1
|
Young R, Lewandowska D, Long E, Wooding FBP, De Blasio MJ, Davies KL, Camm EJ, Sangild PT, Fowden AL, Forhead AJ. Hypothyroidism impairs development of the gastrointestinal tract in the ovine fetus. Front Physiol 2023; 14:1124938. [PMID: 36935746 PMCID: PMC10020222 DOI: 10.3389/fphys.2023.1124938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Growth and maturation of the fetal gastrointestinal tract near term prepares the offspring for the onset of enteral nutrition at birth. Structural and functional changes are regulated by the prepartum rise in cortisol in the fetal circulation, although the role of the coincident rise in plasma tri-iodothyronine (T3) is unknown. This study examined the effect of hypothyroidism on the structural development of the gastrointestinal tract and the activity of brush-border digestive enzymes in the ovine fetus near term. In intact fetuses studied between 100 and 144 days of gestation (dGA; term ∼145 days), plasma concentrations of T3, cortisol and gastrin; the mucosal thickness in the abomasum, duodenum, jejunum and ileum; and intestinal villus height and crypt depth increased with gestational age. Removal of the fetal thyroid gland at 105-110 dGA suppressed plasma thyroxine (T4) and T3 concentrations to the limit of assay detection in fetuses studied at 130 and 144 dGA, and decreased plasma cortisol and gastrin near term, compared to age-matched intact fetuses. Hypothyroidism was associated with reductions in the relative weights of the stomach compartments and small intestines, the outer perimeter of the intestines, the thickness of the gastric and intestinal mucosa, villus height and width, and crypt depth. The thickness of the mucosal epithelial cell layer and muscularis propria in the small intestines were not affected by gestational age or treatment. Activities of the brush border enzymes varied with gestational age in a manner that depended on the enzyme and region of the small intestines studied. In the ileum, maltase and dipeptidyl peptidase IV (DPPIV) activities were lower, and aminopeptidase N (ApN) were higher, in the hypothyroid compared to intact fetuses near term. These findings highlight the importance of thyroid hormones in the structural and functional development of the gastrointestinal tract near term, and indicate how hypothyroidism in utero may impair the transition to enteral nutrition and increase the risk of gastrointestinal disorders in the neonate.
Collapse
Affiliation(s)
- Rhian Young
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dominika Lewandowska
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Emily Long
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - F. B. Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Miles J. De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L. Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Per T. Sangild
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
4
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
7
|
De Blasio MJ, Boije M, Kempster SL, Smith GCS, Charnock-Jones DS, Denyer A, Hughes A, Wooding FBP, Blache D, Fowden AL, Forhead AJ. Leptin Matures Aspects of Lung Structure and Function in the Ovine Fetus. Endocrinology 2016; 157:395-404. [PMID: 26479186 PMCID: PMC4701894 DOI: 10.1210/en.2015-1729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In human and ovine fetuses, glucocorticoids stimulate leptin secretion, although the extent to which leptin mediates the maturational effects of glucocorticoids on pulmonary development is unclear. This study investigated the effects of leptin administration on indices of lung structure and function before birth. Chronically catheterized singleton sheep fetuses were infused iv for 5 days with either saline or recombinant ovine leptin (0.5 mg/kg · d leptin (LEP), 0.5 LEP or 1.0 mg/kg · d, 1.0 LEP) from 125 days of gestation (term ∼145 d). Over the infusion, leptin administration increased plasma leptin, but not cortisol, concentrations. On the fifth day of infusion, 0.5 LEP reduced alveolar wall thickness and increased the volume at closing pressure of the pressure-volume deflation curve, interalveolar septal elastin content, secondary septal crest density, and the mRNA abundance of the leptin receptor (Ob-R) and surfactant protein (SP) B. Neither treatment influenced static lung compliance, maximal lung volume at 40 cmH2O, lung compartment volumes, alveolar surface area, pulmonary glycogen, protein content of the long form signaling Ob-Rb or phosphorylated signal transducers and activators of transcription-3, or mRNA levels of SP-A, C, or D, elastin, vascular endothelial growth factor-A, the vascular endothelial growth factor receptor 2, angiotensin-converting enzyme, peroxisome proliferator-activated receptor γ, or parathyroid hormone-related peptide. Leptin administration in the ovine fetus during late gestation promotes aspects of lung maturation, including up-regulation of SP-B.
Collapse
Affiliation(s)
- Miles J De Blasio
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Maria Boije
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Sarah L Kempster
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gordon C S Smith
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - D Stephen Charnock-Jones
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alice Denyer
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alexandra Hughes
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - F B Peter Wooding
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Dominique Blache
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|