR-30b target and negative regulator of STAT3. Together, miR-30b appears both necessary and sufficient for IL21/IL-21R-mediated angiogenesis and may present a new therapeutic option to treat PAD if the IL21R is not available for activation.
Collapse
|
8
|
He B, Gao P, Ding YY, Chen CH, Chen G, Chen C, Kim H, Tasian SK, Hunger SP, Tan K. Diverse noncoding mutations contribute to deregulation of cis-regulatory landscape in pediatric cancers. SCIENCE ADVANCES 2020; 6:eaba3064. [PMID: 32832663 PMCID: PMC7439310 DOI: 10.1126/sciadv.aba3064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/10/2020] [Indexed: 05/14/2023]
Abstract
Interpreting the function of noncoding mutations in cancer genomes remains a major challenge. Here, we developed a computational framework to identify putative causal noncoding mutations of all classes by joint analysis of mutation and gene expression data. We identified thousands of SNVs/small indels and structural variants as putative causal mutations in five major pediatric cancers. We experimentally validated the oncogenic role of CHD4 overexpression via enhancer hijacking in B-ALL. We observed a general exclusivity of coding and noncoding mutations affecting the same genes and pathways. We showed that integrated mutation profiles can help define novel patient subtypes with different clinical outcomes. Our study introduces a general strategy to systematically identify and characterize the full spectrum of noncoding mutations in cancers.
Collapse
Affiliation(s)
- Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gregory Chen
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hannah Kim
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen P. Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author.
| |
Collapse
|
9
|
The Interplay between MicroRNAs and the Components of the Tumor Microenvironment in B-Cell Malignancies. Int J Mol Sci 2020; 21:ijms21093387. [PMID: 32403283 PMCID: PMC7246984 DOI: 10.3390/ijms21093387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
An increased focus is being placed on the tumorigenesis and contexture of tumor microenvironment in hematopoietic and solid tumors. Despite recent clinical revolutions in adoptive T-cell transfer approaches and immune checkpoint blockade, tumor microenvironment is a major obstacle to tumor regression in B-cell malignancies. A transcriptional alteration of coding and non-coding RNAs, such as microRNAs (miRNAs), has been widely demonstrated in the tumor microenvironment of B-cell malignancies. MiRNAs have been associated with different clinical-biological forms of B-cell malignancies and involved in the regulation of B lymphocyte development, maturation, and function, including B-cell activation and malignant transformation. Additionally, tumor-secreted extracellular vesicles regulate recipient cell functions in the tumor microenvironment to facilitate metastasis and progression by delivering miRNA contents to neighboring cells. Herein, we focus on the interplay between miRNAs and tumor microenvironment components in the different B-cell malignancies and its impact on diagnosis, proliferation, and involvement in treatment resistance.
Collapse
|
10
|
Allegra A, Musolino C, Tonacci A, Pioggia G, Casciaro M, Gangemi S. Clinico-Biological Implications of Modified Levels of Cytokines in Chronic Lymphocytic Leukemia: A Possible Therapeutic Role. Cancers (Basel) 2020; 12:cancers12020524. [PMID: 32102441 PMCID: PMC7072434 DOI: 10.3390/cancers12020524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/08/2020] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the main cause of mortality among hematologic diseases in Western nations. B-CLL is correlated with an intense alteration of the immune system. The altered functions of innate immune elements and adaptive immune factors are interconnected in B-CLL and are decisive for its onset, evolution, and therapeutic response. Modifications in the cytokine balance could support the growth of the leukemic clone via a modulation of cellular proliferation and apoptosis, as some cytokines have been reported to be able to affect the life of B-CLL cells in vivo. In this review, we will examine the role played by cytokines in the cellular dynamics of B-CLL patients, interpret the contradictions sometimes present in the literature regarding their action, and evaluate the possibility of manipulating their production in order to intervene in the natural history of the disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Marco Casciaro
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Correspondence:
| |
Collapse
|
11
|
van Attekum MHA, van Bruggen JAC, Slinger E, Lebre MC, Reinen E, Kersting S, Eldering E, Kater AP. CD40 signaling instructs chronic lymphocytic leukemia cells to attract monocytes via the CCR2 axis. Haematologica 2017; 102:2069-2076. [PMID: 28971904 PMCID: PMC5709106 DOI: 10.3324/haematol.2016.157206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/22/2017] [Indexed: 01/23/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells are provided with essential survival and proliferative signals in the lymph node microenvironment. Here, CLL cells engage in various interactions with bystander cells such as T cells and macrophages. Phenotypically distinct types of tumor infiltrating macrophages can either be tumor supportive (M2) or play a role in tumor immune surveillance (M1). Although recent in vitro findings suggest a protective role for macrophages in CLL, the actual balance between these macrophage subsets in CLL lymphoid tissue is still unclear. Furthermore, the mechanism of recruitment of monocytes towards the CLL lymph node is currently unknown. Both questions are addressed in this paper. Immunofluorescence staining of lymph node samples showed macrophage skewing towards an M2 tumor-promoting phenotype. This polarization likely results from CLL-secreted soluble factors, as both patient serum and CLL-conditioned medium recapitulated the skewing effect. Considering that CLL cell cytokine secretion is affected by adjacent T cells, we next studied CLL-mediated monocyte recruitment in the presence or absence of T-cell signals. While unstimulated CLL cells were inactive, T cell-stimulated CLL cells actively recruited monocytes. This correlated with secretion of various chemokines such as C-C-motif-ligand-2,3,4,5,7,24, C-X-C-motif-ligand-5,10, and Interleukin-10. We also identified CD40L as the responsible T-cell factor that mediated recruitment, and showed that recruitment critically depended on the C-C-motif-chemokine-receptor-2 axis. These studies show that the shaping of a tumor supportive microenvironment depends on cytokinome alterations (including C-C-motif-ligand-2) that occur after interactions between CLL, T cells and monocytes. Therefore, targeted inhibition of CD40L or C-C-motif-chemokine-receptor-2 may be relevant therapeutic options.
Collapse
Affiliation(s)
- Martijn H A van Attekum
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - Jaco A C van Bruggen
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - Erik Slinger
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - M Cristina Lebre
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - Emilie Reinen
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - Sabina Kersting
- Department of Hematology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Eric Eldering
- Department of Hematology, Haga Teaching Hospital, The Hague, the Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), the Netherlands
| | - Arnon P Kater
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands .,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), the Netherlands
| |
Collapse
|
12
|
Nunez Lopez YO, Garufi G, Seyhan AA. Altered levels of circulating cytokines and microRNAs in lean and obese individuals with prediabetes and type 2 diabetes. MOLECULAR BIOSYSTEMS 2017; 13:106-121. [PMID: 27869909 DOI: 10.1039/c6mb00596a] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Today obesity and type 2 diabetes (T2D) have both reached epidemic proportions. However, our current understanding of the primary mechanisms leading to these diseases is still limited due to the complex multifactorial nature of the underlying phenomena. We hypothesize that the levels of specific cytokines and miRNAs vary across the diabetes spectrum and unique signatures associated with them may serve as early biomarkers of the disease and provide insights into respective pathogenetic mechanisms. In this study, we measured the circulating levels of cytokines and microRNAs (miRNAs) in lean and obese humans with prediabetes (n = 21), T2D (n = 17), and healthy controls (n = 20) (ORIGINS trial, NCT02226640). Data were analyzed by fitting linear models adjusted for confounding variables (BMI, age, and gender in the diabetes context and age, gender, and diabetes status in the obesity context) and implementing nonparametric randomization-based tests for statistical inference. Group differences and correlations (r > 0.3) between variables with P < 0.05 were considered significant. False discovery rates (FDR) correcting for multiple testing were calculated using the Benjamini-Hochberg correction. We found a number of circulating cytokines and miRNAs deregulated in subjects with obesity, prediabetes, and T2D. Specifically, cytokines IL-6, IL-8, IL-10, IL-12, and SFRP4, as well as miRNAs miR-21, miR-24.1, miR-27a, miR-28-3p, miR-29b, miR-30d, miR-34a, miR-93, miR-126, miR-146a, miR-148, miR-150, miR-155, and miR-223, significantly changed across the diabetes spectrum, and were associated with measures of pancreatic islet β cell function and glycemic control, among others. Notably, SFRP4 was the only studied cytokine that was significantly associated with obesity, prediabetes, and T2D, which underscores the important role of this molecule during disease development and progression. Our data suggest that changes in circulating miRNAs and cytokines may have clinical utility as biomarkers of prediabetes.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA.
| | - Gabriella Garufi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA.
| | - Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA. and Sanford
- Burnham Medical Research Institute, Orlando, FL, USA and Massachusetts Institute of Technology, Chemical Engineering Department Cambridge, MA, USA
| |
Collapse
|
13
|
De Cecco L, Giannoccaro M, Marchesi E, Bossi P, Favales F, Locati LD, Licitra L, Pilotti S, Canevari S. Integrative miRNA-Gene Expression Analysis Enables Refinement of Associated Biology and Prediction of Response to Cetuximab in Head and Neck Squamous Cell Cancer. Genes (Basel) 2017; 8:genes8010035. [PMID: 28098823 PMCID: PMC5295029 DOI: 10.3390/genes8010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/22/2016] [Accepted: 01/07/2017] [Indexed: 12/15/2022] Open
Abstract
This paper documents the process by which we, through gene and miRNA expression profiling of the same samples of head and neck squamous cell carcinomas (HNSCC) and an integrative miRNA-mRNA expression analysis, were able to identify candidate biomarkers of progression-free survival (PFS) in patients treated with cetuximab-based approaches. Through sparse partial least square–discriminant analysis (sPLS-DA) and supervised analysis, 36 miRNAs were identified in two components that clearly separated long- and short-PFS patients. Gene set enrichment analysis identified a significant correlation between the miRNA first-component and EGFR signaling, keratinocyte differentiation, and p53. Another significant correlation was identified between the second component and RAS, NOTCH, immune/inflammatory response, epithelial–mesenchymal transition (EMT), and angiogenesis pathways. Regularized canonical correlation analysis of sPLS-DA miRNA and gene data combined with the MAGIA2 web-tool highlighted 16 miRNAs and 84 genes that were interconnected in a total of 245 interactions. After feature selection by a smoothed t-statistic support vector machine, we identified three miRNAs and five genes in the miRNA-gene network whose expression result was the most relevant in predicting PFS (Area Under the Curve, AUC = 0.992). Overall, using a well-defined clinical setting and up-to-date bioinformatics tools, we are able to give the proof of principle that an integrative miRNA-mRNA expression could greatly contribute to the refinement of the biology behind a predictive model.
Collapse
Affiliation(s)
- Loris De Cecco
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Marco Giannoccaro
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Edoardo Marchesi
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Paolo Bossi
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Federica Favales
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Laura D Locati
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Lisa Licitra
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Silvana Canevari
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| |
Collapse
|
14
|
Barisione G, Fabbi M, Cutrona G, De Cecco L, Zupo S, Leitinger B, Gentile M, Manzoni M, Neri A, Morabito F, Ferrarini M, Ferrini S. Heterogeneous expression of the collagen receptor DDR1 in chronic lymphocytic leukaemia and correlation with progression. Blood Cancer J 2017; 6:e513. [PMID: 28060374 PMCID: PMC5301030 DOI: 10.1038/bcj.2016.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- G Barisione
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - M Fabbi
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - G Cutrona
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - L De Cecco
- Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Zupo
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - B Leitinger
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, UK
| | - M Gentile
- Hematology Unit Azienda Ospedaliera of Cosenza, Cosenza, Italy
| | - M Manzoni
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - A Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - F Morabito
- Hematology Unit Azienda Ospedaliera of Cosenza, Cosenza, Italy.,Biotechnology Research Unit, Aprigliano, ASP of Cosenza, Cosenza, Italy
| | - M Ferrarini
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - S Ferrini
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|