1
|
Adachi Y, Miyake K, Ohira K, Satoh S, Masuhiro K, Edahiro R, Shirai Y, Naito M, Naito Y, Shiroyama T, Koyama S, Hirata H, Iwahori K, Nagatomo I, Takeda Y, Kumanogoh A. Enhancing the efficacy of near-infrared photoimmunotherapy through intratumoural delivery of CD44-targeting antibody-photoabsorber conjugates. EBioMedicine 2025; 112:105566. [PMID: 39848206 PMCID: PMC11795636 DOI: 10.1016/j.ebiom.2025.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Photoimmunotherapy (PIT) is a potent modality for cancer treatment. The conventional PIT regimen involves the systemic delivery of an antibody-photoabsorber conjugate, followed by a 24-h waiting period to ensure adequate localisation on the target cells. Subsequent exposure to near-infrared (NIR) light selectively damages the target cells. We aimed to improve the efficacy of PIT in vivo by evaluating the effects of the different routes of conjugate administration on treatment outcomes. METHODS Subcutaneous Lewis lung carcinoma tumours were established in mice, targeting cluster of differentiation (CD)44 with an anti-CD44 antibody conjugated to IRDye700DX (IR700). The conjugate was administered via the intravenous or intratumoural route followed by the assessment of antibody binding and therapeutic effects of PIT. FINDINGS Compared to intravenous administration, intratumoural delivery of the CD44-IR700 conjugate significantly increased the number of cells binding to the conjugate by >five-fold. This method, combined with NIR light irradiation, halved tumour growth when compared to intravenous delivery. Reducing the interval between intratumoural injection and NIR light exposure to 30 min did not diminish efficacy, thereby demonstrating the feasibility of a 1-h procedure. INTERPRETATION Intratumoural administration of the antibody-photoabsorber conjugate enhanced the efficacy of PIT in vivo. A simplified, 1-h procedure involving conjugate tumour injection followed by irradiation emerged as a potent cancer treatment strategy. FUNDING This study was supported by the Japan Society for the Promotion of Science, the Japan Agency for Medical Research and Development, Japan Science and Technology Agency, and the Osaka Medical Research Foundation for Intractable Diseases.
Collapse
Affiliation(s)
- Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Kika Ohira
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Shingo Satoh
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan; Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Mizukoshi T, Tateishi K, Tokusanai M, Yoshinaka Y, Yamamoto A, Yamamoto N, Yamamoto N. Targeted Elimination of Influenza Virus and Infected Cells with Near-Infrared Antiviral Photoimmunotherapy (NIR-AVPIT). Pharmaceutics 2025; 17:173. [PMID: 40006540 PMCID: PMC11859895 DOI: 10.3390/pharmaceutics17020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Seasonal influenza causes significant morbidity and mortality each year. Since viruses can easily acquire drug-resistant mutations, it is necessary to develop new antiviral strategies with different targets. Near-infrared photoimmunotherapy (NIR-PIT) is a type of anti-cancer therapy that has recently attracted considerable attention, with favorable outcomes reported for several cancers. In this study, we investigated whether this approach could be used as a novel anti-influenza therapy to destroy influenza virus and infected cells. Methods: To evaluate the efficacy of near-infrared antiviral photoimmunotherapy (NIR-AVPIT), we prepared an anti-hemagglutinin (HA) monoclonal antibody without neutralizing activity against influenza A virus (FluV) labeled with IR-700 and reacted it with FluV and infected cells, as well as HA-expressing HEK293 cells. Results: NIR-AVPIT strongly inactivated FluV virions, suppressed cytopathic effects, and achieved more than a 4-log reduction in viral RNA amplification. Treatment of FluV-infected cells with the antibody-IR700 complex and NIR in the early stages of infection significantly inhibited viral propagation, and double treatment with time apart exerted a greater inhibitory effect. NIR-AVPIT rapidly induced morphological changes in HA-expressing HEK293 cells and inhibited the proliferation of these cells. Conclusions: These results suggest that NIR-AVPIT targeting HA antigens could inactivate FluV and eliminate infected cells in vitro. This strategy is a promising approach to treat various viral infections, including influenza.
Collapse
Affiliation(s)
- Terumi Mizukoshi
- Medical Corporation Koujunkai, Kawasaki 211-0063, Japan; (T.M.); (A.Y.)
| | - Koichiro Tateishi
- Department of Microbiology, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (M.T.); (Y.Y.)
| | - Mizuki Tokusanai
- Department of Microbiology, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (M.T.); (Y.Y.)
| | - Yoshiyuki Yoshinaka
- Department of Microbiology, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (M.T.); (Y.Y.)
| | - Aisaku Yamamoto
- Medical Corporation Koujunkai, Kawasaki 211-0063, Japan; (T.M.); (A.Y.)
| | - Naoki Yamamoto
- Medical Corporation Koujunkai, Kawasaki 211-0063, Japan; (T.M.); (A.Y.)
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Norio Yamamoto
- Department of Microbiology, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (M.T.); (Y.Y.)
| |
Collapse
|
3
|
Mungra N, Nsole Biteghe FA, Huysamen AM, Hardcastle NS, Bunjun R, Naran K, Lang D, Richter W, Hunter R, Barth S. An Investigation into the In Vitro Targeted Killing of CD44-Expressing Triple-Negative Breast Cancer Cells Using Recombinant Photoimmunotherapeutics Compared to Auristatin-F-Based Antibody-Drug Conjugates. Mol Pharm 2024; 21:4098-4115. [PMID: 39047292 DOI: 10.1021/acs.molpharmaceut.4c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest form of breast cancer with limited treatment options. The persistence of highly tumorigenic CD44-expressing subpopulation referred to as cancer stem cells (CSCs), endowed with the self-renewal capacity, has been associated with therapeutic resistance, hence clinical relapses. To mitigate these undesired events, targeted immunotherapies using antibody-photoconjugate (APC) or antibody-drug conjugate (ADC), were developed to specifically release cytotoxic payloads within targeted cells overexpressing cognate antigen receptors. Therefore, an αCD44(scFv)-SNAP-tag antibody fusion protein was engineered through genetic fusion of a single-chain antibody fragment (scFv) to a SNAPf-tag fusion protein, capable of self-conjugating with benzylguanine-modified light-sensitive near-infrared (NIR) phthalocyanine dye IRDye700DX (BG-IR700) or the small molecule toxin auristatin-F (BG-AURIF). Binding of the αCD44(scFv)-SNAPf-IR700 photoimmunoconjugate to antigen-positive cells was demonstrated by confocal microscopy and flow cytometry. By switching to NIR irradiation, CD44-expressing TNBC was selectively killed through induced phototoxic activities. Likewise, the αCD44(scFv)-SNAPf-AURIF immunoconjugate was able to selectively accumulate within targeted cells and significantly reduced cell viability through antimitotic activities at nano- to micromolar drug concentrations. This study provides an in vitro proof-of-concept for a future strategy to selectively destroy light-accessible superficial CD44-expressing TNBC tumors and their metastatic lesions which are inaccessible to therapeutic light.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Centre for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington 98101, United States
| | - Fleury A Nsole Biteghe
- College of Science, Department of Biotechnology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Allan M Huysamen
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Natasha S Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | | | - Roger Hunter
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
4
|
Inagaki FF, Kano M, Furusawa A, Kato T, Okada R, Fukushima H, Takao S, Okuyama S, Choyke PL, Kobayashi H. Near-infrared photoimmunotherapy targeting PD-L1: Improved efficacy by preconditioning the tumor microenvironment. Cancer Sci 2024; 115:2396-2409. [PMID: 38671582 PMCID: PMC11247602 DOI: 10.1111/cas.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new type of cancer therapy that employs antibody-IRDye700DX conjugates (AbPCs) and near-infrared (NIR) light at a wavelength of 689 nm, the excitation wavelength of IR700. Administered intravenously, injected AbPCs bind specifically to cells expressing the target antigen, whereupon NIR light exposure causes rapid, selective killing. This process induces an anticancer T cell response, leading to sustained anticancer host immune response. Programmed cell death ligand-1 (PD-L1) is a major inhibitory immune checkpoint molecule expressed in various cancers. In this study, we first assessed the efficacy of PD-L1-targeted NIR-PIT (αPD-L1-PIT) in immune-competent tumor mouse models. αPD-L1-PIT showed a significant therapeutic effect on the tumor models with high PD-L1 expression. Furthermore, αPD-L1-PIT induced an abscopal effect on distant tumors and long-term immunological memory. In contrast, αPD-L1-PIT was not as effective for tumor models with low PD-L1 expression. To improve the efficacy of PD-L1-targeted NIR-PIT, PEGylated interferon-gamma (IFNγ) was administered with αPD-L1-PIT. The combination therapy improved the treatment efficacy by increasing PD-L1 expression leading to more efficient cell killing by αPD-L1-PIT. Furthermore, the PEGylated IFNγ led to a CD8+ T cell-dominant tumor microenvironment (TME) with an enhanced anticancer T cell response after αPD-L1-PIT. As a result, even so-called cold tumors exhibited complete responses after αPD-L1-PIT. Thus, combination therapy of PEGylated IFNγ and PD-L1-targeted NIR-PIT has the potential to be an important future strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Fuyuki F Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Jin J, Barnett JD, Mironchik Y, Gross J, Kobayashi H, Levin A, Bhujwalla ZM. Photoimmunotheranostics of epithelioid sarcoma by targeting CD44 or EGFR. Transl Oncol 2024; 45:101966. [PMID: 38663219 PMCID: PMC11063645 DOI: 10.1016/j.tranon.2024.101966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Epithelioid sarcoma (ES) is a rare soft tissue neoplasm with high recurrence rates. Wide surgical resection remains the only potential curative treatment. ES presents most commonly on the fingers, hands and forearm, making light-based cancer cell-targeted therapies such as near-infrared photoimmunotherapy (NIR-PIT) that is target-specific, but with limited penetration depth, suitable for ES treatment. We established that CD44 and EGFR were overexpressed in ES patient samples and in the VA-ES-BJ human ES cell line. NIR-PIT of VA-ES-BJ cells using antibody photosensitizer conjugates, prepared by conjugating a CD44 or EGFR monoclonal antibody to the photosensitizer IR700, confirmed that NIR-PIT with both conjugates resulted in cell death. Neither treatment with NIR light alone nor treatment with the conjugates but without NIR light were effective. CD44-IR700-PIT resulted in greater cell death than EGFR-IR700-PIT, consistent with the increased expression of CD44 by VA-ES-BJ cells. In tumors, EGFR-IR700 exhibited a higher tumor-to-normal ratio, as determined by in vivo fluorescence imaging, and a higher anti-tumor growth effect, compared to CD44-IR700. No antitumor effect of the EGFR antibody or the photosensitizer conjugate alone was observed in vivo. Our data support evaluating the use of EGFR-IR700-PIT in the management of ES for detecting and eliminating ES cells in surgical margins, and in the treatment of superficial recurrent tumors.
Collapse
Affiliation(s)
- Jiefu Jin
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - James D Barnett
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Gross
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hisataka Kobayashi
- Laboratory of Molecular Theranostics, Molecular Imaging Branch, NCI/NIH, Bethesda, MD, USA
| | - Adam Levin
- Orthopaedic Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Yang JK, Kwon H, Kim S. Recent advances in light-triggered cancer immunotherapy. J Mater Chem B 2024; 12:2650-2669. [PMID: 38353138 DOI: 10.1039/d3tb02842a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Light-triggered phototherapies, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have shown strong therapeutic efficacy with minimal invasiveness and systemic toxicity, offering opportunities for tumor-specific therapies. Phototherapies not only induce direct tumor cell killing, but also trigger anti-tumor immune responses by releasing various immune-stimulating factors. In recent years, conventional phototherapies have been combined with cancer immunotherapy as synergistic therapeutic modalities to eradicate cancer by exploiting the innate and adaptive immunity. These combined photoimmunotherapies have demonstrated excellent therapeutic efficacy in preventing tumor recurrence and metastasis compared to phototherapy alone. This review covers recent advancements in combined photoimmunotherapy, including photoimmunotherapy (PIT), PDT-combined immunotherapy, and PTT-combined immunotherapy, along with their underlying anti-tumor immune response mechanisms. In addition, the challenges and future research directions for light-triggered cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-eui University, Busan, 47340, Republic of Korea.
| | - Hayoon Kwon
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sehoon Kim
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Inagaki FF, Wakiyama H, Furusawa A, Okada R, Kato T, Fujimura D, Okuyama S, Fukushima H, Takao S, Choyke PL, Kobayashi H. Near-infrared photoimmunotherapy (NIR-PIT) of bone metastases. Biomed Pharmacother 2023; 160:114390. [PMID: 36791566 PMCID: PMC10024949 DOI: 10.1016/j.biopha.2023.114390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The bones are a common site for metastasis arising from solid tumors such as breast and prostate cancer. Chemotherapy, including immunotherapy, is rarely curative. Radiotherapy with pain palliation can temporize bone metastases but is generally considered a short-term solution and retreatment is difficult. Surgery is often necessary, yet recovery times might exceed life expectancy. Therefore, there is a need to develop new approaches to bone metastases that are effective but minimally invasive. Near-infrared photoimmunotherapy (NIR-PIT) uses antibodies labeled with IRDye700DX (IR700) which is activated by NIR light, resulting in rapid cell membrane damage and immunogenic cell death. NIR-PIT using an anti-epidermal growth factor receptor (EGFR) antibody-IR700 conjugate in patients with recurrent head and neck cancer received qualified approval in Japan in 2020 and is now widely used there. However, no bone metastases have yet been treated. In this study, the efficacy of NIR-PIT for bone metastases was investigated using a bone metastases mouse model successfully established by caudal artery injection of a human triple-negative breast cancer cell line, MDAMB468-GFP/luc. The bone metastatic lesions were treated with NIR-PIT using the anti-EGFR antibody, panitumumab-IR700 conjugate. Bioluminescence imaging and histological evaluation showed that EGFR-targeted NIR-PIT has a therapeutic effect on bone metastatic lesions in mice. In addition, micro-CT showed that repeated NIR-PIT led to repair of metastasis-induced bone destruction and restored bone cortex continuity consistent with healing. These data suggest that NIR-PIT has the potential for clinical application in the treatment of bone metastases.
Collapse
Affiliation(s)
- Fuyuki F Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daiki Fujimura
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Cui Y, Xu Y, Li Y, Sun Y, Hu J, Jia J, Li X. Antibody Drug Conjugates of Near-Infrared Photoimmunotherapy (NIR-PIT) in Breast Cancers. Technol Cancer Res Treat 2023; 22:15330338221145992. [PMID: 36734039 PMCID: PMC9903039 DOI: 10.1177/15330338221145992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Worldwide, the incidence rate of breast cancer is the highest in women. Approximately 2.3 million people were newly diagnosed and 0.685 million were dead of breast cancer in 2020, which continues to grow. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with a higher risk of recurrence and metastasis, but disappointly, there are no effective and specific therapies clinically, especially for patients presenting with metastatic diseases. Therefore, it is urgent to develop a new type of cancer therapy for survival improvisation and adverse effects alleviation of breast cancers. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed, photochemistry-based cancer therapy. It was drive by an antibody-photoabsorber conjugate (APC) which is triggered by near-infrared light. The key part of APC is a cancer-targeting monoclonal antibody (mAb) that can bind to receptors or antigens on the surface of tumor cells. Because of this targeted conjugate accumulation, subsequent deployment of focal NIR-light results in functional damage on the targeted cell membranes without harming the immediately adjacent receptor-negative cells and evokes a kind of photochemical, speedy, and highly specific immunogenic cell death (ICD) of cancer cells with corresponding antigens. Subsequently, immature dendritic cells adjacent to dying cancer cells will become mature, further inducing a host-oriented anti-cancer immune response, complicatedly and comprehensively. Currently, NIR-PIT has progressed into phase 3 clinical trial for recurrent head and neck cancer. And preclinical studies have illustrated strong therapeutic efficacy of NIR-PIT targeting various molecular receptors overexpressed in breast cancer cells, including EGFR, HER2, CD44c, CD206, ICAM-1 and FAP-α. Thereby, NIR-PIT is in early trials, but appears to be a promising breast cancer therapy and moving into the future. Here, we present the specific advantages and discuss the most recent preclinical studies against several transmembrane proteins of NIR-PIT in breast cancers.
Collapse
Affiliation(s)
- Yingshu Cui
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Yuanyuan Xu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Medical School of Chinese PLA, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Sun
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Hu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Jia
- Department of Oncology, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China,Jia Jia, Department of Oncology, the Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| | - Xiaosong Li
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Xiaosong Li, Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
9
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
10
|
Wei D, Qi J, Hamblin MR, Wen X, Jiang X, Yang H. Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond. Am J Cancer Res 2022; 12:7108-7131. [PMID: 36276636 PMCID: PMC9576624 DOI: 10.7150/thno.74820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment modality based on a target-specific photosensitizer conjugate (TSPC) composed of an NIR phthalocyanine photosensitizer and an antigen-specific recognition system. NIR-PIT has predominantly been used for targeted therapy of tumors via local irradiation with NIR light, following binding of TSPC to antigen-expressing cells. Physical stress-induced membrane damage is thought to be a major mechanism underlying NIR-PIT-triggered photokilling. Notably, NIR-PIT can rapidly induce immunogenic cell death and activate the adaptive immune response, thereby enabling its combination with immune checkpoint inhibitors. Furthermore, NIR-PIT-triggered “super-enhanced permeability and retention” effects can enhance drug delivery into tumors. Supported by its potential efficacy and safety, NIR-PIT is a rapidly developing therapeutic option for various cancers. Hence, this review seeks to provide an update on the (i) broad range of target molecules suitable for NIR-PIT, (ii) various types of receptor-selective ligands for designing the TSPC “magic bullet,” (iii) NIR light parameters, and (iv) strategies for enhancing the efficacy of NIR-PIT. Moreover, we review the potential application of NIR-PIT, including the specific design and efficacy in 19 different cancer types, and its clinical studies. Finally, we summarize possible NIR-PIT applications in noncancerous conditions, including infection, pain, itching, metabolic disease, autoimmune disease, and tissue engineering.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.,NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China
| | - Jinxin Qi
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Xiang Wen
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University
| |
Collapse
|
11
|
Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022; 10:biomedicines10071662. [PMID: 35884975 PMCID: PMC9312913 DOI: 10.3390/biomedicines10071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
The conventional treatment of thoracic tumors includes surgery, anticancer drugs, radiation, and cancer immunotherapy. Light therapy for thoracic tumors has long been used as an alternative; conventional light therapy also called photodynamic therapy (PDT) has been used mainly for early-stage lung cancer. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a completely different concept from conventional PDT, has been developed and approved in Japan for the treatment of recurrent and previously treated head and neck cancer because of its specificity and effectiveness. NIR-PIT can apply to any target by changing to different antigens. In recent years, it has become clear that various specific and promising targets are highly expressed in thoracic tumors. In combination with these various specific targets, NIR-PIT is expected to be an ideal therapeutic approach for thoracic tumors. Additionally, techniques are being developed to further develop NIR-PIT for clinical practice. In this review, NIR-PIT is introduced, and its potential therapeutic applications for thoracic cancers are described.
Collapse
|
12
|
Takahashi JI, Nakamura S, Onuma I, Zhou Y, Yokoyama S, Sakurai H. Synchronous intracellular delivery of EGFR-targeted antibody-drug conjugates by p38-mediated non-canonical endocytosis. Sci Rep 2022; 12:11561. [PMID: 35798841 PMCID: PMC9262980 DOI: 10.1038/s41598-022-15838-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Monoclonal antibodies targeting the epidermal growth factor receptor (EGFR), including cetuximab and panitumumab, have been used in clinic settings to treat cancer. They have also recently been applied to antibody–drug conjugates (ADCs); however, their clinical efficacy is limited by several issues, including lower internalization efficiency. The binding of cetuximab to the extracellular domain of EGFR suppresses ligand-induced events; therefore, we focus on ligand-independent non-canonical EGFR endocytosis for the delivery of ADCs into cells. Tumor necrosis factor-α (TNF-α) strongly induces the endocytosis of the cetuximab-EGFR complex within 15 min via the p38 phosphorylation of EGFR in a tyrosine kinase-independent manner. A secondary antibody conjugated with saporin, a ribosome-inactivating protein, also undergoes internalization with the complex and enhances its anti-proliferative activity. Anti-cancer agents, including cisplatin and temozolomide, also induce the p38-mediated internalization. The results of the present study demonstrate that synchronous non-canonical EGFR endocytosis may be a feasible strategy for promoting the therapeutic efficacy of EGFR-targeting ADCs in clinical settings.
Collapse
Affiliation(s)
- Jun-Ichiro Takahashi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shiori Nakamura
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Iimi Onuma
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
13
|
Fukushima H, Kato T, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Kondo E, Choyke PL, Kobayashi H. Intercellular adhesion molecule-1 (ICAM-1)-targeted near-infrared photoimmunotherapy of triple-negative breast cancer. Cancer Sci 2022; 113:3180-3192. [PMID: 35723065 PMCID: PMC9459244 DOI: 10.1111/cas.15466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and conventional chemotherapy and molecular-targeted therapies show limited efficacy. Near-infrared photoimmunotherapy (NIR-PIT) is a new anti-cancer treatment that selectively damages the cell membrane of cancer cells based on NIR light-induced photochemical reactions of the antibody-photoabsorber (IRDye700Dx) conjugate and the cell membrane. TNBC is known to express several adhesion molecules on the cell surface providing a potential new target for therapy. Here, we investigated the therapeutic efficacy of Intercellular adhesion molecule-1 (ICAM-1)-targeted NIR-PIT using xenograft mouse models subcutaneously inoculated with two human ICAM-1-expressing TNBC cell lines MDAMB468-luc and MDAMB231 cells. In vitro ICAM-1-targeted NIR-PIT damaged both cell types in a light dose-dependent manner. In vivo ICAM-1-targeted NIR-PIT in both models showed early histological signs of cancer cell damage such as cytoplasmic vacuolation. Even among the cancer cells that appeared to be morphologically intact within 2 hours post treatment, abnormal distribution of the actin cytoskeleton and a significant decrease in Ki-67 positivity were observed, indicating widespread cellular injury reflected in cytoplasmic degeneration. Such damage to cancer cells by NIR-PIT significantly inhibited subsequent tumor growth and improved survival. This study suggests that ICAM-1-targeted NIR-PIT may have potential clinical application in the treatment of TNBC.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku Niigata city 951-8510, Japan.,Division of Tumor Pathology, Near InfraRed PhotoImmunoTherapy Research Institute, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, 573-1010, Japan
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
14
|
Fukushima H, Turkbey B, Pinto PA, Furusawa A, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers (Basel) 2022; 14:2996. [PMID: 35740662 PMCID: PMC9221010 DOI: 10.3390/cancers14122996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel molecularly-targeted therapy that selectively kills cancer cells by systemically injecting an antibody-photoabsorber conjugate (APC) that binds to cancer cells, followed by the application of NIR light that drives photochemical transformations of the APC. APCs are synthesized by selecting a monoclonal antibody that binds to a receptor on a cancer cell and conjugating it to IRDye700DX silica-phthalocyanine dye. Approximately 24 h after APC administration, NIR light is delivered to the tumor, resulting in nearly-immediate necrotic cell death of cancer cells while causing no harm to normal tissues. In addition, NIR-PIT induces a strong immunologic effect, activating anti-cancer immunity that can be further boosted when combined with either immune checkpoint inhibitors or immune suppressive cell-targeted (e.g., regulatory T cells) NIR-PIT. Currently, a global phase III study of NIR-PIT in recurrent head and neck squamous cell carcinoma is ongoing. The first APC and NIR laser systems were approved for clinical use in September 2020 in Japan. In the near future, the clinical applications of NIR-PIT will expand to other cancers, including urologic cancers. In this review, we provide an overview of NIR-PIT and its possible applications in urologic cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Baris Turkbey
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter A. Pinto
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA;
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| |
Collapse
|
15
|
Gaitan B, Frankel L, Vig S, Oskoui E, Adwan M, Chen Y, Elespuru R, Huang HC, Pfefer TJ. Quantifying the Photochemical Damage Potential of Contrast-Enhanced Fluorescence Imaging Products: Singlet Oxygen Production. Photochem Photobiol 2022; 98:736-747. [PMID: 35442536 PMCID: PMC9540578 DOI: 10.1111/php.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The benefits of contrast‐enhancing imaging probes have become apparent over the past decade. However, there is a gap in the literature when it comes to the assessment of the phototoxic potential of imaging probes and systems emitting visible and/or near‐infrared radiation. The primary mechanism of fluorescent agent phototoxicity is thought to involve the production of reactive molecular species (RMS), yet little has been published on the best practices for safety evaluation of RMS production levels for clinical products. We have proposed methods involving a cell‐free assay to quantify singlet oxygen [(SO) a known RMS] generation of imaging probes, and performed testing of Indocyanine Green (ICG), Proflavine, Methylene Blue, IR700 and IR800 at clinically relevant concentrations and radiant exposures. Results indicated that SO production from IR800 and ICG were more than two orders of magnitude below that of the known SO generator Rose Bengal. Methylene Blue and IR700 produced much higher SO levels than ICG and IR800. These results were in good agreement with data from the literature. While agents that exhibit spectral overlap with the assay may be more prone to errors, our tests for one of these agents (Proflavine) appeared robust. Overall, our results indicate that this methodology shows promise for assessing the phototoxic potential of fluorophores due to SO production.
Collapse
Affiliation(s)
- Brandon Gaitan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Lucas Frankel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ellen Oskoui
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| | - Miriam Adwan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Yu Chen
- Department of Biomedical Engineering, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| | - Huang Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - T Joshua Pfefer
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| |
Collapse
|
16
|
Peng Z, Lv X, Huang S. Photoimmunotherapy: A New Paradigm in Solid Tumor Immunotherapy. Cancer Control 2022. [PMCID: PMC9016614 DOI: 10.1177/10732748221088825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, the incidence of cancer has been increasing worldwide. Conventional cancer treatments include surgery, chemotherapy, and radiation, which mostly kill tumor cells at the expense of normal and immune cells. Although immunotherapy is an accurate, rapid, efficient tumor immune treatment, it causes serious adverse reactions, such as cytokine release syndrome (CRS) and neurotoxicity. Therefore, there is an urgent need to develop an effective and nontoxic procedure for immunotherapy. The clinical combination of phototherapy and immunoadjuvant therapy can induce immunogenic cell death and enhance antigen presentation synergy. It also causes a systemic antitumor immune response to manage residual tumors and distant metastases. Photoimmunotherapy (PIT) is a tumor treatment combining phototherapy with immunotherapy based on injecting a conjugate photosensitizer (IR700) and a monoclonal antibody (mAb) to target an expressed antigen on the tumor surface. This combination can enhance the immune response ability, thus having a good effect on the treatment of residual tumor and metastatic cancer. In this review, we summarize the recent progress in photoimmunotherapy, including photoimmunoconjugate (PIC), the activation mechanism of immunogenic cell death (ICD), the combination therapy model, opportunities and prospects. Specifically, we aim to provide a promising clinical therapy for solid tumor clinical transformation.
Collapse
Affiliation(s)
- Zheng Peng
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Xiaolan Lv
- Department of Laboratory Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liu Zhou, China
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
17
|
Takakura H, Matsuhiro S, Kobayashi M, Goto Y, Harada M, Taketsugu T, Ogawa M. Axial-ligand-cleavable silicon phthalocyanines triggered by near-infrared light toward design of photosensitizers for photoimmunotherapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022; 13:126-147. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza, Piacenza, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| |
Collapse
|
19
|
Triple-negative breast cancer treatment in xenograft models by bifunctional nanoprobes combined to photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 38:102796. [PMID: 35263669 DOI: 10.1016/j.pdpdt.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022]
Abstract
Triple-negative breast cancer (TNBC) overexpresses the Epidermal Growth Factor Receptor (EGFR), a characteristic of different types of tumors, linked to worse disease prognosis and risk of recurrence. Conventional treatments are aggressive and, on several occasions, have a poor prognosis, which may be related to the clinical heterogeneity of tumors, among other factors. Therefore, the improvement and development of new methods are notorious. Photodynamic Therapy (PDT) is an effective method for treating different types of cancer by using radiation to activate a photosensitizing agent (drug) in molecular oxygen presence, promoting cell death. Aiming to urge new treatments against breast cancer, drug uptake in target cells could contribute to PDT efficiency. This association is less invasive and has fewer side effects, increasing quality of life and survival rate. Accordingly, we developed a bifunctional nanoprobe (BN), used in PDT as an alternative treatment method in vivo against breast cancer. The BN uses gold nanoparticles with active targeting through the Epidermal Growth Factor (EGF) protein and Chlorine e6 (Ce6) carriers. We evaluated the therapeutic efficacy of in vivo xenograft in 4 groups: Saline, BN, Ce6+PDT, and BN+PDT. As a result, we observed that the BN+PDT group exhibited an excellent effect with greater selectivity to tumor tissue and tissue damage when compared to the Saline, BN, and Ce6+PDT groups. The results indicate a potential impact on breast cancer treatment in vivo, promising therapeutic benefits against cancer. In conclusion, our data propose that the BN developed heightened PDT efficacy through cellular DNA repair effects and tumor microenvironment.
Collapse
|
20
|
Takashima K, Koga Y, Anzai T, Migita K, Yamaguchi T, Ishikawa A, Sakashita S, Yasunaga M, Yano T. Evaluation of Fluorescence Intensity and Antitumor Effect Using Real-Time Imaging in Photoimmunotherapy. Pharmaceuticals (Basel) 2022; 15:223. [PMID: 35215338 PMCID: PMC8880675 DOI: 10.3390/ph15020223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Photoimmunotherapy (PIT) is a promising tumor-selective treatment method that uses light-absorbing dye-conjugated antibodies and light irradiation. It has been reported that IR700 fluorescence changes with light irradiation. The purpose of this study was to investigate the fluorescence intensity and antitumor effect of PIT using real-time fluorescence observation of tumors and predict the required irradiation dose. The near-infrared camera system LIGHTVISION was used to image IR700 during PIT treatment. IR700 showed a sharp decrease in fluorescence intensity in the early stage of treatment and almost reached a plateau at an irradiation dose of 40 J/cm. Cetuximab-PIT for A431 xenografts was performed at multiple doses from 0-100 J/cm. A significant antitumor effect was observed at 40 J/cm compared to no irradiation, and there was no significant difference between 40 J/cm and 100 J/cm. These results suggest that the rate of decay of the tumor fluorescence intensity correlates with the antitumor effect by real-time fluorescence imaging during PIT. In addition, when the fluorescence intensity of the tumor plateaued in real-time fluorescence imaging, it was assumed that the laser dose was necessary for treatment.
Collapse
Affiliation(s)
- Kenji Takashima
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- NEXT Medical Device Innovation Center, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikatsu Koga
- Department of Strategic Programs, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan;
| | - Takahiro Anzai
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan; (T.A.); (M.Y.)
| | - Kayo Migita
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Toru Yamaguchi
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Akihiro Ishikawa
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Shingo Sakashita
- Division of Developmental Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan;
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan; (T.A.); (M.Y.)
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- NEXT Medical Device Innovation Center, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| |
Collapse
|
21
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
22
|
Privitera L, Paraboschi I, Cross K, Giuliani S. Above and Beyond Robotic Surgery and 3D Modelling in Paediatric Cancer Surgery. Front Pediatr 2021; 9:777840. [PMID: 34988038 PMCID: PMC8721224 DOI: 10.3389/fped.2021.777840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although the survival rates for children's cancers have more than doubled in the last few decades, the surgical practise has not significantly changed. Among the most recent innovations introduced in the clinic, robotic surgery and augmented reality are two of the most promising, even if they are not widespread. The increased flexibility of the motion, the magnification of the surgical field and the tremor reduction provided by robotic surgery have been beneficial to perform complex oncological procedures in children. Besides, augmented reality has been proven helpful in planning for tumour removal, facilitating early discrimination between cancer and healthy organs. Nowadays, research in the field of surgical oncology is moving fast, and new technologies and innovations wich will help to shape a new way to perform cancer surgery. Paediatric surgeons need to be ready to adopt these novel devices and intraoperative techniques to allow more radical tumour resections with fewer complications. This review aims to present the mechanism of action and indications of several novel technologies such as optical imaging surgery, high definition cameras, and intraoperative loco-regional treatments. We hope this will enhance early adoption and more research on how to employ technology for the benefit of children.
Collapse
Affiliation(s)
- Laura Privitera
- Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional & Surgical Sciences, University College London, London, United Kingdom
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Irene Paraboschi
- Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional & Surgical Sciences, University College London, London, United Kingdom
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kate Cross
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Stefano Giuliani
- Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional & Surgical Sciences, University College London, London, United Kingdom
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Russo I, Fagotto L, Colombo A, Sartor E, Luisetto R, Alaibac M. Near-infrared photoimmunotherapy for the treatment of skin disorders. Expert Opin Biol Ther 2021; 22:509-517. [PMID: 34860146 DOI: 10.1080/14712598.2022.2012147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Near-Infrared Photoimmunotherapy (NIR-PIT) is a novel molecularly targeted phototherapy. This technique is based on a conjugate of a near-infrared photo-inducible molecule (antibody-photon absorber conjugate, APC) and a monoclonal antibody that targets a tumor-specific antigen. To date, this novel approach has been successfully applied to several types of cancer. AREAS COVERED The authors discuss the possible use of NIR-PIT for the management of skin diseases, with special attention given to squamous cell carcinomas, advanced melanomas, and primary cutaneous lymphomas. EXPERT OPINION NIR-PIT may be an attractive strategy for the treatment of skin disorders. The main advantage of NIR-PIT therapy is its low toxicity to healthy tissues. Cutaneous lymphocyte antigen is a potential molecular target for NIR-PIT for both cutaneous T-cell lymphomas and inflammatory skin disorders.
Collapse
Affiliation(s)
- Irene Russo
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Laura Fagotto
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Anna Colombo
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Emma Sartor
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Roberto Luisetto
- DISCOG-Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Padova, Italy
| |
Collapse
|
24
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Maruoka Y, Wakiyama H, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine 2021; 70:103501. [PMID: 34332294 PMCID: PMC8340111 DOI: 10.1016/j.ebiom.2021.103501] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly-developed, highly-selective cancer treatment, which utilizes a monoclonal antibody conjugated to a photoabsorbing dye, IRDye700DX (IR700). The antibody conjugate is injected into the patient and accumulates in the tumour. Within 24 h of injection the tumour is exposed to NIR light which activates the conjugate and causes rapid, selective cancer cell death. A global phase III clinical trial of NIR-PIT in recurrent head and neck squamous cell cancer (HNSCC) patients is currently underway. Conditional clinical approval for NIR-PIT in recurrent HNSCC has been granted in Japan as of September 2020. Not only does NIR-PIT induce highly selective and immediate cancer cell killing, but it also stimulates highly active anti-tumour immunity. While monotherapy with NIR-PIT has proven effective it is likely that combinations with immune-checkpoint inhibitors or additional NIR-PIT targeting immune suppressive cells in the tumour microenvironment will further improve results. In this review, we discuss the translational aspects of NIR-PIT especially in HNSCC, and potential future applications.
Collapse
Affiliation(s)
- Yasuhiro Maruoka
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Li F, Mao C, Yeh S, Sun Y, Xin J, Shi Q, Ming X. MRP1-targeted near infrared photoimmunotherapy for drug resistant small cell lung cancer. Int J Pharm 2021; 604:120760. [PMID: 34077781 DOI: 10.1016/j.ijpharm.2021.120760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC), one of the most aggressive cancers, has a high mortality rate and poor prognosis, and the clinical therapeutic outcomes of multidrug resistant SCLC are even worse. Multidrug resistance protein 1 (MRP1), one of the ATP-binding cassette (ABC) transporter proteins that cause decreased drug accumulation in cancer cells, is overexpressed in drug resistant SCLC cells and could be a promising target for treating the patients suffering from this illness. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed approach for targeted cancer treatment which uses a conjugate of a monoclonal antibody and photoabosorber IR700 followed by NIR light irradiation to induce rapid cancer cell death. In the present study, an anti-MRP1 antibody (Mab) -IR700 conjugate (Mab-IR700) was synthesized, purified and used to treat chemoresistant SCLC H69AR cells that overexpressed MRP1, while non-MRP1-expressing H69 cells were used as a control. Then, the photokilling and tumor suppression effect were separately evaluated in H69AR cells both in vitro and in vivo. Higher cellular delivery of Mab-IR700 was detected in H69AR cells, whereas there was little uptake of IgG-IR700 in both H69 and H69AR cells. Due to the targeting activity of Mab, stronger photokilling effect was found both in H69AR cells and spheroids treated with Mab-IR700, while superior tumor suppression effect was also observed in the mice treated with Mab-IR700 and light illumination. Photoacoustic imaging results proved that oxygen was involved in NIR-PIT treatment, and TUNEL staining images showed the occurrence of cell apoptosis, which was also testified by HE staining. This research provides MRP1 as a novel target for PIT and presents a prospective way for treating drug resistant SCLC and, thus, should be further studied.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Stacy Yeh
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Yao Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|
27
|
Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13112535. [PMID: 34064074 PMCID: PMC8196790 DOI: 10.3390/cancers13112535] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies. Abstract Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. In September 2020, the first APC and laser system were conditionally approved for clinical use in Japan. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. These early trials have demonstrated that in addition to direct cell killing, there is a significant therapeutic host immune response that greatly contributes to the success of the therapy. Although the first clinical use of NIR-PIT targeted epidermal growth factor receptor (EGFR), many other targets are suitable for NIR-PIT. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT can be used in combination with other therapies, such as immune checkpoint inhibitors, to enhance the therapeutic effect. Thus, NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies.
Collapse
|
28
|
Hyperthermia by near infrared radiation induced immune cells activation and infiltration in breast tumor. Sci Rep 2021; 11:10278. [PMID: 33986437 PMCID: PMC8119485 DOI: 10.1038/s41598-021-89740-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most common cancer that causes death in women. Conventional therapies, including surgery and chemotherapy, have different therapeutic effects and are commonly associated with risks and side effects. Near infrared radiation is a technique with few side effects that is used for local hyperthermia, typically as an adjuvant to other cancer therapies. The understanding of the use of near NIR as a monotherapy, and its effects on the immune cells activation and infiltration, are limited. In this study, we investigate the effects of HT treatment using NIR on tumor regression and on the immune cells and molecules in breast tumors. Results from this study demonstrated that local HT by NIR at 43 °C reduced tumor progression and significantly increased the median survival of tumor-bearing mice. Immunohistochemical analysis revealed a significant reduction in cells proliferation in treated tumor, which was accompanied by an abundance of heat shock protein 70 (Hsp70). Increased numbers of activated dendritic cells were observed in the draining lymph nodes of the mice, along with infiltration of T cells, NK cells and B cells into the tumor. In contrast, tumor-infiltrated regulatory T cells were largely diminished from the tumor. In addition, higher IFN-γ and IL-2 secretion was observed in tumor of treated mice. Overall, results from this present study extends the understanding of using local HT by NIR to stimulate a favourable immune response against breast cancer.
Collapse
|
29
|
Paraboschi I, Turnock S, Kramer-Marek G, Musleh L, Barisa M, Anderson J, Giuliani S. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: Challenges and potentials for human applications. Crit Rev Oncol Hematol 2021; 161:103325. [PMID: 33836238 PMCID: PMC8177002 DOI: 10.1016/j.critrevonc.2021.103325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023] Open
Abstract
Near-InfraRed PhotoImmunoTherapy (NIR-PIT) is a novel cancer-targeted treatment effected by a chemical conjugation between a photosensitiser (e.g. the NIR phthalocyanine dye IRDye700DX) and a cancer-targeting moiety (e.g. a monoclonal antibody, moAb). Delivery of a conjugate in vivo leads to accumulation at the tumour cell surface by binding to cell surface receptors or antigens. Upon deployment of focal NIR-light, irradiation of the conjugate results in a rapid, targeted cell death. However, the mechanisms of action to produce the cytotoxic effects have yet to be fully understood. Herein, we bring together the current knowledge of NIR-PIT from preclinical and clinical studies in a variety of cancers highlighting the key unanswered research questions. Furthermore, we discuss how to enhance the local control of solid cancers using this novel treatment regimen.
Collapse
Affiliation(s)
- Irene Paraboschi
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK
| | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Layla Musleh
- Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, UK
| | - Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK; Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
30
|
Wu S, Okada R, Liu Y, Fang Y, Yan F, Wang C, Li H, Kobayashi H, Chen Y, Tang Q. Quantitative analysis of vascular changes during photoimmunotherapy using speckle variance optical coherence tomography (SV-OCT). BIOMEDICAL OPTICS EXPRESS 2021; 12:1804-1820. [PMID: 33996199 PMCID: PMC8086455 DOI: 10.1364/boe.419163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR) photoimmunotherapy (NIR-PIT) is an emerging cancer therapy based on a monoclonal antibody and phthalocyanine dye conjugate. Direct tumor necrosis and immunogenic cell death occur during NIR irradiation. However, the alteration of tumor blood vessels and blood volume inside the blood vessels induced by the NIR-PIT process is still unknown. In our study, a speckle variance (SV) algorithm combined with optical coherence tomography (OCT) technology was applied to monitor the change of blood vessels and the alterations of the blood volume inside the blood vessels during and after NIR-PIT treatment. Vascular density and the measurable diameter of the lumen in the blood vessel (the diameter of the region filled with blood) were extracted for quantitively uncovering the alterations of blood vessels and blood volume induced by NIR-PIT treatment. The results indicate that both the density and the diameter of the lumen in the blood vessels decrease during the NIR-PIT process, while histological results indicated the blood vessels were dilated. The increase of permeability of blood vessels could lead to the increase of the blood pool volume within the tumor (shown in histology) and results in the decrease of free-moving red blood cells inside the blood vessels (shown in SV-OCT).
Collapse
Affiliation(s)
- Shulian Wu
- College of Photonic and Electronic Engineering, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- These authors contributed equally to this work
| | - Ryuhei Okada
- National Institute of Health, National Cancer Institute, Molecular Imaging Program, Bldg 10, Room B3B47, Bethesda, Maryland 20892-1088, USA
- These authors contributed equally to this work
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yuhong Fang
- College of Photonic and Electronic Engineering, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Hui Li
- College of Photonic and Electronic Engineering, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Hisataka Kobayashi
- National Institute of Health, National Cancer Institute, Molecular Imaging Program, Bldg 10, Room B3B47, Bethesda, Maryland 20892-1088, USA
| | - Yu Chen
- College of Photonic and Electronic Engineering, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
31
|
Kobayashi H, Furusawa A, Rosenberg A, Choyke PL. Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity. Int Immunol 2021; 33:7-15. [PMID: 32496557 PMCID: PMC7771006 DOI: 10.1093/intimm/dxaa037] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a recently developed hybrid cancer therapy that directly kills cancer cells as well as producing a therapeutic host immune response. Conventional immunotherapies, such as immune-activating cytokine therapy, checkpoint inhibition, engineered T cells and suppressor cell depletion, do not directly destroy cancer cells, but rely exclusively on activating the immune system. NIR-PIT selectively destroys cancer cells, leading to immunogenic cell death that initiates local immune reactions to released cancer antigens from dying cancer cells. These are characterized by rapid maturation of dendritic cells and priming of multi-clonal cancer-specific cytotoxic T cells that kill cells that escaped the initial direct effects of NIR-PIT. The NIR-PIT can be applied to a wide variety of cancers either as monotherapy or in combination with conventional immune therapies to further activate anti-cancer immunity. A global Phase 3 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03769506) of NIR-PIT targeting the epidermal growth factor receptor (EGFR) in patients with recurrent head and neck cancer is underway, employing RM1929/ASP1929, a conjugate of anti-EGFR antibody (cetuximab) plus the photo-absorber IRDye700DX (IR700). NIR-PIT has been given fast-track recognition by regulators in the USA and Japan. A variety of imaging methods, including direct IR700 fluorescence imaging, can be used to monitor NIR-PIT. As experience with NIR-PIT grows, additional antibodies will be employed to target additional antigens on other cancers or to target immune-suppressor cells to enhance host immunity. NIR-PIT will be particularly important in patients with localized and locally advanced cancers and may help such patients avoid side-effects associated with surgery, radiation and chemotherapy.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aki Furusawa
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Rosenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Silic-Benussi M, Saponeri A, Michelotto A, Russo I, Colombo A, Pelizzo MG, Ciminale V, Alaibac M. Near infrared photoimmunotherapy targeting the cutaneous lymphocyte antigen for mycosis fungoides. Expert Opin Biol Ther 2020; 21:977-981. [PMID: 33353448 DOI: 10.1080/14712598.2021.1858791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Mycosis fungoides (MF) is a low-grade T-cell lymphoma with primary cutaneous involvement accounting for more than half of all primary cutaneous lymphomas. The treatment of MF is very challenging due to the limited therapies available. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that employs a monoclonal antibody conjugated to a photo-absorber dye, the hydrophilic phthalocyanine IRdye 700DX® (IR700), and near infrared light. In this study, we investigated the effect of NIR-PIT on MF targeting the cell-surface antigen cutaneous lymphocyte antigen (CLA)Matherial and methods: MF derived My-La CD4+ cells were incubated with the anti-CLA antibody conjugated to IR700 and then irradiated with a 690 nm near-infrared light. Cell death was evaluated by propidium iodide staining and flow cytometry 24 hours after irradiation.Results: Treatment with anti-CLA or light irradiation exhibited very modest pro-death effects, whereas treatment with the anti-CLA antibody conjugated to IR700 and then irradiation with a 690 nm near-infrared light induced a substantial increase in death in the MF cell line.Conclusions: NIR-PIT targeting CLA to treat MF showed marked antitumour effects. As such, CLA-targeted NIR-PIT could be a promising treatment for MF and, possibly, other cutaneous diseases characterized by CLA+ skin infiltrating T-cells.
Collapse
Affiliation(s)
- Micol Silic-Benussi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | | | - Irene Russo
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Anna Colombo
- Unit of Dermatology, University of Padua, Padova, Italy
| | | | - Vincenzo Ciminale
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Padova, Italy
| |
Collapse
|
33
|
Nagaya T, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy for Cancers of the Gastrointestinal Tract. Digestion 2020; 102:1-8. [PMID: 33316807 PMCID: PMC8200364 DOI: 10.1159/000513216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cancers of the gastrointestinal (GI) tract are the common leading cause of cancer-related death in the world. Recent advances in cancer therapies such as intensive multidrug chemotherapy and molecular targeted treatment have improved therapeutic efficacy; however, the outcomes are not satisfied. Moreover, these therapies also cause severe side effects. New type of cancer therapies is urgently needed to improve the outcomes and to reduce side effects of GI tract cancers. SUMMARY This account is a comprehensive review article on the newly developed, photochemistry-based cancer therapy named as near-infrared photoimmunotherapy (NIR-PIT). NIR-PIT is a highly selective tumor treatment that employs an antibody-photoabsorber conjugate, which is activated by near-infrared light. A world-wide phase 3 clinical trial of NIR-PIT against recurrent head and neck cancer patients is currently underway. NIR-PIT differs from conventional cancer therapies such as surgery, chemotherapy, and radiation in its selectivity for killing cancer cells and cells treated with NIR-PIT leading to immunogenic cell death. Preclinical research in animals with combining cancer-targeting NIR-PIT and other cancer immunotherapies could lead to responses not only in local tumor but also in distant metastases. NIR-PIT also leads to an immediate and dramatic increase in vascular permeability after therapy. From these aspects, NIR-PIT appears to be a promising new form of cancer therapy. NIR-PIT could be readily translated into clinical use for virtually any cancers in the near future provided suitable humanized antibodies are available. Here, we describe the specific advantages and applications of NIR-PIT in the GI tract. Key Messages: We believe that NIR-PIT with NIR excitation light, which can be delivered via a fiber optic diffuser through endoscopes, is a promising method for a new treatment of GI cancers.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,
- Department of Gastroenterology, Shinshu University Hospital, Matsumoto, Japan,
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev 2020; 167:121-134. [PMID: 32579891 DOI: 10.1016/j.addr.2020.06.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) light possesses many suitable optophysical properties for medical imaging including low autofluorescence, deep tissue penetration, and minimal light scattering, which together allow for high-resolution imaging of biological tissue. NIR imaging has proven to be a noninvasive and effective real-time imaging methodology that provides a high signal-to-background ratio compared to other potential optical imaging modalities. In response to this, the use of NIR imaging has been extensively explored in the field of immunotherapy. To date, NIR fluorescence imaging has successfully offered reliable monitoring of the localization, dynamics, and function of immune responses, which are vital in assessing not only the efficacy but also the safety of treatments to design immunotherapies optimally. This review aims to provide an overview of the current research on NIR imaging of the immune response. We expect that the use of NIR imaging will expand further in response to the recent success in cancer immunotherapy. We will also offer our insights on how this technology will meet rapidly growing expectations in the future.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Centre, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Jones
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Polikarpov DM, Campbell DH, Lund ME, Lu Y, Lu Y, Wu J, Walsh BJ, Zvyagin AV, Gillatt DA. The feasibility of Miltuximab®-IRDye700DX-mediated photoimmunotherapy of solid tumors. Photodiagnosis Photodyn Ther 2020; 32:102064. [PMID: 33069874 DOI: 10.1016/j.pdpdt.2020.102064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Photoimmunotherapy (PIT) is an emerging method of cancer treatment based on the use of a photosensitizer near-infrared dye IRDye700DX (IR700) conjugated to a monoclonal antibody. The antibody selectively delivers IR700 to cancer cells, which can then be killed after photoexcitation. Glypican-1 (GPC-1) is a novel target expressed specifically in malignant tumors. We aimed to investigate whether anti-GPC-1 antibody Miltuximab® (Glytherix Ltd., Sydney, Australia) can be conjugated with IR700 for PIT of solid tumors. METHODS The dye IR700 was conjugated with Miltuximab® and characterized by spectrophotometry and flow cytometry. Miltuximab®-IR700-mediated PIT was tested in prostate (DU-145), bladder (C3 and T-24), brain (U-87 and U-251) and ovarian (SKOV-3) cancer cell lines. After 1 h incubation with Miltuximab®-IR700, the cells were washed by PBS and illuminated using a 690-nm light-emitting diode. The viability of the cells was assessed by a CCK-8 viability kit 24 h later. RESULTS Miltuximab®-IR700-mediated PIT caused 67.3-92.3% reduction in viability of cells with medium-high GPC-1 expression and did not affect the viability of GPC-1-low cells. Cytotoxicity was attributed to the targeted binding of the conjugate with subsequent photoactivation, as the conjugate or light exposure alone had no effect on the cell viability. Miltuximab®-IR700 did not induce cytotoxicity in cells blocked by unconjugated Miltuximab®. CONCLUSIONS PIT with Miltuximab®-IR700 appears to be highly specific and effective against GPC-1-expressing cancer cells, indicating that it holds promise for an effective and safe treatment of early stage solid tumors or as adjuvant therapy following surgical resection. These findings necessitate further investigation of PIT with Miltuximab®-IR700 in other GPC-1-expressing cancer cell lines in vitro and in vivo in xenograft tumor models.
Collapse
Affiliation(s)
- Dmitry M Polikarpov
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | | | | | - Yanling Lu
- Glytherix Ltd., Sydney, NSW, 2113, Australia
| | - Yiqing Lu
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jiehua Wu
- Glytherix Ltd., Sydney, NSW, 2113, Australia
| | | | - Andrei V Zvyagin
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia; Institute of Molecular Medicine, Sechenov University, 119991, Moscow, Russia.
| | - David A Gillatt
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
36
|
Lum YL, Luk JM, Staunton DE, Ng DKP, Fong WP. Cadherin-17 Targeted Near-Infrared Photoimmunotherapy for Treatment of Gastrointestinal Cancer. Mol Pharm 2020; 17:3941-3951. [PMID: 32931292 DOI: 10.1021/acs.molpharmaceut.0c00700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In cancer photodynamic therapy (PDT), a photosensitizer taken up by cancer cells can generate reactive oxygen species upon near-infrared light activation to induce cancer cell death. To increase PDT potency and decrease its adverse effect, one approach is to conjugate the photosensitizer with an antibody that specifically targets cancer cells. In the present study, IR700, a hydrophilic phthalocyanine photosensitizer, was conjugated to the humanized monoclonal antibody ARB102, which binds specifically cadherin-17 (CDH17 aka CA17), a cell surface marker highly expressed in gastrointestinal cancer to produce ARB102-IR700. Photoimmunotherapy (PIT) of gastrointestinal cancer cell lines was conducted by ARB102-IR700 treatment and near-infrared light irradiation. The results showed that ARB102-IR700 PIT could induce cell death in CDH17-positive cancer cells with high potency. In a co-culture model, CDH17-negative and CDH17-overexpressing SW480 cells were labeled with distinct fluorescent dyes and cultured together prior to PIT treatment. The results confirmed that ARB102-IR700 PIT could kill CDH17-positive cells specifically, while leaving the adjacent CDH17-negative cells unaffected. An in vivo efficacy study was conducted using a pancreatic adenocarcinoma AsPC-1 xenograft tumor model in nude mice. Fluorescence scanning indicated that ARB102-IR700 accumulated specifically in the tumor sites. To perform PIT, at 24 and 48 h postinjection, mice were irradiated with a 680 nm laser at the tumor site to activate the photosensitizer. It was shown that ARB102-IR700 PIT could inhibit tumor growth significantly. In summary, this study demonstrated that the novel ARB102-IR700 is a promising agent for PIT in gastrointestinal cancers.
Collapse
Affiliation(s)
- Yick-Liang Lum
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - John M Luk
- Arbele Limited, Shatin N.T., Hong Kong, China
| | | | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
37
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
38
|
Inagaki F, Fujimura D, Ansteatt S, Okada R, Furusawa A, Choyke PL, Ptaszek M, Kobayashi H. Effect of Short PEG on Near-Infrared BODIPY-Based Activatable Optical Probes. ACS OMEGA 2020; 5:15657-15665. [PMID: 32637840 PMCID: PMC7331221 DOI: 10.1021/acsomega.0c01869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/05/2020] [Indexed: 05/12/2023]
Abstract
Targeted near-infrared (NIR) fluorescence probes are playing a significant role in biomedical imaging because NIR penetrates deeper into tissues and is associated with reduced autofluorescence compared to visible light fluorescence probes. Long-wavelength emitting 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is an attractive platform for synthesizing NIR fluorophores because of its high photostability, high molar absorption coefficient, and sharp absorption and emission spectra. However, its lipophilicity hampers the conjugation chemistry necessary to add targeting moieties. In this study, we synthesized a novel NIR BODIPY derivative, NMP14. Substitutions of ethylene-bridged pyrrole units at the 3- or 5-position of the parent BODIPY chromophore result in a red shift of more than 200 nm. However, NMP14 cannot be conjugated to antibodies because of its hydrophobicity. Therefore, we synthesized NMP13 by adding short poly(ethylene glycol) to NMP14 and successfully conjugated NMP13 to cetuximab and trastuzumab. In vitro microscopic studies showed that NMP13 conjugated antibodies were activated after internalization and lysosomal processing, which means that NMP13 acts as an activatable probe only turning on after cellular internalization. After the administration of NMP13 conjugated antibodies, mice tumors were detected with high tumor to background ratios for a long period. These results suggest that NMP13 has potential as an activatable fluorescence probe for further clinical applications.
Collapse
Affiliation(s)
- Fuyuki
F. Inagaki
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Daiki Fujimura
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sara Ansteatt
- Department
of Chemistry and Biochemistry, University
of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Ryuhei Okada
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aki Furusawa
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peter L. Choyke
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Marcin Ptaszek
- Department
of Chemistry and Biochemistry, University
of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Hisataka Kobayashi
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
39
|
Maruoka Y, Furusawa A, Okada R, Inagaki F, Fujimura D, Wakiyama H, Kato T, Nagaya T, Choyke PL, Kobayashi H. Combined CD44- and CD25-Targeted Near-Infrared Photoimmunotherapy Selectively Kills Cancer and Regulatory T Cells in Syngeneic Mouse Cancer Models. Cancer Immunol Res 2020; 8:345-355. [PMID: 31953245 DOI: 10.1158/2326-6066.cir-19-0517] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and selective cancer treatment that induces necrotic and immunogenic cell death and utilizes a mAb conjugated to a photo-absorber dye, IR700DX, activated by NIR light. Although CD44 is a surface cancer marker associated with drug resistance, anti-CD44-IR700 NIR-PIT results in inhibited cell growth and prolonged survival in multiple tumor types. Meanwhile, CD25-targeted NIR-PIT has been reported to achieve selective and local depletion of FOXP3+CD25+CD4+ regulatory T cells (Treg), which are primary immunosuppressive cells in the tumor microenvironment (TME), resulting in activation of local antitumor immunity. Combined NIR-PIT with CD44- and CD25-targeted agents has the potential to directly eliminate tumor cells and also amplify the immune response by removing FOXP3+CD25+CD4+ Tregs from the TME. We investigated the difference in therapeutic effects of CD44-targeted NIR-PIT alone, CD25-targeted NIR-PIT alone, and the combination of CD44- and CD25-targeted NIR-PIT in several syngeneic tumor models, including MC38-luc, LL/2, and MOC1. The combined NIR-PIT showed significant tumor growth inhibition and prolonged survival compared with CD44-targeted NIR-PIT alone in all tumor models and showed prolonged survival compared with CD25-targeted NIR-PIT alone in MC38-luc and LL/2 tumors. Combined CD44- and CD25-targeted NIR-PIT also resulted in some complete remissions. Therefore, combined NIR-PIT simultaneously targeting cancer antigens and immunosuppressive cells in the TME may be more effective than either type of NIR-PIT alone and may have potential to induce prolonged immune responses in treated tumors.
Collapse
Affiliation(s)
- Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aki Furusawa
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryuhei Okada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fuyuki Inagaki
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daiki Fujimura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hiroaki Wakiyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Takuya Kato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
40
|
Kobayashi H, Griffiths GL, Choyke PL. Near-Infrared Photoimmunotherapy: Photoactivatable Antibody-Drug Conjugates (ADCs). Bioconjug Chem 2020; 31:28-36. [PMID: 31479610 PMCID: PMC7414968 DOI: 10.1021/acs.bioconjchem.9b00546] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cancer treatment has been founded traditionally on the three approaches of surgery, radiation, and chemotherapy with the latter recognized as the obvious systemic treatment approach applicable to disease that has spread. Although significant progress has been made over nearly 100 years of developing systemic treatments, it remains clear that use of the toxic agents involved is a two-edged sword with normal organ toxicities always needing to be balanced with and against administration of relevant therapeutic doses. With the advent of monoclonal antibodies targeted against tumor-associated antigens that could be used as carriers of potently toxic chemotherapy drugs, it was thought that such antibody-drug conjugates (ADCs) could engender the answer to the toxicity/therapeutic equation by shifting the equation more toward beneficial therapeutic efficacy. However, over 40 or so years, antibody-drug conjugates have not significantly affected the toxicity/therapy balance paradigm in most cancer indications, especially in solid tumors. Ideally, a further step may be required in that a non-tumor-targeted antibody-drug conjugate should be essentially nontoxic in its native administered form, with toxic effects unleashed only at the site of targeted tumors. A new approach that employs this principle is the use of an antibody-drug conjugate that is essentially nontoxic to normal tissues by virtue of requiring an extra step of light activation to become potent. We describe the preclinical data and first clinical results gained over the past few years by use of antibody-drug conjugates wherein the drug comprises a near-infrared photoactivatable dye delivered to tumors by a monoclonal antibody and is subsequently activated to a toxic entity solely at sites of tumors.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute MSC 1002, 10 Center Drive, Bethesda, MD 20892-1002
| | - Gary L. Griffiths
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Sponsored by the National Cancer Institute, P.O. Box B, Frederick, MD 21702-1201
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute MSC 1002, 10 Center Drive, Bethesda, MD 20892-1002
| |
Collapse
|
41
|
Peng W, de Bruijn HS, ten Hagen TLM, Berg K, Roodenburg JLN, van Dam GM, Witjes MJH, Robinson DJ. In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate. Cancers (Basel) 2020; 12:E190. [PMID: 31940973 PMCID: PMC7017190 DOI: 10.3390/cancers12010190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Targeted photodynamic therapy (PDT) has the potential to improve the therapeutic effect of PDT due to significantly better tumor responses and less normal tissue damage. Here we investigated if the efficacy of epidermal growth factor receptor (EGFR) targeted PDT using cetuximab-IRDye700DX is fluence rate dependent. Cell survival after treatment with different fluence rates was investigated in three cell lines. Singlet oxygen formation was investigated using the singlet oxygen quencher sodium azide and singlet oxygen sensor green (SOSG). The long-term response (to 90 days) of solid OSC-19-luc2-cGFP tumors in mice was determined after illumination with 20, 50, or 150 mW·cm-2. Reflectance and fluorescence spectroscopy were used to monitor therapy. Singlet oxygen was formed during illumination as shown by the increase in SOSG fluorescence and the decreased response in the presence of sodium azide. Significantly more cell death and more cures were observed after reducing the fluence rate from 150 mW·cm-2 to 20 mW·cm-2 both in-vitro and in-vivo. Photobleaching of IRDye700DX increased with lower fluence rates and correlated with efficacy. The response in EGFR targeted PDT is strongly dependent on fluence rate used. The effectiveness of targeted PDT is, like PDT, dependent on the generation of singlet oxygen and thus the availability of intracellular oxygen.
Collapse
Affiliation(s)
- Wei Peng
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henriette S. de Bruijn
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Timo L. M. ten Hagen
- ErasmusMC, Laboratory of Experimental Oncology, Department of Pathology, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Boks 1072 Blindern, NO-0316 Oslo, Norway
- Department of Pharmacy, School of Pharmacy, University of Oslo, Boks 1072 Blindern, NO-0316 Oslo, Norway
| | - Jan L. N. Roodenburg
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Go M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Max J. H. Witjes
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dominic J. Robinson
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
42
|
Shirasu N, Shibaguchi H, Yamada H, Kuroki M, Yasunaga S. Highly versatile cancer photoimmunotherapy using photosensitizer-conjugated avidin and biotin-conjugated targeting antibodies. Cancer Cell Int 2019; 19:299. [PMID: 31787847 PMCID: PMC6858743 DOI: 10.1186/s12935-019-1034-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023] Open
Abstract
Background Photoimmunotherapy (PIT) employing antibody-photosensitizer conjugates is a promising treatment for cancer. However, the fixed antigen specificity severely limits the efficacy and the applicability. Here we describe a universal strategy for PIT of cancer by using a near-infrared (NIR) photosensitizer IRDye700DX-conjugated NeutrAvidin, designated as AvIR, together with various biotinylated antibodies (BioAbs) for cellular targeting. Methods Cytotoxicity of AvIR-mediated PIT was evaluated by fluorescence imaging and cell viability assay. Phototoxic effect on tumorigenicity was assessed by tumorsphere-formation assay and Matrigel invasion assay. Cancer stem cell-like side-population (SP) cells were identified by flow cytometry. Results CHO cells stably expressing carcinoembryonic antigen or EpCAM were pre-labeled with each BioAb for the corresponding antigen, followed by AvIR administration. NIR light irradiation specifically killed the targeted cells, but not off-targets, demonstrating that the AvIR-mediated PIT does work as expected. CSC-like subpopulation of MCF-7 cells (CD24low/CD44high) and SP of HuH-7 cells (CD133+/EpCAM+) were effectively targeted and photokilled by AvIR-PIT with anti-CD44 BioAb or anti-CD133/anti-EpCAM BioAbs, respectively. As results, the neoplastic features of the cell lines were sufficiently suppressed. Cancer-associated fibroblast (CAF)-targeted AvIR-PIT by using anti-fibroblast activation protein BioAb showed an abolishment of CAF-enhanced clonogenicity of MCF-7 cells. Conclusions Collectively, our results demonstrate that AvIR-mediated PIT can greatly broaden the applicable range of target specificity, with feasibility of efficacious and integrative control of CSC and its microenvironment.
Collapse
Affiliation(s)
- Naoto Shirasu
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| | - Hirotomo Shibaguchi
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| | - Hiromi Yamada
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| | - Masahide Kuroki
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| |
Collapse
|
43
|
Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S, Meinhold-Heerlein I, Hussain AF. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers (Basel) 2019; 11:cancers11121826. [PMID: 31756933 PMCID: PMC6966464 DOI: 10.3390/cancers11121826] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) family contains four transmembrane tyrosine kinases (EGFR1/ErbB1, Her2/ErbB2, Her3/ErbB3 and Her4/ErbB4) and 13 secreted polypeptide ligands. EGFRs are overexpressed in many solid tumors, including breast, pancreas, head-and-neck, prostate, ovarian, renal, colon, and non-small-cell lung cancer. Such overexpression produces strong stimulation of downstream signaling pathways, which induce cell growth, cell differentiation, cell cycle progression, angiogenesis, cell motility and blocking of apoptosis.The high expression and/or functional activation of EGFRs correlates with the pathogenesis and progression of several cancers, which make them attractive targets for both diagnosis and therapy. Several approaches have been developed to target these receptors and/or the EGFR modulated effects in cancer cells. Most approaches include the development of anti-EGFRs antibodies and/or small-molecule EGFR inhibitors. This review presents the state-of-the-art and future prospects of targeting EGFRs to treat breast cancer.
Collapse
Affiliation(s)
- Amaia Eleonora Maennling
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Universiteitssingel 40, 6229 MD Maastricht, The Netherlands
| | - Marcus Niebert
- Department of Molecular Cytology and Functional Genomics, Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Torsten Klockenbring
- Department of Biological Sensing and Detection, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Stefan Gattenlöhner
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-64199930570
| |
Collapse
|
44
|
Wang JJ, Zou JX, Wang H, Duan ZJ, Wang HB, Chen P, Liu PQ, Xu JZ, Chen HW. Histone methyltransferase NSD2 mediates the survival and invasion of triple-negative breast cancer cells via stimulating ADAM9-EGFR-AKT signaling. Acta Pharmacol Sin 2019; 40:1067-1075. [PMID: 30670815 PMCID: PMC6786427 DOI: 10.1038/s41401-018-0199-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/23/2018] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with a poor prognosis due to the lack of an effective targeted therapy. Histone lysine methyltransferases (KMTs) have emerged as attractive drug targets for cancer therapy. However, the function of the majority of KMTs in TNBC has remained largely unknown. In the current study, we found that KMT nuclear receptor binding SET domain protein 2 (NSD2) is overexpressed in TNBC tumors and that its overexpression is associated with poor survival of TNBC patients. NSD2 regulates TNBC cell survival and invasion and is required for tumorigenesis and tumor growth. Mechanistically, NSD2 directly controls the expression of EGFR and ADAM9, a member of the ADAM (a disintegrin and metalloproteinase) family that mediates the release of growth factors, such as HB-EGF. Through its methylase activity, NSD2 overexpression stimulates EGFR-AKT signaling and promotes TNBC cell resistance to the EGFR inhibitor gefitinib. Together, our results identify NSD2 as a major epigenetic regulator in TNBC and provide a rationale for targeting NSD2 alone or in combination with EGFR inhibitors as a targeted therapy for TNBC.
Collapse
Affiliation(s)
- Jun-Jian Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - June X Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Hong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhi-Jian Duan
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Hai-Bin Wang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Peng Chen
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pei-Qing Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jian-Zhen Xu
- Computational Systems Biology Lab, Shantou University Medical College, Shantou, 515041, China.
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA.
- Comprehensive Cancer Center, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
45
|
Fernandes SRG, Fernandes R, Sarmento B, Pereira PMR, Tomé JPC. Photoimmunoconjugates: novel synthetic strategies to target and treat cancer by photodynamic therapy. Org Biomol Chem 2019; 17:2579-2593. [PMID: 30648722 DOI: 10.1039/c8ob02902d] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) combines a photosensitizer (PS) with the physical energy of non-ionizing light to trigger cell death pathways. PDT has potential as a therapeutic modality to be used in alternative or in combination with other conventional cancer treatment protocols (e.g. surgery, chemotherapy and radiotherapy). Still, due to the lack of specificity of the current PSs to target the tumor cells, several studies have exploited their conjugation with targeting moieties. PSs conjugated with antibodies (Abs) or their fragments, able to bind antigens overexpressed in the tumors, have demonstrated potential in PDT of tumors. This review provides an overview of the most recent advances on photoimmunoconjugates (PICs) for cancer PDT, which involve the first and second-generation PSs conjugated to Abs. This is an update of our previous review "Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications", published in 2015 in Org. Biomol. Chem.
Collapse
Affiliation(s)
- Sara R G Fernandes
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
46
|
Nagaya T, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination. Gastric Cancer 2019; 22:463-472. [PMID: 30171392 PMCID: PMC7400986 DOI: 10.1007/s10120-018-0871-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Peritoneal dissemination (PD) of abdominal malignancies is a common form of metastasis and its presence signals a poor prognosis. New treatment is required for patients with PD. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate (APC). In this study, we investigate in vitro and in vivo efficacy of trastuzumab (tra)-IR700DX NIR-PIT on a human epidermal growth factor receptor type 2 (HER2)-positive gastric cancer cell line. METHODS NIR-PIT effects were investigated in vitro and in vivo. Disseminated peritoneal implants mice were separated into 5 groups: (1) no treatment; (2) tra-IR700 i.v. only; (3) NIR light only; (4) NIR-PIT; (5) repeated NIR-PIT. The peritoneal cavity was irradiated with NIR light using a fiber optic diffuser delivered through the catheter. RESULTS Specific binding and cell-specific killing was observed after NIR-PIT in vitro. In the in vivo study, fluorescence endoscopy showed high tumor accumulation of tra-IR700 within tumors. Significantly prolonged survival was achieved in the three treatment groups (tra-IR700 i.v. only, NIR-PIT, and repeated NIR-PIT groups) compared with control and NIR light only group (p < 0.05 for tra-IR700 i.v. only, p < 0.01 for NIR-PIT, and p < 0.0001 for repeated NIR-PIT). Moreover, most prolonged survival was shown for the repeated NIR-PIT group (p < 0.0001 vs tra-IR700 i.v. only, p < 0.01 vs NIR-PIT). CONCLUSION NIR-PIT using a fiber optic diffuser to deliver light is a promising candidate for the treatment of disseminated peritoneal metastases and could be readily translated to humans.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America,Corresponding author: Hisataka Kobayashi, M.D., Ph.D., Phone: 301-435-4086; Fax: 301-402-3191;
| |
Collapse
|
47
|
Poiroux G, Barre A, Rougé P, Benoist H. Targeting Glycosylation Aberrations to Improve the Efficiency of Cancer Phototherapy. Curr Cancer Drug Targets 2019; 19:349-359. [DOI: 10.2174/1568009618666180628101059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
The use of photodynamic therapy in cancer still remains limited, partly because of the lack of photosensitizer (PS) specificity for the cancerous tissues. Various molecular tools are available to increase PS efficiency by targeting the cancer cell molecular alterations. Most strategies use the protein-protein interactions, e.g. monoclonal antibodies directed toward tumor antigens, such as HER2 or EGFR. An alternative could be the targeting of the tumor glycosylation aberrations, e.g. T/Tn antigens that are truncated O-glycans over-expressed in numerous tumors. Thus, to achieve an effective targeting, PS can be conjugated to molecules that specifically recognize the Oglycosylation aberrations at the cancer cell surface.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Universite de Toulouse, CRCT, INSERM UMR 1037, 2 Avenue Hubert Curien, 31037 Toulouse, France
| | - Annick Barre
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Pierre Rougé
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Hervé Benoist
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| |
Collapse
|
48
|
Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed Pharmacother 2019; 110:319-341. [DOI: 10.1016/j.biopha.2018.11.122] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022] Open
|
49
|
Diao W, Tong X, Yang C, Zhang F, Bao C, Chen H, Liu L, Li M, Ye F, Fan Q, Wang J, Ou-Yang ZC. Behaviors of Glioblastoma Cells in in Vitro Microenvironments. Sci Rep 2019; 9:85. [PMID: 30643153 PMCID: PMC6331579 DOI: 10.1038/s41598-018-36347-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/06/2018] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant and highly aggressive brain tumor. In this study, four types of typical GBM cell lines (LN229, SNB19, U87, U251) were cultured in a microfabricated 3-D model to study their in vitro behaviors. The 3-D in vitro model provides hollow micro-chamber arrays containing a natural collagen interface and thus allows the GBM cells to grow in the 3-D chambers. The GBM cells in this model showed specific properties on the aspects of cell morphology, proliferation, migration, and invasion, some of which were rarely observed before. Furthermore, how the cells invaded into the surrounding ECM and the corresponding specific invasion patterns were observed in details, implying that the four types of cells have different features during their development in cancer. This complex in vitro model, if applied to patient derived cells, possesses the potential of becoming a clinically relevant predictive model.
Collapse
Affiliation(s)
- Wenwen Diao
- Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xuezhi Tong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Yang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fengrong Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Bao
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 325001, China.,School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 325001, China.,School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, 401331, China
| | - Ming Li
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fangfu Ye
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhong-Can Ou-Yang
- Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, Beijing, 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
50
|
Lwin TM, Hoffman RM, Bouvet M. The development of fluorescence guided surgery for pancreatic cancer: from bench to clinic. Expert Rev Anticancer Ther 2018; 18:651-662. [PMID: 29768067 PMCID: PMC6298876 DOI: 10.1080/14737140.2018.1477593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Surgeons face major challenges in achieving curative R0 resection for pancreatic cancers. When the lesion is localized, they must appropriately visualize the tumor, determine appropriate resection margins, and ensure complete tumor clearance. Real-time surgical navigation using fluorescence-guidance has enhanced the ability of surgeons to see the tumor and has the potential to assist in achieving more oncologically complete resections. When there is metastatic disease, fluorescence enhancement can help detect these lesions and prevent unnecessary and futile surgeries. Areas covered: This article reviews different approaches for delivery of a fluorescence signal, their pre-clinical and clinical developments for fluorescence guided surgery, the advantages/challenges of each, and their potential for advancements in the future. Expert commentary: A variety of molecular imaging techniques are available for delivering tumor-specific fluorescence signals. Significant advancements have been made in the past 10 years due to the large body of literature on targeted therapies and this has translated into rapid developments of tumor-specific probes.
Collapse
Affiliation(s)
- Thinzar M. Lwin
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA
- VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|