1
|
Doritchamou J, Nielsen MA, Chêne A, Viebig NK, Lambert LE, Sander AF, Semblat JP, Hundt S, Orr-Gonzalez S, Janitzek CM, Spiegel AJ, Clemmensen SB, Thomas ML, Nason MC, Snow-Smith M, Barnafo EK, Shiloach J, Chen BB, Nadakal S, Highsmith K, Ouahes T, Conteh S, Sharma A, Torano H, Butler B, Reiter K, Rausch KM, Scaria PV, Anderson C, Narum DL, Salanti A, Fried M, Theander TG, Gamain B, Duffy PE. Aotus nancymaae model predicts human immune response to the placental malaria vaccine candidate VAR2CSA. Lab Anim (NY) 2023; 52:315-323. [PMID: 37932470 PMCID: PMC10689237 DOI: 10.1038/s41684-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.
Collapse
Affiliation(s)
- Justin Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Arnaud Chêne
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Mikkel Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alicia J Spiegel
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maryonne Snow-Smith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Shiloach
- Biotechnology Unit, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Beth B Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven Nadakal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kendrick Highsmith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ankur Sharma
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly Torano
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandi Butler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Benoit Gamain
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Setyo Utomo DI, Suhaimi H, Muhammad Azami NA, Azmi F, Mohd Amin MCI, Xu J. An Overview of Recent Developments in the Application of Antigen Displaying Vaccine Platforms: Hints for Future SARS-CoV-2 VLP Vaccines. Vaccines (Basel) 2023; 11:1506. [PMID: 37766182 PMCID: PMC10536610 DOI: 10.3390/vaccines11091506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, a great effort has been devoted to studying attenuated and subunit vaccine development against SARS-CoV-2 since its outbreak in December 2019. It is known that diverse virus-like particles (VLPs) are extensively employed as carriers to display various antigenic and immunostimulatory cargo modules for vaccine development. Single or multiple antigens or antigenic domains such as the spike or nucleocapsid protein or their variants from SARS-CoV-2 could also be incorporated into VLPs via either a genetic or chemical display approach. Such antigen display platforms would help screen safer and more effective vaccine candidates capable of generating a strong immune response with or without adjuvant. This review aims to provide valuable insights for the future development of SARS-CoV-2 VLP vaccines by summarizing the latest updates and perspectives on the vaccine development of VLP platforms for genetic and chemical displaying antigens from SARS-CoV-2.
Collapse
Affiliation(s)
- Doddy Irawan Setyo Utomo
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Gedung 611, LAPTIAB, KST Habibie, Serpong, Tangerang Selatan 15314, Indonesia;
| | - Hamizah Suhaimi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Fazren Azmi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Mohd Cairul Iqbal Mohd Amin
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Park J, Pho T, Champion JA. Chemical and biological conjugation strategies for the development of multivalent protein vaccine nanoparticles. Biopolymers 2023; 114:e23563. [PMID: 37490564 PMCID: PMC10528127 DOI: 10.1002/bip.23563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| |
Collapse
|
4
|
Pan C, Ye J, Zhang S, Li X, Shi Y, Guo Y, Wang K, Sun P, Wu J, Wang H, Zhu L. Production of a promising modular proteinaceous self-assembled delivery system for vaccination. NANOSCALE 2023. [PMID: 37326289 DOI: 10.1039/d2nr06718h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, there have been enormous advances in nano-delivery materials, especially safer and more biocompatible protein-based nanoparticles. Generally, proteinaceous nanoparticles (such as ferritin and virus-like particles) are self-assembled from some natural protein monomers. However, to ensure their capability of assembly, it is difficult to upgrade the protein structure through major modifications. Here, we have developed an efficient orthogonal modular proteinaceous self-assembly delivery system that could load antigens with an attractive coupling strategy. In brief, we constructed a nanocarrier by fusing two orthogonal domains-a pentameric cholera toxin B subunit and a trimer forming peptide-and an engineered streptavidin monomer for binding biotinylated antigens. After successfully preparing the nanoparticles, the receptor-binding domain of SARS-CoV-2 spike protein and influenza virus haemagglutination antigen are used as model antigens for further evaluation. We found that the biotinylated antigen is able to bind to the nanoparticles with high affinity and achieve efficient lymph node drainage when loaded on the nanoparticles. Then, T cells are greatly activated and the formation of germinal centers is observed. Experiments of two mouse models demonstrate the strong antibody responses and prophylactic effects of these nanovaccines. Thus, we establish a proof-of-concept for the delivery system with the potential to load diverse antigen cargos to generate high-performance nanovaccines, thereby offering an attractive platform technology for nanovaccine preparation.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Millitary Medical Sciences, Beijing, 100071, PR China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yixin Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- College of Life Science, Hebei University, Baoding, 071002, PR China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| |
Collapse
|
5
|
González-Davis O, Villagrana-Escareño MV, Trujillo MA, Gama P, Chauhan K, Vazquez-Duhalt R. Virus-like nanoparticles as enzyme carriers for Enzyme Replacement Therapy (ERT). Virology 2023; 580:73-87. [PMID: 36791560 DOI: 10.1016/j.virol.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Enzyme replacement therapy (ERT) has been used to treat a few of the many existing diseases which are originated from the lack of, or low enzymatic activity. Exogenous enzymes are administered to contend with the enzymatic activity deficiency. Enzymatic nanoreactors based on the enzyme encapsulation inside of virus-like particles (VLPs) appear as an interesting alternative for ERT. VLPs are excellent delivery vehicles for therapeutic enzymes as they are biodegradable, uniformly organized, and porous nanostructures that transport and could protect the biocatalyst from the external environment without much affecting the bioactivity. Consequently, significant efforts have been made in the production processes of virus-based enzymatic nanoreactors and their functionalization, which are critically reviewed. The use of virus-based enzymatic nanoreactors for the treatment of lysosomal storage diseases such as Gaucher, Fabry, and Pompe diseases, as well as potential therapies for galactosemia, and Hurler and Hunter syndromes are discussed.
Collapse
Affiliation(s)
- Oscar González-Davis
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Maria V Villagrana-Escareño
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Mario A Trujillo
- School of Medicine, Universidad Xochicalco, Ensenada, Baja California, Mexico
| | - Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico.
| |
Collapse
|
6
|
A modular vaccine platform enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens. Nat Commun 2023; 14:464. [PMID: 36709333 PMCID: PMC9883832 DOI: 10.1038/s41467-023-36101-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/15/2023] [Indexed: 01/29/2023] Open
Abstract
Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising technology for the creation of non-infectious, nanoparticle vaccines against diverse pathogens. However, antigen display on OMVs can be difficult to control and highly variable due to bottlenecks in protein expression and localization to the outer membrane of the host cell, especially for bulky and/or complex antigens. Here, we describe a universal approach for avidin-based vaccine antigen crosslinking (AvidVax) whereby biotinylated antigens are linked to the exterior of OMVs whose surfaces are remodeled with multiple copies of a synthetic antigen-binding protein (SNAP) comprised of an outer membrane scaffold protein fused to a biotin-binding protein. We show that SNAP-OMVs can be readily decorated with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, and short peptides. When the resulting OMV formulations are injected in mice, strong antigen-specific antibody responses are observed that depend on the physical coupling between the antigen and SNAP-OMV delivery vehicle. Overall, these results demonstrate AvidVax as a modular platform that enables rapid and simplified assembly of antigen-studded OMVs for application as vaccines against pathogenic threats.
Collapse
|
7
|
Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2023; 10:1106767. [PMID: 36714624 PMCID: PMC9878189 DOI: 10.3389/fbioe.2022.1106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Virus-like nanoparticles (VLPs) are natural polymer-based nanomaterials that mimic viral structures through the hierarchical assembly of viral coat proteins, while lacking viral genomes. VLPs have received enormous attention in a wide range of nanotechnology-based medical diagnostics and therapies, including cancer therapy, imaging, and theranostics. VLPs are biocompatible and biodegradable and have a uniform structure and controllable assembly. They can encapsulate a wide range of therapeutic and diagnostic agents, and can be genetically or chemically modified. These properties have led to sophisticated multifunctional theranostic platforms. This article reviews the current progress in developing and applying engineered VLPs for molecular imaging, drug delivery, and multifunctional theranostics in cancer research.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hye Ryoung Heo
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea,School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| |
Collapse
|
8
|
Zhang L, Xu W, Ma X, Sun X, Fan J, Wang Y. Virus-like Particles as Antiviral Vaccine: Mechanism, Design, and Application. BIOTECHNOL BIOPROC E 2023; 28:1-16. [PMID: 36627930 PMCID: PMC9817464 DOI: 10.1007/s12257-022-0107-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/09/2023]
Abstract
Virus-like particles (VLPs) are viral structural protein that are noninfectious as they do not contain viral genetic materials. They are safe and effective immune stimulators and play important roles in vaccine development because of their intrinsic immunogenicity to induce cellular and humoral immune responses. In the design of antiviral vaccine, VLPs based vaccines are appealing multifunctional candidates with the advantages such as self-assembling nanoscaled structures, repetitive surface epitopes, ease of genetic and chemical modifications, versatility as antigen presenting platforms, intrinsic immunogenicity, higher safety profile in comparison with live-attenuated vaccines and inactivated vaccines. In this review, we discuss the mechanism of VLPs vaccine inducing cellular and humoral immune responses. We outline the impact of size, shape, surface charge, antigen presentation, genetic and chemical modification, and expression systems when constructing effective VLPs based vaccines. Recent applications of antiviral VLPs vaccines and their clinical trials are summarized.
Collapse
Affiliation(s)
- Lei Zhang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Wen Xu
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Xi Ma
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - XiaoJing Sun
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - JinBo Fan
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| |
Collapse
|
9
|
Yang JI, Kim KH. Display of Streptococcus iniae α-Enolase on the Surface of Virus-Like Particles (VLPs) of Nervous Necrosis Virus (NNV) Using SpyTag/SpyCatcher. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1066-1072. [PMID: 36171522 DOI: 10.1007/s10126-022-10166-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Virus-like particle (VLP)-based vaccines are promising candidates for overcoming the safety problems of live vaccines and weak immunogenicity of subunit vaccines. VLPs can be used as a platform for the development of combined vaccines by expressing foreign antigens, and foreign antigens can be displayed on the surface of VLPs by conjugation. In the present study, to use nervous necrosis virus (NNV) VLPs as a delivery tool for Streptococcus iniae α-enolase by displaying on the VLP's surface, the split-intein (SpyTag/SpyCatcher) conjugation system was used. NNV capsid protein fused to SpyTag (Capsid-SpyTag) and S. iniae α-enolase fused to SpyCatcher (α-enolase-SpyCatcher) were recombinantly produced, then mixed in various ratios. A ratio of Capsid-SpyTag to α-enolase-SpyCatcher of 1 to 1.5 showed the highest coupling efficiency corresponding to 83-92% of coupled capsid protein dimer and 32-52% of coupled capsid protein monomer. In TEM observation, VLP of Capsid-SpyTag had a regular shape and size of about 40 nm, while VLP fused with α-enolase-SpyCatcher showed an irregular shape and size of about 40-50 nm in diameter. In preliminary immunization experiments, olive flounder (Paralichthys olivaceus) and zebrafish (Danio rerio) immunized with VLP fused with α-enolase-SpyCatcher showed the lowest cumulative mortality against S. iniae infection.
Collapse
Affiliation(s)
- Jeong In Yang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
10
|
Chandrasekar V, Singh AV, Maharjan RS, Dakua SP, Balakrishnan S, Dash S, Laux P, Luch A, Singh S, Pradhan M. Perspectives on the Technological Aspects and Biomedical Applications of Virus‐Like Particles/Nanoparticles in Reproductive Biology: Insights on the Medicinal and Toxicological Outlook. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Romi Singh Maharjan
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | | | | | - Sagnika Dash
- Obstetrics and Gynecology Apollo Clinic Qatar 23656 Doha Qatar
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Suyash Singh
- Department of Neurosurgery All India Institute of Medical Sciences Raebareli UP 226001 India
| | - Mandakini Pradhan
- Department of Fetal Medicine Sanjay Gandhi Post Graduate Institute of Medical Sciences Reabareli Road Lucknow UP 226014 India
| |
Collapse
|
11
|
Construction of Orthogonal Modular Proteinaceous Nanovaccine Delivery Vectors Based on mSA-Biotin Binding. NANOMATERIALS 2022; 12:nano12050734. [PMID: 35269221 PMCID: PMC8911943 DOI: 10.3390/nano12050734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022]
Abstract
Proteinaceous nanovaccine delivery systems have significantly promoted the development of various high-efficiency vaccines. However, the widely used method of coupling the expression of scaffolds and antigens may result in their structural interference with each other. Monovalent streptavidin (mSA) is a short monomer sequence, which has a strong affinity for biotin. Here, we discuss an orthogonal, modular, and highly versatile self-assembled proteinaceous nanoparticle chassis that facilitates combinations with various antigen cargos by using mSA and biotin to produce nanovaccines. We first improved the yield of these nanoparticles by appending a short sugar chain on their surfaces in a constructed host strain. After confirming the strong ability to induce both Th1- and Th2-mediated immune responses based on the plasma cytokine spectrum from immunized mice, we further verified the binding ability of biotinylated nanoparticles to mSA-antigens. These results demonstrate that our biotinylated nanoparticle chassis could load both protein and polysaccharide antigens containing mSA at a high affinity. Our approach thus offers an attractive technology for combining nanoparticles and antigen cargos to generate various high-performance nanovaccines. In particular, the designed mSA connector (mSA containing glycosylation modification sequences) could couple with polysaccharide antigens, providing a new attractive strategy to prepare nanoscale conjugate vaccines.
Collapse
|
12
|
Sa-nguanmoo N, Namdee K, Khongkow M, Ruktanonchai U, Zhao Y, Liang XJ. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. NANO RESEARCH 2021; 15:2196-2225. [PMID: 34659650 PMCID: PMC8501370 DOI: 10.1007/s12274-021-3832-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.
Collapse
Affiliation(s)
- Nawamin Sa-nguanmoo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - YongXiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning, 530021 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
13
|
Fredsgaard L, Goksøyr L, Thrane S, Aves KL, Theander TG, Sander AF. Head-to-Head Comparison of Modular Vaccines Developed Using Different Capsid Virus-Like Particle Backbones and Antigen Conjugation Systems. Vaccines (Basel) 2021; 9:vaccines9060539. [PMID: 34063871 PMCID: PMC8224050 DOI: 10.3390/vaccines9060539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
Capsid virus-like particles (cVLPs) are used as molecular scaffolds to increase the immunogenicity of displayed antigens. Modular platforms have been developed whereby antigens are attached to the surface of pre-assembled cVLPs. However, it remains unknown to what extent the employed cVLP backbone and conjugation system may influence the immune response elicited against the displayed antigen. Here, we performed a head-to-head comparison of antigen-specific IgG responses elicited by modular cVLP-vaccines differing by their employed cVLP backbone or conjugation system, respectively. Covalent antigen conjugation (i.e., employing the SpyTag/SpyCatcher system) resulted in significantly higher antigen-specific IgG titers compared to when using affinity-based conjugation (i.e., using biotin/streptavidin). The cVLP backbone also influenced the antigen-specific IgG response. Specifically, vaccines based on the bacteriophage AP205 cVLP elicited significantly higher antigen-specific IgG compared to corresponding vaccines using the human papillomavirus major capsid protein (HPV L1) cVLP. In addition, the AP205 cVLP platform mediated induction of antigen-specific IgG with a different subclass profile (i.e., higher IgG2a and IgG2b) compared to HPV L1 cVLP. These results demonstrate that the cVLP backbone and conjugation system can individually affect the IgG response elicited against a displayed antigen. These data will aid the understanding and process of tailoring modular cVLP vaccines to achieve improved immune responses.
Collapse
Affiliation(s)
- Laurits Fredsgaard
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
| | - Louise Goksøyr
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
- AdaptVac Aps, 2970 Hørsholm, Denmark;
| | | | - Kara-Lee Aves
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
| | - Adam F. Sander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
- AdaptVac Aps, 2970 Hørsholm, Denmark;
- Correspondence:
| |
Collapse
|
14
|
Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. Nanocarrier vaccines for SARS-CoV-2. Adv Drug Deliv Rev 2021; 171:215-239. [PMID: 33428995 PMCID: PMC7794055 DOI: 10.1016/j.addr.2021.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/18/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 global pandemic has seen rapid spread, disease morbidities and death associated with substantive social, economic and societal impacts. Treatments rely on re-purposed antivirals and immune modulatory agents focusing on attenuating the acute respiratory distress syndrome. No curative therapies exist. Vaccines remain the best hope for disease control and the principal global effort to end the pandemic. Herein, we summarize those developments with a focus on the role played by nanocarrier delivery.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA; Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Preet Amol Singh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Tapan A Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand 388421, Gujarat, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Rajashree Chakraborty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Caroline G Saksena
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Suvarthi Das
- Department of Medicine, Stanford Medical School, Stanford University, Palo Alto, CA 94304, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| |
Collapse
|
15
|
Tomlinson A, Semblat JP, Gamain B, Chêne A. VAR2CSA-Mediated Host Defense Evasion of Plasmodium falciparum Infected Erythrocytes in Placental Malaria. Front Immunol 2021; 11:624126. [PMID: 33633743 PMCID: PMC7900151 DOI: 10.3389/fimmu.2020.624126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/04/2022] Open
Abstract
Over 30 million women living in P. falciparum endemic areas are at risk of developing malaria during pregnancy every year. Placental malaria is characterized by massive accumulation of infected erythrocytes in the intervillous space of the placenta, accompanied by infiltration of immune cells, particularly monocytes. The consequent local inflammation and the obstruction of the maternofetal exchanges can lead to severe clinical outcomes for both mother and child. Even if protection against the disease can gradually be acquired following successive pregnancies, the malaria parasite has developed a large panel of evasion mechanisms to escape from host defense mechanisms and manipulate the immune system to its advantage. Infected erythrocytes isolated from placentas of women suffering from placental malaria present a unique phenotype and express the pregnancy-specific variant VAR2CSA of the Plasmodium falciparum Erythrocyte Membrane Protein (PfEMP1) family at their surface. The polymorphic VAR2CSA protein is able to mediate the interaction of infected erythrocytes with a variety of host cells including placental syncytiotrophoblasts and leukocytes but also with components of the immune system such as non-specific IgM. This review summarizes the described VAR2CSA-mediated host defense evasion mechanisms employed by the parasite during placental malaria to ensure its survival and persistence.
Collapse
Affiliation(s)
- Alice Tomlinson
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Arnaud Chêne
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
16
|
Janitzek CM, Carlsen PHR, Thrane S, Khanna VM, Jakob V, Barnier-Quer C, Collin N, Theander TG, Salanti A, Nielsen MA, Sander AF. The Immunogenicity of Capsid-Like Particle Vaccines in Combination with Different Adjuvants Using Different Routes of Administration. Vaccines (Basel) 2021; 9:vaccines9020131. [PMID: 33562114 PMCID: PMC7915698 DOI: 10.3390/vaccines9020131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Capsid-like particle (CLP) displays can be used to enhance the immunogenicity of vaccine antigens, but a better understanding of how CLP vaccines are best formulated and delivered is needed. This study compared the humoral immune responses in mice elicited against two different vaccine antigens (a bacterial protein and a viral peptide) delivered on an AP205 CLP platform using six different adjuvant formulations. In comparison to antibody responses obtained after immunization with the unadjuvanted CLP vaccine, three of the adjuvant systems (neutral liposomes/monophosphoryl lipid A/quillaja saponaria 21, squalene-in-water emulsion, and monophosphoryl lipid A) caused significantly increased antibody levels, whereas formulation with the three other adjuvants (aluminum hydroxide, cationic liposomes, and cationic microparticles) resulted in similar or even decreased antibody responses. When delivering the soluble bacterial protein in a squalene-in-water emulsion, 4-log lower IgG levels were obtained compared to when the protein was delivered on CLPs without the adjuvant. The AP205 CLP platform promoted induction of both IgG1 and IgG2 subclasses, which could be skewed towards a higher production of IgG1 (aluminum hydroxide). Compared to other routes, intramuscular administration elicited the highest IgG levels. These results indicate that the effect of the external adjuvant does not always synergize with the adjuvant effect of the CLP display, which underscores the need for empirical testing of different extrinsic adjuvants.
Collapse
Affiliation(s)
- Christoph M. Janitzek
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Philip H. R. Carlsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Susan Thrane
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Vijansh M. Khanna
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Virginie Jakob
- Vaccine Formulation Institute, Plan-Les-Ouates, 1228 Geneva, Switzerland;
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory, University of Lausanne, 1015 Lausanne, Switzerland; (C.B.-Q.); (N.C.)
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, 1015 Lausanne, Switzerland; (C.B.-Q.); (N.C.)
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Adam F. Sander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1165 København, Denmark; (C.M.J.); (P.H.R.C.); (S.T.); (V.M.K.); (T.G.T.); (A.S.); (M.A.N.)
- Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-30111529
| |
Collapse
|
17
|
Vázquez-Martínez JA, Gómez-Lim MA, Morales-Ríos E, Gonzalez-y-Merchand JA, Ortiz-Navarrete V. Short Disordered Epitope of CRTAM Ig-Like V Domain as a Potential Target for Blocking Antibodies. Int J Mol Sci 2020; 21:ijms21228798. [PMID: 33233764 PMCID: PMC7699905 DOI: 10.3390/ijms21228798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Class-I Restricted T Cell-Associated Molecule (CRTAM) is a protein that is expressed after T cell activation. The interaction of CRTAM with its ligand, nectin-like 2 (Necl2), is required for the efficient production of IL-17, IL-22, and IFNγ by murine CD4 T cells, and it plays a role in optimal CD8 T and NK cell cytotoxicity. CRTAM promotes the pro-inflammatory cytokine profile; therefore, it may take part in the immunopathology of autoimmune diseases such as diabetes type 1 or colitis. Thus, antibodies that block the interaction between CRTAM and Necl2 would be useful for controlling the production of these inflammatory cytokines. In this work, using bioinformatics predictions, we identified three short disordered epitopes (sDE1-3) that are located in the Ig-like domains of murine CRTAM and are conserved in mammalian species. We performed a structural analysis by molecular dynamics simulations of sDE1 (QHPALKSSKY, Ig-like V), sDE2 (QRNGEKSVVK, Ig-like C1), and sDE3 (CSTERSKKPPPQI, Ig-like C1). sDE1, which is located within a loop of the contact interface of the heterotypic interaction with Nectl2, undergoes an order–disorder transition. On the contrary, even though sDE2 and sDE3 are flexible and also located within loops, they do not undergo order–disorder transitions. We evaluated the immunogenicity of sDE1 and sDE3 through the expression of these epitopes in chimeric L1 virus-like particles. We confirmed that sDE1 induces polyclonal antibodies that recognize the native folding of CRTAM expressed in activated murine CD4 T cells. In contrast, sDE3 induces polyclonal antibodies that recognize the recombinant protein hCRTAM-Fc, but not the native CRTAM. Thus, in this study, an exposed disordered epitope in the Ig-like V domain of CRTAM was identified as a potential site for therapeutic antibodies.
Collapse
Affiliation(s)
- Julio Angel Vázquez-Martínez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de Mexico, Mexico; (J.A.V.-M.); (J.A.G.-y.-M.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico
- Departamento de Ingeniería Genética, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821 Irapuato, Guanajuato, Mexico;
| | - Miguel Angel Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821 Irapuato, Guanajuato, Mexico;
| | - Edgar Morales-Ríos
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico;
| | - Jorge Alberto Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de Mexico, Mexico; (J.A.V.-M.); (J.A.G.-y.-M.)
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico
- Correspondence:
| |
Collapse
|
18
|
Shukla S, Hu H, Cai H, Chan SK, Boone CE, Beiss V, Chariou PL, Steinmetz NF. Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annu Rev Virol 2020; 7:559-587. [PMID: 32991265 PMCID: PMC8018517 DOI: 10.1146/annurev-virology-010720-052252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - He Hu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Hui Cai
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Soo-Khim Chan
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Christine E Boone
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Paul L Chariou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center and Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
19
|
Bashir S, Paeshuyse J. Construction of Antibody Phage Libraries and Their Application in Veterinary Immunovirology. Antibodies (Basel) 2020; 9:E21. [PMID: 32503103 PMCID: PMC7345743 DOI: 10.3390/antib9020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody phage display (APD) technology has revolutionized the field of immunovirology with its application in viral disease diagnostics and antiviral therapy. This robust and versatile technology allows the expression of an antibody fused to a phage coat protein on the surface of a filamentous phage. The DNA sequence coding for the antibody is packaged within the phage, linking the phenotype to genotype. Antibody phage display inherits the ability to rapidly generate and modify or improve high-affinity monoclonal antibodies, rendering it indispensable in immunology. In the last two decades, phage-display-derived antibodies have been extensively used in human medicine as diagnostic and therapeutic modalities. Recently, they are also gaining significant ground in veterinary medicine. Even though these advancements are mainly biased towards economically important animals such as chicken, cattle, and pigs, they are laying the foundation of fulfilling the unmet needs of veterinary medicine as antibody-based biologics in viral diagnostics, therapeutics, and immunoprophylaxis. This review provides a brief overview of the construction of antibody phage libraries and their application in diagnosis, prevention, and control of infectious viral diseases in veterinary medicine in detail.
Collapse
Affiliation(s)
| | - Jan Paeshuyse
- Department of Biosystems, Division of Animal and Human Health Engineering, Laboratory of Host Pathogen Interaction in Livestock, KU Leuven University, 3000 Leuven, Belgium;
| |
Collapse
|
20
|
Zottig X, Côté-Cyr M, Arpin D, Archambault D, Bourgault S. Protein Supramolecular Structures: From Self-Assembly to Nanovaccine Design. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1008. [PMID: 32466176 PMCID: PMC7281494 DOI: 10.3390/nano10051008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Life-inspired protein supramolecular assemblies have recently attracted considerable attention for the development of next-generation vaccines to fight against infectious diseases, as well as autoimmune diseases and cancer. Protein self-assembly enables atomic scale precision over the final architecture, with a remarkable diversity of structures and functionalities. Self-assembling protein nanovaccines are associated with numerous advantages, including biocompatibility, stability, molecular specificity and multivalency. Owing to their nanoscale size, proteinaceous nature, symmetrical organization and repetitive antigen display, protein assemblies closely mimic most invading pathogens, serving as danger signals for the immune system. Elucidating how the structural and physicochemical properties of the assemblies modulate the potency and the polarization of the immune responses is critical for bottom-up design of vaccines. In this context, this review briefly covers the fundamentals of supramolecular interactions involved in protein self-assembly and presents the strategies to design and functionalize these assemblies. Examples of advanced nanovaccines are presented, and properties of protein supramolecular structures enabling modulation of the immune responses are discussed. Combining the understanding of the self-assembly process at the molecular level with knowledge regarding the activation of the innate and adaptive immune responses will support the design of safe and effective nanovaccines.
Collapse
Affiliation(s)
- Ximena Zottig
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Dominic Arpin
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
21
|
Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods 2020; 180:111-126. [PMID: 32422249 DOI: 10.1016/j.ymeth.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.
Collapse
|
22
|
Berckman EA, Hartzell EJ, Mitkas AA, Sun Q, Chen W. Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. Annu Rev Chem Biomol Eng 2020; 11:35-62. [PMID: 32155350 DOI: 10.1146/annurev-chembioeng-101519-121526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nature has evolved a wide range of strategies to create self-assembled protein nanostructures with structurally defined architectures that serve a myriad of highly specialized biological functions. With the advent of biological tools for site-specific protein modifications and de novo protein design, a wide range of customized protein nanocarriers have been created using both natural and synthetic biological building blocks to mimic these native designs for targeted biomedical applications. In this review, different design frameworks and synthetic decoration strategies for achieving these functional protein nanostructures are summarized. Key attributes of these designer protein nanostructures, their unique functions, and their impact on biosensing and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; .,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Alexander A Mitkas
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| |
Collapse
|
23
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
24
|
Aves KL, Goksøyr L, Sander AF. Advantages and Prospects of Tag/Catcher Mediated Antigen Display on Capsid-Like Particle-Based Vaccines. Viruses 2020; 12:v12020185. [PMID: 32041299 PMCID: PMC7077247 DOI: 10.3390/v12020185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Capsid-like particles (CLPs) are multimeric, repetitive assemblies of recombinant viral capsid proteins, which are highly immunogenic due to their structural similarity to wild-type viruses. CLPs can be used as molecular scaffolds to enable the presentation of soluble vaccine antigens in a similar structural format, which can significantly increase the immunogenicity of the antigen. CLP-based antigen display can be obtained by various genetic and modular conjugation methods. However, these vary in their versatility as well as efficiency in achieving an immunogenic antigen display. Here, we make a comparative review of the major CLP-based antigen display technologies. The Tag/Catcher-AP205 platform is highlighted as a particularly versatile and efficient technology that offers new qualitative and practical advantages in designing modular CLP vaccines. Finally, we discuss how split-protein Tag/Catcher conjugation systems can help to further propagate and enhance modular CLP vaccine designs.
Collapse
Affiliation(s)
- Kara-Lee Aves
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
| | - Louise Goksøyr
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
- AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark
| | - Adam F. Sander
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
- AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark
- Correspondence:
| |
Collapse
|
25
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
26
|
Recent advances in the engineering and application of streptavidin-like molecules. Appl Microbiol Biotechnol 2019; 103:7355-7365. [DOI: 10.1007/s00253-019-10036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
|
27
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
28
|
Andersson AMC, Buldun CM, Pattinson DJ, Draper SJ, Howarth M. SnoopLigase peptide-peptide conjugation enables modular vaccine assembly. Sci Rep 2019; 9:4625. [PMID: 30874593 PMCID: PMC6420506 DOI: 10.1038/s41598-019-40985-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
For many infectious diseases there is still no vaccine, even though potential protective antigens have been identified. Suitable platforms and conjugation routes are urgently needed to convert the promise of such antigens into broadly protective and scalable vaccines. Here we apply a newly established peptide-peptide ligation approach, SnoopLigase, for specific and irreversible coupling of antigens onto an oligomerization platform. SnoopLigase was engineered from a Streptococcus pneumoniae adhesin and enables isopeptide bond formation between two peptide tags: DogTag and SnoopTagJr. We expressed in bacteria DogTag linked to the self-assembling coiled-coil nanoparticle IMX313. This platform was stable over months at 37 °C when lyophilized, remaining reactive even after boiling. IMX-DogTag was efficiently coupled to two blood-stage malarial proteins (from PfEMP1 or CyRPA), with SnoopTagJr fused at the N- or C-terminus. We also showed SnoopLigase-mediated coupling of a telomerase peptide relevant to cancer immunotherapy. SnoopLigase-mediated nanoassembly enhanced the antibody response to both malaria antigens in a prime-boost model. Including or depleting SnoopLigase from the conjugate had little effect on the antibody response to the malarial antigens. SnoopLigase decoration represents a promising and accessible strategy for modular plug-and-display vaccine assembly, as well as providing opportunities for robust nanoconstruction in synthetic biology.
Collapse
Affiliation(s)
| | - Can M Buldun
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
29
|
Li J, Helal ZH, Karch CP, Mishra N, Girshick T, Garmendia A, Burkhard P, Khan MI. A self-adjuvanted nanoparticle based vaccine against infectious bronchitis virus. PLoS One 2018; 13:e0203771. [PMID: 30216376 PMCID: PMC6138407 DOI: 10.1371/journal.pone.0203771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Infectious bronchitis virus (IBV) affects poultry respiratory, renal and reproductive systems. Currently the efficacy of available live attenuated or killed vaccines against IBV has been challenged. We designed a novel IBV vaccine alternative using a highly innovative platform called Self-Assembling Protein Nanoparticle (SAPN). In this vaccine, B cell epitopes derived from the second heptad repeat (HR2) region of IBV spike proteins were repetitively presented in its native trimeric conformation. In addition, flagellin was co-displayed in the SAPN to achieve a self-adjuvanted effect. Three groups of chickens were immunized at four weeks of age with the vaccine prototype, IBV-Flagellin-SAPN, a negative-control construct Flagellin-SAPN or a buffer control. The immunized chickens were challenged with 5x104.7 EID50 IBV M41 strain. High antibody responses were detected in chickens immunized with IBV-Flagellin-SAPN. In ex vivo proliferation tests, peripheral mononuclear cells (PBMCs) derived from IBV-Flagellin-SAPN immunized chickens had a significantly higher stimulation index than that of PBMCs from chickens receiving Flagellin-SAPN. Chickens immunized with IBV-Flagellin-SAPN had a significant reduction of tracheal virus shedding and lesser tracheal lesion scores than did negative control chickens. The data demonstrated that the IBV-Flagellin-SAPN holds promise as a vaccine for IBV.
Collapse
Affiliation(s)
- Jianping Li
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Zeinab H. Helal
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Christopher P. Karch
- The Institute of Material Sciences, University of Connecticut, Storrs, CT, United States of America
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Theodore Girshick
- Charles River Laboratories, Avian vaccine services, North Franklin, CT, United States of America
| | - Antonio Garmendia
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Peter Burkhard
- The Institute of Material Sciences, University of Connecticut, Storrs, CT, United States of America
- Department of Molecular Cell Biology, University of Connecticut, Storrs, CT, United States of America
- Alpha-O-Peptides AG, Riehen, Switzerland
| | - Mazhar I. Khan
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
- * E-mail:
| |
Collapse
|
30
|
Brune KD, Howarth M. New Routes and Opportunities for Modular Construction of Particulate Vaccines: Stick, Click, and Glue. Front Immunol 2018; 9:1432. [PMID: 29997617 PMCID: PMC6028521 DOI: 10.3389/fimmu.2018.01432] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/11/2018] [Indexed: 02/02/2023] Open
Abstract
Vaccines based on virus-like particles (VLPs) can induce potent B cell responses. Some non-chimeric VLP-based vaccines are highly successful licensed products (e.g., hepatitis B surface antigen VLPs as a hepatitis B virus vaccine). Chimeric VLPs are designed to take advantage of the VLP framework by decorating the VLP with a different antigen. Despite decades of effort, there have been few licensed chimeric VLP vaccines. Classic approaches to create chimeric VLPs are either genetic fusion or chemical conjugation, using cross-linkers from lysine on the VLP to cysteine on the antigen. We describe the principles that make these classic approaches challenging, in particular for complex, full-length antigens bearing multiple post-translational modifications. We then review recent advances in conjugation approaches for protein-based non-enveloped VLPs or nanoparticles, to overcome such challenges. This includes the use of strong non-covalent assembly methods (stick), unnatural amino acids for bio-orthogonal chemistry (click), and spontaneous isopeptide bond formation by SpyTag/SpyCatcher (glue). Existing applications of these methods are outlined and we critically consider the key practical issues, with particular insight on Tag/Catcher plug-and-display decoration. Finally, we highlight the potential for modular particle decoration to accelerate vaccine generation and prepare for pandemic threats in human and veterinary realms.
Collapse
Affiliation(s)
- Karl D Brune
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Toprani VM, Cheng Y, Wahome N, Khasa H, Kueltzo LA, Schwartz RM, Middaugh CR, Joshi SB, Volkin DB. Structural Characterization and Formulation Development of a Trivalent Equine Encephalitis Virus-Like Particle Vaccine Candidate. J Pharm Sci 2018; 107:2544-2558. [PMID: 29883665 DOI: 10.1016/j.xphs.2018.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
The zoonotic equine encephalitis viruses (EEVs) can cause debilitating and life-threatening disease, leading to ongoing vaccine development efforts for an effective virus-like particle (VLP) vaccine based on 3 strains of EEV (Eastern, Western, and Venezuelan or EEE, WEE and VEE VLPs, respectively). In this work, transmission electron microscopy and light scattering studies showed enveloped, spherical, and ∼70 nm sized VLPs. Biophysical studies demonstrated optimal VLP physical stability in the pH range of 7.5-8.5 and at temperatures below ∼50°C. Interestingly, the individual stability profiles differed notably between the 3 VLPs. Numerous pharmaceutical excipients were screened for their VLP stabilizing effects against thermal stress. Sucrose, sorbitol, sodium chloride, and pluronic F-68 were identified as promising stabilizers and the concentrations and combinations of these additives were optimized. Candidate monovalent VLP bulk formulations were incubated at temperatures ranging from -80°C to 40°C to establish freeze-thaw, long-term (2°C-8°C) and accelerated stability trends. Good VLP stability profiles were observed at each storage temperature, except for a distinct instability observed at -20°C. The interaction of monovalent and trivalent VLP formulations with aluminum adjuvants was examined, both in terms of antigen adsorption and desorption over time. The implications of these findings on future vaccine formulation development of EEV VLPs are discussed.
Collapse
Affiliation(s)
- Vishal M Toprani
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Yuan Cheng
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Newton Wahome
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Harshit Khasa
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Lisa A Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Schwartz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - C Russell Middaugh
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|
32
|
Antenucci F, Fougeroux C, Deeney A, Ørskov C, Rycroft A, Holst PJ, Bojesen AM. In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae. Vet Res 2018; 49:4. [PMID: 29316978 PMCID: PMC5761136 DOI: 10.1186/s13567-017-0502-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023] Open
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections.
Collapse
Affiliation(s)
- Fabio Antenucci
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Department of International Health, Immunology and Microbiology ISIM, University of Copenhagen, Øster Farigmagsgade 5, Bldg 22/23, 1014 København K, Copenhagen, Denmark
| | - Alannah Deeney
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Cathrine Ørskov
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 København N, 12.3, Building: 32, Copenhagen, Denmark
| | - Andrew Rycroft
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Peter Johannes Holst
- Department of International Health, Immunology and Microbiology ISIM, University of Copenhagen, Øster Farigmagsgade 5, Bldg 22/23, 1014 København K, Copenhagen, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. RECENT FINDINGS Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. SUMMARY Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.
Collapse
|
34
|
Abstract
Virus-like particle (VLP) technologies are based on virus-inspired artificial structures and the intrinsic ability of viral proteins to self-assemble at controlled conditions. Therefore, the basic knowledge about the mechanisms of viral particle formation is highly important for designing of industrial applications. As an alternative to genetic and chemical processes, different physical methods are frequently used for VLP construction, including well characterized protein complexes for introduction of foreign molecules in VLP structures.This chapter shortly discusses the mechanisms how the viruses form their perfectly ordered structures as well as the principles and most interesting application examples, how to exploit the structural and assembly/disassembly properties of viral structures for creation of new nanomaterials.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
| |
Collapse
|
35
|
Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity. PLoS One 2017; 12:e0190312. [PMID: 29281708 PMCID: PMC5744994 DOI: 10.1371/journal.pone.0190312] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Chemical conjugation of polysaccharide to carrier proteins has been a successful strategy to generate potent vaccines against bacterial pathogens. We developed a similar approach for poorly immunogenic malaria protein antigens. Our lead candidates in clinical trials are the malaria transmission blocking vaccine antigens, Pfs25 and Pfs230D1, individually conjugated to the carrier protein Exoprotein A (EPA) through thioether chemistry. These conjugates form nanoparticles that show enhanced immunogenicity compared to unconjugated antigens. In this study, we examined the broad applicability of this technology as a vaccine development platform, by comparing the immunogenicity of conjugates prepared by four different chemistries using different malaria antigens (PfCSP, Pfs25 and Pfs230D1), and carriers such as EPA, TT and CRM197. Several conjugates were synthesized using thioether, amide, ADH and glutaraldehyde chemistries, characterized for average molecular weight and molecular weight distribution, and evaluated in mice for humoral immunogenicity. Conjugates made with the different chemistries, or with different carriers, showed no significant difference in immunogenicity towards the conjugated antigens. Since particle size can influence immunogenicity, we tested conjugates with different average size in the range of 16–73 nm diameter, and observed greater immunogenicity of smaller particles, with significant differences between 16 and 73 nm particles. These results demonstrate the multiple options with respect to carriers and chemistries that are available for protein-protein conjugate vaccine development.
Collapse
|
36
|
Kusi KA, Faber BW, Koopman G, Remarque EJ. EDiP: the Epitope Dilution Phenomenon. Lessons learnt from a malaria vaccine antigen and its applicability to polymorphic antigens. Expert Rev Vaccines 2017; 17:13-21. [PMID: 29224404 DOI: 10.1080/14760584.2018.1411198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Polymorphism in vaccine antigens poses major challenges to vaccinologists. The Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) poses such a challenge. We found that immunization with a mixture of three variants yielded functional antibody levels to all variants comparable to levels induced by monovalent immunization. The mechanism behind the observed broadening was shown to be an increase in the fraction of cross-reactive antibodies, most likely because strain-specific epitopes are present at lower frequency relative to conserved epitopes. Areas covered: We hereby introduce the Epitope Dilution Phenomenon (EDiP) as a practical strategy for the induction of broad, cross-variant antibody responses against polymorphic antigens and discuss the utility and applicability of this phenomenon for the development of vaccines against polymorphic antigens of pathogens like Influenza, HIV, Dengue and Plasmodium. Expert commentary: EDiP can be used to broaden antibody responses by immunizing with a mixture of at least 3 antigenic variants, where the variants included can differ, yet yield broadened responses.
Collapse
Affiliation(s)
- Kwadwo Asamoah Kusi
- a Immunology Department , Noguchi Memorial Institute for Medical Research, College of Health Sciences University of Ghana , Accra , Ghana
| | - Bart W Faber
- b Department of Parasitology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| | - Gerrit Koopman
- c Department of Virology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| | - Edmond Joseph Remarque
- c Department of Virology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| |
Collapse
|
37
|
PFI1785w: A highly conserved protein associated with pregnancy associated malaria. PLoS One 2017; 12:e0187817. [PMID: 29121643 PMCID: PMC5679621 DOI: 10.1371/journal.pone.0187817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022] Open
Abstract
Pregnancy-associated malaria (PAM) is one of the severe forms of Plasmodium falciparum infection. The main antigen VAR2CSA is the target of vaccine development. However, the large size of VAR2CSA protein and its high degree of variability limit to the efficiency of the vaccination. Using quantitative mass spectrometry method, we detected and quantified proteotypic peptides from 5 predicted PAM associated proteins. Our results confirmed that PFI1785w is over-expressed in PAM samples. Then, we investigated PFI1785w variability among a set of parasite samples from various endemic areas. PFI1785w appear to be more conserved than VAR2CSA. PFB0115w, another PAM associated protein, seems also associated with the pathology. Further vaccination strategies could integrate other proteins in addition to the major VAR2CSA antigen to improve immune response to vaccination.
Collapse
|
38
|
Nanoassembly routes stimulate conflicting antibody quantity and quality for transmission-blocking malaria vaccines. Sci Rep 2017. [PMID: 28630474 PMCID: PMC5476561 DOI: 10.1038/s41598-017-03798-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vaccine development efforts have recently focused on enabling strong immune responses to poorly immunogenic antigens, via display on multimerisation scaffolds or virus like particles (VLPs). Typically such studies demonstrate improved antibody titer comparing monomeric and nano-arrayed antigen. There are many such studies and scaffold technologies, but minimal side-by-side evaluation of platforms for both the amount and efficacy of antibodies induced. Here we present direct comparison of three leading platforms displaying the promising malaria transmission-blocking vaccine (TBV) target Pfs25. These platforms encompass the three important routes to antigen-scaffold linkage: genetic fusion, chemical cross-linking and plug-and-display SpyTag/SpyCatcher conjugation. We demonstrate that chemically-conjugated Qβ VLPs elicited the highest quantity of antibodies, while SpyCatcher-AP205-VLPs elicited the highest quality anti-Pfs25 antibodies for transmission blocking upon mosquito feeding. These quantative and qualitative features will guide future nanoassembly optimisation, as well as the development of the new generation of malaria vaccines targeting transmission.
Collapse
|
39
|
Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol 2017; 15:479-491. [DOI: 10.1038/nrmicro.2017.47] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 2017; 16:613-624. [PMID: 28434376 DOI: 10.1080/14760584.2017.1322512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.
Collapse
Affiliation(s)
- Caroline Pehrson
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Ali Salanti
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Thor G Theander
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Morten A Nielsen
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| |
Collapse
|
41
|
Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017; 2:3. [PMID: 29263864 PMCID: PMC5627247 DOI: 10.1038/s41541-017-0006-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recombinant virus-like particle-based vaccines are composed of viral structural proteins and mimic authentic native viruses but are devoid of viral genetic materials. They are the active components in highly safe and effective vaccines for the prevention of infectious diseases. Several expression systems have been used for virus-like particle production, ranging from Escherichia coli to mammalian cell lines. The prokaryotic expression system, especially Escherichia coli, is the preferred expression host for producing vaccines for global use. Hecolin, the first licensed virus-like particle vaccine derived from Escherichia coli, has been demonstrated to possess good safety and high efficacy. In this review, we focus on Escherichia coli-derived virus-like particle based vaccines and vaccine candidates that are used for prevention (immunization against microbial pathogens) or disease treatment (directed against cancer or non-infectious diseases). The native-like spatial or higher-order structure is essential for the function of virus-like particles. Thus, the tool box for analyzing the key physicochemical, biochemical and functional attributes of purified virus-like particles will also be discussed. In summary, the Escherichia coli expression system has great potentials for producing a range of proteins with self-assembling properties to be used as vaccine antigens given the proper epitopes were preserved when compared to those in the native pathogens or disease-related target molecules.
Collapse
Affiliation(s)
- Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Life Science, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| |
Collapse
|
42
|
Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen. Vaccine 2017; 35:1140-1147. [PMID: 28131394 DOI: 10.1016/j.vaccine.2017.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
The malaria parasite Plasmodium falciparum presents antigens on the infected erythrocyte surface that bind human receptors expressed on the vascular endothelium. The VAR2CSA mediated binding to a distinct chondroitin sulphate A (CSA) is a crucial step in the pathophysiology of placental malaria and the CSA binding region of VAR2CSA has been identified as a promising vaccine target against placental malaria. Here we designed adenovirus encoded virus-like particles (VLP) by co-encoding Simian Immunodeficiency Virus (SIV) gag and VAR2CSA. The VAR2CSA antigen was fused to the transmembrane (TM) and cytoplasmic tail (CT) domains of either the envelope protein of mouse mammary tumour virus (MMTV) or the hemagglutinin (HA) of influenza A. For a non-VLP incorporation control, a third design was made where VAR2CSA was expressed without TM-CT domains. In the primary immunogenicity study in Balb/c mice, VAR2CSA fused to HA TM-CT was significantly superior in inducing ID1-ID2a specific antibodies after the first immunization. A sequential study was performed to include a comparison to the soluble VAR2CSA protein vaccine, which has entered a phase I clinical trial (NCT02647489). The results revealed the induction of higher antibody responses and increased inhibition of parasite binding to CSA using either VAR2CSA HA TM-CT or VAR2CSA MMTV TM-CT as priming vaccines for protein double-boost immunizations, compared to protein prime-double boost regimen. Analysis of pooled serum samples on peptide arrays revealed a unique targeting of several epitopes in mice that had been primed with VAR2CSA HA TM-CT. Consequently, modification of VLP anchors is an important point of optimization in virus-encoded retroviral VLP-based vaccines, and adenovirus VLPs boosted by recombinant proteins offer hope of increasing the levels of protective VAR2CSA specific antibodies.
Collapse
|
43
|
Jain A, Cheng K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J Control Release 2017; 245:27-40. [PMID: 27865853 PMCID: PMC5222781 DOI: 10.1016/j.jconrel.2016.11.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Avidin-biotin interaction is one of the strongest non-covalent interactions in the nature. Avidin and its analogues have therefore been extensively utilized as probes and affinity matrices for a wide variety of applications in biochemical assays, diagnosis, affinity purification, and drug delivery. Recently, there has been a growing interest in exploring this non-covalent interaction in nanoscale drug delivery systems for pharmaceutical agents, including small molecules, proteins, vaccines, monoclonal antibodies, and nucleic acids. Particularly, the ease of fabrication without losing the chemical and biological properties of the coupled moieties makes the avidin-biotin system a versatile platform for nanotechnology. In addition, avidin-based nanoparticles have been investigated as diagnostic systems for various tumors and surface antigens. In this review, we will highlight the various fabrication principles and biomedical applications of avidin-based nanoparticles in drug delivery and diagnosis. The structures and biochemical properties of avidin, biotin and their respective analogues will also be discussed.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States.
| |
Collapse
|
44
|
Janitzek CM, Matondo S, Thrane S, Nielsen MA, Kavishe R, Mwakalinga SB, Theander TG, Salanti A, Sander AF. Bacterial superglue generates a full-length circumsporozoite protein virus-like particle vaccine capable of inducing high and durable antibody responses. Malar J 2016; 15:545. [PMID: 27825348 PMCID: PMC5101663 DOI: 10.1186/s12936-016-1574-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Malaria, caused by Plasmodium falciparum, continues to have a devastating impact on global health, emphasizing the great need for a malaria vaccine. The circumsporozoite protein (CSP) is an attractive target for a malaria vaccine, and forms a major component of RTS,S, the most clinically advanced malaria vaccine. The clinical efficacy of RTS,S has been moderate, yet has demonstrated the viability of a CSP-based malaria vaccine. In this study, a vaccine comprised of the full-length CSP antigen presented on a virus-like particle (VLP) is produced using a split-intein conjugation system (SpyTag/SpyCatcher) and the immunogenicity is tested in mice. METHODS Full-length 3d7 CSP protein was genetically fused at the C-terminus to SpyCatcher. The CSP-SpyCatcher antigen was then covalently attached (via the SpyTag/SpyCatcher interaction) to Acinetobacter phage AP205 VLPs which were modified to display one SpyTag per VLP subunit. To evaluate the VLP-display effect, the immunogenicity of the VLP vaccine was tested in mice and compared to a control vaccine containing AP205 VLPs plus unconjugated CSP. RESULTS Full-length CSP was conjugated at high density (an average of 112 CSP molecules per VLP) to AP205 SpyTag-VLPs. Vaccination of mice with the CSP Spy-VLP vaccine resulted in significantly increased antibody titres over a course of 7 months as compared to the control group (2.6-fold higher at 7 months after immunization). Furthermore, the CSP Spy-VLP vaccine appears to stimulate production of IgG2a antibodies, which has been linked with a more efficient clearing of intracellular parasite infection. CONCLUSION This study demonstrates that the high-density display of CSP on SpyTag-VLPs, significantly increases the level and quality of the vaccine-induced humoral response, compared to a control vaccine consisting of soluble CSP plus AP205 VLPs. The SpyTag-VLP platform utilized in this study constitutes a versatile and rapid method to develop highly immunogenic vaccines. It might serve as a generic tool for the cost-effective development of effective VLP-vaccines, e.g., against malaria.
Collapse
Affiliation(s)
- Christoph M Janitzek
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sungwa Matondo
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Susan Thrane
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Reginald Kavishe
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Steve B Mwakalinga
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Adam F Sander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
45
|
Antibody responses to the full-length VAR2CSA and its DBL domains in Cameroonian children and teenagers. Malar J 2016; 15:532. [PMID: 27814765 PMCID: PMC5097422 DOI: 10.1186/s12936-016-1585-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antigenic variation of Plasmodium falciparum erythrocyte membrane protein 1 is a key parasite mechanism for immune evasion and parasite survival. It is assumed that the number of parasites expressing the same var gene must reach high enough numbers before the host can produce detectable levels of antibodies (Ab) to the variant. VAR2CSA is a protein coded for by one of 60 var genes that is expressed on the surface of infected erythrocytes (IE) and mediates IE binding to the placenta. The idea that Ab to VAR2CSA are pregnancy-associated was challenged when VAR2CSA-specific Ab were reported in children and men. However, the frequency and conditions under which Ab to VAR2CSA are produced outside pregnancy is unclear. This study sought to determine frequency, specificity and level of Ab to VAR2CSA produced in children and whether children with hyperparasitaemia and severe malaria are more likely to produce Ab to VAR2CSA compared to healthy children. METHODS Antibody responses to a panel of recombinant proteins consisting of multiple VAR2CSA Duffy-binding-like domains (DBL) and full-length VAR2CSA (FV2) were characterized in 193 1-15 year old children from rural Cameroonian villages and 160 children with severe malaria from the city. RESULTS Low Ab levels to VAR2CSA were detected in children; however, Ab levels to FV2 in teenagers were rare. Children preferentially recognized DBL2 (56-70%) and DBL4 (50-60%), while multigravidae produced high levels of IgG to DBL3, DBL5 and FV2. Sixty-seven percent of teenage girls (n = 16/24) recognized ID1-ID2a region of VAR2CSA. Children with severe forms of malaria had significantly higher IgG to merozoite antigens (all p < 0.05), but not to VAR2CSA (all p > 0.05) when compared to the healthy children. CONCLUSION The study suggests that children, including teenage girls acquire Ab to VAR2CSA domains and FV2, but Ab levels are much lower than those needed to protect women from placental infections and repertoire of Ab responses to DBL domains is different from those in pregnant women. Interestingly, children with severe malaria did not have higher Ab levels to VAR2CSA compared to healthy children.
Collapse
|
46
|
Huang R, Kiss MM, Batonick M, Weiner MP, Kay BK. Generating Recombinant Antibodies to Membrane Proteins through Phage Display. Antibodies (Basel) 2016; 5:antib5020011. [PMID: 31557992 PMCID: PMC6698964 DOI: 10.3390/antib5020011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
One of the most important classes of proteins in terms of drug targets is cell surface membrane proteins, and yet it is a challenging set of proteins for generating high-quality affinity reagents. In this review, we focus on the use of phage libraries, which display antibody fragments, for generating recombinant antibodies to membrane proteins. Such affinity reagents generally have high specificity and affinity for their targets. They have been used for cell staining, for promoting protein crystallization to solve three-dimensional structures, for diagnostics, and for treating diseases as therapeutics. We cover publications on this topic from the past 10 years, with a focus on the various formats of membrane proteins for affinity selection and the diverse affinity selection strategies used. Lastly, we discuss the challenges faced in this field and provide possible directions for future efforts.
Collapse
Affiliation(s)
- Renhua Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607-7060, USA.
| | - Margaret M Kiss
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Melissa Batonick
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Michael P Weiner
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Brian K Kay
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607-7060, USA.
| |
Collapse
|
47
|
Thrane S, Janitzek CM, Matondo S, Resende M, Gustavsson T, de Jongh WA, Clemmensen S, Roeffen W, van de Vegte-Bolmer M, van Gemert GJ, Sauerwein R, Schiller JT, Nielsen MA, Theander TG, Salanti A, Sander AF. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J Nanobiotechnology 2016; 14:30. [PMID: 27117585 PMCID: PMC4847360 DOI: 10.1186/s12951-016-0181-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP components. RESULTS Genetic fusion of SpyTag or SpyCatcher to the N-terminus and/or C-terminus of the Acinetobacter phage AP205 capsid protein resulted in formation of stable, nonaggregated VLPs expressing one SpyCatcher, one SpyTag or two SpyTags per capsid protein. Mixing of spy-VLPs with eleven different vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22-88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5). CONCLUSIONS The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology's ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well as to efficiently break B cell self-tolerance. The spy-VLP-system may serve as a generic tool for the cost-effective development of effective VLP-vaccines against both infectious- and non-communicable diseases and could facilitate rapid and unbiased screening of vaccine candidate antigens.
Collapse
Affiliation(s)
- Susan Thrane
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christoph M Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sungwa Matondo
- Kilimanjaro Clinical Research Institute, KCMC, Moshi, Tanzania
| | - Mafalda Resende
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Stine Clemmensen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.,ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Will Roeffen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Geert Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
48
|
Engineering virus-like particles as vaccine platforms. Curr Opin Virol 2016; 18:44-9. [PMID: 27039982 DOI: 10.1016/j.coviro.2016.03.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 03/08/2016] [Indexed: 02/03/2023]
Abstract
Virus-like particles (VLPs) have been utilized as vaccine platforms to increase the immunogenicity of heterologous antigens. A variety of diverse VLP types can serve as vaccine platforms, and research has focused on engineering VLPs to improve their efficacy as vaccines, enhance their stability, and allow for more versatile display of antigens. Here, we review selected VLP vaccine platforms, highlight efforts to improve these platforms through structure-informed rational design, and point to areas of future research that will assist in these efforts.
Collapse
|
49
|
Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomater Sci 2016; 4:785-802. [PMID: 26891972 DOI: 10.1039/c5bm00507h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With lower cell toxicity and higher specificity, novel vaccines have been greatly developed and applied to emerging infectious and chronic diseases. However, due to problems associated with low immunogenicity and complicated processing steps, the development of novel vaccines has been limited. With the rapid development of bio-technologies and material sciences, nanomaterials are playing essential roles in novel vaccine design. Incorporation of nanomaterials is expected to improve delivery efficiency, to increase immunogenicity, and to reduce the administration dosage. The purpose of this review is to discuss the employment of nanomaterials, including polymeric nanoparticles, liposomes, virus-like particles, peptide amphiphiles micelles, peptide nanofibers and microneedle arrays, in vaccine design. Compared to traditional methods, vaccines made from nanomaterials display many appealing benefits, including precise stimulation of immune responses, effective targeting to certain tissue or cells, and desirable biocompatibility. Current research suggests that nanomaterials may improve our approach to the design and delivery of novel vaccines.
Collapse
Affiliation(s)
- Liu Yang
- College of Light Industry and Food Sciences, South China University of Technology, Uangzhou 510640, China.
| | | | | | | | | |
Collapse
|