1
|
Secondulfo C, Mazzeo F, Pastorino GMG, Vicidomini A, Meccariello R, Operto FF. Opioid and Cannabinoid Systems in Pain: Emerging Molecular Mechanisms and Use in Clinical Practice, Health, and Fitness. Int J Mol Sci 2024; 25:9407. [PMID: 39273354 PMCID: PMC11394805 DOI: 10.3390/ijms25179407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pain is an unpleasant sensory and emotional experience. Adequate pain control is often challenging, particularly in patients with chronic pain. Despite advances in pain management, drug addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies in the field. The substantial progress made over the last decade has revealed genes, signalling pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsivant and ansiolitic effects and supports its potential application in clinical contexts such as cancer, neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain management in clinical practice, health, and fitness.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| | - Grazia Maria Giovanna Pastorino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Child and Adolescent Neuropsychiatry Unit, "San Giovanni di Dio e Ruggi d'Aragona" Hospital, 84131 Salerno, Italy
| | - Antonella Vicidomini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Felicia Operto
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
3
|
Scholpa NE. Role of DNA methylation during recovery from spinal cord injury with and without β 2-adrenergic receptor agonism. Exp Neurol 2023; 368:114494. [PMID: 37488045 DOI: 10.1016/j.expneurol.2023.114494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Daily treatment with the FDA-approved β2-adrenergic receptor agonist formoterol beginning 8 h after severe spinal cord injury (SCI) induces mitochondrial biogenesis and improves recovery in mice. We observed decreased DNA methyltransferase (DNMT) expression, global DNA methylation and methylation of the mitochondrial genes PGC-1α and NDUFS1 in the injury site of formoterol-treated mice 1 DPI, but this effect was lost by 7 DPI. To investigate the role of DNA methylation on recovery post-SCI, injured mice were treated daily with formoterol or vehicle, plus the DNMT inhibitor decitabine (DAC) on days 7-9. While DAC had no apparent effect on formoterol-induced recovery, mice treated with vehicle plus DAC exhibited increased BMS scores compared to vehicle alone beginning 15 DPI, reaching a degree of functional recovery similar to that of formoterol-treated mice by 21 DPI. Furthermore, DAC treatment increased injury site mitochondrial protein expression in vehicle-treated mice to levels comparable to that of formoterol-treated mice. The effect of DNMT inhibition on pain response with and without formoterol was assessed following moderate SCI. While all injured mice not treated with DAC displayed thermal hyperalgesia by 21 DPI, mice treated with formoterol exhibited decreased thermal hyperalgesia compared to vehicle-treated mice by 35 DPI. Injured mice treated with DAC, regardless of formoterol treatment, did not demonstrate thermal hyperalgesia at any time point assessed. Although these data do not suggest enhanced formoterol-induced recovery with DNMT inhibition, our findings indicate the importance of DNA methylation post-SCI and support both DNMT inhibition and formoterol as potential therapeutic avenues.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Southern Arizona VA Health Care System, Tucson, AZ, United States of America; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
4
|
Fuller AM, Bharde S, Sikandar S. The mechanisms and management of persistent postsurgical pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1154597. [PMID: 37484030 PMCID: PMC10357043 DOI: 10.3389/fpain.2023.1154597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
An estimated 10%-50% of patients undergoing a surgical intervention will develop persistent postsurgical pain (PPP) lasting more than 3 months despite adequate acute pain management and the availability of minimally invasive procedures. The link between early and late pain outcomes for surgical procedures remains unclear-some patients improve while others develop persistent pain. The elective nature of a surgical procedure offers a unique opportunity for prophylactic or early intervention to prevent the development of PPP and improve our understanding of its associated risk factors, such as pre-operative anxiety and the duration of severe acute postoperative pain. Current perioperative pain management strategies often include opioids, but long-term consumption can lead to tolerance, addiction, opioid-induced hyperalgesia, and death. Pre-clinical models provide the opportunity to dissect mechanisms underpinning the transition from acute to chronic, or persistent, postsurgical pain. This review highlights putative mechanisms of PPP, including sensitisation of peripheral sensory neurons, neuroplasticity in the central nervous system and nociceptive signalling along the neuro-immune axis.
Collapse
|
5
|
Li X, Liu D, Dai Z, You Y, Chen Y, Lei C, Lv Y, Wang Y. Intraperitoneal 5-Azacytidine Alleviates Nerve Injury-Induced Pain in Rats by Modulating DNA Methylation. Mol Neurobiol 2023; 60:2186-2199. [PMID: 36627549 DOI: 10.1007/s12035-022-03196-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
To investigate the role of DNA methylation in modulating chronic neuropathic pain (NPP), identify possible target genes of DNA methylation involved in this process, and preliminarily confirm the medicinal value of the DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AZA) in NPP by targeting gene methylation. Two rat NPP models, chronic constriction injury (CCI) and spinal nerve ligation (SNL), were used. The DNA methylation profiles in the lumbar spinal cord were assayed using an Arraystar Rat RefSeq Promoter Array. The underlying genes with differential methylation were then identified and submitted to Gene Ontology and pathway analysis. Methyl-DNA immunoprecipitation quantitative PCR (MeDIP-qPCR) and quantitative reverse transcription-PCR (RT-qPCR) were used to confirm gene methylation and expression. The protective function of 5-AZA in NPP and gene expression were evaluated via behavioral assays and RT-qPCR, respectively. Analysis of the DNA methylation patterns in the lumbar spinal cord indicated that 1205 differentially methylated fragments in CCI rats were located within DNA promoter regions, including 638 hypermethylated fragments and 567 hypomethylated fragments. The methylation levels of Grm4, Htr4, Adrb2, Kcnf1, Gad2, and Pparg, which are associated with long-term potentiation (LTP) and glutamatergic synapse pathways, were increased with a corresponding decrease in their mRNA expression, in the spinal cords of CCI rats. Moreover, we found that the intraperitoneal injection of 5-AZA (4 mg/kg) attenuated CCI- or SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, the mRNA expression of hypermethylated genes such as Grm4, Htr4, Adrb2, Kcnf1, and Gad2 was reversed after 5-AZA treatment. CCI induced widespread methylation changes in the DNA promoter regions in the lumbar spinal cord. Intraperitoneal 5-AZA alleviated hyperalgesia in CCI and SNL rats, an effect accompanied by the reversed expression of hypermethylated genes. Thus, DNA methylation inhibition represents a promising epigenetic strategy for protection against chronic NPP following nerve injury. Our study lays a theoretical foundation for 5-AZA to become a clinical targeted drug.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - DeZhao Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - ZhiSen Dai
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - YiSheng You
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yan Chen
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - ChenXing Lei
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - YouYou Lv
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Ying Wang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China. .,Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Tanguturi P, Streicher JM. The role of opioid receptors in modulating Alzheimer's Disease. Front Pharmacol 2023; 14:1056402. [PMID: 36937877 PMCID: PMC10014470 DOI: 10.3389/fphar.2023.1056402] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurological disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles. Long term investigation of AD pathogenesis suggests that β-site amyloid precursor protein [APP] cleaving enzyme 1 (BACE1) and γ-secretase enzymes promote the amyloidogenic pathway and produce toxic Aβ peptides that are predisposed to aggregate in the brain. Hence, the targeted inhibition of BACE1/γ-secretase expression and function is a promising approach for AD therapy. Several reports have suggested that the opioid family of G-protein coupled receptors modulate the etiology of AD progression. It has also been found that changes in the signaling pathways of opioid receptors increased the expression of BACE1 and γ-secretase, and is strongly correlated with abnormal production of Aβ and pathogenesis of AD. Thus, the opioid receptor family is a promising candidate for targeted drug development to treat AD. In this review, we outline the involvement and mechanisms of opioid receptor signaling modulation in Alzheimer's Disease progression.
Collapse
Affiliation(s)
- Parthasaradhireddy Tanguturi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Tan Y, Wang Z, Liu T, Gao P, Xu S, Tan L. RNA interference-mediated silencing of DNA methyltransferase 1 attenuates neuropathic pain by accelerating microglia M2 polarization. BMC Neurol 2022; 22:376. [PMID: 36183073 PMCID: PMC9526327 DOI: 10.1186/s12883-022-02860-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background DNA methyltransferase 1 (DNMT1) exerts imperative functions in neuropathic pain (NP). This study explored the action of RNA interference-mediated DNMT1 silencing in NP by regulating microglial M2 polarization. Methods NP rat models were established using chronic constriction injury (CCI) and highly aggressive proliferating immortalized (HAPI) microglia were treated with lipopolysaccharide (LPS) to induce microglia M1 polarization, followed by treatment of DNMT1 siRNA or si-DNMT1/oe-DNMT1, respectively. The pain threshold of CCI rats was assessed by determining mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Levels of inflammatory factors (TNF-α/IL-1β/IL-6/IL-10) and DNMT1 in rat L4-L6 spinal cord samples and HAPI cells were measured using ELISA, RT-qPCR, and Western blot. iNOS and Arg-1 mRNA levels were measured via RT-qPCR. DNMT1, M1 marker (iNOS), and M2 marker (Arg-1) levels in microglia of CCI rats were detected by immunofluorescence. Percentages of M1 microglia phenotype (CD16) and M2 microglia phenotype (CD206) were detected by flow cytometry. The phosphorylation of PI3K/Akt pathway-related proteins was determined by Western blot. Results CCI rats exhibited diminished MWT and TWL values, increased pro-inflammatory cytokines, and decreased anti-inflammatory cytokine IL-10. Additionally, DNMT1 was upregulated in CCI rat microglia. DNMT1 siRNA alleviated CCI-induced NP and facilitated M2 polarization of microglia in CCI rats. DNMT1 knockdown inhibited LPS-induced M1 polarization of HAPI cells and promoted M2 polarization by blocking the PI3K/Akt pathway, but DNMT1 overexpression inhibited the M1-to-M2 polarization of microglia. Conclusion RNA interference-mediated DNMT1 silencing accelerates microglia M2 polarization by impeding the PI3K/Akt pathway, thereby alleviating CCI-induced NP. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02860-6.
Collapse
Affiliation(s)
- Ying Tan
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China.
| | - Zongjiang Wang
- Department of Spinal Surgery, Sunshine Union Hospital, Weifang, 261041, China
| | - Tao Liu
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Peng Gao
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Shitao Xu
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Lei Tan
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China.
| |
Collapse
|
8
|
Mokini Z, Cama A, Forget P. Anesthetics and Long Term Cancer Outcomes: May Epigenetics Be the Key for Pancreatic Cancer? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1102. [PMID: 36013569 PMCID: PMC9414834 DOI: 10.3390/medicina58081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Knowledge shows a divergence of results between preclinical and clinical studies regarding anesthesia and postoperative progression of cancer. While laboratory and animal data from then 2000s onwards raised much enthusiasm in this field of research leading to several clinical investigations worldwide, data from randomized trials seem to have killed off hope for many scientists. However several aspects of the actual knowledge should be reevaluated and there is space for new strategies of investigation. In this paper, we perform a critical review of actual knowledge and propose new research strategies with a special focus on anesthetic management and repurposed anesthetic adjuvants for pancreatic cancer.
Collapse
Affiliation(s)
- Zhirajr Mokini
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
- The European Platform for Research Outcomes after PerIoperative Interventions in Surgery for Cancer Research Group (Euro-Periscope): The Onco-Anaesthesiology Research Group (RG), BE-1000 Brussels, Belgium
| | - Alessandro Cama
- The European Platform for Research Outcomes after PerIoperative Interventions in Surgery for Cancer Research Group (Euro-Periscope): The Onco-Anaesthesiology Research Group (RG), BE-1000 Brussels, Belgium
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrice Forget
- The European Platform for Research Outcomes after PerIoperative Interventions in Surgery for Cancer Research Group (Euro-Periscope): The Onco-Anaesthesiology Research Group (RG), BE-1000 Brussels, Belgium
- Epidemiology Group, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Anaesthesia, National Health Service (NHS) Grampian, Aberdeen AB25 2ZD, UK
| |
Collapse
|
9
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
10
|
Gómez M, Izquierdo CE, Mayoral Rojals V, Pergolizzi Jr J, Plancarte Sanchez R, Paladini A, Varrassi G. Considerations for Better Management of Postoperative Pain in Light of Chronic Postoperative Pain: A Narrative Review. Cureus 2022; 14:e23763. [PMID: 35518528 PMCID: PMC9064707 DOI: 10.7759/cureus.23763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/02/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic postoperative pain (CPOP) is prevalent, with particularly high rates in breast surgery, thoracotomy, and amputation. As the world emerges from the coronavirus disease 2019 (COVID-19) lockdowns, it is expected that there will be an increase in surgical procedures, elevating the importance of preventing CPOP in the coming years. Risk factors are emerging to better stratify patients at high risk for CPOP. Perioperative analgesia plays an important role in managing acute postoperative pain and in some cases may limit its transition to CPOP. Acute postoperative pain is adaptive, normal, expected, and has a well-defined trajectory, while CPOP is maladaptive and, as a form of chronic pain, is challenging to treat. Good analgesia, early ambulation, and rehabilitation efforts may be helpful in preventing CPOP following certain surgeries. Enhanced Recovery After Surgery (ERAS) protocols present guidance to help promote recovery and prevent CPOP.
Collapse
|
11
|
Caputi FF, Carboni L, Rullo L, Alessandrini I, Balzani E, Melotti RM, Romualdi P, Candeletti S, Fanelli A. An Exploratory Pilot Study of Changes in Global DNA Methylation in Patients Undergoing Major Breast Surgery Under Opioid-Based General Anesthesia. Front Pharmacol 2021; 12:733577. [PMID: 34621169 PMCID: PMC8491974 DOI: 10.3389/fphar.2021.733577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of −68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Irene Alessandrini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Eleonora Balzani
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Rita Maria Melotti
- Department of Surgical and Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea Fanelli
- Anesthesiology and Pain Therapy Unit, AOSP S.Orsola Hospital, Bologna, Italy
| |
Collapse
|
12
|
López-Muñoz E, Mejía-Terrazas GE. Epigenetics and postsurgical pain: A scoping review. PAIN MEDICINE 2021; 23:246-262. [PMID: 34314508 DOI: 10.1093/pm/pnab234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Multiple factors are involved in the physiology and variability of postsurgical pain, a great part of which can be explained by genetic and environmental factors and their interaction. Epigenetics refers to the mechanism by which the environment alters the stability and expression of genes. We conducted a scoping review to examine the available evidence in both animal models and clinical studies on epigenetic mechanisms involved in regulation of postsurgical and chronic postsurgical pain. METHODS The Arksey & ÓMalley framework and the PRISMA-ScR (Preferred Reporting Items for Systematic Review and Meta-Analysis, scoping reviews extension) guidelines were used. The PubMed, Web of Science and Google Scholar databases were searched, and the original articles cited in reviews located through the search were also reviewed. English-language articles without time limits were retrieved. Articles were selected if the abstract addressed information on the epigenetic or epigenomic mechanisms, histone, or DNA methylation and microribonucleic acids involved in postsurgical and chronic postsurgical pain in animal models and clinical studies. RESULTS The initial search provided 174 articles, and 81 were used. The available studies to date, mostly in animal models, have shown that epigenetics contributes to regulation of gene expression in the pathways involved in postsurgical pain and in maintaining long-term pain. CONCLUSION Research on possible epigenetic mechanisms involved in postsurgical pain and chronic postsurgical pain in humans is scarce. In view of the evidence available in animal models, there is a need to evaluate epigenetic pain mechanisms in the context of human and clinical studies.
Collapse
Affiliation(s)
- Eunice López-Muñoz
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gabriel Enrique Mejía-Terrazas
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Anaesthesiology Service and Pain Clinic, Hospital Angeles México, Mexico City, Mexico
| |
Collapse
|
13
|
Whole Genomic DNA Methylation Profiling of CpG Sites in Promoter Regions of Dorsal Root Ganglion in Diabetic Neuropathic Pain Mice. J Mol Neurosci 2021; 71:2558-2565. [PMID: 33950354 DOI: 10.1007/s12031-021-01847-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation and demethylation play an important role in neuropathic pain. In general, DNA methylation of CpG sites in the promoter region impedes gene expression, whereas DNA demethylation contributes to gene expression. Here, we evaluated the methylation status of CpG sites in genomic DNA promoter regions in dorsal root ganglions (DRGs) of diabetic neuropathic pain (DNP) mice. In our research, streptozotocin (STZ) was intraperitoneally injected into mice to construct DNP models. The DNP mice showed higher fasting blood glucose (above 11.1 mmol/L), lower body weight, and mechanical allodynia than control mice. Whole-genome bisulfite sequencing (WGBS) revealed an altered methylation pattern in CpG sites in the DNA promoter regions in DRGs of DNP mice. The results showed 376 promoter regions with hypermethylated CpG sites and 336 promoter regions with hypomethylated CpG sites. In addition, our data indicated that altered DNA methylation occurs primarily on CpG sites in DNA promoter regions. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially methylated CpG sites annotated genes were involved in activities of the nervous and sensory systems. Enrichment analysis indicated that genes in these pathways contributed to diabetes or pain. In conclusion, our study enriched the role of DNA methylation in DNP.
Collapse
|
14
|
Jin F, Li M, Li X, Zheng Y, Zhang K, Liu X, Cai B, Yin G. DNMT1-mediated methylation inhibits microRNA-214-3p and promotes hair follicle stem cell differentiate into adipogenic lineages. Stem Cell Res Ther 2020; 11:444. [PMID: 33076979 PMCID: PMC7574326 DOI: 10.1186/s13287-020-01864-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023] Open
Abstract
Background Dysfunction of the DNA methylation was associated with stem cell reprogramming. Moreover, DNA methyltransferase 1 (DNMT1) deficiency was involved in the differentiation of hair follicle stem cell (HFSc), but the molecular mechanisms remain unknown. Methods HFSc from human scalp tissues were isolated and cultured. The oil red O staining was used to observe the adipogenesis. The interaction relationship between microRNA (miR)-214-3p and mitogen-activated protein kinase 1 (MAPK1) was accessed by dual-luciferase reporter gene assay. The methylation level of miR-214-3p promoter was detected by methylation-specific PCR and the enrichment of DNMT1 in miR-214-3p promoter by chromatin immunoprecipitation assay. A mouse model of trauma was established to observe the skin regeneration at 0, 6, and 14 days. Results Expression of DNMT1 and MAPK1 was increased in the HFSc, while the expression of miR-214-3p was reduced. Moreover, DNMT1 inhibited the expression of miR-214-3p by promoting the promoter methylation of miR-214-3p. Overexpression of DNMT1 could reduce the expression of miR-214-3p, but increase the expression of MAPK1 and the extent of extracellular signal regulated kinase (ERK)1/2 phosphorylation, leading to enhanced adipogenic differentiation. Importantly, DNMT1 promoted skin regeneration in vivo. Conversely, overexpression of miR-214-3p could reverse the effects of DNMT1 on adipogenesis of HFSc. Conclusion DNMT1 promotes adipogenesis of HFSc by mediating miR-214-3p/MAPK1/p-ERK1/2 axis. This study may provide novel biomarkers for the potential application in stem cell therapy.
Collapse
Affiliation(s)
- Fangcao Jin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Min Li
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Xuyang Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Yunpeng Zheng
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xiaojun Liu
- Henan Province Medical Instrument Testing Institute, Zhengzhou, 450018, People's Republic of China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| | - Guangwen Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
15
|
Bai G, Ross H, Zhang Y, Lee K, Ro JY. The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia. Epigenet Insights 2020; 13:2516865720938677. [PMID: 32974606 PMCID: PMC7495519 DOI: 10.1177/2516865720938677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Epigenetic modulation by DNA methylation is associated with aberrant gene
expression in sensory neurons, which consequently leads to pathological pain
responses. In this study, we sought to investigate whether peripheral
inflammation alters global DNA methylation in trigeminal ganglia (TG) and
results in abnormal expression of pro-nociceptive genes. Our results show that
peripheral inflammation remotely reduced the level of global DNA methylation in
rat TG with a concurrent reduction in DNMT1 and
DNMT3a expression. Using unbiased steps, we selected the
following pro-nociceptive candidate genes that are potentially regulated by DNA
methylation: TRPV1, TRPA1, P2X3, and PIEZO2.
Inhibition of DNMT with 5-Aza-dC in dissociated TG cells produced dose-dependent
upregulation of TRPV1, TRPA1, and P2X3.
Systemic treatment of animals with 5-Aza-dC significantly increased the
expression of TRPV1, TRPA1, and PIEZO2 in TG.
Furthermore, the overexpression of DNMT3a, as delivered by a lentiviral vector,
significantly downregulated TRPV1 and PIEZO2
expression and also reliably decreased TRPA1 and
P2X3 transcripts. MeDIP revealed that this overexpression
also significantly enhanced methylation of CGIs associated with
TRPV1 and TRPA1. In addition, bisulfite
sequencing data indicated that the CGI associated with TRPA1
was methylated in a pattern catalyzed by DNMT3a. Taken together, our results
show that all 4 pro-nociceptive genes are subject to epigenetic modulation via
DNA methylation, likely via DNMT3a under inflammatory conditions. These findings
provide the first evidence for the functional importance of DNA methylation as
an epigenetic factor in the transcription of pro-nociceptive genes in TG that
are implicated in pathological orofacial pain responses.
Collapse
Affiliation(s)
- Guang Bai
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Holly Ross
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Youping Zhang
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - KiSeok Lee
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Jin Y Ro
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| |
Collapse
|
16
|
Cata JP, Gorur A, Yuan X, Berg NK, Sood AK, Eltzschig HK. Role of Micro-RNA for Pain After Surgery. Anesth Analg 2020; 130:1638-1652. [DOI: 10.1213/ane.0000000000004767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
|
18
|
Schreiber KL, Belfer I, Miaskowski C, Schumacher M, Stacey BR, Van De Ven T. AAAPT Diagnostic Criteria for Acute Pain Following Breast Surgery. THE JOURNAL OF PAIN 2019; 21:294-305. [PMID: 31493489 DOI: 10.1016/j.jpain.2019.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Acute pain after breast surgery decreases the quality of life of cancer survivors. Previous studies using a variety of definitions and methods report prevalence rates between 10% and 80%, which suggests the need for a comprehensive framework that can be used to guide assessment of acute pain and pain-related outcomes after breast surgery. A multidisciplinary task force with clinical and research expertise performed a focused review and synthesis and applied the 5 dimensional framework of the AAAPT (Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks [ACTTION], American Academy of Pain Medicine [AAPM], American Pain Society [APS] Pain Taxonomy) to acute pain after breast surgery. Application of the AAAPT taxonomy yielded the following: 1) Core Criteria: Location, timing, severity, and impact of breast surgery pain were defined; 2) Common Features: Character and expected trajectories were established in relevant surgical subgroups, and common pain assessment tools for acute breast surgery pain identified; 3) Modulating Factors: Biological, psychological, and social factors that modulate interindividual variability were delineated; 4) Impact/Functional Consequences: Domains of impact were outlined and defined; 5) Neurobiologic Mechanisms: Putative mechanisms were specified ranging from nerve injury, inflammation, peripheral and central sensitization, to affective and social processing of pain. PERSPECTIVE: The AAAPT provides a framework to define and guide improved assessment of acute pain after breast surgery, which will enhance generalizability of results across studies and facilitate meta-analyses and studies of interindividual variation, and underlying mechanism. It will allow researchers and clinicians to better compare between treatments, across institutions, and with other types of acute pain.
Collapse
Affiliation(s)
- Kristin L Schreiber
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Inna Belfer
- National Center for Complementary and Integrative Health, NIH, Bethesda, Maryland
| | - Christine Miaskowski
- Department of Physiological Nursing, University of California San Francisco, San Francisco, California
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco, San Francisco, California
| | - Brett R Stacey
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Thomas Van De Ven
- Duke University Department of Anesthesiology, Division of Pain Medicine, Durham, North Carolina
| |
Collapse
|
19
|
Abstract
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain, and as patients with cancer are living longer, new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in preclinical models of postsurgical and soft-tissue oral cancer pain by inducing an upregulation of endogenous opioids. In this study, we report that daily treatment with decitabine (2 µg/g, intraperitoneally) attenuated nociceptive behavior in the 4T1-luc2 mouse model of bone cancer pain. We hypothesized that the analgesic mechanism of decitabine involved activation of the endogenous opioid system through demethylation and reexpression of the transcriptionally silenced endothelin B receptor gene, Ednrb. Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant, which reduced the number of responsive dorsal root ganglia neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
Collapse
|
20
|
López-Valverde N, López-Valverde A, Gómez de Diego R, Cieza-Borrella C, Ramírez JM, González-Sarmiento R. Genetic study in patients operated dentally and anesthetized with articaine-epinephrine. J Pain Res 2019; 12:1371-1384. [PMID: 31118755 PMCID: PMC6499144 DOI: 10.2147/jpr.s193745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 12/01/2022] Open
Abstract
Aims: In this study we wanted to figure out if there was a correlation between OPRM1 N40D, TRPV1 I316M, TRPV1 I585V, NOS3 −786T>C and IL6 −174C>G polymorphisms and the response to locally applied articaine-epinephrine anesthetic. Methods: In this observational study, 114 oral cell samples of patients anesthetized with articaine-epinephrine (54 from men 60 from women), were collected from dental centers in Madrid (Spain). High molecular weight DNA was obtained from oral mucosa cells. The analysis of OPRM1 N40D (rs1799971), TRPV1 I316M (rs222747), TRPV1 I585V (rs8065080) and IL6 −174C>G polymorphism was performed through real-time PCR allelic discrimination using TaqMan probes. Polymorphism NOS3 −786T> C (rs2070744) was analyzed using RFLP-PCR. Results: The studied polymorphisms are involved neither in the response to the anesthetic, nor in the intensity of perceived dental pain. However, in a subset of female patients we found that TRPV1 I316M was associated with a delayed onset of anesthesia. Conclusions: There is no association among these polymorphisms and the time elapsed between the application of the anesthetic and the onset of its effect.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Dental Clinic, Department of Surgery, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Antonio López-Valverde
- Dental Clinic, Department of Surgery, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | - Clara Cieza-Borrella
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Juan M Ramírez
- Department of Morphological Sciences, School of Medicine, University of Córdoba, Córdoba, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
21
|
Liu B, Liu Y, Li N, Zhang J, Zhang X. Oxycodone regulates incision-induced activation of neurotrophic factors and receptors in an acute post-surgery pain rat model. J Pain Res 2018; 11:2663-2674. [PMID: 30464584 PMCID: PMC6214342 DOI: 10.2147/jpr.s180396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Oxycodone, which is one of the most commonly used opiates in postoperative pain management, has a different affinity for μ-opioid receptors (MOR), κ-opioid receptors (KOR), and δ-opioid receptors (DOR). Accumulating research has suggested that neurotrophins (NTs) are involved in opioid analgesia. In the current exploratory study, we aimed to investigate the underlying mechanisms of the analgesic effects of oxycodone on post-surgery pain in rats and to determine whether neurotrophic factors and receptors were involved in these effects. Methods Mechanical and thermal sensitivity tests were used to evaluate the validity of the postoperative pain rat model and to determine the analgesic effect of oxycodone. Quantitative PCR and Western blot analysis were used to detect the changes in the expression of three types of opioid receptors and NTs and their high-affinity receptors in the spinal cord after surgery and oxycodone administration. Results Oxycodone showed an analgesic effect on plantar incision (PI)-induced hyperalgesia, especially thermal hyperalgesia. We detected an obvious increase in MOR expression levels but insignificant changes in KOR and DOR levels in the spinal cord after PI. Moreover, we found that oxycodone was able to reverse the increased expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor (TrK) A, and TrkB and the decreased expression of NT-3 and TrkC, after PI. Pretreatment with oxycodone also altered the expression of these mediators. Conclusion Based on the results, possible underlying mechanisms for the antinociceptive properties of oxycodone in acute postoperative pain include the activation of MOR downstream signaling and the regulation of NTs and receptor expression through attenuation of glial activation and fortification of antinociceptive mediators in the spinal cord. This study may provide new insights into the molecular mechanisms underlying the analgesic action of oxycodone.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
22
|
Li F, Xue Z, Yuan Y, Huang S, Fan Y, Zhu X, Wei L. Upregulation of CXCR4 through promoter demethylation contributes to inflammatory hyperalgesia in rats. CNS Neurosci Ther 2018; 24:947-956. [PMID: 29577638 PMCID: PMC6489799 DOI: 10.1111/cns.12845] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 01/27/2023] Open
Abstract
AIM AND METHODS Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms yet are incompletely defined. DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under inflammatory pain condition remain largely unknown. Here, we investigated how chemokine receptor CXCR4 expression is regulated by DNA methylation and how it contributes to inflammatory pain induced by complete Freund's adjuvant (CFA) in rats. RESULTS Intraplantar injection of CFA could not only induce significant hyperalgesia in rats, but also significantly increase the expression of CXCR4 mRNA and protein in the dorsal root ganglion (DRG). Intrathecal injection of CXCR4 antagonist AMD3100 significantly relieved hyperalgesia in inflammatory rats in a time- and dose-dependent manner. Bisulfite sequencing and methylation-specific PCR demonstrate that CFA injection led to a significant demethylation of CpG island at CXCR4 gene promoter. Consistently, the expression of DNMT3b was significantly downregulated after CFA injection. Online software prediction reveals three binding sites of p65 in the CpG island of CXCR4 gene promoter, which has confirmed by the chromatin immunoprecipitation assay, CFA treatment significantly increases the recruitment of p65 to CXCR4 gene promoter. Inhibition of NF-kB signaling using p65 inhibitor pyrrolidine dithiocarbamate significantly prevented the increases of the CXCR4 expression. CONCLUSION Upregulation of CXCR4 expression due to promoter demethylation followed by increased recruitment of p65 to promoter of CXCR4 gene contributes to inflammatory hyperalgesia. These findings provide a theoretical basis for the treatment of chronic pain from an epigenetic perspective.
Collapse
Affiliation(s)
- Feng Li
- Department of AnesthesiologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Zhou‐Ya Xue
- Department of AnesthesiologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Yuan Yuan
- Department of OtolaryngologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Sai‐Sai Huang
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantonChina
| | - Yi‐Hui Fan
- Department of ImmunologySchool of MedicineNantong UniversityNantongChina
| | - Xiang Zhu
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantonChina
| | - Lei Wei
- Department of AnesthesiologySuzhou Municipal Hospital Affiliated to Nanjing Medical UniversitySuzhouJiangsuChina
| |
Collapse
|
23
|
Abstract
Abstract
The development of chronic pain is considered a major complication after surgery. Basic science research in animal models helps us understand the transition from acute to chronic pain by identifying the numerous molecular and cellular changes that occur in the peripheral and central nervous systems. It is now well recognized that inflammation and nerve injury lead to long-term synaptic plasticity that amplifies and also maintains pain signaling, a phenomenon referred to as pain sensitization. In the context of surgery in humans, pain sensitization is both responsible for an increase in postoperative pain via the expression of wound hyperalgesia and considered a critical factor for the development of persistent postsurgical pain. Using specific drugs that block the processes of pain sensitization reduces postoperative pain and prevents the development of persistent postoperative pain. This narrative review of the literature describes clinical investigations evaluating different preventative pharmacologic strategies that are routinely used by anesthesiologists in their daily clinical practices for preventing persistent postoperative pain. Nevertheless, further efforts are needed in both basic and clinical science research to identify preclinical models and novel therapeutics targets. There remains a need for more patient numbers in clinical research, for more reliable data, and for the development of the safest and the most effective strategies to limit the incidence of persistent postoperative pain.
Collapse
|
24
|
Xu C, Liu G, Ji H, Chen W, Dai D, Chen Z, Zhou D, Xu L, Hu H, Cui W, Chang L, Zha Q, Li L, Duan S, Wang Q. Elevated methylation of OPRM1 and OPRL1 genes in Alzheimer's disease. Mol Med Rep 2018; 18:4297-4302. [PMID: 30152845 PMCID: PMC6172396 DOI: 10.3892/mmr.2018.9424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that increased opioid receptor κ1 (OPRK1) and opioid receptor δ1 (OPRD1) methylation levels are involved in Alzheimer's disease (AD). In the present study, the methylation levels of two opioid receptor genes, opioid receptor µ1 (OPRM1) and opioid related nociceptin receptor 1 (OPRL1), were analyzed for their association with AD. Gene methylation levels were measured using bisulfite pyrosequencing in DNA samples derived from blood samples of 51 AD patients and 63 controls. The results indicated that there were significantly elevated promoter methylation levels of OPRM1 and OPRL1 in AD (OPRM1: P=0.007; OPRL1: P=2.987×10−6). Dual-luciferase reporter gene assays demonstrated that the promoter fragments of these two genes were able to promote gene expression (OPRM1: Fold-change=2.616, P=0.003; OPRL1: Fold change=11.395, P=0.007). In addition, receiver operating characteristic analyses further indicated that a methylation panel of four opioid receptor genes (area under the curve=0.848, sensitivity=0.723, and specificity=0.879) performed well in the prediction of AD. These results suggested that opioid receptor genes may be used as potential methylation biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Chunshuang Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guili Liu
- Department of Science and Education, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Huihui Ji
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Weihua Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dongjun Dai
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhongming Chen
- Geriatrics Department, Ningbo Kangning Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Dongsheng Zhou
- Geriatrics Department, Ningbo Kangning Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Lei Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haochang Hu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lan Chang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qin Zha
- Department of Science and Education, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315200, P.R. China
| | - Liping Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
25
|
Role of Trpv1 and Trpv4 in surgical incision-induced tissue swelling and Fos-like immunoreactivity in the central nervous system of mice. Neurosci Lett 2018; 678:76-82. [PMID: 29733975 DOI: 10.1016/j.neulet.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
Abstract
Pain management remains a major concern regarding the treatment of postoperative patients. Transient receptor potential (TRP) channels are considered to be new therapeutic targets for pain control. We investigated whether the genes Trpv1 and Trpv4 are involved in hind paw swelling caused after surgical incision in mice or in incision-induced Fos-like immunoreactivity (Fos-LI) levels in the central nervous system. Mice were divided into four groups: wild-type (WT) control, WT incision, Trpv1 knockout (Trpv1-/-) incision, and Trpv4 knockout (Trpv4-/-) incision. Mice were anesthetized, and only those in the incision, and not control, groups received a surgical incision to their right plantar hind paw. Changes in paw diameter and in Fos-LI levels in the dorsal horn of the spinal cord, paraventricular nucleus of the hypothalamus (PVN), paraventricular nucleus of the thalamus, and central amygdala were evaluated 2 h after the incision. There was no significant difference in the paw diameter among groups. In contrast, in laminae I-II of the dorsal horn of the spinal cord and PVN, Fos-LI was significantly higher in all incision groups than in the WT control group. A significant increase in Fos-positive cells was also observed in the dorsal horn laminae III-IV in Trpv1-/- and Trpv4-/- incision groups compared with the WT incision group. Our results indicate that surgical incision activates the PVN and that Trpv1 and Trpv4 might be involved in neuronal activity in the dorsal horn laminae III-IV after surgical incision.
Collapse
|
26
|
van den Hoogen NJ, van Reij RR, Patijn J, Tibboel D, Joosten EAJ. Adult spinal opioid receptor μ1 expression after incision is altered by early life repetitive tactile and noxious procedures in rats. Dev Neurobiol 2018; 78:417-426. [PMID: 29473323 PMCID: PMC5900868 DOI: 10.1002/dneu.22583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 12/01/2022]
Abstract
Clinical and experimental data suggests that noxious stimulation at critical stages of development results in long‐term changes on nociceptive processing in later life. Here, we use an established, well‐documented rat model of repetitive noxious procedures closely mimicking the clinical situation in the NICU. In order to understand molecular changes underlying the long‐term consequences of repetitive stimulation of the developing nociceptive system the present study aims to analyze the presence of the µ‐opioid‐receptor‐1 (OPRM1). Neonatal rats received either four needle pricks per day in the left hind‐paw from postnatal day 0–7 as a model of procedural pain in infancy. Control pups were handled in the same way but were instead tactile stimulated, or were left undisturbed. At the age of 8 weeks, all animals received an ipsilateral hind‐paw incision as a model for post‐operative pain, and mechanical sensitivity was tested at multiple time‐points. Before, and 1 or 5 days post‐incision, spinal cord tissue was collected for immunostaining of opioid receptor OPRM1. Semi‐quantitative immunocytochemical analysis of superficial laminae in lumbar spinal dorsal horn revealed that: (1) early life repetitive tactile or noxious procedures do not alter baseline levels of OPRM1 staining intensity and (2) early life repetitive tactile or noxious procedures lead to a decrease in OPRM1 staining intensity 5 days after incision in adulthood compared to undisturbed controls. We conclude that early life repetitive tactile or noxious procedures affect the intensity of OPRM1‐immunoreactivity in the lumbar superficial spinal cord dorsal horn after adulthood injury, without affecting baseline intensity. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 417–426, 2018
Collapse
Affiliation(s)
- Nynke J van den Hoogen
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Roel Ri van Reij
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jacob Patijn
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia, Rotterdam, Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
27
|
Persson AKM, Pettersson FD, Åkeson J. Single Nucleotide Polymorphisms Associated with Pain Sensitivity After Laparoscopic Cholecystectomy. PAIN MEDICINE 2017; 19:1271-1279. [DOI: 10.1093/pm/pnx164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna K M Persson
- Department of Clinical Sciences Malmö, Anaesthesiology and Intensive Care Medicine, Lund University, Malmö, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Halland Hospital, Halmstad, Sweden
| | - Fatimah Dabo Pettersson
- Department of Learning, Informatics, Management and Ethics, Karolinska Institute, Stockholm, Sweden
| | - Jonas Åkeson
- Department of Clinical Sciences Malmö, Anaesthesiology and Intensive Care Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
28
|
Promoted Interaction of C/EBPα with Demethylated Cxcr3 Gene Promoter Contributes to Neuropathic Pain in Mice. J Neurosci 2017; 37:685-700. [PMID: 28100749 DOI: 10.1523/jneurosci.2262-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under neuropathic pain condition remain largely unknown. Here we investigated how chemokine receptor CXCR3 is regulated by DNA methylation and how it contributes to neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased Cxcr3 mRNA and protein expression in the neurons of the spinal cord. Meanwhile, the CpG (5'-cytosine-phosphate-guanine-3') island in the Cxcr3 gene promoter region was demethylated, and the expression of DNA methyltransferase 3b (DNMT3b) was decreased. SNL also increased the binding of CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine)/enhancer binding protein α (C/EBPα) with Cxcr3 promoter and decreased the binding of DNMT3b with Cxcr3 promoter in the spinal cord. C/EBPα expression was increased in spinal neurons after SNL, and inhibition of C/EBPα by intrathecal small interfering RNA attenuated SNL-induced pain hypersensitivity and reduced Cxcr3 expression. Furthermore, SNL-induced mechanical allodynia and heat hyperalgesia were markedly reduced in Cxcr3-/- mice. Spinal inhibition of Cxcr3 by shRNA or CXCR3 antagonist also attenuated established neuropathic pain. Moreover, CXCL10, the ligand of CXCR3, was increased in spinal neurons and astrocytes after SNL. Superfusing spinal cord slices with CXCL10 enhanced spontaneous EPSCs and potentiated NMDA-induced and AMPA-induced currents of lamina II neurons. Finally, intrathecal injection of CXCL10 induced CXCR3-dependent pain hypersensitivity in naive mice. Collectively, our results demonstrated that CXCR3, increased by DNA demethylation and the enhanced interaction with C/EBPα, can be activated by CXCL10 to facilitate excitatory synaptic transmission and contribute to the maintenance of neuropathic pain. SIGNIFICANCE STATEMENT Peripheral nerve injury induces changes of gene expression in the spinal cord that may contribute to the pathogenesis of neuropathic pain. CXCR3 is a chemokine receptor. Whether it is involved in neuropathic pain and how it is regulated after nerve injury remain largely unknown. Our study demonstrates that spinal nerve ligation downregulates the expression of DNMT3b, which may cause demethylation of Cxcr3 gene promoter and facilitate the binding of CCAAT/enhancer binding protein α with Cxcr3 promoter and further increase CXCR3 expression in spinal neurons. The upregulated CXCR3 may contribute to neuropathic pain by facilitating central sensitization. Our study reveals an epigenetic mechanism underlying CXCR3 expression and also suggests that targeting the expression or activation of CXCR3 signaling may offer new therapeutics for neuropathic pain.
Collapse
|
29
|
Hodjat M, Rahmani S, Khan F, Niaz K, Navaei–Nigjeh M, Mohammadi Nejad S, Abdollahi M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch Toxicol 2017; 91:2577-2597. [DOI: 10.1007/s00204-017-1979-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
|
30
|
Chidambaran V, Zhang X, Martin LJ, Ding L, Weirauch MT, Geisler K, Stubbeman BL, Sadhasivam S, Ji H. DNA methylation at the mu-1 opioid receptor gene ( OPRM1) promoter predicts preoperative, acute, and chronic postsurgical pain after spine fusion. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:157-168. [PMID: 28533693 PMCID: PMC5432115 DOI: 10.2147/pgpm.s132691] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction The perioperative pain experience shows great interindividual variability and is difficult to predict. The mu-1 opioid receptor gene (OPRM1) is known to play an important role in opioid-pain pathways. Since deoxyribonucleic acid (DNA) methylation is a potent repressor of gene expression, DNA methylation was evaluated at the OPRM1 promoter, as a predictor of preoperative, acute, and chronic postsurgical pain (CPSP). Methods A prospective observational cohort study was conducted in 133 adolescents with idiopathic scoliosis undergoing spine fusion under standard protocols. Data regarding pain, opioid consumption, anxiety, and catastrophizing (using validated questionnaires) were collected before and 2–3 months postsurgery. Outcomes evaluated were preoperative pain, acute postoperative pain (area under curve [AUC] for pain scores over 48 hours), and CPSP (numerical rating scale >3/10 at 2–3 months postsurgery). Blood samples collected preoperatively were analyzed for DNA methylation by pyrosequencing of 22 CpG sites at the OPRM1 gene promoter. The association of each pain outcome with the methylation percentage of each CpG site was assessed using multivariable regression, adjusting for significant (P<0.05) nongenetic variables. Results Majority (83%) of the patients reported no pain preoperatively, while CPSP occurred in 36% of the subjects (44/121). Regression on dichotomized preoperative pain outcome showed association with methylation at six CpG sites (1, 3, 4, 9, 11, and 17) (P<0.05). Methylation at CpG sites 4, 17, and 18 was associated with higher AUC after adjusting for opioid consumption and preoperative pain score (P<0.05). After adjusting for postoperative opioid consumption and preoperative pain score, methylation at CpG sites 13 and 22 was associated with CPSP (P<0.05). Discussion Novel CPSP biomarkers were identified in an active regulatory region of the OPRM1 gene that binds multiple transcription factors. Inhibition of binding by DNA methylation potentially decreases the OPRM1 gene expression, leading to a decreased response to endogenous and exogenous opioids, and an increased pain experience.
Collapse
Affiliation(s)
| | - Xue Zhang
- Division of Human Genetics.,Pyrosequencing Core for Genomic and Epigenomic Research
| | - Lisa J Martin
- Department of Pediatrics.,Division of Human Genetics
| | - Lili Ding
- Division of Biostatistics and Epidemiology
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology.,Division of Biomedical Informatics.,Division of Developmental Biology
| | | | | | | | - Hong Ji
- Pyrosequencing Core for Genomic and Epigenomic Research.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
31
|
Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2:e588. [PMID: 29392204 PMCID: PMC5770176 DOI: 10.1097/pr9.0000000000000588] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. OBJECTIVES This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. METHODS In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. RESULTS Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. CONCLUSION Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Stephan A. Schug
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Lin CR, Cheng JK, Wu CH, Chen KH, Liu CK. Epigenetic suppression of potassium-chloride co-transporter 2 expression in inflammatory pain induced by complete Freund's adjuvant (CFA). Eur J Pain 2017; 21:309-321. [PMID: 27506893 DOI: 10.1002/ejp.925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Multiple mechanisms contribute to the stimulus-evoked pain hypersensitivity that may be experienced after peripheral inflammation. Persistent pathological stimuli in many pain conditions affect the expression of certain genes through epigenetic alternations. The main purpose of our study was to investigate the role of epigenetic modification on potassium-chloride co-transporter 2 (KCC2) gene expression in the persistence of inflammatory pain. METHODS Persistent inflammatory pain was induced through the injection of complete Freund's adjuvant (CFA) in the left hind paw of rats. Acetyl-histone H3 and H4 level was determined by chromatin immunoprecipitation in the spinal dorsal horn. Pain behaviour and inhibitory synaptic function of spinal cord were determined before and after CFA injection. KCC2 expression was determined by real time RT-PCR and Western blot. Intrathecal KCC2 siRNA (2 μg per 10 μL per rat) or HDAC inhibitor (10 μg per 10 μL per rat) was injected once daily for 3 days before CFA injection. RESULTS Persistent inflammatory pain epigenetically suppressed KCC2 expression through histone deacetylase (HDAC)-mediated histone hypoacetylation, resulting in decreased inhibitory signalling efficacy. KCC2 knock-down caused by intrathecal administration of KCC2 siRNA in naïve rats reduced KCC2 expression in the spinal cord, leading to sensitized pain behaviours and impaired inhibitory synaptic transmission in their spinal cords. Moreover, intrathecal HDAC inhibitor injection in CFA rats increased KCC2 expression, partially restoring the spinal inhibitory synaptic transmission and relieving the sensitized pain behaviour. CONCLUSION These findings suggest that the transcription of spinal KCC2 is regulated by histone acetylation epigenetically following CFA. SIGNIFICANCE Persistent pain suppresses KCC2 expression through HDAC-mediated histone hypoacetylation and consequently impairs the inhibitory function of inhibitory interneurons. Drugs such as HDAC inhibitors that suppress the influences of persistent pain on the expression of KCC2 may serve as a novel analgesic.
Collapse
Affiliation(s)
- C-R Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - J-K Cheng
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, Taiwan
| | - C-H Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - K-H Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - C-K Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:33-45. [PMID: 29276780 DOI: 10.1080/23808993.2017.1284557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Epigenetics is the study of reversible modifications to chromatin and their extensive and profound effects on gene regulation. To date, the role of epigenetics in personalized medicine has been under-explored. Therefore, this review aims to highlight the vast potential that epigenetics holds. Areas covered We first review the cell-specific nature of epigenetic states and how these can vary with developmental stage and in response to environmental factors. We then summarize epigenetic biomarkers of disease, with a focus on diagnostic tests, followed by a detailed description of current and pipeline drugs with epigenetic modes of action. Finally, we discuss epigenetic biomarkers of drug response. Expert commentary Epigenetic variation can yield information on cellular states and developmental histories in ways that genotype information cannot. Furthermore, in contrast to fixed genome sequence, epigenetic patterns are plastic, so correcting aberrant, disease-causing epigenetic marks holds considerable therapeutic promise. While just six epigenetic drugs are currently approved for use in the United States, a larger number is being developed. However, a drawback to current therapeutics is their non-specific effects. Development of locus-specific epigenetic modifiers, used in conjunction with epigenetic biomarkers of response, will enable truly precision interventions.
Collapse
Affiliation(s)
- Mohamad M Kronfol
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Patricia W Slattum
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| |
Collapse
|
34
|
Hsieh MC, Lai CY, Ho YC, Wang HH, Cheng JK, Chau YP, Peng HY. Tet1-dependent epigenetic modification of BDNF expression in dorsal horn neurons mediates neuropathic pain in rats. Sci Rep 2016; 6:37411. [PMID: 27857218 PMCID: PMC5114645 DOI: 10.1038/srep37411] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation methylcytosine dioxygenase 1 (Tet1) mediates the conversion of 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC), hence promoting DNA demethylation. Although recent studies have linked the DNA demethylation of specific genes to pain hypersensitivity, the role of spinal Tet1-dependent DNA demethylation in nociception hypersensitivity development remains elusive. Here, we report correlated with behavioral allodynia, spinal nerve ligation (SNL) upregulated Tet1 expression in dorsal horn neurons that hydroxylate 5 mC to 5 hmC at CpG dinucleotides in the bdnf promoter to promote spinal BDNF expression at day 7 after operation. Focal knockdown of spinal Tet1 expression decreased Tet1 binding and 5 hmC enrichment, further increased 5 mC enrichment at CpG sites in the bdnf promoter and decreased spinal BDNF expression accompanied by the alleviation of the developed allodynia. Moreover, at day 7 after operation, SNL-enhanced Tet1 expression also inhibited the binding of DNA methyltransferases (DNMTs, i.e., DNMT1, DNMT3a, and DNMT3b) to the bdnf promoter, a requirement for transcriptional silencing by catalysing 5-cytosine (5C) to 5 mC. Together, these data suggest at CpG sites of the bdnf promoter, SNL-enhanced Tet1 expression promotes DNA demethylation both by converting 5 mC to 5 hmC and inhibiting DNMT binding to regulate spinal BDNF expression, hence contributing to behavioral allodynia development.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Cheng Ho
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
35
|
Xu J, Wang W, Zhong XX, Feng YW, Wei XH, Liu XG. EXPRESS: Methylcobalamin ameliorates neuropathic pain induced by vincristine in rats: Effect on loss of peripheral nerve fibers and imbalance of cytokines in the spinal dorsal horn. Mol Pain 2016; 12:12/0/1744806916657089. [PMID: 27306413 PMCID: PMC4956006 DOI: 10.1177/1744806916657089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Vincristine, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and there are currently no effective drugs to prevent or treat this side effect. Previous studies have shown that methylcobalamin has potential analgesic effect in diabetic and chronic compression of dorsal root ganglion model; however, whether methylcobalamin has effect on vincristine-induced painful peripheral neuropathy is still unknown. Results We found that vincristine-induced mechanical allodynia and thermal hyperalgesia, accompanied by a significant loss of intraepidermal nerve fibers in the plantar hind paw skin and an increase in the incidence of atypical mitochondria in the sciatic nerve. Moreover, in the spinal dorsal horn, the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the protein expression of p-p65 as well as tumor necrosis factor α was increased, whereas the protein expression of IL-10 was decreased following vincristine treatment. Furthermore, intraperitoneal injection of methylcobalamin could dose dependently attenuate vincristine-induced mechanical allodynia and thermal hyperalgesia, which was associated with intraepidermal nerve fibers rescue, and atypical mitochondria prevalence decrease in the sciatic nerve. Moreover, methylcobalamin inhibited the activation of NADPH oxidase and the downstream NF-κB pathway. Production of tumor necrosis factor α was also decreased and production of IL-10 was increased in the spinal dorsal horn following methylcobalamin treatment. Intrathecal injection of Phorbol-12-Myristate-13-Acetate, a NADPH oxidase activator, could completely block the analgesic effect of methylcobalamin. Conclusions Methylcobalamin attenuated vincrinstine-induced neuropathic pain, which was accompanied by inhibition of intraepidermal nerve fibers loss and mitochondria impairment. Inhibiting the activation of NADPH oxidase and the downstream NF-κB pathway, resulting in the rebalancing of proinflammatory and anti-inflammatory cytokines in the spinal dorsal horn might also be involved. These findings might provide potential target for preventing vincristine-induced neuropathic pain.
Collapse
Affiliation(s)
- Jing Xu
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiong-Xiong Zhong
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi-Wei Feng
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu-Hong Wei
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
- Xu-Hong Wei, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China. Xian-Guo Liu, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China.
| | - Xian-Guo Liu
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
36
|
Wang Y, Li F, Zhang G, Kang L, Guan H. Ultraviolet-B induces ERCC6 repression in lens epithelium cells of age-related nuclear cataract through coordinated DNA hypermethylation and histone deacetylation. Clin Epigenetics 2016; 8:62. [PMID: 27231489 PMCID: PMC4880862 DOI: 10.1186/s13148-016-0229-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Ultraviolet-B (UVB) exposure attributes to the formation of age-related nuclear cataract (ARNC), which is mediated with DNA damage. DNA damage, an important factor for pathogenesis of ARNC, is induced by UVB, and is generally resolved by the nucleotide excision repair (NER) repair mechanism. Cockayne syndrome complementation group B (CSB) protein coded by ERCC6 is a vital component for NER. However, we found no association between selected ERCC6 polymorphisms and ARNC. In this study, we investigated whether UVB exposure could alter ERCC6 expression and the process could involve epigenetic changes of DNA methylation and/or histone acetylation of ERCC6 in the lens epithelial cells (LECs). We also assessed the involvement of those coordinated changes in lens tissue from ARNC patients. Results mRNA and protein expression of ERCC6 in lens tissue (LECs) were lower in ARNCs than those in the controls. This reduction corresponded to methylation of a CpG site at the ERCC6 promoter and histone modifications (methylation and acetylation) nearby this site. UVB-treated human lens epithelium B3 (HLE-B3) and 239T cell presented (1) increased apoptosis, suggesting reduced UV-damage repair, (2) hypermethylation of the CpG site located at position -441 (relative to transcription start site) within the binding region for transcriptional factor Sp1 in the ERCC6 promoter, (3) the enhancement of histone H3K9 deacetylation, (4) induction in DNA methyltransferases 3b (DNMT3b) and histone deacetylase1 (HDAC1) associated to the CpG site of ERCC6 by CHIP assay. Conclusions These findings suggest an orchestrated mechanism triggered by UVB radiation where the concurrent association of specific hypermethylation CpG site, H3K9 deacetylation of ERCC6, and repression of ERCC6 gene expression. Taken together, with the similar changes in the lens tissue from ARNC patients, our data unveiled a possible mechanism of epigenetic modification of DNA repair gene in the pathogenesis of ARNC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Fei Li
- Ophthalmology Department, Chengdu Fifth People's Hospital, Chengdu, Sichuan China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| |
Collapse
|
37
|
Sahbaie P, Liang DY, Shi XY, Sun Y, Clark JD. Epigenetic regulation of spinal cord gene expression contributes to enhanced postoperative pain and analgesic tolerance subsequent to continuous opioid exposure. Mol Pain 2016; 12:12/0/1744806916641950. [PMID: 27094549 PMCID: PMC4956243 DOI: 10.1177/1744806916641950] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/12/2016] [Indexed: 11/25/2022] Open
Abstract
Background Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. Results Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. Conclusions Spinal epigenetic changes involving Bdnf and Pdyn may contribute to the enhanced postoperative nociceptive sensitization and analgesic tolerance observed after continuous opioid exposure. Treatments blocking the epigenetically mediated up-regulation of these genes or administration of TrkB or κ-opioid receptor antagonists may improve the clinical utility of opioids, particularly after surgery.
Collapse
Affiliation(s)
- Peyman Sahbaie
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA Anaesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - De-Yong Liang
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA Anaesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Xiao-You Shi
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA Anaesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Yuan Sun
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA Anaesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - J David Clark
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA Anaesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|