1
|
Chang HH, Wang CH, Lin YL, Kuo CH, Liou HH, Hsu BG. Relationship Between Serum Myostatin and Endothelial Function in Non-Dialysis Patients with Chronic Kidney Disease. Diseases 2024; 12:328. [PMID: 39727658 DOI: 10.3390/diseases12120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Myostatin, primarily produced by skeletal muscle, inhibits muscle growth and promotes protein degradation. It has been implicated in conditions such as obesity, insulin resistance, and cardiovascular disease. However, its association with endothelial function in chronic kidney disease (CKD) patients remains unclear. This study aimed to investigate the relationship between serum myostatin levels and endothelial function in 136 non-dialysis CKD patients at stages 3-5. METHODS Fasting blood samples were collected to measure serum myostatin levels using enzyme-linked immunosorbent assay kits. Endothelial function was evaluated non-invasively by measuring the vascular reactivity index (VRI) with a digital thermal monitoring test. RESULTS VRI values were classified as poor (<1.0, n = 25, 18.4%), intermediate (1.0 to <2.0, n = 63, 46.3%), or good (≥2.0, n = 48, 35.3%). Factors associated with poor vascular reactivity included older age (p = 0.026), elevated serum blood urea nitrogen (p = 0.020), serum creatinine (p = 0.021), urine protein-to-creatinine ratio (UPCR, p = 0.013), and myostatin levels (p = 0.003), along with reduced estimated glomerular filtration rate (p = 0.015). Multivariate regression analysis identified older age, higher serum creatinine, and log-transformed myostatin levels as significant independent predictors of lower VRI. CONCLUSIONS These findings suggest that myostatin may serve as a potential biomarker for endothelial dysfunction in CKD patients. Future large-scale, longitudinal studies are warranted to confirm and extend our preliminary findings.
Collapse
Affiliation(s)
- Ho-Hsiang Chang
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Chih-Hsien Wang
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Li Lin
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chiu-Huang Kuo
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City 24243, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Ishibashi C, Nakanishi K, Nishida M, Shinomiya H, Shinzawa M, Kanayama D, Yamamoto R, Kudo T, Nagatomo I, Yamauchi-Takihara K. Myostatin as a plausible biomarker for early stage of sarcopenic obesity. Sci Rep 2024; 14:28629. [PMID: 39562792 PMCID: PMC11577097 DOI: 10.1038/s41598-024-79534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Since sarcopenic obesity (SO) impacts negatively on our health, early detection of SO is essential. However, prevalence of SO in an apparently healthy population has not been well examined. This study aimed to elucidate the prevalence and related factors of SO in middle-aged women, and to investigate useful diagnostic criteria for SO. Body component analyses were conducted on 432 female Osaka University employees aged 30-59 during their health checkups. Healthy (H) and SO groups were defined using cutoff values of 5.7 kg/m2 for skeletal muscle mass index and 30% for percent body fat. Serum myostatin and insulin levels were additionally measured. Among 432 participants, the prevalence of SO was 6.3%. Grip strength (P < 0.0001) was lower and triglyceride (P = 0.0004) and low-density lipoprotein cholesterol (P = 0.0105) levels, and Homeostatic Model Assessment of Insulin Resistance (P = 0.0262) were higher in the SO group than in the H group. Serum myostatin levels in the SO group were lower than in the H group (3,107 pg/mL vs. 3,957 pg/mL, P = 0.0003). Myostatin levels may be suppressed in individuals with SO without any pre-existing conditions. Our diagnostic criteria for SO could reveal the risks for metabolic-related diseases and may be useful for the early detection of SO.
Collapse
Affiliation(s)
- Chisaki Ishibashi
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kaori Nakanishi
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Makoto Nishida
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Haruki Shinomiya
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Maki Shinzawa
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Daisuke Kanayama
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryohei Yamamoto
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takashi Kudo
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Izumi Nagatomo
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keiko Yamauchi-Takihara
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
3
|
Capri M, Fronterrè S, Collura S, Giampieri E, Carrino S, Feroldi FM, Ciurca E, Conte M, Olivieri F, Ullo I, Pini R, Vacirca A, Astolfi A, Vasuri F, La Manna G, Pasquinelli G, Gargiulo M. Circulating CXCL9, monocyte percentage, albumin, and C-reactive protein as a potential, non-invasive, molecular signature of carotid artery disease in 65+ patients with multimorbidity: a pilot study in Age.It. Front Endocrinol (Lausanne) 2024; 15:1407396. [PMID: 39109084 PMCID: PMC11300199 DOI: 10.3389/fendo.2024.1407396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 09/17/2024] Open
Abstract
Background Carotid endarterectomy (CEA) for the prevention of upcoming vascular and cerebral events is necessary in patients with high-grade stenosis (≥70%). In the framework of the Italian National project Age.It, a pilot study was proposed aiming at the discovery of a molecular signature with predictive potential of carotid stenosis comparing 65+ asymptomatic and symptomatic inpatients. Methods A total of 42 inpatients have been enrolled, including 26 men and 16 women, with a mean age of 74 ± 6 years. Sixteen symptomatic and 26 asymptomatic inpatients with ≥70% carotid stenosis underwent CEA, according to the recommendations of the European Society for Vascular Surgery and the Society for Vascular Surgeons. Plaque biopsies and peripheral blood samples from the same individuals were obtained. Hematobiochemical analyses were conducted on all inpatients, and plasma cytokines/molecules, such as microRNAs (miRs), IL-6, sIL-6Ralpha, sgp130, myostatin (GDF8), follistatin, activin A, CXCL9, FGF21, and fibronectin, were measured using the ELISA standard technique. MiR profiles were obtained in the discovery phase including four symptomatic and four asymptomatic inpatients (both plasma and plaque samples), testing 734 miRs. MiRs emerging from the profiling comparison were validated through RT-qPCR analysis in the total cohort. Results and conclusion The two groups of inpatients differ in the expression levels of blood c-miRs-126-5p and -1271-5p (but not in their plaques), which are more expressed in symptomatic subjects. Three cytokines were significant between the two groups: IL-6, GDF8, and CXCL9. Using receiver operating characteristic (ROC) analysis with a machine learning-based approach, the most significant blood molecular signature encompasses albumin, C-reactive protein (CRP), the percentage of monocytes, and CXCL9, allowing for the distinction of the two groups (AUC = 0.83, 95% c.i. [0.85, 0.81], p = 0.0028). The potential of the molecular signature will be tested in a second cohort of monitored patients, allowing the application of a predictive model and the final evaluation of cost/benefit for an assessable screening test.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Interdepartmental Centre - Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Sara Fronterrè
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Salvatore Collura
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Enrico Giampieri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sara Carrino
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Erika Ciurca
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Interdepartmental Centre - Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Ines Ullo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rodolfo Pini
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Vacirca
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gaetano La Manna
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Gargiulo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
5
|
Wang J, Shang B, Tang L, Tian M, Liu J. Myostatin silencing inhibits podocyte apoptosis in membranous nephropathy through Smad3/PKA/NOX4 signaling pathway. Open Med (Wars) 2023; 18:20220615. [PMID: 36969728 PMCID: PMC10037167 DOI: 10.1515/med-2022-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 03/25/2023] Open
Abstract
This article focuses on deciphering the effect of myostatin (MSTN) on podocyte apoptosis in membranous nephropathy (MN) and fathoming out its underlying mechanism. Rats received the intravenous injection of cationized-bovine serum albumin to induce MN in vivo, while angiotensin II (Ang II) was exposed to AB8/13 cells to induce MN model in vitro. The mRNA expression of MSTN was detected by qRT-PCR. The effects of MSTN silencing on MN model rats and cells were assessed by cell counting kit-8 assay, flow cytometry, hematoxylin and eosin staining, and TUNEL assay. The expressions of proteins related to apoptosis and Smad3/protein kinase A (PKA)/NADPH oxidase 4 (NOX4) signaling pathway were examined by western blot. As a result, MSTN was highly expressed in MN cell and rat models. Besides, knockdown of MSTN elevated the MN cell viability and dwindled apoptosis rate, as well as attenuated kidney injury in MN rats. Meanwhile, MSTN silencing lessened the expressions of phosphorylated (p)-Smad3 and Nox4, while boosting the p-PKA expression in MN rats and cells. Additionally, Smad3 overexpression reversed the above effects of MSTN silencing on Ang II-induced podocytes. In conclusion, MSTN knockdown restrains the podocyte apoptosis through regulating Smad3/PKA/NOX4 signaling pathway.
Collapse
Affiliation(s)
- Juan Wang
- Department of Nephrology, Xianyang Central Hospital, Xianyang, Shaanxi Province, 7120000, China
| | - Bangjuan Shang
- Department of Nephrology, Xianyang Central Hospital, Xianyang, Shaanxi Province, 7120000, China
| | - Li Tang
- Department of Nephrology, Xianyang Central Hospital, Xianyang, Shaanxi Province, 7120000, China
| | - Min Tian
- Department of Nephrology, Xianyang Central Hospital, Xianyang, Shaanxi Province, 7120000, China
| | - Junping Liu
- Department of Nephrology, Xianyang Central Hospital, No. 78 East Renmin Road, Weicheng District, Xianyang, Shaanxi Province, 7120000, China
| |
Collapse
|
6
|
Abstract
Muscle wasting (ie, atrophy) is a serious consequence of chronic kidney disease (CKD) that reduces muscle strength and function. It reduces the quality of life for CKD patients and increases the risks of comorbidities and mortality. Current treatment strategies to prevent or reverse skeletal muscle loss are limited owing to the broad and systemic nature of the initiating signals and the multifaceted catabolic mechanisms that accelerate muscle protein degradation and impair protein synthesis and repair pathways. Recent evidence has shown how organs such as muscle, adipose, and kidney communicate with each other through interorgan exchange of proteins and RNAs during CKD. This crosstalk changes cell functions in the recipient organs and represents an added dimension in the complex processes that are responsible for muscle atrophy in CKD. This complexity creates challenges for the development of effective therapies to ameliorate muscle wasting and weakness in patients with CKD.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC; Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC.
| |
Collapse
|
7
|
Bhuiya J, Notsu Y, Kobayashi H, Shibly AZ, Sheikh AM, Okazaki R, Yamaguchi K, Nagai A, Nabika T, Abe T, Yamasaki M, Isomura M, Yano S. Neither Trimethylamine-N-Oxide nor Trimethyllysine Is Associated with Atherosclerosis: A Cross-Sectional Study in Older Japanese Adults. Nutrients 2023; 15:nu15030759. [PMID: 36771464 PMCID: PMC9921512 DOI: 10.3390/nu15030759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Recent evidence suggests that trimethylamine-N-oxide (TMAO), a metabolite of L-carnitine and choline, is linked to atherosclerosis and cardiovascular diseases. As TMAO content is very high in fish, we raised the following question: why do Japanese people, who consume lots of fish, show a low risk of atherosclerosis? To address this question, we investigated the effects of TMAO and other L-carnitine-related metabolites on carotid intima-media thickness (IMT). Participants were recruited from a small island and a mountainous region. Plasma L-carnitine, γ-butyrobetaine (γBB), TMAO, trimethyllysine (TML), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels were measured using liquid or gas chromatography-mass spectrometry. Plasma L-carnitine concentration was higher in men than in women. TMAO and TML were significantly higher in the residents of the island than in the mountainous people. In multiple linear regression analyses in all participants, TML showed a significant inverse association with max-IMT and plaque score (PS), whereas TMAO did not show any associations. In women, L-carnitine was positively associated with max-IMT and PS. TMAO was correlated with both EPA and DHA levels, implying that fish is a major dietary source of TMAO in Japanese people. Our study found that plasma TMAO was not an apparent risk factor for atherosclerosis in elderly Japanese people, whereas a low level of TML might be a potential risk. L-carnitine may be a marker for atherosclerosis in women.
Collapse
Affiliation(s)
- Jubo Bhuiya
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Yoshitomo Notsu
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
- Metabolizumo Project, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Hironori Kobayashi
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
- Metabolizumo Project, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Abu Zaffar Shibly
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Abdullah Md. Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Ryota Okazaki
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Kazuto Yamaguchi
- Department of Cardiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Toru Nabika
- Metabolizumo Project, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Takafumi Abe
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Masayuki Yamasaki
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Minoru Isomura
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, 89-1 Enya-cho, Izumo City 693-8501, Japan
- Correspondence: ; Tel.: +81-0853-20-2312; Fax: +81-0853-20-2409
| |
Collapse
|
8
|
Lee SM, Jeong EG, Jeong YI, Rha SH, Kim SE, An WS. Omega-3 fatty acid and menaquinone-7 combination are helpful for aortic calcification prevention, reducing osteoclast area of bone and Fox0 expression of muscle in uremic rats. Ren Fail 2022; 44:1873-1885. [PMID: 36632744 PMCID: PMC9848285 DOI: 10.1080/0886022x.2022.2142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Osteopenia, sarcopenia, and vascular calcification (VC) are prevalent in patients with chronic kidney disease and often coexist. In the absence of proven therapies, it is necessary to develop therapeutic or preventive nutrients supplementation for osteopenia, sarcopenia, and VC. The present study investigated the effect of omega-3 fatty acid (FA) and menaquinone-7 (MK-7) on osteopenia, sarcopenia, and VC in adenine and low-protein diet-induced uremic rats. METHODS Thirty-two male Sprague-Dawley rats were fed diets containing 0.75% adenine and 2.5% protein for three weeks. Rats were randomly divided into four groups that were fed diets containing 2.5% protein for four weeks: adenine control (0.9% saline), omega-3 FA (300 mg/kg/day), MK-7 (50 µg/kg/day), and omega-3 FA/MK-7. Von Kossa staining for aortic calcification assessment was performed. Osteoclast surface/bone surface ratio (OcS/BS) of bone and muscle fiber were analyzed using hematoxylin and eosin staining. Osteoprotegerin (OPG) immunohistochemical staining was done in the aorta and bone. Molecules related with sarcopenia were analyzed using western blotting. RESULTS Compared to the normal control, OcS/BS and aortic calcification, and OPG staining in the aorta and bone were significantly increased in the adenine controls. OPG staining and aortic calcification progressed the least in the group supplemented with both omega-3 FA/MK-7. In the adenine controls, the regular arrangement of muscle fiber was severely disrupted, and inflammatory cell infiltration was more prominent. These findings were reduced after combined supplementation with omega-3 FA/MK-7. Furthermore, decreased mammalian target of rapamycin and increased Forkhead box protein 1 expression was significantly restored by combined supplementation. CONCLUSIONS Combined nutrients supplementation with omega-3 FA and MK-7 may be helpful for aortic VC prevention, reducing osteoclast activation and improving sarcopenia-related molecules in adenine and low-protein diet induced uremic rats.
Collapse
Affiliation(s)
- Su Mi Lee
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Eu Gene Jeong
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Yu In Jeong
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seo Hee Rha
- Department of Pathology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seong Eun Kim
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Won Suk An
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea,CONTACT Won Suk An Department of Internal Medicine, Dong-A University, 3Ga-1, Dongdaesin-Dong, Seo-Gu, Busan, 602-715, Republic of Korea
| |
Collapse
|
9
|
Sarcopenia and cardiovascular disease in patients with and without kidney disease: what do we know? Int Urol Nephrol 2022; 55:1161-1171. [PMID: 36327007 DOI: 10.1007/s11255-022-03393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Cardiovascular disease (CVD) incidence is high in patients with chronic kidney disease (CKD) and is the most frequent cause of mortality in this population. Advanced age, hypertension, uremic toxins, endothelial dysfunction, atherosclerosis, hyperhomocysteinemia, oxidative stress, and inflammation are among the leading causes of increased CVD in advanced stages of CKD. Although defined as a decrease in muscle strength associated with aging, sarcopenia is also prevalent in CKD patients. Sarcopenia causes physical disability, low quality of life, and mortality. Regular exercise and nutritional supplementation may slow the progression of sarcopenia. Recent studies have shown that sarcopenia increases the risk of CVD and mortality in people with or without kidney disease. This review discusses the relationship between sarcopenia and CVD in light of the current literature.
Collapse
|
10
|
Indoxyl Sulfate Might Play a Role in Sarcopenia, While Myostatin Is an Indicator of Muscle Mass in Patients with Chronic Kidney Disease: Analysis from the RECOVERY Study. Toxins (Basel) 2022; 14:toxins14100660. [PMID: 36287929 PMCID: PMC9610577 DOI: 10.3390/toxins14100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Serum myostatin and indoxyl sulfate (IS) levels increase with kidney function decline and may function as uremic toxins in chronic kidney disease (CKD)-related sarcopenia. Herein, we analyzed the association between serum myostatin and IS levels and sarcopenia in patients with CKD, by performing a post hoc analysis of baseline data extracted from the RECOVERY study (clinicaltrials.gov: NCT03788252) of 150 patients with CKD. We stratified patients into two groups according to the median value of myostatin (cutoff 4.5 ng/mL) and IS levels (cutoff 0.365 mg/dL). The proportion of patients with sarcopenia was higher in those with high IS levels but lower in those with high myostatin levels. The skeletal muscle mass index (SMI) and handgrip strength (HGS) were significantly lower in patients with high IS levels but significantly higher in patients with high myostatin levels. IS levels showed a negative correlation with glomerular filtration rate (GFR), SMI, and HGS. However, myostatin levels were positively correlated with SMI and HGS, but not with GFR. Sarcopenia was independently associated with age and IS level after adjustment. Increased levels of serum total IS might play a role in sarcopenia, while increased levels of serum myostatin are associated with muscle mass in patients with CKD.
Collapse
|
11
|
Miyazaki R, Abe T, Yano S, Okuyama K, Sakane N, Ando H, Isomura M, Yamasaki M, Nabika T. Associations between physical frailty and living arrangements in Japanese older adults living in a rural remote island: The Shimane CoHRE study. J Gen Fam Med 2022; 23:310-318. [PMID: 36093222 PMCID: PMC9444019 DOI: 10.1002/jgf2.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Living arrangements have been known to be associated with physical frailty. However, the prevalence of frailty and its risk factors in remote islands is not understood. We examined the association between living arrangements and objectively measured frailty among older adults living in a remote island of Japan. Methods Among older people living in Okinoshima, 656 older adults (75.6 ± 6.4 years) were analyzed. Physical frailty (robust, prefrailty, or frailty) was assessed using the 5-item frailty phenotype (unintentional weight loss, self-reported exhaustion, weakness, slow walking speed, and low physical activity). Physical functions (muscle mass, gait speed, and grip strength) were measured objectively. Results The prevalence of frailty and prefrailty was 6.6% and 43.8%, respectively. Living with a spouse resulted in a significantly lower prevalence of frailty (p < 0.001) compared with other living arrangements. All objectively measured physical functions among those who lived with a spouse were significantly superior to those who lived with family or alone (p < 0.001). Multinomial logistic regression showed that living alone was significantly associated with frailty (odds ratio [OR] 2.36, 95% confidence interval [CI] 1.07-5.24) and prefrailty (OR 1.75, 95% CI 1.14-2.69) after adjusting for all covariates. Conclusion The prevalence of frailty on remote islands seemed similar to that in urban areas. Older people living in remote islands might be able to maintain their physical health. Furthermore, living alone may correlate with increased risks of frailty and prefrailty. Among elderly individuals on remote islands, living with a spouse might be desirable to prevent (pre)frailty.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Faculty of Human SciencesShimane UniversityMatsue‐shiJapan
- Center for Community‐Based Healthcare Research and Education (CoHRE), Organization for Research and Academic InformationShimane UniversityIzumo‐shiJapan
| | - Takafumi Abe
- Center for Community‐Based Healthcare Research and Education (CoHRE), Organization for Research and Academic InformationShimane UniversityIzumo‐shiJapan
| | - Shozo Yano
- Center for Community‐Based Healthcare Research and Education (CoHRE), Organization for Research and Academic InformationShimane UniversityIzumo‐shiJapan
| | - Kenta Okuyama
- Center for Community‐Based Healthcare Research and Education (CoHRE), Organization for Research and Academic InformationShimane UniversityIzumo‐shiJapan
- Center for Primary Health Care ResearchLund UniversityMalmöSweden
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute for Endocrine and Metabolic Disease, Kyoto Medical CenterNational Hospital OrganizationKyotoJapan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function AnalysisKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Minoru Isomura
- Faculty of Human SciencesShimane UniversityMatsue‐shiJapan
- Center for Community‐Based Healthcare Research and Education (CoHRE), Organization for Research and Academic InformationShimane UniversityIzumo‐shiJapan
| | - Masayuki Yamasaki
- Faculty of Human SciencesShimane UniversityMatsue‐shiJapan
- Center for Community‐Based Healthcare Research and Education (CoHRE), Organization for Research and Academic InformationShimane UniversityIzumo‐shiJapan
| | - Toru Nabika
- Center for Community‐Based Healthcare Research and Education (CoHRE), Organization for Research and Academic InformationShimane UniversityIzumo‐shiJapan
| |
Collapse
|
12
|
Bataille S, Dou L, Bartoli M, Sallée M, Aniort J, Ferkak B, Chermiti R, McKay N, Da Silva N, Burtey S, Poitevin S. Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrol Dial Transplant 2022; 37:1249-1260. [PMID: 35333341 DOI: 10.1093/ndt/gfac136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myostatin and activin A induce muscle wasting by activating the ubiquitin proteasome system and inhibiting the Akt/mTOR pathway. In chronic kidney disease (CKD), myostatin and activin A plasma concentrations are increased, but it is not clear if there is an increased production or a decreased renal clearance. METHODS We measured myostatin and activin A concentrations in 232 CKD patients and studied their correlation with estimated glomerular filtration rate (eGFR). We analyzed the myostatin gene (MSTN) expression in muscle biopsies of hemodialysis (HD) patients. We then measured circulating myostatin and activin A in plasma and the Mstn and Inhba expression in muscles, kidney, liver and heart of two CKD mice models (adenine and 5/6th nephrectomy models). Finally, we analyzed whether the uremic toxin indoxyl sulfate (IS) increased Mstn expression in mice and cultured muscle cells. RESULTS In patients, myostatin and activin A were inversely correlated with eGFR. MSTN expression was lower in HD patients' muscles (vastus lateralis) than in controls. In mice with CKD, myostatin and activin A blood concentrations were increased. Mstn was not up-regulated in CKD mice tissues. Inha was up-regulated in kidney and heart. Exposure to IS did not induce Mstn up-regulation in mice muscles and in cultured myoblasts and myocytes. CONCLUSION During CKD, myostatin and activin A blood concentrations are increased. Myostatin is not overproduced, suggesting only an impaired renal clearance, but activin A is over produced in kidney and heart. We propose to add myostatin and activin A to the list of uremic toxins.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Marion Sallée
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bohrane Ferkak
- Service d'Evaluation Médicale, AP-HM, Marseille, France.,Aix Marseille Univ, EA 3279 Self-perceived Health Assessment Research Unit, Marseille, France
| | - Rania Chermiti
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Nathalie McKay
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | | |
Collapse
|
13
|
Wang XH, Mitch WE, Price SR. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 2022; 18:138-152. [PMID: 34750550 DOI: 10.1038/s41581-021-00498-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Loss of muscle proteins is a deleterious consequence of chronic kidney disease (CKD) that causes a decrease in muscle strength and function, and can lead to a reduction in quality of life and increased risk of morbidity and mortality. The effectiveness of current treatment strategies in preventing or reversing muscle protein losses is limited. The limitations largely stem from the systemic nature of diseases such as CKD, which stimulate skeletal muscle protein degradation pathways while simultaneously activating mechanisms that impair muscle protein synthesis and repair. Stimuli that initiate muscle protein loss include metabolic acidosis, insulin and IGF1 resistance, changes in hormones, cytokines, inflammatory processes and decreased appetite. A growing body of evidence suggests that signalling molecules secreted from muscle can enter the circulation and subsequently interact with recipient organs, including the kidneys, while conversely, pathological events in the kidney can adversely influence protein metabolism in skeletal muscle, demonstrating the existence of crosstalk between kidney and muscle. Together, these signals, whether direct or indirect, induce changes in the levels of regulatory and effector proteins via alterations in mRNAs, microRNAs and chromatin epigenetic responses. Advances in our understanding of the signals and processes that mediate muscle loss in CKD and other muscle wasting conditions will support the future development of therapeutic strategies to reduce muscle loss.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, USA
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA. .,Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
14
|
Yasar E, Tek NA, Tekbudak MY, Yurtdaş G, Gülbahar Ö, Uyar GÖ, Ural Z, Çelik ÖM, Erten Y. THE RELATIONSHIP BETWEEN MYOSTATIN, INFLAMMATORY MARKERS AND SARCOPENIA IN PATIENTS WITH CHRONIC KIDNEY DISEASE. J Ren Nutr 2022; 32:677-684. [PMID: 35122995 DOI: 10.1053/j.jrn.2022.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/20/2021] [Accepted: 01/01/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To determine the prevalence of sarcopenia in patients with chronic kidney disease (CKD), investigate the relationship of the serum myostatin level with sarcopenia and inflammatory markers. METHODS The study was conducted with four patient groups: renal transplantation (TX), stage 3-5 non-dialysis-dependent CKD (NDD-CKD), hemodialysis (HD), and peritoneal dialysis (PD). Laboratory parameters, serum myostatin, C-reactive protein, and interleukin-6 (IL-6) levels were studied. Body composition was estimated using a multifrequency bioimpedance analysis. Handgrip strength (HGS) was evaluated with a handgrip dynamometer. The HGS and appendicular skeletal muscle index (ASMI) measurements were used to determine sarcopenia presence. RESULTS The study included 130 patients [72(55%) males]. The patient distribution in groups was as follows: 37 in HD, 28 in PD, 37 in renal TX, and 28 in NDD-CKD. The highest level of myostatin was measured in the HD group and the lowest in the TX group (p<0.001). The HGS measurement was significantly lower only in the PD group compared to the TX group (p=0.025). The myostatin was negatively correlated with HGS, albumin, estimated glomerular filtration rate, and Kt/Vurea. However, myostatin had no correlation with inflammatory markers or ASMI. Sarcopenia was present in 37 (29%) of all patients: 15 (40%) in the HD group, nine (32%) in NDD-CKD, seven (25%) in PD, and six (16%) in TX. When the patients with and without sarcopenia were compared, only myostatin was higher in the former (p=0.045). As a result of multivariate analysis, myostatin was the only independent factor which predict sarcopenia (OR: 1.002, 95% CI:1.001-1.005, p=0.048). CONCLUSION To prevent devastating events associated with sarcopenia in patients with CKD, renal transplantation seems to be the best treatment solution. For the early recognition of sarcopenia, the measurement of the serum myostatin level may be a promising diagnostic approach.
Collapse
Affiliation(s)
- Emre Yasar
- Gazi University, Faculty of Medicine, Department of Nephrology, Ankara, Turkey.
| | - Nilüfer Acar Tek
- Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | | | - Gamze Yurtdaş
- Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey; Izmir Katip Celebi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Izmir, Turkey
| | - Özlem Gülbahar
- Gazi University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Gizem Özata Uyar
- Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Zeynep Ural
- Gazi University, Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| | - Özge Mengi Çelik
- Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Yasemin Erten
- Gazi University, Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| |
Collapse
|
15
|
Association study between relative expression levels of eight genes and growth rate in Hungarian common carp ( Cyprinus carpio). Saudi J Biol Sci 2022; 29:630-639. [PMID: 35002460 PMCID: PMC8716967 DOI: 10.1016/j.sjbs.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022] Open
Abstract
One of the most important issues in improving the competitiveness of the fish production sector is to improve the growth rate of fish. The genetic background to this trait is at present poorly understood. In this study, we compared the relative gene expression levels of the Akt1s1, FGF, GH, IGF1, MSTN, TLR2, TLR4 and TLR5 genes in blood in groups of common carps (Cyprinus carpio), which belonged to different growth types and phenotypes. Fish were divided into groups based on growth rate (normal group: n = 6; slow group: n = 6) and phenotype (scaled group: n = 6; mirror group: n = 6). In the first 18 weeks, we measured significant differences (p < 0.05) between groups in terms of body weight and body length. Over the next 18 weeks, the fish in the slow group showed more intense development. In the same period, the slow group was characterized by lower expression levels for most genes, whereas GH and IGF1 mRNA levels were higher compared to the normal group. We found that phenotype was not a determining factor in differences of relative expression levels of the genes studied.
Collapse
|
16
|
Karava V, Dotis J, Christoforidis A, Kondou A, Printza N. Muscle-bone axis in children with chronic kidney disease: current knowledge and future perspectives. Pediatr Nephrol 2021; 36:3813-3827. [PMID: 33534001 DOI: 10.1007/s00467-021-04936-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/06/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Bone and muscle tissue are developed hand-in-hand during childhood and adolescence and interact through mechanical loads and biochemical pathways forming the musculoskeletal system. Chronic kidney disease (CKD) is widely considered as both a bone and muscle-weakening disease, eventually leading to frailty phenotype, with detrimental effects on overall morbidity. CKD also interferes in the biomechanical communication between two tissues. Pathogenetic mechanisms including systemic inflammation, anorexia, physical inactivity, vitamin D deficiency and secondary hyperparathyroidism, metabolic acidosis, impaired growth hormone/insulin growth factor 1 axis, insulin resistance, and activation of renin-angiotensin system are incriminated for longitudinal uncoordinated loss of bone mineral content, bone strength, muscle mass, and muscle strength, leading to mechanical impairment of the functional muscle-bone unit. At the same time, CKD may also interfere in the biochemical crosstalk between the two organs, through inhibiting or stimulating the expression of certain osteokines and myokines. This review focuses on presenting current knowledge, according to in vitro, in vivo, and clinical studies, concerning the pathogenetic pathways involved in the muscle-bone axis, and suggests approaches aimed at preventing bone loss and muscle wasting in the pediatric population. Novel therapeutic targets for preserving musculoskeletal health in the context of CKD are also discussed.
Collapse
Affiliation(s)
- Vasiliki Karava
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece.
| | - John Dotis
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Athanasios Christoforidis
- Pediatric Endocrinology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Kondou
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Nikoleta Printza
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| |
Collapse
|
17
|
Shamseddeen H, Madathanapalli A, Are VS, Shah VH, Sanyal AJ, Tang Q, Liang T, Gelow K, Zimmers TA, Chalasani N, Desai AP. Changes in Serum Myostatin Levels in Alcoholic Hepatitis Correlate with Improvement in MELD. Dig Dis Sci 2021; 66:3062-3073. [PMID: 33074470 PMCID: PMC8053725 DOI: 10.1007/s10620-020-06632-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alcoholic hepatitis (AH) is a serious clinical syndrome often associated with muscle wasting. Myostatin, a member of the transforming growth factor-β superfamily, has been studied in diseases with muscle wasting; however, the role of myostatin in AH is unknown. AIMS To investigate the association between myostatin, clinical variables, and outcomes in AH. METHODS We analyzed data for cases of AH and controls of heavy drinkers (HD) in TREAT001 (NCT02172898) with serum myostatin levels (AH: n = 131, HD: n = 124). We compared characteristics between the two groups at baseline, 30, and 90 days and explored correlations between myostatin and clinical variables. We then modeled the relationship of myostatin to other variables, including mortality. RESULTS Baseline median myostatin was lower in AH compared to HD (males: 1.58 vs 3.06 ng/ml, p < 0.001; females: 0.84 vs 2.01 ng/ml, p < 0.001). In multivariable linear regression, bilirubin, WBC, and platelet count remained negatively correlated with myostatin in AH. AH females who died at 90 days had significantly lower myostatin, but in a multivariable logistic model with MELD and myostatin, only MELD remained significantly associated with 90-day mortality. During 1-year follow-up, AH cases (n = 30) demonstrated an increase in myostatin (mean, 1.73 ng/ml) which correlated with decreasing MELD scores (ρ = - 0.42, p = 0.01). CONCLUSIONS Myostatin levels are significantly lower in AH compared to HD and are negatively correlated with total bilirubin, WBC, and platelet count. Myostatin increased as patients experienced decreases in MELD. Overall, myostatin demonstrated a dynamic relationship with AH outcomes and future studies are needed to understand the prognostic role of myostatin in AH.
Collapse
Affiliation(s)
- Hani Shamseddeen
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | | | - Vijay S Are
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Arun J Sanyal
- Division of Gastroenterology and Hepatology, VCU School of Medicine, Richmond, VA, USA
| | - Qing Tang
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tiebing Liang
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Kayla Gelow
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Teresa A Zimmers
- Surgical Oncology, Surgery-Chairman's Office, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Archita P Desai
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA.
| |
Collapse
|
18
|
Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/Activin-A Signaling in the Vessel Wall and Vascular Calcification. Cells 2021; 10:2070. [PMID: 34440838 PMCID: PMC8393536 DOI: 10.3390/cells10082070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
A current hypothesis is that transforming growth factor-β signaling ligands, such as activin-A and myostatin, play a role in vascular damage in atherosclerosis and chronic kidney disease (CKD). Myostatin and activin-A bind with different affinity the activin receptors (type I or II), activating distinct intracellular signaling pathways and finally leading to modulation of gene expression. Myostatin and activin-A are expressed by different cell types and tissues, including muscle, kidney, reproductive system, immune cells, heart, and vessels, where they exert pleiotropic effects. In arterial vessels, experimental evidence indicates that myostatin may mostly promote vascular inflammation and premature aging, while activin-A is involved in the pathogenesis of vascular calcification and CKD-related mineral bone disorders. In this review, we discuss novel insights into the biology and physiology of the role played by myostatin and activin in the vascular wall, focusing on the experimental and clinical data, which suggest the involvement of these molecules in vascular remodeling and calcification processes. Moreover, we describe the strategies that have been used to modulate the activin downward signal. Understanding the role of myostatin/activin signaling in vascular disease and bone metabolism may provide novel therapeutic opportunities to improve the treatment of conditions still associated with high morbidity and mortality.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Daniela Picciotto
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Leda Cipriani
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| |
Collapse
|
19
|
Koito Y, Yanishi M, Kimura Y, Tsukaguchi H, Kinoshita H, Matsuda T. Serum Brain-Derived Neurotrophic Factor and Myostatin Levels Are Associated With Skeletal Muscle Mass in Kidney Transplant Recipients. Transplant Proc 2021; 53:1939-1944. [PMID: 34253381 DOI: 10.1016/j.transproceed.2021.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sarcopenia, or reduced muscle mass, can be an important complication in kidney transplant recipients. The skeletal muscles were recently reported to secrete various myokines, such as brain-derived neurotrophic factor (BDNF) and myostatin, to regulate their mass, function, or both. The aim of the present study was to analyze the interrelationship between myokines (BDNF and myostatin) and skeletal muscle mass in kidney transplant recipients. METHODS The study population comprised 40 patients who underwent kidney transplantation at Kansai Medical University Hospital. Twenty patients had low skeletal muscle mass index (SMI) values, as measured on dual-energy x-ray absorptiometry, and were categorized into 2 groups (low SMI and normal). RESULTS Mean serum BDNF levels were 15.7 ng/mL in the low SMI group and 17.8 ng/mL in the normal group (P = .013). Mean serum myostatin levels were 362 pg/mL in the low SMI and 267 pg/mL in the normal group (P = .024). There was a significant positive correlation among metabolic equivalents and serum BDNF levels (r = 0.817; P < .001) and a significant negative correlation among metabolic equivalents and serum myostatin levels (r = -0.541; P < .001). Receiver operating characteristic analysis showed that serum BDNF and level of area under curve was 0.712, and serum myostatin level of area under the curve was 0.690. Serum BDNF and myostatin levels showed no significant difference. CONCLUSION These results suggest that BDNF and myostatin are potential biomarkers of reduced muscle mass in kidney transplant recipients.
Collapse
Affiliation(s)
- Yuya Koito
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Masaaki Yanishi
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan.
| | - Yutaka Kimura
- Health Science Center, Kansai Medical University, Osaka, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Osaka, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Tadashi Matsuda
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
20
|
Choi SJ, Lee MS, Kang DH, Ko GJ, Lim HS, Yu BC, Park MY, Kim JK, Kim CH, Hwang SD, Kim JC, Won CW, An WS. Myostatin/Appendicular Skeletal Muscle Mass (ASM) Ratio, Not Myostatin, Is Associated with Low Handgrip Strength in Community-Dwelling Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147344. [PMID: 34299795 PMCID: PMC8307565 DOI: 10.3390/ijerph18147344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023]
Abstract
Background/Aims: Elevated levels of serum myostatin have been proposed as a biomarker for sarcopenia. Recent studies have shown that elevated level of serum myostatin was associated with physical fitness and performance. This study aimed to examine the significance of myostatin in the association between muscle mass and physical performance in the elderly. Methods: This cross-sectional study is based on the Korean Frailty and Aging Cohort study involving 1053 people aged 70 years or over. Anthropometric, physical performance, and laboratory data were collected. Results: The mean age of the participants was 75.8 years, and 50.7% of them were female. Serum myostatin levels in men (3.7 ± 1.2 vs. 3.2 ± 1.1 ng/mL, p < 0.001) were higher compared with that in women. Serum myostatin level was associated with appendicular skeletal muscle mass (ASM) index and eGFR by cystatin C. Serum myostatin/ASM ratio was associated with handgrip strength in women. Conclusion: Higher serum myostatin levels were related with higher muscle mass and better physical performances in the elderly. Serum myostatin/ASM ratio may be a predictor for physical performance rather than myostatin.
Collapse
Affiliation(s)
- Soo Jeong Choi
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Min Sung Lee
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (M.S.L.); (D.-H.K.)
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (M.S.L.); (D.-H.K.)
| | - Gang Jee Ko
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Korea;
| | - Hee-Sook Lim
- Department of Food Sciences and Nutrition, Yeonsung University, Anyang 14011, Korea;
| | - Byung Chul Yu
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Moo Yong Park
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Jin Kuk Kim
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Chul-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14854, Korea;
| | - Seung Duk Hwang
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Jun Chul Kim
- Division of Nephrology, Department of Internal Medicine, CHA University School of Medicine, Gumi 39295, Korea;
| | - Chang Won Won
- Department of Family Medicine, Kyung Hee University School of Medicine, Seoul 02447, Korea
- Correspondence: (C.W.W.); (W.S.A.)
| | - Won Suk An
- Division of Nephrology, Department of Internal Medicine, Dong-A University College of Medicine, Busan 49201, Korea
- Correspondence: (C.W.W.); (W.S.A.)
| |
Collapse
|
21
|
Myostatin regulates the production of fibroblast growth factor 23 (FGF23) in UMR106 osteoblast-like cells. Pflugers Arch 2021; 473:969-976. [PMID: 33895875 PMCID: PMC8164604 DOI: 10.1007/s00424-021-02561-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Myostatin is a signaling molecule produced by skeletal muscle cells (myokine) that inhibits muscle hypertrophy and has further paracrine and endocrine effects in other organs including bone. Myostatin binds to activin receptor type 2B which forms a complex with transforming growth factor-β type I receptor (TGF-βRI) and induces intracellular p38MAPK and NFκB signaling. Fibroblast growth factor 23 (FGF23) is a paracrine and endocrine mediator produced by bone cells and regulates phosphate and vitamin D metabolism in the kidney. P38MAPK and NFκB-dependent store-operated Ca2+ entry (SOCE) are positive regulators of FGF23 production. Here, we explored whether myostatin influences the synthesis of FGF23. Fgf23 gene expression was determined by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast–like cells. UMR106 cells expressed activin receptor type 2A and B. Myostatin upregulated Fgf23 gene expression and protein production. The myostatin effect on Fgf23 was significantly attenuated by TGF-βRI inhibitor SB431542, p38MAPK inhibitor SB202190, and NFκB inhibitor withaferin A. Moreover, SOCE inhibitor 2-APB blunted the myostatin effect on Fgf23. Taken together, myostatin is a stimulator of Fgf23 expression in UMR106 cells, an effect at least partially mediated by downstream TGF-βRI/p38MAPK signaling as well as NFκB-dependent SOCE.
Collapse
|
22
|
A highly prevalent SINE mutation in the myostatin (MSTN) gene promoter is associated with low circulating myostatin concentration in Thoroughbred racehorses. Sci Rep 2021; 11:7916. [PMID: 33846367 PMCID: PMC8041750 DOI: 10.1038/s41598-021-86783-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Horse racing is a popular and financially important industry worldwide and researchers and horse owners are interested in genetic and training influences that maximise athletic performance. An association has been found between the presence of a short interspersed nuclear element (SINE) mutation in the myostatin (MSTN) gene promoter and optimal race distance in Thoroughbred horses. There is previous laboratory evidence that this mutation reduces MSTN expression in a cell culture model and influences skeletal muscle fibre type proportions in horses. Manipulating MSTN expression has been proposed for illicit gene doping in human and equine athletes and already, researchers have generated homozygous and heterozygous MSTN-null horse embryos following CRISPR/Cas9 editing at the equine MSTN locus and nuclear transfer, aiming artificially to enhance performance. To date however, the role of the naturally-occurring equine MSTN SINE mutation in vivo has remained unclear; here we hypothesised that it reduces, but does not ablate circulating myostatin expression. Following validation of an ELISA for detection of myostatin in equine serum and using residual whole blood and serum samples from 176 Thoroughbred racehorses under identical management, horses were genotyped for the SINE mutation by PCR and their serum myostatin concentrations measured. In our population, the proportions of SINE homozygotes, heterozygotes and normal horses were 27%, 46% and 27% respectively. Results indicated that horses that are homozygous for the SINE mutation have detectable, but significantly lower (p < 0.0001) serum myostatin concentrations (226.8 pg/ml; 69.3–895.4 pg/ml; median; minimum–maximum) than heterozygous (766 pg/ml; 64.6–1182 pg/ml) and normal horses (1099 pg/ml; 187.8–1743 pg/ml). Heterozygotes have significantly lower (p < 0.0001) myostatin concentrations than normal horses. Variation in serum myostatin concentrations across horses was not influenced by age or sex. This is the first study to reveal the direct functional effect of a highly prevalent mutation in the equine MSTN gene associated with exercise performance. Determining the reason for variation in expression of myostatin within SINE-genotyped groups might identify additional performance-associated environmental or genetic influences in Thoroughbreds. Understanding the mechanism by which altered myostatin expression influences skeletal muscle fibre type remains to be determined.
Collapse
|
23
|
Inconvenience of Living Place Affects Individual HbA1c Level in a Rural Area in Japan: Shimane CoHRE Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031147. [PMID: 33525428 PMCID: PMC7908499 DOI: 10.3390/ijerph18031147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Background: It has been shown that the socio-geographical environment of residential areas, such as altitude, affects the health status and health-maintenance behavior of residents. Here, we examined a hypothesis that altitude of residence would influence glycemic control in a general elderly population living in a rural area. Methods: A thousand and sixteen participants living in a mountainous region in Japan were recruited at health examinations. Hemoglobin A1c (HbA1c) was measured in serum as a parameter of glycemic control. The altitude of residence, distance to grocery stores and to medical facilities were estimated using a geographic information system. Results: Linear regression analysis confirmed a significant effect of the altitude on log HbA1c even after adjustment of other demographic and biochemical factors. When the distance to grocery stores or medical facilities were used instead of the altitude in a linear regression analysis, distance to secondary medical facilities alone showed a significant effect on HbA1c. Conclusions: We found a positive correlation between HbA1c level and residential altitude in a rural area of Japan. The altitude seemed to be a parameter substituting the inconvenicence of residential areas. Socio-geographical factors of living place, such as inconvenience, may influence glycemic control of the residents.
Collapse
|
24
|
Gupta L, Anuja A, Bhadu D, Naveen R, Singh M, Rai M, Agarwal V. High serum myostatin level suggests accelerated muscle senescence in active idiopathic inflammatory myositis. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_309_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Microvascular disease in chronic kidney disease: the base of the iceberg in cardiovascular comorbidity. Clin Sci (Lond) 2020; 134:1333-1356. [PMID: 32542397 PMCID: PMC7298155 DOI: 10.1042/cs20200279] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a relentlessly progressive disease with a very high mortality mainly due to cardiovascular complications. Endothelial dysfunction is well documented in CKD and permanent loss of endothelial homeostasis leads to progressive organ damage. Most of the vast endothelial surface area is part of the microcirculation, but most research in CKD-related cardiovascular disease (CVD) has been devoted to macrovascular complications. We have reviewed all publications evaluating structure and function of the microcirculation in humans with CKD and animals with experimental CKD. Microvascular rarefaction, defined as a loss of perfused microvessels resulting in a significant decrease in microvascular density, is a quintessential finding in these studies. The median microvascular density was reduced by 29% in skeletal muscle and 24% in the heart in animal models of CKD and by 32% in human biopsy, autopsy and imaging studies. CKD induces rarefaction due to the loss of coherent vessel systems distal to the level of smaller arterioles, generating a typical heterogeneous pattern with avascular patches, resulting in a dysfunctional endothelium with diminished perfusion, shunting and tissue hypoxia. Endothelial cell apoptosis, hypertension, multiple metabolic, endocrine and immune disturbances of the uremic milieu and specifically, a dysregulated angiogenesis, all contribute to the multifactorial pathogenesis. By setting the stage for the development of tissue fibrosis and end organ failure, microvascular rarefaction is a principal pathogenic factor in the development of severe organ dysfunction in CKD patients, especially CVD, cerebrovascular dysfunction, muscular atrophy, cachexia, and progression of kidney disease. Treatment strategies for microvascular disease are urgently needed.
Collapse
|
26
|
Bataille S, Chauveau P, Fouque D, Aparicio M, Koppe L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transplant 2020; 36:1986-1993. [PMID: 32974666 DOI: 10.1093/ndt/gfaa129] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) patients often exhibit a low muscle mass and strength, leading to physical impairment and an increased mortality. Two major signalling pathways control protein synthesis, the insulin-like growth factor-1/Akt (IGF-1/Akt) pathway, acting as a positive regulator, and the myostatin (Mstn) pathway, acting as a negative regulator. Mstn, also known as the growth development factor-8 (GDF-8), is a member of the transforming growth factor-β superfamily, which is secreted by mature muscle cells. Mstn inhibits satellite muscle cell proliferation and differentiation and induces a proteolytic phenotype of muscle cells by activating the ubiquitin-proteasome system. Recent advances have been made in the comprehension of the Mstn pathway disturbance and its role in muscle wasting during CKD. Most studies report higher Mstn concentrations in CKD and dialysis patients than in healthy subjects. Several factors increase Mstn production in uraemic conditions: low physical activity, chronic or acute inflammation and oxidative stress, uraemic toxins, angiotensin II, metabolic acidosis and glucocorticoids. Mstn seems to be only scarcely removed during haemodialysis or peritoneal dialysis, maybe because of its large molecule size in plasma where it is linked to its prodomain. In dialysis patients, Mstn has been proposed as a biomarker of muscle mass, muscle strength or physical performances, but more studies are needed in this field. This review outlines the interconnection between Mstn activation, muscle dysfunction and CKD. We discuss mechanisms of action and efficacy of pharmacological Mstn pathway inhibition that represents a promising treatment approach of striated muscle dysfunction. Many approaches and molecules are in development but until now, no study has proved a benefit in CKD.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | | | - Denis Fouque
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, Lyon, France.,Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, Lyon, France.,Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
27
|
Sabatino A, Cuppari L, Stenvinkel P, Lindholm B, Avesani CM. Sarcopenia in chronic kidney disease: what have we learned so far? J Nephrol 2020; 34:1347-1372. [PMID: 32876940 PMCID: PMC8357704 DOI: 10.1007/s40620-020-00840-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The term sarcopenia was first introduced in 1988 by Irwin Rosenberg to define a condition of muscle loss that occurs in the elderly. Since then, a broader definition comprising not only loss of muscle mass, but also loss of muscle strength and low physical performance due to ageing or other conditions, was developed and published in consensus papers from geriatric societies. Sarcopenia was proposed to be diagnosed based on operational criteria using two components of muscle abnormalities, low muscle mass and low muscle function. This brought awareness of an important nutritional derangement with adverse outcomes for the overall health. In parallel, many studies in patients with chronic kidney disease (CKD) have shown that sarcopenia is a prevalent condition, mainly among patients with end stage kidney disease (ESKD) on hemodialysis (HD). In CKD, sarcopenia is not necessarily age-related as it occurs as a result of the accelerated protein catabolism from the disease and from the dialysis procedure per se combined with low energy and protein intakes. Observational studies showed that sarcopenia and especially low muscle strength is associated with worse clinical outcomes, including worse quality of life (QoL) and higher hospitalization and mortality rates. This review aims to discuss the differences in conceptual definition of sarcopenia in the elderly and in CKD, as well as to describe etiology of sarcopenia, prevalence, outcome, and interventions that attempted to reverse the loss of muscle mass, strength and mobility in CKD and ESKD patients.
Collapse
Affiliation(s)
- Alice Sabatino
- Division of Nephrology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lilian Cuppari
- Division of Nephrology, Federal University of São Paulo and Oswaldo Ramos Foundation, São Paulo, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institute, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institute, Stockholm, Sweden
| | - Carla Maria Avesani
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institute, Stockholm, Sweden.
- Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients 2020; 12:nu12082401. [PMID: 32796600 PMCID: PMC7469036 DOI: 10.3390/nu12082401] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is a geriatric syndrome with a significant impact on older patients’ quality of life, morbidity and mortality. Despite the new available criteria, its early diagnosis remains difficult, highlighting the necessity of looking for a valid muscle wasting biomarker. Myostatin, a muscle mass negative regulator, is one of the potential candidates. The aim of this work is to point out various factors affecting the potential of myostatin as a biomarker of muscle wasting. Based on the literature review, we can say that recent studies produced conflicting results and revealed a number of potential confounding factors influencing their use in sarcopenia diagnosing. These factors include physiological variables (such as age, sex and physical activity) as well as a variety of disorders (including heart failure, metabolic syndrome, kidney failure and inflammatory diseases) and differences in laboratory measurement methodology. Our conclusion is that although myostatin alone might not prove to be a feasible biomarker, it could become an important part of a recently proposed panel of muscle wasting biomarkers. However, a thorough understanding of the interrelationship of these markers, as well as establishing a valid measurement methodology for myostatin and revising current research data in the light of new criteria of sarcopenia, is needed.
Collapse
|
29
|
Chung JO, Park SY, Chung DJ, Chung MY. Serum myostatin levels are positively associated with diabetic retinopathy in individuals with type 2 diabetes mellitus. J Diabetes Complications 2020; 34:107592. [PMID: 32354624 DOI: 10.1016/j.jdiacomp.2020.107592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 02/03/2023]
Abstract
AIM To examine the relationship between serum myostatin levels and diabetic retinopathy in individuals with type 2 diabetes mellitus (DM). METHODS This cross-sectional study evaluated 246 individuals with type 2 DM. Analysis of covariance was performed after adjusting for confounders. A logistic regression model was used to evaluate the relationship between serum myostatin levels and diabetic retinopathy. RESULTS Serum myostatin levels were significantly higher in individuals with diabetic retinopathy than in those without. After adjusting for other covariates, the mean serum myostatin levels were significantly different according to the severity of retinopathy (without diabetic retinopathy, 2234 pg/mL; non-proliferative diabetic retinopathy, 2698 pg/mL; and proliferative diabetic retinopathy, 3076 pg/mL; p for trend = 0.004). The multivariate analysis showed that serum myostatin levels were significantly associated with diabetic retinopathy (odds ratio for every 1 standard deviation-increase in logarithmic value, 1.77; 95% confidence interval: 1.21-2.59; p = 0.003). CONCLUSION Serum myostatin levels were positively associated with diabetic retinopathy in individuals with type 2 DM.
Collapse
Affiliation(s)
- Jin Ook Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju 501-757, Republic of Korea
| | - Seon-Young Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju 501-757, Republic of Korea.
| | - Dong Jin Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju 501-757, Republic of Korea
| | - Min Young Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju 501-757, Republic of Korea.
| |
Collapse
|
30
|
Lee SM, Kim SE, Lee JY, Jeong HJ, Son YK, An WS. Serum myostatin levels are associated with abdominal aortic calcification in dialysis patients. Kidney Res Clin Pract 2019; 38:481-489. [PMID: 31537054 PMCID: PMC6913587 DOI: 10.23876/j.krcp.19.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background Serum myostatin levels are increased according to renal function decline and myostatin may be a main mediator of chronic kidney disease–related sarcopenia. A previous study reported that serum myostatin level was negatively associated with abdominal aortic calcification (AAC) in older males. The aim of this study was to assess the association between serum myostatin level and AAC among dialysis patients of both sexes. In addition, we analyzed the relationship between serum myostatin level, muscle mass, and bone mineral density (BMD). Methods In this cross-sectional study, we evaluated AAC in the lateral lumbar spine using plain radiography and BMD in 71 patients undergoing dialysis. We classified patients into two groups according to the median value of myostatin as follows: those with high myostatin levels (≥ 5.0 ng/mL) and those with low myostatin levels (< 5.0 ng/mL). Results The proportion of patients with an AAC score of five points or more was higher among those with low myostatin levels. Myostatin level was negatively associated with AAC scores on plain radiography and had a positive association with skeletal muscle mass and T-scores for BMD measured at the total hip and femur neck. Lower myostatin levels were independently associated with higher AAC scores following adjustment for age, sex, diabetes mellitus, dialysis vintage, dialysis modality, and osteoprotegerin level. Conclusion Lower serum myostatin levels were associated with higher AAC scores, lower muscle mass, and lower BMD in dialysis patients. Further, prospective studies and those with larger cohorts are necessary to validate these findings.
Collapse
Affiliation(s)
- Su Mi Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seong Eun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Ji Young Lee
- Department of Internal Medicine, Busan Veterans Hospital, Busan, Republic of Korea
| | - Hyo Jin Jeong
- Department of Internal Medicine, Dong-Eui Medical Center, Busan, Republic of Korea
| | - Young Ki Son
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Won Suk An
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
31
|
Semba RD, Zhang P, Zhu M, Fabbri E, Gonzalez-Freire M, Moaddel R, Geng-Spyropoulos M, Ferrucci L. A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. Proteomics 2018; 17. [PMID: 28508553 DOI: 10.1002/pmic.201600232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 03/31/2017] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
Circulating polypeptides and proteins have been implicated in reversing or accelerating aging phenotypes, including growth/differentiation factor 8 (GDF8), GDF11, eotaxin, and oxytocin. These proteoforms, which are defined as the protein products arising from a single gene due to alternative splicing and PTMs, have been challenging to study. Both GDF8 and GDF11 have known antagonists such as follistatin (FST), and WAP, Kazal, immunoglobulin, Kunitz, and NTR domain-containing proteins 1 and 2 (WFIKKN1, WFIKKN2). We developed a novel multiplexed SRM assay using LC-MS/MS to measure five proteins related to GDF8 and GDF11 signaling, and in addition, eotaxin, and oxytocin. Eighteen peptides consisting of 54 transitions were monitored and validated in pooled human plasma. In 24 adults, the mean (SD) concentrations (ng/mL) were as follows: GDF8 propeptide, 11.0 (2.4); GDF8 mature protein, 25.7 (8.0); GDF11 propeptide, 21.3 (10.9); GDF11 mature protein, 16.5 (12.4); FST, 29.8 (7.1); FST cleavage form FST303, 96.4 (69.2); WFIKKN1, 38.3 (8.3); WFIKKN2, 32.2 (10.5); oxytocin, 1.9 (0.9); and eotaxin, 2.3 (0.5). This novel multiplexed SRM assay should facilitate the study of the relationships of these proteoforms with major aging phenotypes.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Zhu
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Elisa Fabbri
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
32
|
Notsu Y, Yano S, Takeda M, Yamasaki M, Isomura M, Nabika T, Nagai A. Association of High-Density Lipoprotein Subclasses with Carotid Intima-Media Thickness: Shimane CoHRE Study. J Atheroscler Thromb 2017; 25:42-54. [PMID: 28450678 PMCID: PMC5770223 DOI: 10.5551/jat.38844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS Recent studies suggested that subclasses of high-density lipoprotein (HDL) may be a better biomarker to predict the risk of atherosclerotic disorders. We aimed to examine the association of HDL2- and HDL3-cholesterol (HDL2-C and HDL3-C) with carotid intima-media thickness (IMT) using a new method to quantify the HDL-C subclasses. METHODS Participants were 657 Japanese subjects (434 women) who received a health examination (mean age: 73 years). Serum samples were analyzed by the homogenous assay for HDL-C and HDL3-C. HDL2-C was calculated indirectly by subtracting HDL3-C from HDL-C. HDL3-C measured by this assay was well correlated with that measured by ultracentrifugation (r=0.898, p<0.001). The maximum IMT (max-IMT) and plaque score (PS) were evaluated by ultrasonography following the standard protocol. RESULTS HDL3-C was associated with age both in men (r=-0.322, p<0.0001) and women (r=-0.315, p<0.0001). In a simple regression analysis, max-IMT showed an inverse association with HDL3-C, whereas no significant association was observed with HDL2-C. A multiple linear regression analysis indicated, however, that the association between HDL3-C and max-IMT was not significant in both aged and younger populations when age was included in the analysis. Further, not only HDL2-C but also HDL3-C was not a significant predictor of 'atherosclerotic arteries' defined as the max-IMT ≥1.5 mm. Similar results were observed in the analysis on PS. CONCLUSIONS Neither HDL3-C nor HDL2-C was significantly associated with carotid atherosclerosis in the Japanese population in this study.
Collapse
Affiliation(s)
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University.,The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University
| | - Miwako Takeda
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University
| | - Masayuki Yamasaki
- Department of Environmental and Preventive Medicine, Shimane University.,The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University
| | - Minoru Isomura
- Department of Functional Pathology, Faculty of Medicine, Shimane University.,The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University
| | - Toru Nabika
- Department of Functional Pathology, Faculty of Medicine, Shimane University.,The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University
| | - Atsushi Nagai
- Department of Laboratory Medicine, Shimane University
| |
Collapse
|
33
|
Kralisch S, Hoffmann A, Klöting N, Bachmann A, Kratzsch J, Stolzenburg JU, Dietel A, Beige J, Anders M, Bast I, Blüher M, Zhang MZ, Harris RC, Stumvoll M, Fasshauer M, Ebert T. FSTL3 is increased in renal dysfunction. Nephrol Dial Transplant 2017; 32:1637-1644. [DOI: 10.1093/ndt/gfw472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/24/2016] [Indexed: 02/01/2023] Open
|
34
|
Esposito P, La Porta E, Calatroni M, Grignano MA, Milanesi S, Verzola D, Battaglia Y, Gregorini M, Libetta C, Garibotto G, Rampino T. Modulation of Myostatin/Hepatocyte Growth Factor Balance by Different Hemodialysis Modalities. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7635459. [PMID: 28459069 PMCID: PMC5387812 DOI: 10.1155/2017/7635459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Background. In this study we investigated the relevance of myostatin and Hepatocyte Growth Factor (HGF) in patients undergoing hemodialysis HD and the influence of different HD modalities on their levels. Methods. We performed a prospective crossover study in which HD patients were randomized to undergo 3-month treatment periods with bicarbonate hemodialysis (BHD) followed by online hemodiafiltration (HDF). Clinical data, laboratory parameters, and myostatin and HGF serum levels were collected and compared. Results. Ten patients and six controls (C) were evaluated. In any experimental condition myostatin and HGF levels were higher in HD than in C. At enrollment and after BHD there were not significant correlations, whereas at the end of the HDF treatment period myostatin and HGF were inversely correlated (r -0.65, p < 0.05), myostatin serum levels inversely correlated with transferrin (r -0.73, p < 0.05), and HGF levels that resulted positively correlated with BMI (r 0.67, p < 0.05). Moving from BHD to HDF, clinical and laboratory parameters were unchanged, as well as serum HGF, whereas myostatin levels significantly decreased (6.3 ± 4.1 versus 4.3 ± 3.1 ng/ml, p < 0.05). Conclusions. Modulation of myostatin levels and myostatin/HGF balance by the use of different HD modalities might represent a novel approach to the prevention and treatment of HD-related muscle wasting syndrome.
Collapse
Affiliation(s)
- Pasquale Esposito
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
- *Pasquale Esposito:
| | - Edoardo La Porta
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Marta Calatroni
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Maria Antonietta Grignano
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Samantha Milanesi
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Daniela Verzola
- 2Department of Internal Medicine, Istituto Nazionale per la Ricerca sul Cancro, University of Genoa and IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genoa, Italy
| | - Yuri Battaglia
- 3Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Marilena Gregorini
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giacomo Garibotto
- 2Department of Internal Medicine, Istituto Nazionale per la Ricerca sul Cancro, University of Genoa and IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genoa, Italy
| | - Teresa Rampino
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease. Kidney Int 2016; 91:119-128. [PMID: 27653838 DOI: 10.1016/j.kint.2016.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022]
Abstract
Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD), but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin, which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes, indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD.
Collapse
|
36
|
Yamada S, Tsuruya K, Yoshida H, Tokumoto M, Ueki K, Ooboshi H, Kitazono T. Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use. Calcif Tissue Int 2016; 99:13-22. [PMID: 26895008 DOI: 10.1007/s00223-016-0118-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
Myostatin is a member of the transforming growth factor-β family, which regulates synthesis and degradation of skeletal muscle proteins and is associated with the development of sarcopenia. It is up-regulated in the skeletal muscle of chronic kidney disease patients and is considered to be involved in the development of uremic sarcopenia. However, serum myostatin levels have rarely been determined, and the relationship between serum myostatin levels with clinical and metabolic factors remains unknown. This cross-sectional study investigated the association between serum myostatin level and clinical factors in 69 outpatients undergoing peritoneal dialysis. Serum myostatin level was determined by commercially available enzyme-linked immunosorbent assay (ELISA). Univariable and multivariable analysis were conducted to determine factors associated with serum myostatin levels. The factors included age, sex, diabetes mellitus, dialysis history, body mass index, residual kidney function, peritoneal dialysate volume, serum biochemistries, and the use of vitamin D receptor activators (VDRAs). Mean serum myostatin level was 7.59 ± 3.37 ng/mL. There was no association between serum myostatin level and residual kidney function. Serum myostatin levels were significantly and positively associated with lean body mass measured by the creatinine kinetic method and negatively associated with the use of VDRAs after adjustment for potential confounding factors. Our study indicated that serum myostatin levels are associated with skeletal muscle mass and are lower in patients treated with VDRAs. Further studies are necessary to determine the significance of measuring serum myostatin level in patients undergoing peritoneal dialysis.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hisako Yoshida
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanori Tokumoto
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Kenji Ueki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ooboshi
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Effect of Serum Cholesterol on Insulin Secretory Capacity: Shimane CoHRE Study. PLoS One 2016; 11:e0149452. [PMID: 26881755 PMCID: PMC4755542 DOI: 10.1371/journal.pone.0149452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Objectives Previous studies indicate that, in addition to the blood glucose level, the lipid level in the blood may affect functions of pancreatic beta cells. In this study, we aimed to examine whether there was a relationship between the serum level of total cholesterol (TC) and the insulin secretory capacity in healthy subjects. Subjects and Methods In participants of health examinations conducted from 2006 to 2010, we analyzed data from a total of 2,499 subjects (1,057 men and 1,442 women) after exclusion of individuals with dyslipidemia, thyroid dysfunction, diabetes, HbA1c≥6.5%, or fasting blood glucose≥126 mg/dL. Homeostasis model assessment for beta cell function (HOMA-beta) was utilized as a model representing the pancreatic beta cell function. Results Although the serum TC level had a positive correlation with HOMA-beta in a univariate correlation analysis, after adjustment by confounding factors in a multiple regression analysis, HOMA-beta had a negative correlation with TC. This was further confirmed in a multiple logistic regression analysis, showing that higher TC was an independent risk factor for decreased insulin secretory capacity (defined as HOMA-beta≤30%) together with higher age, lower BMI, lower TG, male sex and regular alcohol intake. After the participants were stratified by BMI into three groups, the effect of TC on HOMA-beta increased along with the increase in BMI, and it was highly significant in the highest tertile. Conclusion This cross-sectional study indicated that increased serum TC level might be related to the decrease of insulin secretory capacity in aged healthy population and that reduction of TC is more necessary in obese subjects to prevent diabetes.
Collapse
|