1
|
Sage SE, Leeb T, Jagannathan V, Gerber V. Single-cell profiling of bronchoalveolar cells reveals a Th17 signature in neutrophilic severe equine asthma. Immunology 2024; 171:549-565. [PMID: 38153159 DOI: 10.1111/imm.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Severe equine asthma (SEA) is a complex respiratory condition characterized by chronic airway inflammation. It shares many clinical and pathological features with human neutrophilic asthma, making it a valuable model for studying this condition. However, the immune mechanisms driving SEA have remained elusive. Although SEA has been primarily associated with a Th2 response, there have also been reports of Th1, Th17, or mixed-mediated responses. To uncover the elusive immune mechanisms driving SEA, we performed single-cell mRNA sequencing (scRNA-seq) on cryopreserved bronchoalveolar cells from 11 Warmblood horses, 5 controls and 6 with SEA. We identified six major cell types, including B cells, T cells, monocytes-macrophages, dendritic cells, neutrophils, and mast cells. All cell types exhibited significant heterogeneity, with previously identified and novel cell subtypes. Notably, we observed monocyte-lymphocyte complexes and detected a robust Th17 signature in SEA, with CXCL13 upregulation in intermediate monocytes. Asthmatic horses exhibited expansion of the B-cell population, Th17 polarization of the T-cell populations, and dysregulation of genes associated with T-cell function. Neutrophils demonstrated enhanced migratory capacity and heightened aptitude for neutrophil extracellular trap formation. These findings provide compelling evidence for a predominant Th17 immune response in neutrophilic SEA, driven by dysregulation of monocyte and T-cell genes. The dysregulated genes identified through scRNA-seq have potential as biomarkers and therapeutic targets for SEA and provide insights into human neutrophilic asthma.
Collapse
Affiliation(s)
- Sophie E Sage
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Simões J, Tilley P. Decision Making in Severe Equine Asthma-Diagnosis and Monitoring. Animals (Basel) 2023; 13:3872. [PMID: 38136909 PMCID: PMC10740644 DOI: 10.3390/ani13243872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Decision making consists of gathering quality data in order to correctly assess a situation and determine the best course of action. This process is a fundamental part of medicine and is what enables practitioners to accurately diagnose diseases and select appropriate treatment protocols. Despite severe equine asthma (SEA) being a highly prevalent lower respiratory disease amongst equids, clinicians still struggle with the optimization of routine diagnostic procedures. The use of several ancillary diagnostic tests has been reported for disease identification and monitoring, but many are only suitable for research purposes or lack practicality for everyday use. The aim of this paper is to assist the equine veterinarian in the process of decision making associated with managing SEA-affected patients. This review will focus on disease diagnosis and monitoring, while also presenting a flow-chart which includes the basic data that the clinician must obtain in order to accurately identify severely asthmatic horses in their everyday routine practice. It is important to note that European and American board-certified specialists on equine internal medicine can provide assistance in the diagnosis and treatment plan of SEA-affected horses.
Collapse
Affiliation(s)
- Joana Simões
- Equine Health and Welfare Academic Division, Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4Animals), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Paula Tilley
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4Animals), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| |
Collapse
|
3
|
Riihimäki M, Fegraeus K, Nordlund J, Waern I, Wernersson S, Akula S, Hellman L, Raine A. Single-cell transcriptomics delineates the immune cell landscape in equine lower airways and reveals upregulation of FKBP5 in horses with asthma. Sci Rep 2023; 13:16261. [PMID: 37758813 PMCID: PMC10533524 DOI: 10.1038/s41598-023-43368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Equine asthma (EA) is a heterogenous, complex disease, with a significant negative impact on horse welfare and performance. EA and human asthma share fundamental similarities, making EA a useful model for studying the disease. One relevant sample type for investigating chronic lung inflammation is bronchoalveolar lavage fluid (BALF), which provides a snapshot of the immune cells present in the alveolar space. To investigate the immune cell landscape of the respiratory tract in horses with mild-to-moderate equine asthma (mEA) and healthy controls, single-cell RNA sequencing was conducted on equine BALF cells. We characterized the major immune cell populations present in equine BALF, as well as subtypes thereof. Interestingly, the most significantly upregulated gene discovered in cases of mEA was FKBP5, a chaperone protein involved in regulating the activity of the glucocorticoid receptor.
Collapse
Affiliation(s)
- Miia Riihimäki
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kim Fegraeus
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Sage SE, Nicholson P, Leeb T, Gerber V, Jagannathan V. Long-Read Transcriptome of Equine Bronchoalveolar Cells. Genes (Basel) 2022; 13:1722. [PMID: 36292607 PMCID: PMC9602388 DOI: 10.3390/genes13101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
We used Pacific Biosciences long-read isoform sequencing to generate full-length transcript sequences in equine bronchoalveolar lavage fluid (BALF) cells. Our dataset consisted of 313,563 HiFi reads comprising 805 Mb of polished sequence information. The resulting equine BALF transcriptome consisted of 14,234 full-length transcript isoforms originating from 7017 unique genes. These genes consisted of 6880 previously annotated genes and 137 novel genes. We identified 3428 novel transcripts in addition to 10,806 previously known transcripts. These included transcripts absent from existing genome annotations, transcripts mapping to putative novel (unannotated) genes and fusion transcripts incorporating exons from multiple genes. We provide transcript-level data for equine BALF cells as a resource to the scientific community.
Collapse
Affiliation(s)
- Sophie Elena Sage
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
5
|
The Immune Mechanisms of Severe Equine Asthma-Current Understanding and What Is Missing. Animals (Basel) 2022; 12:ani12060744. [PMID: 35327141 PMCID: PMC8944511 DOI: 10.3390/ani12060744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Severe equine asthma is a chronic respiratory disease of adult horses, occurring when genetically susceptible individuals are exposed to environmental aeroallergens. This results in airway inflammation, mucus accumulation and bronchial constriction. Although several studies aimed at evaluating the genetic and immune pathways associated with the disease, the results reported are inconsistent. Furthermore, the complexity and heterogeneity of this disease bears great similarity to what is described for human asthma. Currently available studies identified two chromosome regions (ECA13 and ECA15) and several genes associated with the disease. The inflammatory response appears to be mediated by T helper cells (Th1, Th2, Th17) and neutrophilic inflammation significantly contributes to the persistence of airway inflammatory status. This review evaluates the reported findings pertaining to the genetical and immunological background of severe equine asthma and reflects on their implications in the pathophysiology of the disease whilst discussing further areas of research interest aiming at advancing treatment and prognosis of affected individuals.
Collapse
|
6
|
Extracellular Vesicles and Asthma-More Than Just a Co-Existence. Int J Mol Sci 2021; 22:ijms22094984. [PMID: 34067156 PMCID: PMC8124625 DOI: 10.3390/ijms22094984] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.
Collapse
|
7
|
An Integrative miRNA-mRNA Expression Analysis Reveals Striking Transcriptomic Similarities between Severe Equine Asthma and Specific Asthma Endotypes in Humans. Genes (Basel) 2020; 11:genes11101143. [PMID: 32998415 PMCID: PMC7600650 DOI: 10.3390/genes11101143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Severe equine asthma is an incurable obstructive respiratory condition affecting 10–15% of horses in temperate climates. Upon exposure to airborne antigens from hay feeding, affected horses show neutrophilic airway inflammation and bronchoconstriction, leading to increased respiratory effort. The resulting implications range from welfare concerns to economic impacts on equestrian sports and horse breeding. Immunological and pathophysiological characteristics of severe equine asthma show important parallels with allergic and severe neutrophilic human asthma. Our study aimed at investigating regulatory networks underlying the pathophysiology of the disease by profiling miRNA and mRNA expression in lung tissue samples from asthmatic horses compared with healthy controls. We sequenced small RNAs and mRNAs from lungs of seven asthmatic horses in exacerbation, five affected horses in remission, and eight healthy control horses. Our comprehensive differential expression analyses, combined with the miRNA–mRNA negative correlation approach, revealed a strong similarity on the transcriptomic level between severe equine asthma and severe neutrophilic asthma in humans, potentially through affecting Th17 cell differentiation. This study also showed that several dysregulated miRNAs and mRNAs are involved in airway remodeling. These results present a starting point for a better transcriptomic understanding of severe equine asthma and its similarities to asthma in humans.
Collapse
|
8
|
Abstract
The sequencing and assembly of a reference genome for the horse has been revolutionary for investigation of horse health and performance. Next-generation sequencing (NGS) methods represent a second revolution in equine genomics. Researchers can align and compare DNA and RNA sequencing data to the reference genome to explore variation that may contribute or be attributed to disease. NGS has also facilitated the translation of research discovery to clinically relevant applications. This article discusses the history and development of NGS, details some of the available sequencing platforms, and describes currently available applications in the context of both discovery and clinical settings.
Collapse
|
9
|
Couetil L, Cardwell JM, Leguillette R, Mazan M, Richard E, Bienzle D, Bullone M, Gerber V, Ivester K, Lavoie JP, Martin J, Moran G, Niedźwiedź A, Pusterla N, Swiderski C. Equine Asthma: Current Understanding and Future Directions. Front Vet Sci 2020; 7:450. [PMID: 32903600 PMCID: PMC7438831 DOI: 10.3389/fvets.2020.00450] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
The 2019 Havemeyer Workshop brought together researchers and clinicians to discuss the latest information on Equine Asthma and provide future research directions. Current clinical and molecular asthma phenotypes and endotypes in humans were discussed and compared to asthma phenotypes in horses. The role of infectious and non-infectious causes of equine asthma, genetic factors and proposed disease pathophysiology were reviewed. Diagnostic limitations were evident by the limited number of tests and biomarkers available to field practitioners. The participants emphasized the need for more accessible, standardized diagnostics that would help identify specific phenotypes and endotypes in order to create more targeted treatments or management strategies. One important outcome of the workshop was the creation of the Equine Asthma Group that will facilitate communication between veterinary practice and research communities through published and easily accessible guidelines and foster research collaboration.
Collapse
Affiliation(s)
- Laurent Couetil
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Jacqueline M Cardwell
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Renaud Leguillette
- College of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Melissa Mazan
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Eric Richard
- LABÉO (Frank Duncombe), Normandie Université, UniCaen, Caen, France
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Michela Bullone
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Vinzenz Gerber
- Vetsuisse Faculty, Institut Suisse de Médecine Équine (ISME), University of Bern and Agroscope, Bern, Switzerland
| | - Kathleen Ivester
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, University of Montreal, Montreal, QC, Canada
| | - James Martin
- Meakins Christie Laboratories, McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Gabriel Moran
- Department of Pharmacology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Artur Niedźwiedź
- Department of Internal Diseases With Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cyprianna Swiderski
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
10
|
Abstract
Genetic factors influence the development of guttural pouch tympany, recurrent laryngeal neuropathy, severe equine asthma, exercise-induced pulmonary hemorrhage, and possibly also some malformations and infectious diseases of the respiratory tract. The current data suggest that most of these diseases are complex, resulting from the interaction between several genes and environmental factors. To date, no specific genes or causative mutations have been identified that would allow the development of practical genetic tests. In the future, genetic profiling panels, based on multiple genetic markers and environmental risk factors, may allow identification of individuals with an increased genetic risk.
Collapse
Affiliation(s)
- Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine (ISME), University of Bern, and Agroscope, Laenggassstrasse 124, Berne 3012, Switzerland.
| |
Collapse
|
11
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
12
|
Saini S, Singha H, Siwach P, Tripathi BN. Recombinant horse interleukin-4 and interleukin-10 induced a mixed inflammatory cytokine response in horse peripheral blood mononuclear cells. Vet World 2019; 12:496-503. [PMID: 31190704 PMCID: PMC6515821 DOI: 10.14202/vetworld.2019.496-503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background and Aim: Interleukin (IL)-4 and IL-10 activate plethora of immune cells and induce the humoral immune response. However, recombinant version of horse IL-4 and IL-10 has not been investigated to understand their immunomodulating activities. This study aimed to produce recombinant horse mature IL-4 and IL-10 in Escherichia coli. Immune-modulating activities of recombinant horse IL-4 and IL-10 were investigated in peripheral blood mononuclear cells (PBMCs). Materials and Methods: Equine PBMCs were stimulated with recombinant IL-4 and IL-10. A proliferation of PBMCs was measured by XTT assay and cytokines induction was measured by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Results: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis displayed a molecular weight of 15 kDa for IL-4 and 19 kDa for IL-10. Recombinant IL-4 and IL-10 significantly induced cell proliferation at 250 ng/ml. The results demonstrated that IL-4 enhanced expression of interferon-gamma (IFN-γ), IL-6, tumor necrosis factor-alpha (TNF-α), and IL-10, while recombinant horse IL-10 induced expression of IL-6, IFN-γ, and TNF-α. Conclusion: The present study demonstrated that biologically active horse IL-4 and IL-10 could be produced in E. coli.
Collapse
Affiliation(s)
- Sheetal Saini
- ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | | | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - B N Tripathi
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
13
|
Davis KU, Sheats MK. Bronchoalveolar Lavage Cytology Characteristics and Seasonal Changes in a Herd of Pastured Teaching Horses. Front Vet Sci 2019; 6:74. [PMID: 30923711 PMCID: PMC6426765 DOI: 10.3389/fvets.2019.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023] Open
Abstract
Equine asthma syndrome (EAS) is a common problem that affects horses of any age. Severe EAS is reported to affect 10-20% of adult horses in the northern hemisphere, while mild/moderate EAS is reported to affect 60-100% of adult horses, depending on the population and geographic region. For both severe and mild/moderate EAS, the presence of lower airway inflammation is attributed to airborne "triggers" such as dust, mold, and bacterial components that horses encounter in hay and stable-environments; and treatment recommendations for horses with EAS often include full-time pasture turnout. The caveat to this recommendation is horses with summer-pasture associated EAS (SP-EAS), who experience allergic lower airway inflammation when exposed to summer pasture. The prevalence of EAS in horses on pasture that do not have SP-EAS has not been reported. The purpose of this study was to use bronchoalveolar lavage (BAL) cytology to determine the prevalence of EAS in a herd of pastured, adult research horses with no history of respiratory disease. The horses were members of a teaching animal herd housed on pasture in the southeastern United States and fed round-bale Bermuda-grass hay. BAL fluid (BALF) cytology was analyzed in both summer (May-August 2017) and winter (November 2017-February 2018). Similar to previous reports, the prevalence of severe EAS in our study population was 10% in summer and 4.3% in winter. The prevalence of mild/moderate EAS was 60% in summer and 87% in winter. The high prevalence of mild/moderate EAS in this population was unexpected, given the 24-h, year-round pasture environment and the lack of history of respiratory disease. Additionally, 61.1% of horses with both summer and winter data had a different BALF cytology profile between the two seasons. To the authors' knowledge, this is the first study to use BAL cytology to diagnose, and monitor changes in, EAS phenotype in pastured adult horses. These results help to inform discussions regarding prevalence of EAS in pastured, adult horses in the southeastern region of North America.
Collapse
Affiliation(s)
- Kaori Uchiumi Davis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Mary Katherine Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
Gene set enrichment analysis of the bronchial epithelium implicates contribution of cell cycle and tissue repair processes in equine asthma. Sci Rep 2018; 8:16408. [PMID: 30401798 PMCID: PMC6219531 DOI: 10.1038/s41598-018-34636-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Severe equine asthma is a chronic inflammatory condition of the lower airways similar to adult-onset asthma in humans. Exacerbations are characterized by bronchial and bronchiolar neutrophilic inflammation, mucus hypersecretion and airway constriction. In this study we analyzed the gene expression response of the bronchial epithelium within groups of asthmatic and non-asthmatic animals following exposure to a dusty hay challenge. After challenge we identified 2341 and 120 differentially expressed genes in asthmatic and non-asthmatic horses, respectively. Gene set enrichment analysis of changes in gene expression after challenge identified 587 and 171 significantly enriched gene sets in asthmatic and non-asthmatic horses, respectively. Gene sets in asthmatic animals pertained, but were not limited, to cell cycle, neutrophil migration and chemotaxis, wound healing, hemostasis, coagulation, regulation of body fluid levels, and the hedgehog pathway. Furthermore, transcription factor target enrichment analysis in the asthmatic group showed that transcription factor motifs with the highest enrichment scores for up-regulated genes belonged to the E2F transcription factor family. It is postulated that engagement of hedgehog and E2F pathways in asthmatic horses promotes dysregulated cell proliferation and abnormal epithelial repair. These fundamental lesions may prevent re-establishment of homeostasis and perpetuate inflammation.
Collapse
|
15
|
Bond S, Léguillette R, Richard EA, Couetil L, Lavoie JP, Martin JG, Pirie RS. Equine asthma: Integrative biologic relevance of a recently proposed nomenclature. J Vet Intern Med 2018; 32:2088-2098. [PMID: 30294851 PMCID: PMC6271326 DOI: 10.1111/jvim.15302] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/11/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
The term “equine asthma” has been proposed as a unifying descriptor of inflammatory airway disease (IAD), recurrent airway obstruction (RAO), and summer pasture‐associated obstructive airway disease. Whilst the term will increase comprehensibility for both the lay and scientific communities, its biologic relevance must be compared and contrasted to asthma in human medicine, recognizing the limited availability of peer‐reviewed equine‐derived data, which are largely restricted to clinical signs, measures of airway obstruction and inflammation and response to therapy. Such limitations constrain meaningful comparisons with human asthma phenotypes. Suggested minimum inclusion criteria supporting the term asthma, as well as similarities and differences between IAD, RAO, and multiple human asthma phenotypes are discussed. Furthermore, differences between phenotype and severity are described, and typical features for equine asthma subcategories are proposed. Based on shared features, we conclude that mild/moderate (IAD) and severe (RAO) equine asthma are biologically appropriate models for both allergic and non‐allergic human asthma, with RAO (severe equine asthma) also being an appropriate model for late‐onset asthma. With the development of new biologic treatments in humans and the application of more targeted therapeutic approaches in the horse, it would appear appropriate to further investigate the allergic (Th‐2) and non‐allergic (non‐Th‐2) phenotypes of equine asthma. Further research is required to more fully determine the potential clinical utility of phenotype classification.
Collapse
Affiliation(s)
- Stephanie Bond
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta
| | | | - Eric A Richard
- Equine Immunity & Inflammation, LABÉO Frank Duncombe, Caen, France.,BIOTARGEN, Normandie Univ, UniCaen, Biotargen, France
| | - Laurent Couetil
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec
| | - James G Martin
- Meakins Christie Laboratories, McGill University Health Center Research Institute, McGill University, Montreal, Quebec
| | - R Scott Pirie
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, Scotland, United Kingdom
| |
Collapse
|
16
|
Mason VC, Schaefer RJ, McCue ME, Leeb T, Gerber V. eQTL discovery and their association with severe equine asthma in European Warmblood horses. BMC Genomics 2018; 19:581. [PMID: 30071827 PMCID: PMC6090848 DOI: 10.1186/s12864-018-4938-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Severe equine asthma, also known as recurrent airway obstruction (RAO), is a debilitating, performance limiting, obstructive respiratory condition in horses that is phenotypically similar to human asthma. Past genome wide association studies (GWAS) have not discovered coding variants associated with RAO, leading to the hypothesis that causative variant(s) underlying the signals are likely non-coding, regulatory variant(s). Regions of the genome containing variants that influence the number of expressed RNA molecules are expression quantitative trait loci (eQTLs). Variation associated with RAO that also regulates a gene's expression in a disease relevant tissue could help identify candidate genes that influence RAO if that gene's expression is also associated with RAO disease status. RESULTS We searched for eQTLs by analyzing peripheral blood mononuclear cells (PBMCs) from two half-sib families and one unrelated cohort of 82 European Warmblood horses that were previously treated in vitro with: no stimulation (MCK), lipopolysaccharides (LPS), recombinant cyathostomin antigen (RCA), and hay-dust extract (HDE). We identified high confidence eQTLs that did not violate linear modeling assumptions and were not significant due to single outlier individuals. We identified a mean of 4347 high confidence eQTLs in four treatments of PBMCs, and discovered two trans regulatory hotspots regulating genes involved in related biological pathways. We corroborated previous RAO associated single nucleotide polymorphisms (SNPs), and increased the resolution of past GWAS by analyzing 1,056,195 SNPs in 361 individuals. We identified four RAO-associated SNPs that only regulate gene expression of dexamethasone-induced protein (DEXI), however we found no significant association between DEXI gene expression and presence of RAO. CONCLUSIONS Thousands of genetic variants regulate gene expression in PBMCs of European Warmblood horses in cis and trans. Most high confidence eSNPs are significantly enriched near the transcription start sites of their target genes. Two trans regulatory hotspots on chromosome 11 and 13 regulate many genes involved in transmembrane cell signaling and neurological development respectively when PBMCs are treated with HDE. None of the top fifteen RAO associated SNPs strongly influence disease status through gene expression regulation.
Collapse
Affiliation(s)
- Victor C. Mason
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Robert J. Schaefer
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Saint Paul, MN 55108 USA
| | - Molly E. McCue
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Saint Paul, MN 55108 USA
| | - Tosso Leeb
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland
| |
Collapse
|
17
|
Pacholewska A, Kraft MF, Gerber V, Jagannathan V. Differential Expression of Serum MicroRNAs Supports CD4⁺ T Cell Differentiation into Th2/Th17 Cells in Severe Equine Asthma. Genes (Basel) 2017; 8:E383. [PMID: 29231896 PMCID: PMC5748701 DOI: 10.3390/genes8120383] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) regulate post-transcriptional gene expression and may be exported from cells via exosomes or in partnership with RNA-binding proteins. MiRNAs in body fluids can act in a hormone-like manner and play important roles in disease initiation and progression. Hence, miRNAs are promising candidates as biomarkers. To identify serum miRNA biomarkers in the equine model of asthma we investigated small RNA derived from the serum of 34 control and 37 asthmatic horses. These samples were used for next generation sequencing, novel miRNA identification and differential miRNA expression analysis. We identified 11 significantly differentially expressed miRNAs between case and control horses: eca-miR-128, eca-miR-744, eca-miR-197, eca-miR-103, eca-miR-107a, eca-miR-30d, eca-miR-140-3p, eca-miR-7, eca-miR-361-3p, eca-miR-148b-3p and eca-miR-215. Pathway enrichment using experimentally validated target genes of the human homologous miRNAs showed a significant enrichment in the regulation of epithelial-to-mesenchymal transition (key player in airway remodeling in asthma) and the phosphatidylinositol (3,4,5)-triphosphate (PIP3) signaling pathway (modulator of CD4⁺ T cell maturation and function). Downregulated miR-128 and miR-744 supports a Th2/Th17 type immune response in severe equine asthma.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Matthias F Kraft
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
| | - Vidhya Jagannathan
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| |
Collapse
|
18
|
Aun MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Giavina-Bianchi P. Animal models of asthma: utility and limitations. J Asthma Allergy 2017; 10:293-301. [PMID: 29158683 PMCID: PMC5683778 DOI: 10.2147/jaa.s121092] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clinical studies in asthma are not able to clear up all aspects of disease pathophysiology. Animal models have been developed to better understand these mechanisms and to evaluate both safety and efficacy of therapies before starting clinical trials. Several species of animals have been used in experimental models of asthma, such as Drosophila, rats, guinea pigs, cats, dogs, pigs, primates and equines. However, the most common species studied in the last two decades is mice, particularly BALB/c. Animal models of asthma try to mimic the pathophysiology of human disease. They classically include two phases: sensitization and challenge. Sensitization is traditionally performed by intraperitoneal and subcutaneous routes, but intranasal instillation of allergens has been increasingly used because human asthma is induced by inhalation of allergens. Challenges with allergens are performed through aerosol, intranasal or intratracheal instillation. However, few studies have compared different routes of sensitization and challenge. The causative allergen is another important issue in developing a good animal model. Despite being more traditional and leading to intense inflammation, ovalbumin has been replaced by aeroallergens, such as house dust mites, to use the allergens that cause human disease. Finally, researchers should define outcomes to be evaluated, such as serum-specific antibodies, airway hyperresponsiveness, inflammation and remodeling. The present review analyzes the animal models of asthma, assessing differences between species, allergens and routes of allergen administration.
Collapse
Affiliation(s)
- Marcelo Vivolo Aun
- Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.,Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael Bonamichi-Santos
- Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.,Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Jorge Kalil
- Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Pedro Giavina-Bianchi
- Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
19
|
Tessier L, Côté O, Clark ME, Viel L, Diaz-Méndez A, Anders S, Bienzle D. Impaired response of the bronchial epithelium to inflammation characterizes severe equine asthma. BMC Genomics 2017; 18:708. [PMID: 28886691 PMCID: PMC5591550 DOI: 10.1186/s12864-017-4107-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Severe equine asthma is a naturally occurring lung inflammatory disease of mature animals characterized by neutrophilic inflammation, bronchoconstriction, mucus hypersecretion and airway remodeling. Exacerbations are triggered by inhalation of dust and microbial components. Affected animals eventually are unable of aerobic performance. In this study transcriptomic differences between asthmatic and non-asthmatic animals in the response of the bronchial epithelium to an inhaled challenge were determined. RESULTS Paired endobronchial biopsies were obtained pre- and post-challenge from asthmatic and non-asthmatic animals. The transcriptome, determined by RNA-seq and analyzed with edgeR, contained 111 genes differentially expressed (DE) after challenge between horses with and without asthma, and 81 of these were upregulated. Genes involved in neutrophil migration and activation were in central location in interaction networks, and related gene ontology terms were significantly overrepresented. Relative abundance of specific gene products as determined by immunohistochemistry was correlated with differential gene expression. Gene sets involved in neutrophil chemotaxis, immune and inflammatory response, secretion, blood coagulation and apoptosis were overrepresented among up-regulated genes, while the rhythmic process gene set was overrepresented among down-regulated genes. MMP1, IL8, TLR4 and MMP9 appeared to be the most important proteins in connecting the STRING protein network of DE genes. CONCLUSIONS Several differentially expressed genes and networks in horses with asthma also contribute to human asthma, highlighting similarities between severe human adult and equine asthma. Neutrophil activation by the bronchial epithelium is suggested as the trigger of the inflammatory cascade in equine asthma, followed by epithelial injury and impaired repair and differentiation. Circadian rhythm dysregulation and the sonic Hedgehog pathway were identified as potential novel contributory factors in equine asthma.
Collapse
Affiliation(s)
- Laurence Tessier
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Olivier Côté
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Present address: BioAssay Works LLC, 10075 Tyler Place, Suite 18, Ijamsville, MD, 21754, USA
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Laurent Viel
- Department of Clinical Studies, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Andrés Diaz-Méndez
- Department of Clinical Studies, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Present address: Centre for Equine Infectious Disease, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Simon Anders
- Institute for Molecular Medicine, Finland (FIMM), University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
20
|
Pacholewska A, Marti E, Leeb T, Jagannathan V, Gerber V. LPS-induced modules of co-expressed genes in equine peripheral blood mononuclear cells. BMC Genomics 2017; 18:34. [PMID: 28056766 PMCID: PMC5217269 DOI: 10.1186/s12864-016-3390-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (endotoxin, LPS) is a strong inducer of the innate immune response. It is widespread in our environment, e.g. in house dust and contributes to asthma. Compared to humans, horses are even more sensitive to LPS. However, data on LPS effects on the equine transcriptome are very limited. Using RNA-seq we analysed LPS-induced differences in the gene expression in equine peripheral blood mononuclear cells at the gene and gene-network level in two half-sib families and one group of unrelated horses. RESULTS 24 h-LPS challenge of equine immune cells resulted in substantial changes in the transcriptomic profile (1,265 differentially expressed genes) showing partial overlap with human data. One of the half-sib families showed a specific response different from the other two groups of horses. We also identified co-expressed gene modules that clearly differentiated 24 h-LPS- from non-stimulated samples. These modules consisted of 934 highly interconnected genes and included genes involved in the immune response (e.g. IL6, CCL22, CXCL6, CXCL2), however, none of the top ten hub genes of the modules have been annotated as responsive to LPS in gene ontology. CONCLUSIONS Using weighted gene co-expression network analysis we identified ten co-expressed gene modules significantly regulated by in vitro stimulation with LPS. Apart from 47 genes (5%) all other genes highly interconnected within the most up- and down-regulated modules were also significantly differentially expressed (FDR < 0.05). The LPS-regulated module hub genes have not yet been described as having a role in the immune response to LPS (e.g. VAT1 and TTC25).
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland. .,Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland.
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Tosso Leeb
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland
| | - Vidhya Jagannathan
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland
| |
Collapse
|
21
|
Niedzwiedz A, Borowicz H, Januszewska L, Markiewicz-Gorka I, Jaworski Z. Serum 8-hydroxy-2-deoxyguanosine as a marker of DNA oxidative damage in horses with recurrent airway obstruction. Acta Vet Scand 2016; 58:38. [PMID: 27267076 PMCID: PMC4895991 DOI: 10.1186/s13028-016-0215-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background It has been reported that equine recurrent airway obstruction (RAO) is a state of oxidative stress. Oxidant-antioxidant imbalance is known to increase the conversion of deoxyguanosine to 8-hydroxy-2-deoxyguanosine (8-OHdG) in DNA. 8-OHdG can easily be measured using ELISA tests in serum or urine samples. In this study, we analysed serum 8-OHdG levels in horses with recurrent airway obstruction and in healthy controls. Results The study material consisted of seven healthy horses and seven horses with symptomatic RAO. All horses were exposed to moldy hay and straw for 48 h to induce clinical exacerbation of RAO. The serum 8-OHdG levels were determined using the ELISA Highly Sensitive 8-OHdG kit. The difference between the levels of 8-OHdG in healthy and RAO-affected horses was significant. The median level of 8-OHdG was 0.044 ng/ml in the healthy controls versus 0.498 ng/ml in RAO horses (P = 0.0021). Conclusions The results of the study strongly suggest that DNA damage coexists in the course of equine RAO. We therefore propose that future research should aim at the development of new drugs that target pro-inflammatory molecules, since DNA damage appears to be the result of chronic inflammation.
Collapse
|