1
|
Liang X, Wang Y, Shen W, Liao B, Liu X, Yang Z, Chen J, Zhao C, Liao Z, Cao J, Wang P, Wang P, Ke F, Xu J, Lin Q, Xi W, Wang L, Xu J, Zhao X, Sun C. Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus. MOLECULAR PLANT 2024; 17:1753-1772. [PMID: 39444162 DOI: 10.1016/j.molp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Bioactive compounds play an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic bases for the selection and differentiation underlying bioactive compound variations in citrus remain poorly understood. In this study, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19 829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significant differential accumulation of bioactive compounds in the phenylpropane pathway, mainly flavonoids and coumarins, was unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases, and uridine diphosphate glycosyltransferases. Moreover, we systematically evaluated the beneficial bioactivities such as the antioxidant and anticancer capacities of 219 citrus varieties, and identified robust associations between distinct bioactivities and specific metabolites. Collectively, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of potential risk of coumarins. Our study will accelerate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
Collapse
Affiliation(s)
- Xiao Liang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Bin Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zimeng Yang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jiebiao Chen
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Ping Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Peng Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Lishu Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
2
|
Grosu (Dumitrescu) C, Jîjie AR, Manea HC, Moacă EA, Iftode A, Minda D, Chioibaş R, Dehelean CA, Vlad CS. New Insights Concerning Phytophotodermatitis Induced by Phototoxic Plants. Life (Basel) 2024; 14:1019. [PMID: 39202761 PMCID: PMC11355232 DOI: 10.3390/life14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The present review explores the underlying mechanisms of phytophotodermatitis, a non-immunologic skin reaction triggered by certain plants followed by exposure to ultraviolet radiation emitted by sunlight. Recent research has advanced our understanding of the pathophysiology of phytophotodermatitis, highlighting the interaction between plant-derived photosensitizing compounds (e.g., furanocoumarins and psoralens) and ultraviolet light leading to skin damage (e.g., erythema, fluid blisters, edema, and hyperpigmentation), identifying these compounds as key contributors to the phototoxic reactions causing phytophotodermatitis. Progress in understanding the molecular pathways involved in the skin's response to these compounds has opened avenues for identifying potential therapeutic targets suitable for the management and prevention of this condition. The review emphasizes the importance of identifying the most common phototoxic plant families (e.g., Apiaceae, Rutaceae, and Moraceae) and plant species (e.g., Heracleum mantegazzianum, Ruta graveolens, Ficus carica, and Pastinaca sativa), as well as the specific phytochemical compounds responsible for inducing phytophototoxicity (e.g., limes containing furocoumarin have been linked to lime-induced photodermatitis), underscoring the significance of recognizing the dangerous plant sources. Moreover, the most used approaches and tests for accurate diagnosis such as patch testing, Wood's lamp examination, or skin biopsy are presented. Additionally, preventive measures such as adequate clothing (e.g., long-sleeved garments and gloves) and treatment strategies based on the current knowledge of phytophotodermatitis including topical and systemic therapies are discussed. Overall, the review consolidates recent findings in the field, covering a diverse array of phototoxic compounds in plants, the mechanisms by which they trigger skin reactions, and the implications for clinical management. By synthesizing these insights, we provide a comprehensive understanding of phytophotodermatitis, providing valuable information for both healthcare professionals and researchers working to address this condition.
Collapse
Affiliation(s)
- Cristina Grosu (Dumitrescu)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
| | - Horaţiu Cristian Manea
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 94 Revolutiei Bv., 310025 Arad, Romania
- Timisoara Municipal Emergency Clinical Hospital, 5 Take Ionescu Bv., 300062 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andrada Iftode
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research and Processing Center for Medical and Aromatic Plants (Plant-Med), “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Raul Chioibaş
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- CBS Medcom Hospital, 12th Popa Sapca Street, 300047 Timisoara, Romania
| | - Cristina-Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
3
|
Brahmachari G. Practice of green chemistry strategies in synthetic organic chemistry: a glimpse of our sincere efforts in green chemistry research. Chem Commun (Camb) 2024; 60:8153-8169. [PMID: 38978452 DOI: 10.1039/d4cc02249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This feature article summarises our recent contributions (2019-2023) in designing and developing a handful of promising organic transformations for accessing several diversely functionalised biologically relevant organic scaffolds, following the green chemistry principles, particularly focusing on the application of low-energy visible light, electrochemistry, ball-milling, ultrasound, and catalyst- and additive-free synthetic strategies.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India.
| |
Collapse
|
4
|
Hiraoka Y, Ferrante SP, Wu GA, Federici CT, Roose ML. Development and Assessment of SNP Genotyping Arrays for Citrus and Its Close Relatives. PLANTS (BASEL, SWITZERLAND) 2024; 13:691. [PMID: 38475537 DOI: 10.3390/plants13050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Rapid advancements in technologies provide various tools to analyze fruit crop genomes to better understand genetic diversity and relationships and aid in breeding. Genome-wide single nucleotide polymorphism (SNP) genotyping arrays offer highly multiplexed assays at a relatively low cost per data point. We report the development and validation of 1.4M SNP Axiom® Citrus HD Genotyping Array (Citrus 15AX 1 and Citrus 15AX 2) and 58K SNP Axiom® Citrus Genotyping Arrays for Citrus and close relatives. SNPs represented were chosen from a citrus variant discovery panel consisting of 41 diverse whole-genome re-sequenced accessions of Citrus and close relatives, including eight progenitor citrus species. SNPs chosen mainly target putative genic regions of the genome and are accurately called in both Citrus and its closely related genera while providing good coverage of the nuclear and chloroplast genomes. Reproducibility of the arrays was nearly 100%, with a large majority of the SNPs classified as the most stringent class of markers, "PolyHighResolution" (PHR) polymorphisms. Concordance between SNP calls in sequence data and array data average 98%. Phylogenies generated with array data were similar to those with comparable sequence data and little affected by 3 to 5% genotyping error. Both arrays are publicly available.
Collapse
Affiliation(s)
- Yoko Hiraoka
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Sergio Pietro Ferrante
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Guohong Albert Wu
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Claire T Federici
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mikeal L Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Pasdaran A, Hamedi A, Shiehzadeh S, Hamedi A. A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clin Nutr ESPEN 2023; 54:311-336. [PMID: 36963879 DOI: 10.1016/j.clnesp.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Fruits, flowers, leaves, essential oils, hydrosols, and juices of citrus spp. Are utilized to prepare various forms of food products. Along with their nutritional values, in the health industry, different parts of the plants of the citrus genus have been used as supplements or remedies to prevent or control diseases. This review focused on reported meta-analyses and clinical trials on the health benefits of citrus plants as functional foods. Also, chemical compounds of various citrus species were reviewed. The following information sources were used for data collection: Google Scholar, the Web of Science, Scopus, and PubMed. Various keywords, including "citrus AND chemical compounds," "citrus AND phytochemicals," "citrus species," "citrus AND meta-analysis," "nutritional and therapeutical values of citrus spp.," "clinical trials AND citrus," "clinical trials AND Rutaceae," "health benefits of citrus spp.," "citrus edible or non-edible applications," and scientific names of the citrus plants were utilized to collect data for the review. The scientific name and common name of all twenty-eight citrus species, along with any of the above keywords, were also searched in the mentioned databases. Scientific papers and data sources were sought to review and discuss the citrus plant's nutritional and therapeutic importance. Several meta-analyses and clinical trials have reported beneficial effects of citrus spices on a variety of cancer risks, cardiovascular risk factors, neurologic disorders, urinary tract conditions, and gastrointestinal tract conditions. They have shown anxiolytic, antimicrobial, and pain-alleviating effects. Some of them can be helpful in managing obesity and cardiovascular risk factors.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara Shiehzadeh
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Onder A, Nahar L, Cinar AS, Sarker SD. The Genus Seseli L.: A Comprehensive Review on Traditional Uses, Phytochemistry, and Pharmacological Properties. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
A pragmatic authenticity assessment of lemon (Citrus limon [L.] Burm.f.) juices by its profile of coumarins, psoralens, and polymethoxyflavones. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lü J, Zhang D, Zhang X, Sa R, Wang X, Wu H, Lin Z, Zhang B. Network Analysis of the Herb-Drug Interactions of Citrus Herbs Inspired by the "Grapefruit Juice Effect". ACS OMEGA 2022; 7:35911-35923. [PMID: 36249376 PMCID: PMC9558717 DOI: 10.1021/acsomega.2c04579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This study was performed to investigate the herb-drug interactions (HDIs) of citrus herbs (CHs), which was inspired by the "grapefruit (GF) juice effect". Based on network analysis, a total of 249 components in GF and 159 compounds in CHs exhibited great potential as active ingredients. Moreover, 360 GF-related genes, 422 CH-related genes, and 111 genes associated with drug transport and metabolism were collected, while 25 and 26 overlapping genes were identified. In compound-target networks, the degrees of naringenin, isopimpinellin, apigenin, sinensetin, and isoimperatorin were higher, and the results of protein-protein interaction indicated the hub role of UGT1A1 and CYP3A4. Conventional drugs such as erlotinib, nilotinib, tamoxifen, theophylline, venlafaxine, and verapamil were associated with GF and CHs via multiple drug transporters and drug-metabolizing enzymes. Remarkably, GF and CHs shared 48 potential active compounds, among which naringenin, tangeretin, nobiletin, and apigenin possessed more interactions with targets. Drug metabolism by cytochrome P450 stood out in the mutual mechanism of GF and CHs. Molecular docking was utilized to elevate the protein-ligand binding potential of naringenin, tangeretin, nobiletin, and apigenin with UGT1A1 and CYP3A4. Furthermore, in vitro experiments demonstrated their regulating effect. Overall, this approach provided predictions on the HDIs of CHs, and they were tentatively verified through molecular docking and cell tests. Moreover, there is a demand for clinical and experimental evidence to support the prediction.
Collapse
Affiliation(s)
- Jintao Lü
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaomeng Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rina Sa
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
- Gansu
Province Hospital, Lanzhou 730000, China
| | - Xiaofang Wang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huanzhang Wu
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijian Lin
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bing Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
10
|
Dosoky NS, Satyal P, Setzer WN. Authentication of Citrus spp. Cold-Pressed Essential Oils by Their Oxygenated Heterocyclic Components. Molecules 2022; 27:molecules27196277. [PMID: 36234812 PMCID: PMC9572141 DOI: 10.3390/molecules27196277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Citrus essential oils are routinely adulterated because of the lack of regulations or reliable authentication methods. Unfortunately, the relatively simple chemical makeup and the tremendous price variations among Citrus varieties encouraged the interspecies adulteration of citrus oils. In this study, a sensitive UPLC-MS/MS method for the quantitation of 14 coumarins and furanocoumarins is developed and validated. This method was applied to screen the essential oils of 12 different Citrus species. This study, to our knowledge, represents the most comprehensive investigation of coumarin and furanocoumarin profiles across commercial-scale Citrus oils to date. Results show that the lowest amount was detected in calamansi oil. Expressed oil of Italian bergamot showed the highest furanocoumarin content and the highest level of any individual furanocoumarin (bergamottin). Notable differences were observed in the coumarin and furanocoumarin levels among oils of different crop varieties and origins within the same species. Potential correlations were observed between bergapten and xanthotoxin which matches with known biosynthetic pathways. We found patterns in furanocoumarin profiles that line up with known variations among the Citrus ancestral taxa. However, contrary to the literature, we also detected xanthotoxin in sweet orange and members of the mandarin taxon. Using multivariate analysis, we were able to divide the Citrus oils into 5 main groups and correlate them to the coumarin compositions.
Collapse
Affiliation(s)
- Noura S. Dosoky
- Aromatic Plant Research Center, Lehi, UT 84043, USA
- Correspondence: ; Tel.: +1-256-457-0135
| | | | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
11
|
Yang Y, Han J, Lilly RG, Yang Q, Guo Y. Bergapten mediated inflammatory and apoptosis through AMPK/eNOS/AKT signaling pathway of isoproterenol-induced myocardial infarction in Wistar rats. J Biochem Mol Toxicol 2022; 36:e23143. [PMID: 35815753 DOI: 10.1002/jbt.23143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/31/2021] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
Bergapten (BeG) is explored for its anti-inflammatory and antioxidant properties. Myocardial infarction (MI) is reported to be one of the leading cardiovascular diseases characterized by mitochondrial dysfunction and apoptosis. The main purpose of this study is to assess the cardiopreventive effects of BeG (50 mg/kg) in isoproterenol (ISO)-induced MI in Wistar rats. The increased infarct size after ISO induction was reduced simultaneously on treatment with BeG. Similarly, augmented levels of cardiac biomarkers, namely cardiac troponin T, creatine kinase (CK), cardiac troponin I, and CK-MB were also suppressed by BeG. The increased rate of lipid hydroperoxides and thiobarbituric acid reactive substances owing to the oxidative stress caused by free radical generation in ISO-induced rats were also inhibited by BeG. Antioxidants reduce oxidative stress by scavenging free radicals. ISO induction reduces these antioxidant enzymes glutathione peroxidase, catalase, superoxide dismutase, and glutathione, and levels causing oxidative cardiac damage to the heart tissue. BeG supplementation improved these enzymes synthesis preventing potential damage to the myocardium. Inflammation caused by ISO pretreatment increased the secretion of proinflammatory cytokines in ISO-induced rats. Pretreatment with BeG suppressed these inflammatory cytokines to a normal level in ISO + BeG-treated rats. The histopathological examination of the morphological characteristics showed that the intensity of cardiac damage caused by ISO induction was less in BeG pretreated rats with less inflammatory cells and no necrosis. BeG also showed promising results in the molecular alteration of AMP-activated protein kinase/endothelial nitric oxide synthase/protein kinase B signaling molecules. These observations emphasize the cardioprotective effects of BeG and its potential use as a drug in the near future.
Collapse
Affiliation(s)
- Yanni Yang
- Department of Cardiology Digital Subtraction Angiography (DSA), Xi'an International Medical Center Hospital, Xi'an, China
| | - Juanping Han
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Renju G Lilly
- Department of Biochemistry, University of Kerala, Palayam, Thiruvananthapuram, Kerala, India
| | - Qin Yang
- Department of Cardiology Digital Subtraction Angiography (DSA), Xi'an International Medical Center Hospital, Xi'an, China
| | - Yanjie Guo
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
12
|
Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-Espinosa L. Phytochemicals That Interfere With Drug Metabolism and Transport, Modifying Plasma Concentration in Humans and Animals. Dose Response 2022; 20:15593258221120485. [PMID: 36158743 PMCID: PMC9500303 DOI: 10.1177/15593258221120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Phytochemicals (Pch) present in fruits, vegetables and other foods, are known to inhibit or induce drug metabolism and transport. An exhaustive search was performed in five databases covering from 2000 to 2021. Twenty-one compounds from plants were found to modulate CYP3A and/or P-gp activities and modified the pharmacokinetics and the therapeutic effect of 27 different drugs. Flavonols, flavanones, flavones, stilbenes, diferuloylmethanes, tannins, protoalkaloids, flavans, hyperforin and terpenes, reduce plasma concentration of cyclosporine, simvastatin, celiprolol, midazolam, saquinavir, buspirone, everolimus, nadolol, tamoxifen, alprazolam, verapamil, quazepam, digoxin, fexofenadine, theophylline, indinavir, clopidogrel. Anthocyanins, flavonols, flavones, flavanones, flavonoid glycosides, stilbenes, diferuloylmethanes, catechin, hyperforin, alkaloids, terpenes, tannins and protoalkaloids increase of plasma concentration of buspirone, losartan, diltiazem, felodipine, midazolam, cyclosporine, triazolam, verapamil, carbamazepine, diltiazem, aripiprazole, tamoxifen, doxorubicin, paclitaxel, nicardipine. Interactions between Pchs and drugs affect the gene expression and enzymatic activity of CYP3A and P-gp transporter, which has an impact on their bioavailability; such that co-administration of drugs with food, beverages and food supplements can cause a subtherapeutic effect or overdose. Therefore, it is important for the clinician to consider these interactions to obtain a better therapeutic effect.
Collapse
Affiliation(s)
| | - Renato León-Rodríguez
- Laboratorio de Contención Biológica BSL-3, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Han L, Cheng Y, Zhang T, Zhou Q, Zhang W, Li Y, Li G. Targeted Metabolomics With a Chemometric Study of Oxygenated Heterocyclic Aglycones as a Tool for Preliminary Authenticity Assessment of Orange and Grapefruit Juices. Front Nutr 2022; 9:897982. [PMID: 35677541 PMCID: PMC9169518 DOI: 10.3389/fnut.2022.897982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Profiles of citrus juice oxygenated heterocyclic aglycones (OHAs), which are notable marker secondary metabolites, were used to assess the authenticity of sweet orange and grapefruit juices in situations where mandarin and pomelo juices might be adulterants. Thirty-nine known OHAs, including 10 methoxyflavones, 13 coumarins, and 16 furanocoumarins, as well as 13 tentatively screened OHAs, were analyzed in orange, mandarin, grapefruit and pomelo juices using our newly developed high-resolution HPLC-UV and fluorescence detection method. Quantitative OHA profiles from 158 pure juice samples were obtained to establish a purity discriminant model using an omics strategy. Reduction of OHA variables showed that three important methoxyflavones, i.e. isosinensetin, tangeretin and sinensetin provided the best discrimination ability between sweet orange and mandarin juices. There are two subtypes of pomelos, Shatianyou Group and Wendan Group, of which juices should be separately compared to grapefruit juice. Five OHAs, namely meranzin, 3,5,6,7,8,3',4'-heptamethoxyflavone, osthole, 6',7'-epoxybergamottin, and bergamottin were found to discriminate Shatianyou Group of pomelo juice from grapefruit juice; whereas three OHAs, namely bergaptol, isomeranzin, and 6',7'-dihydroxybergamottin were able to discriminate Wendan Group of pomelo juice from grapefruit juice. The established partial least squares discriminant analysis (PLS-DA) models were capable of detecting as little as 10% mandarin juice in sweet orange juice and 10% pomelo juice in grapefruit juice, allowing for fast prescreening of excess addition with good reliability (root mean square error of prediction, RMSEP < 5%).
Collapse
Affiliation(s)
- Leng Han
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Yujiao Cheng
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Tenghui Zhang
- Chengdu Centre Testing International Group Co., Ltd., Chengdu, China
| | - Qi Zhou
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Wanchao Zhang
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Yongan Li
- Administration of Agriculture and Rural Affairs of the Dongpo District, Meishan, China
| | - Guijie Li
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Song C, Li X, Jia B, Liu L, Wei P, Manzoor MA, Wang F, Li BY, Wang G, Chen C, Han B. Comparative Transcriptomics Unveil the Crucial Genes Involved in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn. FRONTIERS IN PLANT SCIENCE 2022; 13:899819. [PMID: 35656010 PMCID: PMC9152428 DOI: 10.3389/fpls.2022.899819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Peucedanum praeruptorum Dunn is a commonly used traditional Chinese medicine that is abundant in furano- and dihydropyrano coumarins. When P. praeruptorum reaches the bolting stage, the roots gradually lignified, and the content of coumarins declines rapidly. Non-bolting has always been a decisive factor for harvesting the P. praeruptorum materials. To evaluate the amount of coumarin components in unbolted and bolted P. praeruptorum, the variations of praeruptorin A, praeruptorin B, praeruptorin E, peucedanocoumarin I, and peucedanocoumarin II were determined. Additionally, 336,505 transcripts were obtained from the comparative transcriptome data. Among them, a total of 1,573 differentially expressed genes were screened out. To identify the critical genes involved in coumarin biosynthesis, comparative transcriptomics coupled with co-expression associated analysis was conducted. Finally, coumarin biosynthesis-related eighteen candidate genes were selected for the validation of qPCR. Additionally, a phylogenetic tree and the expression profile of ATP-binding cassette (ABC) transporters were constructed. To clarify the main genes in the regulation of coumarin biosynthesis, the interaction network of the co-expression genes from thirteen modules was constructed. Current results exhibited the significant increment of praeruptorin A, praeruptorin B and praeruptorin E in the bolted P. praeruptorum. Although, peucedanocoumarin I and peucedanocoumarin II were slightly increased. Besides the content of coumarins, the essential genes involved in the coumarin biosynthesis also exhibited an overall downward trend after bolting. Three peroxidases (PRXs) involved in the production of lignin monomers had been demonstrated to be downregulated. PAL, C4H, HCT, COMT, CCoAOMT, and some ABC transporters were dramatically downregulated at the bolting stage. These results indicated that the downregulation of coumarin biosynthetic genes in the bolted P. praeruptorum ultimately reduced the formation of coumarins. However, the mechanism through which bolting indirectly affects the formation of coumarin still needs extra functional verification.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Xiaoli Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Bin Jia
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Li Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | | | - Fang Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Biqi Yao Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Guanglin Wang
- Analytical and Testing Center, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| |
Collapse
|
15
|
Mandal M, Brahmachari G. Visible-Light-Promoted Intramolecular C-O Bond Formation via C sp3-H Functionalization: A Straightforward Synthetic Route to Biorelevant Dihydrofuro[3,2- c]chromenone Derivatives. J Org Chem 2022; 87:4777-4787. [PMID: 35300495 DOI: 10.1021/acs.joc.2c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A photochemical method for the synthesis of functionalized dihydrofuro[3,2-c]chromenones via intramolecular Csp3-H cross-dehydrogenative oxygenation within a warfarin framework has been unearthed. Advantages of this protocol include abundant sunlight or low-energy visible light as the energy source, mild reaction conditions, and avoidance of metal catalysts.
Collapse
Affiliation(s)
- Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| |
Collapse
|
16
|
Heghes SC, Vostinaru O, Mogosan C, Miere D, Iuga CA, Filip L. Safety Profile of Nutraceuticals Rich in Coumarins: An Update. Front Pharmacol 2022; 13:803338. [PMID: 35140615 PMCID: PMC8818878 DOI: 10.3389/fphar.2022.803338] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Coumarins are a family of benzopyrones largely distributed in the natural kingdom, being present in the seeds, fruits, flowers, or roots of various plant species. Natural coumarin compounds are found in significant concentrations in some herbs or spices used as nutraceuticals, but they are also present in cosmetics or household products, due to their pleasant odor. Therefore, an accidental exposure to high doses of coumarins, could lead to the development of harmful effects in some patients. This review summarizes the latest published data from preclinical and clinical studies with natural coumarins, focused on the investigation of general and specific toxicity, with the aim of a better understanding of the safety profile of these valuable compounds. Regulatory aspects concerning the use of natural coumarins in several world regions are also reviewed.
Collapse
Affiliation(s)
- Simona Codruta Heghes
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oliviu Vostinaru
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine—MedFUTURE, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Smeriglio A, Denaro M, Di Gristina E, Mastracci L, Grillo F, Cornara L, Trombetta D. Pharmacognostic approach to evaluate the micromorphological, phytochemical and biological features of Citrus lumia seeds. Food Chem 2021; 375:131855. [PMID: 34953240 DOI: 10.1016/j.foodchem.2021.131855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022]
Abstract
This study evaluated the micro-morphology as well as the chemical and biological features of Citrus lumia seeds. The cream-colored pyriform seed showed a woody coat covered by a thick layer of mucilage and an embryo with two large cotyledons rich in oil bodies. Hydroxycinnamic acid glycosides and flavonoids are the most abundant compounds in methanol and ethyl acetate extracts (ME and EAE), respectively. Conversely, fatty acids and α-tocopherol represent the main bioactive compounds in the hexane extract (HE). ME showed the most promising antioxidant and anti-inflammatory activities already in cell-free assays. These results were confirmed by experiments carried out on human primary cells. Indeed, ME showed the best inhibitory activity against heat-induced haemolysis and ROS formation in erythrocytes. Moreover, the same order of potency (ME > EAE > HE) was observed also on peripheral blood mononuclear cells, in which the seed extracts were able to decrease TNF-α and IL-6 release after LPS-induced inflammation.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Emilio Di Gristina
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, bldg. 4, 90128 Palermo, Italy
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC), Pathology Unit, University of Genova, Genova, Italy; Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16125 Genova, Italy
| | - Federica Grillo
- Department of Surgical and Diagnostic Sciences (DISC), Pathology Unit, University of Genova, Genova, Italy
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
18
|
Myrtsi ED, Angelis A, Koulocheri SD, Mitakou S, Haroutounian SA. Retrieval of High Added Value Natural Bioactive Coumarins from Mandarin Juice-Making Industrial Byproduct. Molecules 2021; 26:7527. [PMID: 34946609 PMCID: PMC8708529 DOI: 10.3390/molecules26247527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Cold pressed essential oil (CPEO) of mandarin (Citrus reticulata Blanco), a by-product of the juice-making industrial process known to contain large amounts of polymethoxyflavones, was exploited for its content in high added value natural coumarins. The study herein afforded a method referring to the evaporation of CPEO volatile fraction under mild conditions (reduced pressure and temperature below 35 °C) as azeotrope with isopropanol. This allowed the isolation of high added value coumarins from the non-volatile fragment using preparative High Performance Liquid Chromatography (HPLC). Pilot-scale application of this procedure afforded for each kg of CPEO processed the following natural bioactive coumarins in chemically pure forms: heraclenol (38-55 mg), 8-gerayloxypsoralen (35-51 mg), auraptene (22-33 mg), and bergamottin (14-19 mg). The structures of coumarins were verified by Nuclear Magnetic Resonance (NMR) spectroscopy and HPLC co-injection with authentic standards. Thus, the low market value mandarin CPEO with current value of 17 to 22 EUR/kg can be valorized through the production of four highly bioactive natural compounds worth 3479 to 5057 EUR/kg, indicating the great potentials of this methodology in the terms of the circular economy.
Collapse
Affiliation(s)
- Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| | - Apostolis Angelis
- Division of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (S.M.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| | - Sofia Mitakou
- Division of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (S.M.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| |
Collapse
|
19
|
Abstract
For the first time, we describe a new approach towards the synthesis of previously unknown 2-(2-(4-methoxyphenyl)-4,9-dimethyl-7-oxo-7H-furo[2,3-f]chromen-3-yl)acetic acid. The presented method is based on the multicomponent condensation of 5-hydroxy-4,7-dimethyl-2H-chromen-2-one, 4-methoxyphenylglyoxal and Meldrum’s acid. It was shown that the studied reaction proceeds in two steps including the initial interaction of starting materials in MeCN and the final formation of furylacetic acid moiety in acidic media. The structures of the obtained compound were established by 1H, 13C-NMR spectroscopy and high-resolution mass spectrometry.
Collapse
|
20
|
Comprehensive identification and distribution pattern of 37 oxygenated heterocyclic compounds in commercially important citrus juices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Unsupervised methods in LC-MS data treatment: Application for potential chemotaxonomic markers search. J Pharm Biomed Anal 2021; 206:114382. [PMID: 34597842 DOI: 10.1016/j.jpba.2021.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
The combination of Liquid Chromatography and Mass Spectrometry (LC-MS) is commonly used to determine and characterize biologically active compounds because of its high resolution and sensitivity. In this work we explore the interpretation of LC-MS data using multivariate statistical analysis algorithms to extract useful chemical information and identify clusters of similar samples. Samples of leaves from 19 plants belonging to the Apiaceae family were analyzed in unified LC conditions by high- and low-resolution mass spectrometry in a wide range scan mode. LC-MS data preprocessing was performed followed by statistical analysis using tensor decomposition in the form of Parallel Factor Analysis (PARAFAC); matrix factorization following tensor unfolding with principal component analysis (PCA), independent component analysis (ICA), non-negative matrix factorization (NMF); or unsupervised feature selection (UFS). The optimal number of components for each of these methods were found and results were compared using four different metrics: silhouette score, Davies-Bouldin index, computational time, number of noisy components. It was found that PCA, ICA and UFS give the best results across the majority of the criteria for both low- and high-resolution data. An algorithm for biomarker signal selection is suggested and 23 potential chemotaxonomic markers were tentatively identified using MS2 data. Dendrograms constructed by the methods were compared to the molecular phylogenic tree by calculating pixel-wise mean square error (MSE). Therefore, the suggested approach can support chemotaxonomic studies and yield valuable chemical information for biomarker discovery.
Collapse
|
22
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Kouba M, Fašmon Durjava M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety and efficacy of a feed additive consisting of an aqueous extract of Citrus limon (L.) Osbeck (lemon extract) for use in all animal species (Nor-Feed SAS). EFSA J 2021; 19:e06893. [PMID: 34765034 PMCID: PMC8573541 DOI: 10.2903/j.efsa.2021.6893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of an aqueous extract of Citrus limon (L.) Osbeck (lemon extract) when used as a sensory additive in feed for all animal species. The FEEDAP Panel concluded that the additive under assessment is safe for all animal species up to the maximum proposed use levels of 1,000 mg/kg complete feed and 250 mg/kg water for drinking. No concerns for consumers were identified following the use of lemon extract up to the highest safe level in feed. The additive should be considered a skin and eye irritant, and a potential corrosive. The use of the extract in animal feed under the proposed conditions was not expected to pose a risk for the environment. Lemon extract was recognised to flavour food. Since its function in feed would be essentially the same as that in food, no further demonstration of efficacy was considered necessary.
Collapse
|
23
|
Vetrichelvan O, Gorjala P, Goodman O, Mitra R. Bergamottin a CYP3A inhibitor found in grapefruit juice inhibits prostate cancer cell growth by downregulating androgen receptor signaling and promoting G0/G1 cell cycle block and apoptosis. PLoS One 2021; 16:e0257984. [PMID: 34570813 PMCID: PMC8476002 DOI: 10.1371/journal.pone.0257984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer related death in American men. Several therapies have been developed to treat advanced prostate cancer, but these therapies often have severe side effects. To improve the outcome with fewer side effects we focused on the furanocoumarin bergamottin, a natural product found in grapefruit juice and a potent CYP3A inhibitor. Our recent studies have shown that CYP3A5 inhibition can block androgen receptor (AR) signaling, critical for prostate cancer growth. We observed that bergamottin reduces prostate cancer (PC) cell growth by decreasing both total and nuclear AR (AR activation) reducing downstream AR signaling. Bergamottin’s role in reducing AR activation was confirmed by confocal microscopy studies and reduction in prostate specific antigen (PSA) levels, which is a marker for prostate cancer. Further studies revealed that bergamottin promotes cell cycle block and accumulates G0/G1 cells. The cell cycle block was accompanied with reduction in cyclin D, cyclin B, CDK4, P-cdc2 (Y15) and P-wee1 (S642). We also observed that bergamottin triggers apoptosis in prostate cancer cell lines as evident by TUNEL staining and PARP cleavage. Our data suggests that bergamottin may suppress prostate cancer growth, especially in African American (AA) patients carrying wild type CYP3A5 often presenting aggressive disease.
Collapse
Affiliation(s)
- Opalina Vetrichelvan
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Priyatham Gorjala
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Oscar Goodman
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America.,Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, United States of America
| | - Ranjana Mitra
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| |
Collapse
|
24
|
Antioxidant Metabolites in Primitive, Wild, and Cultivated Citrus and Their Role in Stress Tolerance. Molecules 2021; 26:molecules26195801. [PMID: 34641344 PMCID: PMC8510114 DOI: 10.3390/molecules26195801] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/07/2023] Open
Abstract
The genus Citrus contains a vast range of antioxidant metabolites, dietary metabolites, and antioxidant polyphenols that protect plants from unfavorable environmental conditions, enhance their tolerance to abiotic and biotic stresses, and possess multiple health-promoting effects in humans. This review summarizes various antioxidant metabolites such as organic acids, amino acids, alkaloids, fatty acids, carotenoids, ascorbic acid, tocopherols, terpenoids, hydroxycinnamic acids, flavonoids, and anthocyanins that are distributed in different citrus species. Among these antioxidant metabolites, flavonoids are abundantly present in primitive, wild, and cultivated citrus species and possess the highest antioxidant activity. We demonstrate that the primitive and wild citrus species (e.g., Atalantia buxifolia and C. latipes) have a high level of antioxidant metabolites and are tolerant to various abiotic and biotic stresses compared with cultivated citrus species (e.g., C. sinensis and C. reticulata). Additionally, we highlight the potential usage of citrus wastes (rag, seeds, fruit peels, etc.) and the health-promoting properties of citrus metabolites. Furthermore, we summarize the genes that are involved in the biosynthesis of antioxidant metabolites in different citrus species. We speculate that the genome-engineering technologies should be used to confirm the functions of candidate genes that are responsible for the accumulation of antioxidant metabolites, which will serve as an alternative tool to breed citrus cultivars with increased antioxidant metabolites.
Collapse
|
25
|
Balkrishna A, Arya V, Sharma IP. Anti-Cancer and Anti-Inflammatory Potential of Furanocoumarins from Ammi majus L. Anticancer Agents Med Chem 2021; 22:1030-1036. [PMID: 34431469 DOI: 10.2174/1871520621666210824113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
Secondary metabolites have potential benefits to human being. They are used in the food, agricultural and pharmaceutical industries. The secondary metabolite of furanocoumarins from different plant sources is essential in various skin-related ailments. Biologically, these chemicals are isolated from different plants in the Apiaceae, Fabaceae, Rutaceae and Moraceae families. Ammi Majus L. is one of the most common plants in the family of Apiaceae with a large quantity of derivatives. The furanocoumarin derivatives defend the plant by fighting external enemies by systemic acquired resistance (SAR). Via suppressing or retarding microbial growth in infected parts, these derivatives, along with SAR, help to alleviate inflammation in the human body. Latest evidence of these compounds has been established in the treatment of cancer, but the mechanism that needs to be elaborated is not yet understood. Recent studies have shown that furanocoumarin derivatives bind to DNA base pairs and block DNA replication. This may be a potential pathway that helps to regulate the growth of cancerous cells. This article reflects on the pharmaceutical data of furanocoumarins and their different mechanisms in these cases.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar - 249 405 (Uttarakhand) . India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar - 249 405 (Uttarakhand) . India
| | - Ishwar Prakash Sharma
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar - 249 405 (Uttarakhand) . India
| |
Collapse
|
26
|
Raghavan S, Gurunathan J. Citrus species – a golden treasure box of metabolites that is beneficial against disorders. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Mottaghipisheh J. Oxypeucedanin: Chemotaxonomy, Isolation, and Bioactivities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081577. [PMID: 34451622 PMCID: PMC8401860 DOI: 10.3390/plants10081577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 05/10/2023]
Abstract
The present review comprehensively gathered phytochemical, bioactivity, and pharmacokinetic reports on a linear furanocoumarin, namely oxypeucedanin. Oxypeucedanin (OP), which structurally contains an epoxide ring, has been majorly isolated from ethyl acetate-soluble partitions of several genera, particularly Angelica, Ferulago, and Prangos of the Apiaceae family; and Citrus, belonging to the Rutaceae family. The methanolic extract of Angelica dahurica roots has been analytically characterized as the richest natural OP source. This naturally occurring secondary metabolite has been described to possess potent antiproliferative, cytotoxic, anti-influenza, and antiallergic activities, as assessed in preclinical studies. In order to explore potential drug candidates, oxypeucedanin, its derivatives, and semi-synthetically optimized analogues can be considered for the complementary assessments of biological assays.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
28
|
Arigò A, Rigano F, Russo M, Trovato E, Dugo P, Mondello L. Dietary Intake of Coumarins and Furocoumarins through Citrus Beverages: A Detailed Estimation by a HPLC-MS/MS Method Combined with the Linear Retention Index System. Foods 2021; 10:1533. [PMID: 34359404 PMCID: PMC8303230 DOI: 10.3390/foods10071533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022] Open
Abstract
Official regulations concerning the maximum number of substances in food are introduced as a consequence of possible adverse effects, after oral administration. In this regard, analytical methods are necessary in order to determine specific targets. Among oxygen heterocyclic compounds (OHCs, that are furocoumarins, coumarins and polymethoxyflavones), only coumarin is subject to restriction by the Regulation (EC) No 1334/2008 of the European Parliament. Furocoumarins are known for their phototoxicity and other side effects due to their dietary intake; however, an official limit about the maximum content of these compounds in food is still missing. The lack of information about the real amount of these compounds in food is responsible for the conflicting opinions about the introduction of an official limit. The HPLC-MS/MS method here proposed, in combination with the linear retention index system, represents an innovative analytical strategy for the characterization of OHCs in citrus beverages. Several types of drinks were analysed in order to quantify 35 OHCs in total. This method is suitable for the quality control of OHCs in food and the obtained results may be considered as informative data useful for the regulatory authorities in the emission of new opinions and for a potential new regulation in this field.
Collapse
Affiliation(s)
- Adriana Arigò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.A.); (M.R.); (P.D.); (L.M.)
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.A.); (M.R.); (P.D.); (L.M.)
| | - Marina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.A.); (M.R.); (P.D.); (L.M.)
| | - Emanuela Trovato
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98198 Messina, Italy;
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.A.); (M.R.); (P.D.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98198 Messina, Italy;
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.A.); (M.R.); (P.D.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98198 Messina, Italy;
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
29
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Kouba M, Fašmon Durjava M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety and efficacy of a feed additive consisting of expressed mandarin oil from the fruit peels of Citrus reticulata Blanco for use in all animal species (FEFANA asbl). EFSA J 2021; 19:e06625. [PMID: 34136001 PMCID: PMC8190682 DOI: 10.2903/j.efsa.2021.6625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of expressed mandarin oil from the fruit peels of Citrus reticulata Blanco, when used as a sensory additive (flavouring) in feed and water for drinking for all animal species. The FEEDAP Panel concluded that the essential oil under assessment is safe up to the maximum proposed use levels in complete feed of 15 mg/kg for poultry, 33 mg/kg for pigs, 30 mg/kg for ruminants, 40 mg/kg for horse, and 15 mg/kg for salmon and rabbit. The presence of perillaldehyde was identified as a source of potential concern. However, in target species fed citrus by-products as part of daily feed the use of the expressed mandarin oil in feed was not expected to increase the exposure to perillaldehyde to a relevant extent (< 4%). For companion animals and ornamental fish not normally exposed to citrus by-products, no conclusion can be drawn. The FEEDAP Panel considered that the use in water for drinking is safe provided that the total daily intake of the additive does not exceed the daily amount that is considered safe when consumed via feed. No concerns for consumer safety were identified following the use of the additive up to the maximum proposed use level in feed. The essential oil under assessment should be considered as irritant to skin, eyes and the respiratory tract, and as a skin sensitiser. The use of the additive in animal feed under the proposed conditions of use was not expected to pose a risk for the environment. Expressed mandarin oil was recognised to flavour food. Since its function in feed would be essentially the same as that in food, no further demonstration of efficacy was considered necessary.
Collapse
|
30
|
Type and magnitude of non-compliance and adulteration in neroli, mandarin and bergamot essential oils purchased on-line: potential consumer vulnerability. Sci Rep 2021; 11:11096. [PMID: 34045520 PMCID: PMC8160360 DOI: 10.1038/s41598-021-90307-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 11/08/2022] Open
Abstract
Thirty-one samples of essential oils used both in perfumery and aromatherapy were purchased to business-to-consumers suppliers and submitted to standard gas chromatography-based analysis of their chemical composition. Their compliance with ISO AFNOR standards was checked and revealed, although ISO AFNOR ranges are relatively loose, that more than 45% of the samples analyzed failed to pass the test and more than 19% were diluted with solvents such as propylene and dipropylene glycol, triethyl citrate, or vegetal oil. Cases of non-compliance could be due to substitution or dilution with a cheaper essential oil, such as sweet orange oil, blending with selected compounds (linalool and linalyl acetate, maybe of synthetic origin), or issues of aging, harvest, or manufacturing that should be either deliberate or accidental. In some cases, natural variability could be invoked. These products are made available to the market without control and liability by resellers and could expose the public to safety issues, in addition to commercial prejudice, in sharp contrast with the ever-increasing regulations applying to the sector and the high demand of consumers for safe, controlled and traceable products in fragrances and cosmetic products.
Collapse
|
31
|
Parallel evolution of UbiA superfamily proteins into aromatic O-prenyltransferases in plants. Proc Natl Acad Sci U S A 2021; 118:2022294118. [PMID: 33883279 DOI: 10.1073/pnas.2022294118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants produce ∼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These O-prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their O-prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic O-prenyltransferase (O-PT) has been isolated to date. This study describes the isolation of an aromatic O-PT gene, CpPT1, belonging to the UbiA superfamily, from grapefruit (Citrus × paradisi, Rutaceae). This gene was shown responsible for the biosynthesis of O-prenylated coumarin derivatives that alter drug pharmacokinetics in the human body. Another coumarin O-PT gene encoding a protein of the same family was identified in Angelica keiskei, an apiaceous medicinal plant containing pharmaceutically active O-prenylated coumarins. Phylogenetic analysis of these O-PTs suggested that aromatic O-prenylation activity evolved independently from the same ancestral gene in these distant plant taxa. These findings shed light on understanding the evolution of plant secondary (specialized) metabolites via the UbiA superfamily.
Collapse
|
32
|
Jungen M, Lotz P, Patz CD, Steingass CB, Schweiggert R. Coumarins, psoralens, and quantitative 1H-NMR spectroscopy for authentication of lemon (Citrus limon [L.] Burm.f.) and Persian lime (Citrus × latifolia [Yu.Tanaka] Tanaka) juices. Food Chem 2021; 359:129804. [PMID: 34015560 DOI: 10.1016/j.foodchem.2021.129804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Mutual adulterations of lemon and lime juices may be detected using coumarins and psoralens as markers. Poor manufacturing practices or legal but mechanically intense processing of lemons were recently suspected to lead to false accusations of deliberate adulterations with lime juices due to potentially unspecific markers. Therefore, we studied coumarin and psoralen profiles in carefully dissected flavedo, albedo, and endocarp of lime and lemon as well as in juices produced under variable mechanical stresses at laboratory and pilot plant scale. Although the marker herniarin was detectable in juices from lime and harshly extracted lemons at low levels, isopimpinellin, bergapten and the herein proposed, tentatively assigned 5-geranyloxy-8-methoxypsoralen represented unambiguously lime-specific markers. Coumarin and psoralen data also allowed differentiating juices produced at differing degrees of mechanical stress. The latter was also possible using quantitative 1H-NMR spectroscopy, which yielded best results when combined with HPLC data on coumarins and psoralens. In the future, the reported approach may be used for establishing a robust database prior to being used in industrial practice.
Collapse
Affiliation(s)
- Markus Jungen
- SGF International, Marie-Curie-Ring 10a, 55291 Saulheim, Germany; Geisenheim University, Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
| | - Philipp Lotz
- Geisenheim University, Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
| | - Claus-Dieter Patz
- Geisenheim University, Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
| | - Christof B Steingass
- Geisenheim University, Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
| | - Ralf Schweiggert
- Geisenheim University, Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
| |
Collapse
|
33
|
Zayed A, Badawy MT, Farag MA. Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chem 2021; 355:129609. [PMID: 33799261 DOI: 10.1016/j.foodchem.2021.129609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Valorization of food byproducts has attracted recently considerable attention. Citrus fruits provide considerable non-edible residues reach 80% in juice production. They are considered agri-wastes to comprise peel, pulp and seeds. Previous investigations have focused on peel and pulp to recover value-added products. The review presents for the first-time phytochemical composition of Citrus seeds' products, i.e., oil and extracts. Fatty acids, phytosterols and tocopherols amounted as the major bioactives in Citrus seeds, in addition to limonoids, dietary fibers and flavonoids. Besides their nutritional values, these chemicals have promising applications including production of biodiesel, food enhancers and antioxidants, especially from mandarin and grapefruit seeds. Optimum conditions of the different Citrus seeds' valorization are discussed to improve extraction yield and lessen environmental hazards of solvent extraction. This review presents the best utilization practices for one of the largest cultivated fruit seeds worldwide and its different applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, El-guish Street, 31527 Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Marwa T Badawy
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
34
|
Garcia-Lor A, Bermejo A, Morales J, Hernández M, Medina A, Cuenca J, Navarro L, Aleza P. Strategies to Produce Grapefruit-Like Citrus Varieties With a Low Furanocoumarin Content and Distinctive Flavonoid Profiles. FRONTIERS IN PLANT SCIENCE 2021; 12:640512. [PMID: 33719319 PMCID: PMC7943927 DOI: 10.3389/fpls.2021.640512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Pummelos and hybrids, such as grapefruits, have high furanocoumarin and low flavonoid contents. Furanocoumarins interact negatively with certain drugs, while flavonoids are antioxidant compounds with health benefits. To obtain new grapefruit-like varieties with low furanocoumarin and high flavonoid contents, diploid and triploid hybrid populations from crosses between diploid and tetraploid "Clemenules" clementine and diploid "Pink" pummelo were recovered and analyzed. With regard to furanocoumarins, triploids produce less bergapten, bergamottin and 6,7-DHB than diploids. Regarding flavonoids, triploids yielded more eriocitrin, narirutin, hesperidin and neohesperidin than diploids, whereas no differences were observed in neoeriocitrin and naringin. These results indicate that, the strategy to recover triploid hybrids by 4x × 2x crosses is more appropriate than the recovery of diploid hybrids by 2x × 2x crosses for obtaining grapefruit-like varieties of citrus with lower furanocoumarin and higher flavonoid contents.
Collapse
|
35
|
Sato A, Okamura Y, Murakami M. Diversification and selection pattern of CYP6B genes in Japanese Papilio butterflies and their association with host plant spectra. PeerJ 2021; 8:e10625. [PMID: 33391886 PMCID: PMC7761194 DOI: 10.7717/peerj.10625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Herbivorous insects are thought to have evolved counteradaptations to conquer chemical defenses in their host plants in a stepwise co-evolutionary process. Papilio butterflies use CYP6B gene family members to metabolize furanocoumarins in their Rutaceae or Apiaceae host plants. CYP6Bs have functionally diverged among Papilio species to be able to metabolite diverse types of furanocoumarins in their host plants. In this study, we examined the diversification and selection patterns of CYP6B among nine Papilio species in Japan (eight Rutaceae specialists and one Apiaceae specialist) and their association with host plant spectra and furanocoumarin profiles. We compared host plant spectrum of eight Rutaceae feeding Papilio species and also performed a furanocoumarin profiling of their host plants. In addition, we reconstructed CYP6B gene phylogeny and performed selection analysis based on the transcriptome data of those nine Papilio species. Among Rutaceae-feeding Papilio species, host plant spectrum differences were correlated with their furanocoumarin profiles. However, all tested Papilio species had similar duplicated sets of CYP6B, with no apparent lineage-specific or host plant-specific pattern of CYP6B diversification. Selection analysis showed a signature of positive selection on a CYP6B branch. The positively selected sites located at predicted substrate recognition sites and we also found that these CYP6B genes were observed only in Rutaceae-feeding species. These findings indicate that most CYP6B diversification occurred in ancestral species of these Papilio species, possibly in association with specific host plant chemical defenses and subsequent gene loss due to host specialization. These processes would have shaped the complex diversification patterns of the CYP6B gene family in Papilio butterflies. Our results also show potentially important CYP6B clades among Papilio species which likely to have diverged functions and associated with host plant phytochemicals in ancestral Papilio species.
Collapse
Affiliation(s)
- Ai Sato
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan
| | - Yu Okamura
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan.,Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Masashi Murakami
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan
| |
Collapse
|
36
|
Turner L, Lignou S, Gawthrop F, Wagstaff C. Investigating the factors that influence the aroma profile of Apium graveolens: A review. Food Chem 2020; 345:128673. [PMID: 33310252 DOI: 10.1016/j.foodchem.2020.128673] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Celery (Apium graveolens) is a regularly consumed vegetable, providing strong, distinct flavours to dishes as well as health benefits. Constituents of the aroma profile of celery include a range of volatile compounds (terpenes, phthalides and aldehydes) that contribute to its characteristic odour and flavour. Vast amount of research has been completed on the aroma profile of celery. However, there is limited information stating the cultivar, origin and geographical location, despite that research on a plethora of other crops has indicated that these are key factors driving crop performance and quality attributes. This paper characterises the underlying biochemistry that determines the aroma profile of celery, whilst investigating the genetic and environmental influences leading to its variation. We make recommendations for minimum standards (MIAPAE: Minimum Information About a Plant Aroma Experiment) that should be adopted by the scientific community prior to publication of data relating to flavour and aroma characterisation of crops.
Collapse
Affiliation(s)
- Lucy Turner
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, United Kingdom.
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, United Kingdom.
| | - Frances Gawthrop
- A.L. Tozer Ltd, Pyports, Downside Bridge Road, Cobham KT11 3EH, United Kingdom.
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, United Kingdom.
| |
Collapse
|
37
|
Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Rossi M, Aktar S, Davis M, Hefter Feuss E, Roman-Holba S, Wen K, Gahn C, Caruso F. The Grapefruit Effect: Interaction between Cytochrome P450 and Coumarin Food Components, Bergamottin, Fraxidin and Osthole. X-ray Crystal Structure and DFT Studies. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25143158. [PMID: 32664320 PMCID: PMC7397038 DOI: 10.3390/molecules25143158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022]
Abstract
Coumarins are plant-derived secondary metabolites. The crystal structure of three coumarins—bergamottin, osthole and fraxidin—are described and we analyze intermolecular interactions and their role in crystal formation. Bergamottin is a furanocoumarin found in citrus plants, which is a strong inhibitor of the principal human metabolizing enzyme, cytochrome P450 3A4 (CYP3A4). The crystal structure determinations of three coumarins give us the geometrical parameters and reveal the parallel-displaced π–π stacking and hydrogen bonding intermolecular interactions used for molecular assembly in the crystal structure. A quite strong (less than 3.4 Å) stacking interaction of bergamottin appears to be a determining feature that distinguishes it from other coumarins studied in this work. Our DFT computational studies on the three natural products of the same coumarin family docked into the active site of CYP3A4 (PDB 4D78) show different behavior for these coumarins at the active site. When the substrate is bergamottin, the importance of π-π stacking and hydrogen bonding, which can anchor the substrate in place, appears fundamental. In contrast, fraxidin and osthole show carbonyl coordination to iron. Our docking calculations show that the bergamottin tendency towards π–π stacking is important and likely influences its interactions with the heme group of CYP3A4.
Collapse
Affiliation(s)
- Miriam Rossi
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA; (S.A.); (M.D.); (E.H.F.); (S.R.-H.); (K.W.)
- Correspondence: (M.R.); (F.C.)
| | - Sandjida Aktar
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA; (S.A.); (M.D.); (E.H.F.); (S.R.-H.); (K.W.)
| | - Marissa Davis
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA; (S.A.); (M.D.); (E.H.F.); (S.R.-H.); (K.W.)
| | - Emily Hefter Feuss
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA; (S.A.); (M.D.); (E.H.F.); (S.R.-H.); (K.W.)
| | - Samara Roman-Holba
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA; (S.A.); (M.D.); (E.H.F.); (S.R.-H.); (K.W.)
| | - Kelly Wen
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA; (S.A.); (M.D.); (E.H.F.); (S.R.-H.); (K.W.)
| | - Christopher Gahn
- Computing and Information Services, Vassar College, Poughkeepsie, NY 12604, USA;
| | - Francesco Caruso
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA; (S.A.); (M.D.); (E.H.F.); (S.R.-H.); (K.W.)
- Correspondence: (M.R.); (F.C.)
| |
Collapse
|
39
|
Ahmed D, Curk F, Evrard JC, Froelicher Y, Ollitrault P. Preferential Disomic Segregation and C. micrantha/C. medica Interspecific Recombination in Tetraploid 'Giant Key' Lime; Outlook for Triploid Lime Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:939. [PMID: 32670332 PMCID: PMC7330052 DOI: 10.3389/fpls.2020.00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/09/2020] [Indexed: 05/14/2023]
Abstract
The triploid 'Tahiti' lime (C. x latifolia (Yu. Tanaka) Tanaka) naturally originated from a merger between a haploid ovule of lemon (C. x limon (L.) Burm) and a diploid pollen from a 'Mexican' lime (C. x aurantiifolia (Christm.) Swing). The very limited natural inter-varietal diversity and gametic sterility of C. latifolia requires a phylogenomic based reconstruction breeding strategy to insure its diversification. We developed a strategy based on interploid hybridization between diploid lemon and the doubled diploid 'Giant Key' lime. This lime is a doubled diploid of 'Mexican' lime, itself a natural interspecific F1 hybrid between C. medica L. and C. micrantha Wester. For an optimized breeding program, we analyzed the meiotic behavior of the allotetraploid lime, the genetic structure of its diploid gametes, the interspecific recombination between C. medica and C. micrantha, and constructed its genetic map. A population of 272 triploid hybrids was generated using 'Giant Key' lime as pollinator. One hundred fifty-eight SNPs diagnostic of C. micrantha, regularly distributed throughout the citrus genome were successfully developed and applied. The genetic structure of the diploid gametes was examined based on C. micrantha doses along the genome. The diploid gametes transmitted in average 91.17% of the parental interspecific C. medica/C. micrantha heterozygosity. Three chromosomes (2, 8, and 9) showed disomic segregation with high preferential pairing values, while the remaining chromosomes showed an intermediate inheritance with a preferential disomic trend. A total of 131 SNPs were assigned to nine linkage groups to construct the genetic map. It spanned 272.8 cM with a low average recombination rate (0.99 cM Mb-1) and high synteny and colinearity with the reference clementine genome. Our results confirmed that an efficient reconstruction breeding strategy for 'Tahiti' lime is possible, based on interploid hybridization using a doubled diploid of C. aurantiifolia. The tetraploid parent should be selected for favorable agronomic traits and its genetic value should be efficiently inherited by the progeny thanks to transmission of the high level of parental heterozygosity. However, it would require developing numerous progeny to overcome the linkage drag caused by the limited interspecific recombination associated with the predominant disomic inheritance.
Collapse
Affiliation(s)
- Dalel Ahmed
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, San Giuliano, France
| | - Franck Curk
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
40
|
Tocmo R, Pena‐Fronteras J, Calumba KF, Mendoza M, Johnson JJ. Valorization of pomelo (
Citrus grandis
Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 2020; 19:1969-2012. [DOI: 10.1111/1541-4337.12561] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Restituto Tocmo
- Deparment of Pharmacy PracticeUniversity of Illinois‐Chicago Chicago Illinois
| | - Jennifer Pena‐Fronteras
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Kriza Faye Calumba
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Melanie Mendoza
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | | |
Collapse
|
41
|
Citrus × Clementina Hort. Juice Enriched with Its By-Products (Peels and Leaves): Chemical Composition, In Vitro Bioactivity, and Impact of Processing. Antioxidants (Basel) 2020; 9:antiox9040298. [PMID: 32260119 PMCID: PMC7222210 DOI: 10.3390/antiox9040298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
This work investigated a model for the reuse of Citrus × clementina Hort. by-products for the development of a functional drink able to exert antioxidant, hypoglycaemic, and hypolipidemic effects. Juice obtained from fruits collected in three different areas of Calabria (Italy) was analysed. C. × clementina juice from Corigliano Calabro (JF), characterized by the highest content of bioactive compounds and bioactivity, was chosen as a matrix to be enrichment with hydroalcoholic ultrasound-assisted maceration of C. × clementina leaf from Corigliano Calabro (CO2) and ethanol ultrasound-assisted maceration of C. × clementina peel from Cetraro (BC3) extracts at different concentrations. The highest phytochemical content and bioactivities were found in juice enriched with leaf and leaf + peel extracts, with particular reference to antioxidant activity. In order to estimate the effects of pasteurization, 20% (mg/100 mL) enriched juice was subjected to this process. Based on obtained data of bioactivity and sensorial analysis, C. × clementina by-products could be proposed as a promising source of bioactive compounds useful for the formulation of a functional drink for preventing diseases associated with oxidative stress such as type 2 diabetes and obesity.
Collapse
|
42
|
Munakata R, Kitajima S, Nuttens A, Tatsumi K, Takemura T, Ichino T, Galati G, Vautrin S, Bergès H, Grosjean J, Bourgaud F, Sugiyama A, Hehn A, Yazaki K. Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants. THE NEW PHYTOLOGIST 2020; 225:2166-2182. [PMID: 31642055 PMCID: PMC7028039 DOI: 10.1111/nph.16277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/09/2019] [Indexed: 05/03/2023]
Abstract
Furanocoumarins (FCs) are plant-specialized metabolites with potent allelochemical properties. The distribution of FCs is scattered with a chemotaxonomical tendency towards four distant families with highly similar FC pathways. The mechanism by which this pathway emerged and spread in plants has not been elucidated. Furanocoumarin biosynthesis was investigated in Ficus carica (fig, Moraceae), focusing on the first committed reaction catalysed by an umbelliferone dimethylallyltransferase (UDT). Comparative RNA-seq analysis among latexes of different fig organs led to the identification of a UDT. The phylogenetic relationship of this UDT to previously reported Apiaceae UDTs was evaluated. The expression pattern of F. carica prenyltransferase 1 (FcPT1) was related to the FC contents in different latexes. Enzymatic characterization demonstrated that one of the main functions of FcPT1 is UDT activity. Phylogenetic analysis suggested that FcPT1 and Apiaceae UDTs are derived from distinct ancestors, although they both belong to the UbiA superfamily. These findings are supported by significant differences in the related gene structures. This report describes the identification of FcPT1 involved in FC biosynthesis in fig and provides new insights into multiple origins of the FC pathway and, more broadly, into the adaptation of plants to their environments.
Collapse
Affiliation(s)
- Ryosuke Munakata
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
- Université de LorraineINRA, LAEF54000NancyFrance
| | - Sakihito Kitajima
- Department of Applied BiologyKyoto Institute of TechnologyMatsugasaki Sakyo‐kuKyoto606‐8585Japan
- The Center for Advanced Insect Research PromotionKyoto Institute of TechnologyMatsugasaki Sakyo‐kuKyoto606‐8585Japan
| | | | - Kanade Tatsumi
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Tomoya Takemura
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Takuji Ichino
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | | | - Sonia Vautrin
- Centre National de Ressources Genomiques Vegetales – INRA24 Chemin de Borde RougeAuzeville CS 5262731326Castanet Tolosan CedexFrance
| | - Hélène Bergès
- Centre National de Ressources Genomiques Vegetales – INRA24 Chemin de Borde RougeAuzeville CS 5262731326Castanet Tolosan CedexFrance
| | | | - Frédéric Bourgaud
- Plant Advanced Technologies – PAT19 Avenue de la forêt de Haye54500VandoeuvreFrance
| | - Akifumi Sugiyama
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Alain Hehn
- Université de LorraineINRA, LAEF54000NancyFrance
| | - Kazufumi Yazaki
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| |
Collapse
|
43
|
Chen Q, Wang D, Tan C, Hu Y, Sundararajan B, Zhou Z. Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues from 27 Chinese Local Citrus Cultivars. PLANTS (BASEL, SWITZERLAND) 2020; 9:E196. [PMID: 32033423 PMCID: PMC7076682 DOI: 10.3390/plants9020196] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Flavonoid profile and antioxidant activity of citrus peels, pulps, and juices from 27 local citrus cultivars in China were investigated. Flavonoid composition and content were determined using UPLC-PDA. Total phenolic content (TPC) and total flavonoid content (TFC) were measured using a Folin-Ciocalteau reagent and Al(NO3)-NaNO2 complexometry, respectively. The antioxidant capacities of the extracts were evaluated by DPPH, ABTS and FRAP method, respectively. Citrus peel not only exhibited better antioxidant potential, but also presented more composition diversity and contained higher concentrations of flavonoids than pulp and juice. Different citrus species were characterized by their individual predominant flavonoids, contributing largely to the antioxidant activity, such as mandarin was characterized by hesperidin, nobiletin and tangeretin, while pummelo and papeda were characterized by naringin. The peel of Guihuadinanfeng (Citrus reticulata) had the highest TPC of 23.46 mg equivalent gallic acid/g DW (dry weight) and TFC of 21.37 mg equivalent rutin/g DW. Shiyueju (C. reticulata) peel showed the highest antioxidant capacity based on the antioxidant potency composite (APC) analysis. Overall, mandarin (C. reticulata) fruits peel contained more TPC and TFC, exhibiting higher antioxidant capacities than other species, and were good natural sources of flavonoids and antioxidants.
Collapse
Affiliation(s)
- Qiyang Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Dan Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Chun Tan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Yan Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Balasubramani Sundararajan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
- The Southwest Institute of Fruits Nutrition, Liang jiang New District, Chongqing 401121, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
44
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
45
|
do Amaral M, Barbosa de Paula MF, Ollitrault F, Rivallan R, de Andrade Silva EM, da Silva Gesteira A, Luro F, Garcia D, Ollitrault P, Micheli F. Phylogenetic Origin of Primary and Secondary Metabolic Pathway Genes Revealed by C. maxima and C. reticulata Diagnostic SNPs. FRONTIERS IN PLANT SCIENCE 2019; 10:1128. [PMID: 31608086 PMCID: PMC6771394 DOI: 10.3389/fpls.2019.01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Modern cultivated Citrus species and varieties result from interspecific hybridization between four ancestral taxa. Among them, Citrus maxima and Citrus reticulata, closely associated with the pummelo and mandarin horticultural groups, respectively, were particularly important as the progenitors of sour and sweet oranges (Citrus aurantium and Citrus sinensis), grapefruits (Citrus paradisi), and hybrid types resulting from modern breeding programs (tangors, tangelos, and orangelos). The differentiation between the four ancestral taxa and the phylogenomic structure of modern varieties widely drive the phenotypic diversity's organization. In particular, strong phenotypic differences exist in the coloration and sweetness and represent important criteria for breeders. In this context, focusing on the genes of the sugar, carotenoid, and chlorophyll biosynthesis pathways, the aim of this work was to develop a set of diagnostic single-nucleotide polymorphism (SNP) markers to distinguish the ancestral haplotypes of C. maxima and C. reticulata and to provide information at the intraspecific diversity level (within C. reticulata or C. maxima). In silico analysis allowed the identification of 3,347 SNPs from selected genes. Among them, 1,024 were detected as potential differentiation markers between C. reticulata and C. maxima. A total of 115 SNPs were successfully developed using a competitive PCR technology. Their transferability among all Citrus species and the true citrus genera was very good, with only 0.87% of missing data. The ancestral alleles of the SNPs were identified, and we validated the usefulness of the developed markers for tracing the ancestral haplotype in large germplasm collections and sexually recombined progeny issued from the C. reticulata/C. maxima admixture gene pool. These markers will pave the way for targeted association studies based on ancestral haplotypes.
Collapse
Affiliation(s)
- Milena do Amaral
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Marcia Fabiana Barbosa de Paula
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | | | | | - Edson Mario de Andrade Silva
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | | | | | | | | | - Fabienne Micheli
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
- CIRAD, UMR AGAP, Montpellier, France
| |
Collapse
|
46
|
Ahmed D, Comte A, Curk F, Costantino G, Luro F, Dereeper A, Mournet P, Froelicher Y, Ollitrault P. Genotyping by sequencing can reveal the complex mosaic genomes in gene pools resulting from reticulate evolution: a case study in diploid and polyploid citrus. ANNALS OF BOTANY 2019; 123:1231-1251. [PMID: 30924905 PMCID: PMC6612944 DOI: 10.1093/aob/mcz029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Reticulate evolution, coupled with reproductive features limiting further interspecific recombinations, results in admixed mosaics of large genomic fragments from the ancestral taxa. Whole-genome sequencing (WGS) data are powerful tools to decipher such complex genomes but still too costly to be used for large populations. The aim of this work was to develop an approach to infer phylogenomic structures in diploid, triploid and tetraploid individuals from sequencing data in reduced genome complexity libraries. The approach was applied to the cultivated Citrus gene pool resulting from reticulate evolution involving four ancestral taxa, C. maxima, C. medica, C. micrantha and C. reticulata. METHODS A genotyping by sequencing library was established with the restriction enzyme ApeKI applying one base (A) selection. Diagnostic single nucleotide polymorphisms (DSNPs) for the four ancestral taxa were mined in 29 representative varieties. A generic pipeline based on a maximum likelihood analysis of the number of read data was established to infer ancestral contributions along the genome of diploid, triploid and tetraploid individuals. The pipeline was applied to 48 diploid, four triploid and one tetraploid citrus accessions. KEY RESULTS Among 43 598 mined SNPs, we identified a set of 15 946 DSNPs covering the whole genome with a distribution similar to that of gene sequences. The set efficiently inferred the phylogenomic karyotype of the 53 analysed accessions, providing patterns for common accessions very close to that previously established using WGS data. The complex phylogenomic karyotypes of 21 cultivated citrus, including bergamot, triploid and tetraploid limes, were revealed for the first time. CONCLUSIONS The pipeline, available online, efficiently inferred the phylogenomic structures of diploid, triploid and tetraploid citrus. It will be useful for any species whose reproductive behaviour resulted in an interspecific mosaic of large genomic fragments. It can also be used for the first generations of interspecific breeding schemes.
Collapse
Affiliation(s)
- Dalel Ahmed
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, San Giuliano, France
| | - Aurore Comte
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRA, IRD, Montpellier, France
| | - Franck Curk
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gilles Costantino
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, San Giuliano, France
| | - François Luro
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, San Giuliano, France
| | - Alexis Dereeper
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRA, IRD, Montpellier, France
| | - Pierre Mournet
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
| | - Yann Froelicher
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- CIRAD, UMR AGAP, San Giuliano, France
| | - Patrick Ollitrault
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- CIRAD, UMR AGAP, San Giuliano, France
- For correspondence. E-mail
| |
Collapse
|
47
|
Chung YC, Kim YB, Kim BS, Hyun CG. Anti-Melanogenic Effects of Bergamottin via Mitogen-Activated Protein Kinases and Protein Kinase B Signaling Pathways. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19862105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we examined the inhibitory effects of bergamottin on melanogenesis in B16F10 murine melanoma cells, together with its effects on the mechanism of melanin synthesis. α-Melanocyte stimulating hormone-stimulated B16F10 cells were treated with various concentrations of bergamottin, with arbutin as a positive control. Bergamottin significantly decreased the melanin content and tyrosinase activity without showing any cytotoxicity. In addition, bergamottin treatment significantly downregulated the expression of tyrosinase-related protein-1,2 and tyrosinase by suppressing the expression of microphthalmia-associated transcription factor. The phosphorylation status of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was examined to determine the mechanism underlying the antimelanogenic effects of bergamottin. Bergamottin treatment increased the phosphorylation of extracellular signal-regulated kinase (ERK) and AKT, but decreased the phosphorylation of p38 and c-Jun N-terminal kinase in the B16F10 cells. Moreover, the use of PD98059 (ERK inhibitor) and LY294002 (AKT inhibitor) corroborated these findings, indicating that bergamottin inhibits melanogenesis via the MAPKase and AKT signaling pathway. Thus, bergamottin has potential for treating hyperpigmentation disorders and can be a promising chemical for skin-whitening in the cosmetic industry.
Collapse
Affiliation(s)
- You Chul Chung
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| | - Yun Beom Kim
- NewMedion Co.,Ltd., Jeju City, Jeju, Republic of Korea
| | - Bong Seok Kim
- Bio-Convergence Center, Jeju Technopark, Republic of Korea
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| |
Collapse
|
48
|
Bruni R, Barreca D, Protti M, Brighenti V, Righetti L, Anceschi L, Mercolini L, Benvenuti S, Gattuso G, Pellati F. Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest. Molecules 2019; 24:E2163. [PMID: 31181737 PMCID: PMC6600687 DOI: 10.3390/molecules24112163] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this work is to provide a critical review of plant furanocoumarins from different points of view, including their chemistry and biosynthetic pathways to their extraction, analysis, and synthesis, to the main biological activities found for these active compounds, in order to highlight their potential within pharmaceutical science. The limits and the possible improvements needed for research involving these molecules are also highlighted and discussed.
Collapse
Affiliation(s)
- Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
49
|
Ramírez-Pelayo C, Martínez-Quiñones J, Gil J, Durango D. Coumarins from the peel of citrus grown in Colombia: composition, elicitation and antifungal activity. Heliyon 2019; 5:e01937. [PMID: 31245648 PMCID: PMC6582165 DOI: 10.1016/j.heliyon.2019.e01937] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/04/2022] Open
Abstract
The present work analyses the chromatographic profile of the peels from fruits of different citrus cultivated in Colombia: sweet orange (Citrus sinensis [L.] Osbeck var. Valencia), mandarins (Citrus reticulata L. var. Arrayana and Oneco), Key lime (Citrus aurantifolia [Christ.] Swingle var. Pajarito), Mandarine lime (Citrus x limonia, a hybrid between Citrus reticulata and Citrus x limon) and Tahitian lime (C. latifolia Tanaka, syn. Persian lime). Coumarins, furanocoumarins and polymethoxylated flavones are the major compounds. Then, six coumarins were isolated and identified from fruits of Tahitian and Key lime corresponding to 5-geranyloxy-7-methoxycoumarin; 5,7-dimethoxycoumarin (syn. limettin); 5,8-dimethoxypsoralen (syn. isopimpinellin); 5-methoxypsoralen (syn. bergaptene); 5-geranoxypsoralen (syn. bergamottin) and 5-(2,3-dihydroxy-3-methylbutoxy) psoralen (syn. oxypeucedanin hydrate). Coumarins and furanocoumarins were quantified by liquid chromatography (HPLC-DAD). Results show that the prenylated compounds were present in high concentrations in Tahitian and Key lime but in very low amounts in mandarins and sweet orange. Subsequently, the antifungal activity (inhibition of mycelial growth and germination of spores) of the coumarins against the fungus causing the anthracnose, Colletotrichum sp. (isolated from aerial parts of Tahitian lime) was determined. The compounds limettin and bergaptene, as well as mixtures of them, showed significant inhibitory effect (radial growth and spore germination) when compared to the control. Finally, the effect of some recognized elicitors to induce the coumarin production in fruits of C. latifolia was evaluated. The results showed that the chemical profiles are dependent on the applied elicitor and the post-induction time. As a result of the induction, a high concentration of some coumarins and furanocoumarins was maintained in the course of time for the Tahitian lime. In conclusion, isolated coumarins could be involved in the defense mechanisms of C. latifolia, C. aurantifolia and C. limonia and their accumulation may be modulated by the application of elicitors.
Collapse
Affiliation(s)
- Cesar Ramírez-Pelayo
- Universidad Nacional de Colombia-Sede Medellín. Facultad de Ciencias, Escuela de Química, Carrera 65 No. 59a-110, Medellín, Colombia
| | - Janio Martínez-Quiñones
- Universidad Nacional de Colombia-Sede Medellín. Facultad de Ciencias, Escuela de Química, Carrera 65 No. 59a-110, Medellín, Colombia
| | - Jesús Gil
- Universidad Nacional de Colombia-Sede Medellín. Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Carrera 65 No. 59a-110, Medellín, Colombia
| | - Diego Durango
- Universidad Nacional de Colombia-Sede Medellín. Facultad de Ciencias, Escuela de Química, Carrera 65 No. 59a-110, Medellín, Colombia
| |
Collapse
|
50
|
Fayek NM, Farag MA, Abdel Monem AR, Moussa MY, Abd-Elwahab SM, El-Tanbouly ND. Comparative Metabolite Profiling of Four Citrus Peel Cultivars via Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-of-Flight-Mass Spectrometry and Multivariate Data Analyses. J Chromatogr Sci 2019; 57:349-360. [PMID: 30796772 DOI: 10.1093/chromsci/bmz006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Citrus plants are one of the most economical fruit bearing trees grown worldwide for their medicinal use as well as for the flavor and food industry. This study attempts to characterize the metabolome difference in polyphenols of four Citrus species fruit peels; C. reticulata Blanco cv. Egyptian, C. sinensis (L.) Osbeck cv. Olinda Valencia, C. aurantiifolia Swingle cv. Mexican and C. paradisi Macfad. cv. Duncan via ultra-performance liquid chromatography coupled with quadrupole-time-of-flight-mass spectrometry platform. A total of 163 metabolites were characterized of which 28 were detected for the first time in Citrus cultivars including eight coumarin derivatives, three cinnamic acids conjugates, one polymethoxyflavone, 5 O-glycosides, 2 C-glycosides, three flavone-di-O-glucosides and six acetyl sugar derivatives of luteolin and kaempferol in addition to oxygenated and methylated fatty acids. Flavonoids amounted for the most abundant secondary metabolites class in the studied Citrus peels. The relative variability among these Citrus peels was estimated using clustering analysis with flavonoids accounting for cvs. segregation. Hierarchical clustering analysis revealed the chemical similarity of C. reticulata, C. sinensis and C. paradise peels and being distant them from that of C. aurantiifolia. To the best of our knowledge, this study provides the first report for metabolite compositional differences in these four Citrus peels.
Collapse
Affiliation(s)
- Nesrin M Fayek
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt.,Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Azza R Abdel Monem
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Y Moussa
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Samia M Abd-Elwahab
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Nebal D El-Tanbouly
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|