1
|
Wang AA, Luessi F, Neziraj T, Pössnecker E, Zuo M, Engel S, Hanuscheck N, Florescu A, Bugbee E, Ma XI, Rana F, Lee D, Ward LA, Kuhle J, Himbert J, Schraad M, van Puijenbroek E, Klein C, Urich E, Ramaglia V, Pröbstel AK, Zipp F, Gommerman JL. B cell depletion with anti-CD20 promotes neuroprotection in a BAFF-dependent manner in mice and humans. Sci Transl Med 2024; 16:eadi0295. [PMID: 38446903 DOI: 10.1126/scitranslmed.adi0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.
Collapse
Affiliation(s)
- Angela A Wang
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sinah Engel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Alexandra Florescu
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Eryn Bugbee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xianjie I Ma
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Fatima Rana
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jens Kuhle
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Johannes Himbert
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muriel Schraad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Glycart AG, 8952 Schlieren, Switzerland
| | - Eduard Urich
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4052 Basel, Switzerland
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
2
|
Asplund Högelin K, Isac B, Khademi M, Al Nimer F. B cell activating factor levels are linked to distinct B cell markers in multiple sclerosis and following B cell depletion and repopulation. Clin Immunol 2024; 258:109870. [PMID: 38101497 DOI: 10.1016/j.clim.2023.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
Recent studies have highlighted the important role of B cells in the pathogenesis of multiple sclerosis (MS). B cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) play a major role in B cell survival and homeostasis. Here, we studied the association of BAFF and APRIL with B cell immune markers in MS and following B cell depletion and repopulation. We found that BAFF but not APRIL was significantly higher in plasma in untreated MS compared to controls. BAFF increased after rituximab treatment and decreased again during repopulation displaying an inverse correlation with B cell numbers, and more specifically switched memory B cell numbers. Cerebrospinal fluid BAFF inversely correlated with IgG index. BAFF displayed an inverse association to anti-EBV-CA antibodies. In summary, our study identified immune cells and factors that might regulate or be regulated by BAFF and APRIL levels in MS, and during B cell depletion and repopulation.
Collapse
Affiliation(s)
- Klara Asplund Högelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Beshoy Isac
- Biomedical Laboratory Science, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Cheng CW, Fang WF, Lin JD. Associations of serum keratin 1 with thyroid function and immunity in Graves' disease. PLoS One 2023; 18:e0289345. [PMID: 38019813 PMCID: PMC10686460 DOI: 10.1371/journal.pone.0289345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/08/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Autoimmune thyroid disease (AITD) can cause enormous health burdens; however, trustworthy biomarkers in identifying the onset and progression of AITD are limited. In this study, we attempted to discover new potential serum biomarkers to discriminate AITD using mass spectrometry (MS). METHODS In the biomarker study cohort, 20 patients with Graves' disease (GD), 20 patients with Hashimoto's thyroiditis (HT), and 20 healthy controls were enrolled for a liquid chromatographic-tandem MS assessment. A novel biomarker, keratin 1 (KRT1), was selected for further evaluation in the validation cohort, including 125 patients with GD, 34 patients with HT, and 77 controls. Relationships of serum KRT1 with AITD-related immunomodulatory cytokines were also analyzed using enzyme-linked immunosorbent assays (ELISAs). RESULTS In the MS analysis, KRT1 was the single marker overexpressed in GD, while it was underexpressed in HT. In the ELISA analysis of the validation cohort, KRT1 was consistently upregulated in GD, while it was not downregulated in HT. There were significant associations of KRT1 levels with thyroid function in GD, AITD, and overall subjects. Additionally, a significant association of KRT1 levels with thyroid-stimulating hormone receptor antibody (TSHRAb) levels was observed. Moreover, there were significant associations of KRT1 with osteopontin (OPN) and B-cell activating factor (BAFF) levels in GD. CONCLUSIONS Serum KRT1 levels were upregulated in GD and were associated with thyroid function and TSHRAb levels. Moreover, KRT1 was correlated with the BAFF and OPN levels in GD patients. Further molecular-based research to elucidate the role of KRT1 in the pathogenesis of AITD is needed.
Collapse
Affiliation(s)
- Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herb Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | - Jiunn-Diann Lin
- Department of Internal Medicine, Division of Endocrinology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Berek K, Bauer A, Rudzki D, Auer M, Barket R, Zinganell A, Lerch M, Hofer L, Grams A, Poskaite P, Wurth S, Berger T, Di Pauli F, Deisenhammer F, Hegen H, Reindl M. Immune profiling in multiple sclerosis: a single-center study of 65 cytokines, chemokines, and related molecules in cerebrospinal fluid and serum. Front Immunol 2023; 14:1200146. [PMID: 37383229 PMCID: PMC10294231 DOI: 10.3389/fimmu.2023.1200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The understanding of the pathophysiology of multiple sclerosis (MS) has evolved alongside the characterization of cytokines and chemokines in cerebrospinal fluid (CSF) and serum. However, the complex interplay of pro- and anti-inflammatory cytokines and chemokines in different body fluids in people with MS (pwMS) and their association with disease progression is still not well understood and needs further investigation. Therefore, the aim of this study was to profile a total of 65 cytokines, chemokines, and related molecules in paired serum and CSF samples of pwMS at disease onset. Methods Multiplex bead-based assays were performed and baseline routine laboratory diagnostics, magnetic resonance imaging (MRI), and clinical characteristics were assessed. Of 44 participants included, 40 had a relapsing-remitting disease course and four a primary progressive MS. Results There were 29 cytokines and chemokines that were significantly higher in CSF and 15 in serum. Statistically significant associations with moderate effect sizes were found for 34 of 65 analytes with sex, age, CSF, and MRI parameters and disease progression. Discussion In conclusion, this study provides data on the distribution of 65 different cytokines, chemokines, and related molecules in CSF and serum in newly diagnosed pwMS.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Angelika Bauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Dagmar Rudzki
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Barket
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Lerch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Livia Hofer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Astrid Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paulina Poskaite
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Wurth
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Dong P, Mei C, Yang Y, Zhou Y, Xu Y, Song L, Yu C. Blocking BAFF Alleviates Hepatic Fibrosis in Schistosoma japonicum-Infected Mice. Pathogens 2023; 12:793. [PMID: 37375483 DOI: 10.3390/pathogens12060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Schistosomiasis is an immunopathogenic disease characterized by egg granuloma and fibrosis. The hepatic fibrosis of schistosomiasis is caused by the coordinated action of local immune cells, liver-resident cells and related cytokines around the eggs of the liver. B-cell-activating factor (BAFF), expressed in many cells, is an essential factor for promoting the survival, differentiation, and maturation of cells. The overexpression of BAFF is closely related to many autoimmune diseases and fibrosis, but has not been reported to play a role in liver fibrosis caused by schistosomiasis. In the study, we found that, during Schistosoma japonicum (S. japonicum) infection in mice, the level of BAFF and its receptor BAFF-R progressively increased, then decreased with the extension of infection time, which was consistent with the progression of hepatic granuloma and fibrosis. Anti-BAFF treatment attenuated the histopathological damage in the liver of infected mice. The average areas of individual granulomas and liver fibrosis in anti-BAFF treatment mice were significantly lower than those in control mice, respectively. Anti-BAFF treatment increased the IL-10, decreased IL-4, IL-6, IL-17A, TGF-β, and downregulated the antibody level against S. japonicum antigens. These results suggested that BAFF acts a strong player in the immunopathology of schistosomiasis. Anti-BAFF treatment may influence Th2 and Th17 responses, and reduce the inflammatory reaction and fibrosis of schistosomiasis liver egg granuloma. It is suggested that BAFF might be a prospective target for the development of new methods to treat schistosomiasis liver fibrosis.
Collapse
Affiliation(s)
- Panpan Dong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Congjin Mei
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Yingying Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Yonghua Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Chuanxin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| |
Collapse
|
6
|
Zingaropoli MA, Pasculli P, Tartaglia M, Dominelli F, Ciccone F, Taglietti A, Perri V, Malimpensa L, Ferrazzano G, Iannetta M, Del Borgo C, Lichtner M, Mastroianni CM, Conte A, Ciardi MR. Evaluation of BAFF, APRIL and CD40L in Ocrelizumab-Treated pwMS and Infectious Risk. BIOLOGY 2023; 12:biology12040587. [PMID: 37106787 PMCID: PMC10135639 DOI: 10.3390/biology12040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND The anti-CD20 monoclonal antibody ocrelizumab has been widely employed in the treatment of people with multiple sclerosis (pwMS). However, its B-cell-depleting effect may induce a higher risk of infectious events and alterations in the secretion of B-cell-activating factors, such as BAFF, APRIL and CD40L. METHODS The aim of this study was to investigate plasma BAFF, APRIL and CD40L levels and their relationship with infectious risk in ocrelizumab-treated pwMS at baseline (T0), at 6 months (T6) and at 12 months (T12) after starting the treatment. As a control group, healthy donors (HD) were enrolled too. RESULTS A total of 38 pwMS and 26 HD were enrolled. At baseline, pwMS showed higher plasma BAFF (p < 0.0001), APRIL (p = 0.0223) and CD40L (p < 0.0001) levels compared to HD. Compared to T0, plasma BAFF levels were significantly increased at both T6 and T12 (p < 0.0001 and p < 0.0001, respectively). Whereas plasma APRIL and CD40L levels were decreased at T12 (p = 0.0003 and p < 0.0001, respectively). When stratifying pwMS according to the development of an infectious event during the 12-month follow-up period in two groups-with (14) and without an infectious event (24)-higher plasma BAFF levels were observed at all time-points; significantly, in the group with an infectious event compared to the group without an infectious event (T0: p < 0.0001, T6: p = 0.0056 and T12: p = 0.0400). Conclusions: BAFF may have a role as a marker of immune dysfunction and of infectious risk.
Collapse
Affiliation(s)
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Ambra Taglietti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Leonardo Malimpensa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, 00133 Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza University of Rome, 04110 Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza University of Rome, 04110 Latina, Italy
- Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Martinou M, Katifelis H, Gialafos E, Atliev KT, Papiris S, Gazouli M. Association of BAFF and BAFF-R polymorphisms with sarcoidosis in a Greek patient cohort. Arch Med Sci 2022; 19:672-677. [PMID: 37313206 PMCID: PMC10259409 DOI: 10.5114/aoms/154019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/13/2022] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION Sarcoidosis is a disease that results from a combination of environmental and genetic factors. Its genetic basis however, is yet to be clarified. The purpose of this study is to determine whether single nucleotide polymorphisms (SNPs) of the B-cell activating factor (BAFF) and its receptor (BAFF-R) are associated with sarcoidosis. MATERIAL AND METHODS Blood samples from one hundred and seventy-three sarcoidosis patients and one hundred and sixty-four controls were collected. All samples were genotyped for BAFF rs2893321, rs1041569 and rs9514828, and for BAFF-R rs61756766. RESULTS Out of the three BAFF polymorphisms, none genotype had any significant association with sarcoidosis, although the T allele in rs1041569 and rs9514828 was overrepresented in sarcoidosis patients. A marginally significant association with sarcoidosis was found in the case of the CT genotype and T allele of BAFF-R rs61756766. Haplotype analysis of the BAFF polymorphisms was also performed, revealing an overrepresentation of the ATT, GTA and GTT haplotypes in the group of patients with cardiac involvement. CONCLUSIONS Taken together, the results of this study suggest a possible relationship between BAFF SNPs, rs1041569 and rs9514828, and BAFF-R SNP rs61756766 with sarcoidosis susceptibility and their potential as biomarkers for the disease.
Collapse
Affiliation(s)
- Maria Martinou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Gialafos
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kiril Todorov Atliev
- Department of Urology and General Medicine, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Spiridon Papiris
- 2 Respiratory Medicine Department, “Attikon” University Hospital, Chaidari, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med 2022; 12:jpm12091430. [PMID: 36143216 PMCID: PMC9501898 DOI: 10.3390/jpm12091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system, presenting with different clinical forms, including clinically isolated syndrome (CIS), which is a first clinical episode suggestive of demyelination. Several molecules have been proposed as prognostic biomarkers in MS. We aimed to perform a scoping review of the potential use of prognostic biomarkers in MS clinical practice. We searched MEDLINE up to 25 November 2021 for review articles assessing body fluid biomarkers for prognostic purposes, including any type of biomarkers, cell types and tissues. Original articles were obtained to confirm and detail the data reported by the review authors. We evaluated the reliability of the biomarkers based on the sample size used by various studies. Fifty-two review articles were included. We identified 110 molecules proposed as prognostic biomarkers. Only six studies had an adequate sample size to explore the risk of conversion from CIS to MS. These confirm the role of oligoclonal bands, immunoglobulin free light chain and chitinase CHI3L1 in CSF and of serum vitamin D in the prediction of conversion from CIS to clinically definite MS. Other prognostic markers are not yet explored in adequately powered samples. Serum and CSF levels of neurofilaments represent a promising biomarker.
Collapse
|
9
|
Leffler J, Trend S, Ward NC, Grau GE, Hawke S, Byrne SN, Kermode AG, French MA, Hart PH. Circulating Memory B Cells in Early Multiple Sclerosis Exhibit Increased IgA + Cells, Globally Decreased BAFF-R Expression and an EBV-Related IgM + Cell Signature. Front Immunol 2022; 13:812317. [PMID: 35250986 PMCID: PMC8888440 DOI: 10.3389/fimmu.2022.812317] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the central nervous system that results in demyelination of axons, inefficient signal transmission and reduced muscular mobility. Recent findings suggest that B cells play a significant role in disease development and pathology. To further explore this, B cell profiles in peripheral blood from 28 treatment-naive patients with early MS were assessed using flow cytometry and compared to 17 healthy controls. Conventional and algorithm-based analysis revealed a significant increase in MS patients of IgA+ memory B cells (MBC) including CD27+, CD27- and Tbet+ subsets. Screening circulating B cells for markers associated with B cell function revealed a significantly decreased expression of the B cell activation factor receptor (BAFF-R) in MS patients compared to controls. In healthy controls, BAFF-R expression was inversely associated with abundance of differentiated MBC but this was not observed in MS. Instead in MS patients, decreased BAFF-R expression correlated with increased production of proinflammatory TNF following B cell stimulation. Finally, we demonstrated that reactivation of Epstein Barr Virus (EBV) in MS patients was associated with several phenotypic changes amongst MBCs, particularly increased expression of HLA-DR molecules and markers of a T-bet+ differentiation pathway in IgM+ MBCs. Together, these data suggest that the B cell compartment is dysregulated in MS regarding aberrant MBC homeostasis, driven by reduced BAFF-R expression and EBV reactivation. This study adds further insights into the contribution of B cells to the pathological mechanisms of MS, as well as the complex role of BAFF/BAFF-R signalling in MS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, Medical School, University of Western Australia, Perth, WA, Australia
| | - Georges E Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Simon Hawke
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Immunology Division, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Boussamet L, Rajoka MSR, Berthelot L. Microbiota, IgA and Multiple Sclerosis. Microorganisms 2022; 10:microorganisms10030617. [PMID: 35336190 PMCID: PMC8954136 DOI: 10.3390/microorganisms10030617] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by immune cell infiltration in the central nervous system and destruction of myelin sheaths. Alterations of gut bacteria abundances are present in MS patients. In mouse models of neuroinflammation, depletion of microbiota results in amelioration of symptoms, and gavage with MS patient microbiota exacerbates the disease and inflammation via Th17 cells. On the other hand, depletion of B cells using anti-CD20 is an efficient therapy in MS, and growing evidence shows an important deleterious role of B cells in MS pathology. However, the failure of TACI-Ig treatment in MS highlighted the potential regulatory role of plasma cells. The mechanism was recently demonstrated involving IgA+ plasma cells, specific for gut microbiota and producing IL-10. IgA-coated bacteria in MS patient gut exhibit also modifications. We will focus our review on IgA interactions with gut microbiota and IgA+ B cells in MS. These recent data emphasize new pathways of neuroinflammation regulation in MS.
Collapse
Affiliation(s)
- Léo Boussamet
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Laureline Berthelot
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
- Correspondence:
| |
Collapse
|
11
|
Cheng CW, Tang KT, Fang WF, Lee TI, Lin JD. Differential serum interferon-β levels in autoimmune thyroid diseases. Arch Med Sci 2022; 18:1231-1240. [PMID: 36160354 PMCID: PMC9479710 DOI: 10.5114/aoms/110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Interferon (IFN)-β is known as an environmental trigger for the occurrence of autoimmune thyroid disease (AITD). However, the association of another type-1 IFN, IFN-β, with AITD is unknown. MATERIAL AND METHODS In the study, we explored the association of serum IFN-β levels with AITD in an ethnic Chinese (i.e., Taiwanese) population. We enrolled 160 patients with Graves' disease (GD), 47 patients with Hashimoto's thyroiditis (HT), and 119 healthy controls. Serum IFN-β and B-cell activating factor (BAFF) levels were quantified in healthy controls at the baseline and in patients with AITD either prior to receiving medication or while under medication. Thyroid function and thyroid-stimulating hormone receptor antibody (TSHRAb) levels were measured at the time of serum collection. RESULTS Serum IFN-β levels were lower in the HT group than in the control group (p = 0.031). A significant inverse correlation was observed between IFN-β and TSHRAb levels in men with GD (r = -0.433, p = 0.044). Serum IFN-β levels were also negatively associated with BAFF levels in men with GD, HT, and AITD (r = -0.320, p = 0.032; r = -0.817, p = 0.047; and r = -0.354, p = 0.011, respectively), but not in women with GD, HT, or AITD. CONCLUSIONS Serum IFN-β levels were lower in HT patients. Correlations of serum IFN-β with TSHRAb and BAFF levels were found to be gender-specific. Further well-designed studies with larger sample sizes are required to confirm our findings.
Collapse
Affiliation(s)
- Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herb Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kam-Tsun Tang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Fang Fang
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Diann Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Mortazavi SE, Lugaajju A, Kaddumukasa M, Tijani MK, Kironde F, Persson KEM. Osteopontin and malaria: no direct effect on parasite growth, but correlation with P. falciparum-specific B cells and BAFF in a malaria endemic area. BMC Microbiol 2021; 21:307. [PMID: 34742229 PMCID: PMC8571855 DOI: 10.1186/s12866-021-02368-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background The dysregulation of B cell activation is prevalent during naturally acquired immunity against malaria. Osteopontin (OPN), a protein produced by various cells including B cells, is a phosphorylated glycoprotein that participates in immune regulation and has been suggested to be involved in the immune response against malaria. Here we studied the longitudinal concentrations of OPN in infants and their mothers living in Uganda, and how OPN concentrations correlated with B cell subsets specific for P. falciparum and B cell activating factor (BAFF). We also investigated the direct effect of OPN on P. falciparum in vitro. Results The OPN concentration was higher in the infants compared to the mothers, and OPN concentration in infants decreased from birth until 9 months. OPN concentration in infants during 9 months were independent of OPN concentrations in corresponding mothers. OPN concentrations in infants were inversely correlated with total atypical memory B cells (MBCs) as well as P. falciparum-specific atypical MBCs. There was a positive correlation between OPN and BAFF concentrations in both mothers and infants. When OPN was added to P. falciparum cultured in vitro, parasitemia was unaffected regardless of OPN concentration. Conclusions The concentrations of OPN in infants were higher and independent of the OPN concentrations in corresponding mothers. In vitro, OPN does not have a direct effect on P. falciparum growth. Our correlation analysis results suggest that OPN could have a role in the B cell immune response and acquisition of natural immunity against malaria. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02368-y.
Collapse
Affiliation(s)
- Susanne E Mortazavi
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Allan Lugaajju
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mark Kaddumukasa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Muyideen Kolapo Tijani
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,Cellular Parasitology Program, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Fred Kironde
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
13
|
Pavelek Z, Novotny M, Soucek O, Krejsek J, Sobisek L, Sejkorova I, Masopust J, Kuca K, Valis M, Klimova B, Stourac P. Multiple sclerosis and immune system biomarkers: Novel comparison in glatiramer acetate and interferon beta-1a-treated patient groups. Mult Scler Relat Disord 2021; 53:103082. [PMID: 34166982 DOI: 10.1016/j.msard.2021.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system (CNS). T cells and B lymphocytes are involved in the development of this disease. METHODS The following biomarkers were determined in peripheral blood in 28 patients treated with glatiramer acetate (GA) and 21 patients treated with interferon beta 1-a (IFN): IL-10, BAFF, Mx1, IgG, IgG1, IgG2, IgG3 and IgG4 (at baseline and after 6 months of treatment). All participants had confirmed MS diagnosis. OBJECTIVES The primary objective is to assess a percentual change of biomarkers after 6 months since the first-line treatment initiation with GA or IFN. The secondary objective is to explore correlations between the baseline biomarkers' values (levels). RESULTS A positive trend was observed in the increase in IL-10 concentration by 30.33 % (IFN) and by 15.65 % (GA). In the IFN group, we observed a statistically significant increase in the BAFF protein concentration by 29.9% (P < 0.001). We found that Mx1 protein levels did not change with the administration of GA, which can be explained by the different mechanisms of action of GA. The serum levels of IgG immunoglobulins and both IgG1 and IgG4 subclasses in both groups of patients were increased. Thus, our data were in accordance with the generally accepted assumption that both IFN and GA are capable of modulating the B cell system. CONCLUSIONS Our results suggest that treatment with IFN and GA has a more pronounced influence on the B cell system of MS.
Collapse
Affiliation(s)
- Zbysek Pavelek
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Michal Novotny
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soucek
- Department of Clinical Immunology and Allergology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lukas Sobisek
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ilona Sejkorova
- Department of Clinical Immunology and Allergology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Masopust
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, University of Hradec Kralove, Faculty of Science, Hradec Kralove, Czech Republic
| | - Martin Valis
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Blanka Klimova
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavel Stourac
- Department of Neurology, Masaryk University, Faculty of Medicine and University Brno, Brno, Czech Republic
| |
Collapse
|
14
|
Andreou NP, Legaki E, Dovrolis N, Boyanov N, Georgiou K, Gkouskou K, Gazouli M. B-cell activating factor (BAFF) expression is associated with Crohn's disease and can serve as a potential prognostic indicator of disease response to Infliximab treatment. Dig Liver Dis 2021; 53:574-580. [PMID: 33339749 DOI: 10.1016/j.dld.2020.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Several studies correlated elevated B-cell activating factor (BAFF) levels and its polymorphisms (SNPs) in patients with autoimmunity. Limited data existed regarding the role of BAFF in Crohn's Disease (CD) susceptibility and/or treatment response to infliximab. AIM This study aims to evaluate BAFF expression in CD patients, investigate if its expression can predict response to infliximab treatment, and examine the association of BAFF SNPs with CD susceptibility. METHODS One hundred twelve CD patients and 164 healthy controls were recruited. Serum BAFF levels were determined using an enzyme-linked immunosorbent assay. Participants were genotyped for rs9514828, rs1041569 and rs2893321 SNPs. RESULTS Serum BAFF concentration was elevated in CD patients (472.86 ± 223.60 pg/ml) compared with controls (128.16 ± 70.10 pg/ml) before treatment. Responders to IFX treatment had increased serum BAFF levels at baseline (610.03 ± 167.55 pg/ml) compared to non-responders (267.09 ± 107 pg/ml). In responders, BAFF concentration reduced after IFX administration, while increased in non-responders. The rs1041569, TA and AA genotypes frequencies, and the minor allele A were increased significantly in CD patients, indicating an association of the SNP with CD susceptibility. CONCLUSIONS Our study suggests that BAFF could be a potential biomarker of CD, while SNP rs1041569 was associated with CD susceptibility.
Collapse
Affiliation(s)
- Nikolaos-Panagiotis Andreou
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece
| | - Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece
| | - Nikolas Dovrolis
- Laboratory of Medical Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikola Boyanov
- Medical Simulation Training Center at Research Institute of Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Konstantinos Georgiou
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Gkouskou
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; Embiodiagnostics, Biology Research Company, Heraklion, Crete, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece.
| |
Collapse
|
15
|
Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis. Sci Rep 2021; 11:5244. [PMID: 33664396 PMCID: PMC7933417 DOI: 10.1038/s41598-021-84881-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Altered composition of gut bacteria and changes to the production of their bioactive metabolites, the short-chain fatty acids (SCFAs), have been implicated in the development of multiple sclerosis (MS). However, the immunomodulatory actions of SCFAs and intermediaries in their ability to influence MS pathogenesis are uncertain. In this study, levels of serum SCFAs were correlated with immune cell abundance and phenotype as well as with other relevant serum factors in blood samples taken at first presentation of Clinically Isolated Syndrome (CIS; an early form of MS) or MS and compared to healthy controls. There was a small but significant reduction in propionate levels in the serum of patients with CIS or MS compared with healthy controls. The frequencies of circulating T follicular regulatory cells and T follicular helper cells were significantly positively correlated with serum levels of propionate. Levels of butyrate associated positively with frequencies of IL-10-producing B-cells and negatively with frequencies of class-switched memory B-cells. TNF production by polyclonally-activated B-cells correlated negatively with acetate levels. Levels of serum SCFAs associated with changes in circulating immune cells and biomarkers implicated in the development of MS.
Collapse
|
16
|
Trend S, Leffler J, Teige I, Frendéus B, Kermode AG, French MA, Hart PH. FcγRIIb Expression Is Decreased on Naive and Marginal Zone-Like B Cells From Females With Multiple Sclerosis. Front Immunol 2021; 11:614492. [PMID: 33505402 PMCID: PMC7832177 DOI: 10.3389/fimmu.2020.614492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
B cells are critical to the development of multiple sclerosis (MS), but the mechanisms by which they contribute to the disease are poorly defined. We hypothesised that the expression of CD32b (FcγRIIb), a receptor for the Fc region of IgG with inhibitory activities in B cells, is lower on B cell subsets from people with clinically isolated syndrome (CIS) or MS. CD32b expression was highest on post-naive IgM+ B cell subsets in healthy controls. For females with MS or CIS, significantly lower CD32b expression was identified on IgM+ B cell subsets, including naive and IgMhi MZ-like B cells, when compared with control females. Lower CD32b expression on these B cell subsets was associated with detectable anti-Epstein Barr Virus viral capsid antigen IgM antibodies, and higher serum levels of B cell activating factor. To investigate the effects of lower CD32b expression, B cells were polyclonally activated in the presence of IgG immune complexes, with or without a CD32b blocking antibody, and the expression of TNF and IL-10 in B cell subsets was assessed. The reduction of TNF but not IL-10 expression in controls mediated by IgG immune complexes was reversed by CD32b blockade in naive and IgMhi MZ-like B cells only. However, no consequence of lower CD32b expression on these cells from females with CIS or MS was detected. Our findings highlight a potential role for naive and marginal zone-like B cells in the immunopathogenesis of MS in females, which requires further investigation.
Collapse
Affiliation(s)
- Stephanie Trend
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Jonatan Leffler
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid Teige
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Björn Frendéus
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
B Cells and Antibodies as Targets of Therapeutic Intervention in Neuromyelitis Optica Spectrum Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010037. [PMID: 33419217 PMCID: PMC7825598 DOI: 10.3390/ph14010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.
Collapse
|
18
|
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021; 20:179-199. [PMID: 33324003 PMCID: PMC7737718 DOI: 10.1038/s41573-020-00092-2] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
In the past 15 years, B cells have been rediscovered to be not merely bystanders but rather active participants in autoimmune aetiology. This has been fuelled in part by the clinical success of B cell depletion therapies (BCDTs). Originally conceived as a method of eliminating cancerous B cells, BCDTs such as those targeting CD20, CD19 and BAFF are now used to treat autoimmune diseases, including systemic lupus erythematosus and multiple sclerosis. The use of BCDTs in autoimmune disease has led to some surprises. For example, although antibody-secreting plasma cells are thought to have a negative pathogenic role in autoimmune disease, BCDT, even when it controls the disease, has limited impact on these cells and on antibody levels. In this Review, we update our understanding of B cell biology, review the results of clinical trials using BCDT in autoimmune indications, discuss hypotheses for the mechanism of action of BCDT and speculate on evolving strategies for targeting B cells beyond depletion.
Collapse
Affiliation(s)
- Dennis S. W. Lee
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| | - Olga L. Rojas
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| | - Jennifer L. Gommerman
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
19
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
20
|
Eslami M, Meinl E, Eibel H, Willen L, Donzé O, Distl O, Schneider H, Speiser DE, Tsiantoulas D, Yalkinoglu Ö, Samy E, Schneider P. BAFF 60-mer, and Differential BAFF 60-mer Dissociating Activities in Human Serum, Cord Blood and Cerebrospinal Fluid. Front Cell Dev Biol 2020; 8:577662. [PMID: 33240880 PMCID: PMC7677505 DOI: 10.3389/fcell.2020.577662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
B cell activation factor of the TNF family (BAFF/BLyS), an essential B cell survival factor of which circulating levels are elevated in several autoimmune disorders, is targeted in the clinic for the treatment of systemic lupus erythematosus (SLE). The soluble form of BAFF can exist as 3-mer, or as 60-mer that results from the ordered assembly of twenty 3-mers and that can be obtained from naturally cleaved membrane-bound BAFF or made as a recombinant protein. However, which forms of soluble BAFF exist and act in humans is unclear. In this study, BAFF 3-mer and 60-mer in biological fluids were characterized for size, activity and response to specific stimulators or inhibitors of BAFF. Human cerebrospinal fluids (CSF) from patients with multiple sclerosis and adult human sera contained exclusively BAFF 3-mer in these assays, also when BAFF concentrations were moderately SLE or highly (BAFFR-deficient individual) increased. Human sera, but not CSF, contained a high molecular weight, saturable activity that dissociated preformed recombinant BAFF 60-mer into 3-mer. This activity was lower in cord blood. Cord blood displayed BAFF levels 10-fold higher than in adults and consistently contained a fair proportion of active high molecular weight BAFF able to dissociate into 3-mer but not endowed with all properties of recombinant BAFF 60-mer. If BAFF 60-mer is produced in humans, it is dissociated, or at least attenuated in the circulation.
Collapse
Affiliation(s)
- Mahya Eslami
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holm Schneider
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | - Özkan Yalkinoglu
- Clinical Pharmacology, Quantitative Pharmacology, Translational Medicine, Merck KGaA, Darmstadt, Germany
| | - Eileen Samy
- Business of Merck KGaA, EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
21
|
Wang A, Rojas O, Lee D, Gommerman JL. Regulation of neuroinflammation by B cells and plasma cells. Immunol Rev 2020; 299:45-60. [PMID: 33107072 DOI: 10.1111/imr.12929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
The remarkable success of anti-CD20 B cell depletion therapies in reducing the burden of multiple sclerosis (MS) disease has prompted significant interest in how B cells contribute to neuroinflammation. Most focus has been on identifying pathogenic CD20+ B cells. However, an increasing number of studies have also identified regulatory functions of B lineage cells, particularly the production of IL-10, as being associated with disease remission in anti-CD20-treated MS patients. Moreover, IL-10-producing B cells have been linked to the attenuation of inflammation in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. In addition to IL-10-producing B cells, antibody-producing plasma cells (PCs) have also been implicated in suppressing neuroinflammation. This review will examine regulatory roles for B cells and PCs in MS and EAE. In addition, we speculate on the involvement of regulatory PCs and the cytokine BAFF in the context of anti-CD20 treatment. Lastly, we explore how the microbiota could influence anti-inflammatory B cell behavior. A better understanding of the contributions of different B cell subsets to the regulation of neuroinflammation, and factors that impact the development, maintenance, and migration of such subsets, will be important for rationalizing next-generation B cell-directed therapies for the treatment of MS.
Collapse
Affiliation(s)
- Angela Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
22
|
Zhong M, van der Walt A, Campagna MP, Stankovich J, Butzkueven H, Jokubaitis V. The Pharmacogenetics of Rituximab: Potential Implications for Anti-CD20 Therapies in Multiple Sclerosis. Neurotherapeutics 2020; 17:1768-1784. [PMID: 33058021 PMCID: PMC7851267 DOI: 10.1007/s13311-020-00950-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
There are a broad range of disease-modifying therapies (DMTs) available in relapsing-remitting multiple sclerosis (RRMS), but limited biomarkers exist to personalise DMT choice. All DMTs, including monoclonal antibodies such as rituximab and ocrelizumab, are effective in preventing relapses and preserving neurological function in MS. However, each agent harbours its own risk of therapeutic failure or adverse events. Pharmacogenetics, the study of the effects of genetic variation on therapeutic response or adverse events, could improve the precision of DMT selection. Pharmacogenetic studies of rituximab in MS patients are lacking, but pharmacogenetic markers in other rituximab-treated autoimmune conditions have been identified. This review will outline the wider implications of pharmacogenetics and the mechanisms of anti-CD20 agents in MS. We explore the non-MS rituximab literature to characterise pharmacogenetic variants that could be of prognostic relevance in those receiving rituximab, ocrelizumab or other monoclonal antibodies for MS.
Collapse
Affiliation(s)
- Michael Zhong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
23
|
Differential Effects of MS Therapeutics on B Cells-Implications for Their Use and Failure in AQP4-Positive NMOSD Patients. Int J Mol Sci 2020; 21:ijms21145021. [PMID: 32708663 PMCID: PMC7404039 DOI: 10.3390/ijms21145021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
B cells are considered major contributors to multiple sclerosis (MS) pathophysiology. While lately approved disease-modifying drugs like ocrelizumab deplete B cells directly, most MS medications were not primarily designed to target B cells. Here, we review the current understanding how approved MS medications affect peripheral B lymphocytes in humans. These highly contrasting effects are of substantial importance when considering these drugs as therapy for neuromyelitis optica spectrum disorders (NMOSD), a frequent differential diagnosis to MS, which is considered being a primarily B cell- and antibody-driven diseases. Data indicates that MS medications, which deplete B cells or induce an anti-inflammatory phenotype of the remaining ones, were effective and safe in aquaporin-4 antibody positive NMOSD. In contrast, drugs such as natalizumab and interferon-β, which lead to activation and accumulation of B cells in the peripheral blood, lack efficacy or even induce catastrophic disease activity in NMOSD. Hence, we conclude that the differential effect of MS drugs on B cells is one potential parameter determining the therapeutic efficacy or failure in antibody-dependent diseases like seropositive NMOSD.
Collapse
|
24
|
Irure-Ventura J, San Segundo D, Rodrigo E, Merino D, Belmar-Vega L, Ruiz San Millán JC, Valero R, Benito A, López-Hoyos M. High Pretransplant BAFF Levels and B-cell Subset Polarized towards a Memory Phenotype as Predictive Biomarkers for Antibody-Mediated Rejection. Int J Mol Sci 2020; 21:ijms21030779. [PMID: 31991734 PMCID: PMC7037386 DOI: 10.3390/ijms21030779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
Antibody-mediated rejection (AbMR) is one of the leading causes of graft loss in kidney transplantation and B cells play an important role in the development of it. A B-cell activating factor (BAFF) is a cytokine involved in B cell ontogeny. Here, we analyzed whether B cell maturation and the effect of B cell soluble factors, such as BAFF could be involved in AbMR. Serum BAFF levels and B and T cell subpopulations were analyzed 109 kidney transplant patients before transplantation and at 6 and 12 months after kidney transplantation. Pretransplant serum BAFF levels as well as memory B cell subpopulations were significantly higher in those patients who suffered clinical AbMR during the first 12 months after kidney transplantation. Similar results were observed in the prospective analysis of patients with subclinical antibody-mediated rejection detected in the surveillance biopsy performed at 12 months after kidney transplantation. A multivariate analysis confirmed the independent role of BAFF in the development of AbMR, irrespective of other classical variables. Pretransplant serum BAFF levels could be an important non-invasive biomarker for the prediction of the development of AbMR and posttransplant increased serum BAFF levels contribute to AbMR.
Collapse
Affiliation(s)
- Juan Irure-Ventura
- Immunology Department. University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain; (J.I.-V.); (D.S.S.)
| | - David San Segundo
- Immunology Department. University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain; (J.I.-V.); (D.S.S.)
| | - Emilio Rodrigo
- Nephrology Department. University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain, (L.B.-V.); (J.C.R.S.M.); (R.V.)
| | - David Merino
- Health Research Institute-IDIVAL, 39011 Santander, Spain; (D.M.); (A.B.)
| | - Lara Belmar-Vega
- Nephrology Department. University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain, (L.B.-V.); (J.C.R.S.M.); (R.V.)
| | - Juan Carlos Ruiz San Millán
- Nephrology Department. University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain, (L.B.-V.); (J.C.R.S.M.); (R.V.)
| | - Rosalía Valero
- Nephrology Department. University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain, (L.B.-V.); (J.C.R.S.M.); (R.V.)
| | - Adalberto Benito
- Health Research Institute-IDIVAL, 39011 Santander, Spain; (D.M.); (A.B.)
| | - Marcos López-Hoyos
- Immunology Department. University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain; (J.I.-V.); (D.S.S.)
- Correspondence: (M.L.-H.); Tel.: +34-942-202520 (ext. 73225)
| |
Collapse
|
25
|
Feng X, Bao R, Li L, Deisenhammer F, Arnason BGW, Reder AT. Interferon-β corrects massive gene dysregulation in multiple sclerosis: Short-term and long-term effects on immune regulation and neuroprotection. EBioMedicine 2019; 49:269-283. [PMID: 31648992 PMCID: PMC6945282 DOI: 10.1016/j.ebiom.2019.09.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background In multiple sclerosis (MS), immune up-regulation is coupled to subnormal immune response to interferon-β (IFN-β) and low serum IFN-β levels. The relationship between the defect in IFN signalling and acute and long-term effects of IFN-β on gene expression in MS is inadequately understood. Methods We profiled IFN-β-induced transcriptome shifts, using high-resolution microarrays on 227 mononuclear cell samples from IFN-β-treated MS Complete Responders (CR) stable for five years, and stable and active Partial Responders (PR), stable and active untreated MS, and healthy controls. Findings IFN-β injection induced short-term changes in 1,200 genes compared to baseline expression after 4-day IFN washout. Pre-injection after washout, and in response to IFN-β injections, PR more frequently had abnormal gene expression than CR. Surprisingly, short-term IFN-β induced little shift in Th1/Th17/Th2 gene expression, but up-regulated immune-inhibitory genes (ILT, IDO1, PD-L1). Expression of 8,800 genes was dysregulated in therapy-naïve compared to IFN-β-treated patients. These long-term changes in protein-coding and long non-coding RNAs affect immunity, synaptic transmission, and CNS cell survival, and correct the disordered therapy-naïve transcriptome to near-normal. In keeping with its impact on clinical course and brain repair in MS, long-term IFN-β treatment reversed the overexpression of proinflammatory and MMP genes, while enhancing genes involved in the oligodendroglia-protective integrated stress response, neuroprotection, and immunoregulation. In the rectified long-term signature, 277 transcripts differed between stable PR and CR patients. Interpretation IFN-β had minimal short-term effects on Th1 and Th2 pathways, but long-term it corrected gene dysregulation and induced immunoregulatory and neuroprotective genes. These data offer new biomarkers for IFN-β responsiveness. Funding Unrestricted grants from the US National MS Society, NMSS RG#4509A, and Bayer Pharmaceuticals
Collapse
Affiliation(s)
- Xuan Feng
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States
| | - Riyue Bao
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, United States; Department of Paediatrics, University of Chicago, Chicago, IL 60637, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, United States
| | - Lei Li
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States; Hospital of Harbin Medical University, Harbin 150086, China
| | | | - Barry G W Arnason
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States
| | - Anthony T Reder
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
26
|
Ntellas P, Dardiotis E, Sevdali E, Siokas V, Aloizou AM, Tsinti G, Germenis AE, Hadjigeorgiou GM, Eibel H, Speletas M. TNFRSF13C/BAFFR P21R and H159Y polymorphisms in multiple sclerosis. Mult Scler Relat Disord 2019; 37:101422. [PMID: 32172995 DOI: 10.1016/j.msard.2019.101422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023]
Abstract
Recent studies implicate B cells in multiple sclerosis (MS) pathogenesis, and consequently, several molecules participating in B cell survival and proliferation, including B-cell activating factor (BAFF), have recently been analyzed in MS patients. BAFF mediates its function through binding to three receptors; among them, its interaction with the BAFF receptor (BAFFR) is crucial in mediating its survival function. Interestingly, two common polymorphisms of the TNFRSF13C gene, encoding BAFFR, P21R (rs77874543) and H159Y (rs61756766), have been reported to affect BAFFR assembly and signaling. In order to evaluate the possible contribution of BAFFR in MS pathogenesis and/or phenotype, we analyzed both TNFRSF13C/BAFFR polymorphisms in 486 MS patients in relation to their disease severity, their disability status and the age of disease onset and duration. As control group, we used allele frequencies extracted from the Exome Aggregation Consortium (ExAC) Browser. Interestingly, we found a higher prevalence of the H159Y polymorphism in MS patients, suggesting that enhanced BAFFR-signaling might contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Panagiotis Ntellas
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eirini Sevdali
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Gerasimina Tsinti
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Anastasios E Germenis
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Hermann Eibel
- Centre for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| |
Collapse
|
27
|
Wanleenuwat P, Iwanowski P. Role of B cells and antibodies in multiple sclerosis. Mult Scler Relat Disord 2019; 36:101416. [PMID: 31577986 DOI: 10.1016/j.msard.2019.101416] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is a chronically progressive auto-immune mediated inflammatory demyelinating disease of the central nervous system (CNS) which manifests as disturbances in sensorimotor function and cognitive impairment. Although believed to be a T-cell mediated disease, the role of B cells has recently become a central issue in MS pathogenesis. Both antibody dependent and independent theories have been suggested to play a role in the initiation of inflammatory demyelination. Antibody dependent mechanisms include formation of autoantibodies targeting specific tissues in the CNS and B cell antigen presentation to T cells, leading to subsequent activation and cytokine secretion. Antibody independent mechanisms entail formation of ectopic lymphoid structures, cytokine production and secretion of neurotoxic factors. Moreover, breach of peripheral tolerance mechanisms due to disturbances in regulatory T cell functioning has also been described. B cell depletion through anti-CD20 monoclonal antibody utilization and other immunomodulatory therapies have been promising in reducing episodes of relapse and slowing progression, further strengthening the concept that B cells and antibodies are significant players in formation of brain lesions in MS.
Collapse
Affiliation(s)
- Pitchaya Wanleenuwat
- Department of Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355 Poland.
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355 Poland
| |
Collapse
|
28
|
Cheng CW, Tang KT, Fang WF, Lin JD. Synchronized expressions of serum osteopontin and B cell-activating factor in autoimmune thyroid disease. Eur J Clin Invest 2019; 49:e13122. [PMID: 31034586 DOI: 10.1111/eci.13122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Osteopontin (OPN) is recognized as a potent immunoregulator of autoimmune disease. In the study, we tried to explore the association of serum OPN levels with autoimmune thyroid disease, including Graves' disease (GD) and Hashimoto's thyroiditis (HT), in an ethnic Chinese population. MATERIALS AND METHODS We enrolled 131 patients with GD, 33 patients with HT and 123 healthy controls. Serum OPN, B cell-activating factor (BAFF) and interferon (IFN)-α levels were quantified. Graves' disease patients with high thyroid function at the time of sample collection were defined as having active GD, while the other patients were defined as having inactive GD. RESULTS Serum OPN levels were higher in active GD than in inactive GD and the control groups (P = 0.001 and P = 0.018, respectively). In GD, significant associations of OPN levels with thyroid-stimulating hormone receptor antibody (TSHRAb) levels were observed in women (r = -0.344, P = 0.002, and r = 0.440, P = 0.004, respectively) but not in men. Osteopontin levels were associated with BAFF levels only in women with GD or HT (r = 0.506, P < 0.001 and r = 0.430, P = 0.025, respectively), but not in men with GD or HT. CONCLUSIONS Serum OPN levels were upregulated in active GD, and serum OPN levels were associated with thyroid function and TSHRAb levels in GD. Additionally, OPN levels were correlated with BAFF levels in GD and HT. The associations of OPN levels with clinical phenotypes of GD and BAFF levels showed a dimorphic pattern.
Collapse
Affiliation(s)
- Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Traditional Herb Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kam-Tsun Tang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Fang Fang
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jiunn-Diann Lin
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
29
|
D'Amico E, Zanghì A, Gastaldi M, Patti F, Zappia M, Franciotta D. Placing CD20-targeted B cell depletion in multiple sclerosis therapeutic scenario: Present and future perspectives. Autoimmun Rev 2019; 18:665-672. [PMID: 31059839 DOI: 10.1016/j.autrev.2019.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is an acquired demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T cells. Increasing evidence, however, suggests the fundamental role of B cells in the pathogenesis and development of the disease. Recently, anti-CD20 B cell-based therapies have demonstrated impressive and somewhat surprising results in MS, showing profound anti-inflammatory effects with a favorable risk-benefit ratio. Moreover, for the first time in the MS therapeutic scenario, the anti-CD20 monoclonal antibody ocrelizumab has been granted for the treatment of the primary progressive form of the disease. In this review, we provide a brief overview about anti-CD20 B cell-based therapies in MS, in the perspective of their influence on the future management of the disease, and of their possible positioning in a new wider therapeutic scenario.
Collapse
Affiliation(s)
| | - Aurora Zanghì
- Department G.F.Ingrassia, University of Catania, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Mario Zappia
- Department G.F.Ingrassia, University of Catania, Italy
| | - Diego Franciotta
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
30
|
Abstract
B cells play a vital function in multiple sclerosis (MS) pathogenesis through an array of effector functions. All currently approved MS disease-modifying therapies alter the frequency, phenotype, or homing of B cells in one way or another. The importance of this mechanism of action has been reinforced with the successful development and clinical testing of B-cell-depleting monoclonal antibodies that target the CD20 surface antigen. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, was approved by the Food and Drug Administration (FDA) in March 2017 after pivotal trials showed dramatic reductions in inflammatory disease activity in relapsing MS as well as lessening of disability progression in primary progressive MS. These and other clinical studies place B cells at the center of the inflammatory cascade in MS and provide a launching point for development of therapies that target selective pathogenic B-cell populations.
Collapse
Affiliation(s)
- Joseph J Sabatino
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Scott S Zamvil
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Stephen L Hauser
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| |
Collapse
|
31
|
Sursiakova NV, Baidina TV, Kuklina EM, Trushnikova TN, Ozhgibesova TV. Factors regulating the activity of b-lymphocytes, as potential biomarkers of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:24-27. [DOI: 10.17116/jnevro20191192224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Can We Design a Nogo Receptor-Dependent Cellular Therapy to Target MS? Cells 2018; 8:cells8010001. [PMID: 30577457 PMCID: PMC6357095 DOI: 10.3390/cells8010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
The current landscape of therapeutics designed to treat multiple sclerosis (MS) and its pathological sequelae is saturated with drugs that modify disease course and limit relapse rates. While these small molecules and biologicals are producing profound benefits to patients with reductions in annualized relapse rates, the repair or reversal of demyelinated lesions with or without axonal damage, remains the principle unmet need for progressive forms of the disease. Targeting the extracellular pathological milieu and the signaling mechanisms that drive neurodegeneration are potential means to achieve neuroprotection and/or repair in the central nervous system of progressive MS patients. The Nogo-A receptor-dependent signaling mechanism has raised considerable interest in neurological disease paradigms since it can promulgate axonal transport deficits, further demyelination, and extant axonal dystrophy, thereby limiting remyelination. If specific therapeutic regimes could be devised to directly clear the Nogo-A-enriched myelin debris in an expedited manner, it may provide the necessary CNS environment for neurorepair to become a clinical reality. The current review outlines novel means to achieve neurorepair with biologicals that may be directed to sites of active demyelination.
Collapse
|
33
|
Trentin F, Gatto M, Zen M, Larosa M, Maddalena L, Nalotto L, Saccon F, Zanatta E, Iaccarino L, Doria A. Effectiveness, Tolerability, and Safety of Belimumab in Patients with Refractory SLE: a Review of Observational Clinical-Practice-Based Studies. Clin Rev Allergy Immunol 2018; 54:331-343. [PMID: 29512034 PMCID: PMC6132773 DOI: 10.1007/s12016-018-8675-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date, belimumab is the only biological drug approved for the treatment of patients with active refractory SLE. We compared and critically analyzed the results of 11 observational clinical-practice-based studies, conducted in SLE referral centers. Despite the differences in endpoints and follow-up duration, all studies remarked that belimumab provides additional benefits when used as an add-on to existing treatment, allowing a higher rate of patients to reach remission and to taper or discontinue corticosteroids. In the OBSErve studies, 2–9.6% of patients discontinued corticosteroids and 72–88.4% achieved a ≥ 20% improvement by physician’s judgment at 6 months. In Hui-Yuen’s study, 51% of patients attained response by simplified SRI at month 6. In Sthoeger’s study, 72.3% of patients discontinued corticosteroids and 69.4% achieved clinical remission by PGA after a median follow-up of 2.3 years. In the multicentric Italian study, 77 and 68.7% of patients reached SRI-4 response at months 6 and 12, respectively. In all the studies, disease activity indices decreased over time. Retention rates at 6, 9, and 12 months were 82–94.1, 61.2–83.3, and 56.7–79.2%, respectively. The main limitations of these studies include the lack of a control group, the short period of observation (6–24 months) and the lack of precise restrictions regarding concomitant medication management. This notwithstanding, these experiences provide a more realistic picture of real-life effectiveness of the drug compared with the randomized controlled clinical trials, where stringent inclusion/exclusion criteria and changes in background therapy could limit the inference of data to the routine clinical care.
Collapse
Affiliation(s)
- Francesca Trentin
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Mariele Gatto
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Margherita Zen
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | | | - Larosa Maddalena
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Linda Nalotto
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Francesca Saccon
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Elisabetta Zanatta
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Luca Iaccarino
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy.
| |
Collapse
|
34
|
Gajofatto A, Turatti M. Investigational immunosuppressants in early-stage clinical trials for the treatment of multiple sclerosis. Expert Opin Investig Drugs 2018; 27:273-286. [DOI: 10.1080/13543784.2018.1442437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alberto Gajofatto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Marco Turatti
- Neurology B Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
35
|
Miyazaki Y, Niino M, Takahashi E, Suzuki M, Mizuno M, Hisahara S, Fukazawa T, Amino I, Nakano F, Nakamura M, Akimoto S, Minami N, Fujiki N, Doi S, Shimohama S, Terayama Y, Kikuchi S. Fingolimod induces BAFF and expands circulating transitional B cells without activating memory B cells and plasma cells in multiple sclerosis. Clin Immunol 2018; 187:95-101. [DOI: 10.1016/j.clim.2017.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
|
36
|
Memory B Cells are Major Targets for Effective Immunotherapy in Relapsing Multiple Sclerosis. EBioMedicine 2017; 16:41-50. [PMID: 28161400 PMCID: PMC5474520 DOI: 10.1016/j.ebiom.2017.01.042] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/20/2017] [Accepted: 01/29/2017] [Indexed: 01/01/2023] Open
Abstract
Although multiple sclerosis (MS) is considered to be a CD4, Th17-mediated autoimmune disease, supportive evidence is perhaps circumstantial, often based on animal studies, and is questioned by the perceived failure of CD4-depleting antibodies to control relapsing MS. Therefore, it was interestingly to find that current MS-treatments, believed to act via T cell inhibition, including: beta-interferons, glatiramer acetate, cytostatic agents, dimethyl fumarate, fingolimod, cladribine, daclizumab, rituximab/ocrelizumab physically, or functionally in the case of natalizumab, also depleted CD19+, CD27+ memory B cells. This depletion was substantial and long-term following CD52 and CD20-depletion, and both also induced long-term inhibition of MS with few treatment cycles, indicating induction-therapy activity. Importantly, memory B cells were augmented by B cell activating factor (atacicept) and tumor necrosis factor (infliximab) blockade that are known to worsen MS. This creates a unifying concept centered on memory B cells that is consistent with therapeutic, histopathological and etiological aspects of MS.
Collapse
|
37
|
El Ayoubi NK, Khoury SJ. Blood Biomarkers as Outcome Measures in Inflammatory Neurologic Diseases. Neurotherapeutics 2017; 14:135-147. [PMID: 27757816 PMCID: PMC5233628 DOI: 10.1007/s13311-016-0486-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system. Only a few biomarkers are available in MS clinical practice, such as cerebrospinal fluid oligoclonal bands and immunoglobulin index, serum anti-aquaporin 4 antibodies, and serum anti-John Cunningham virus antibodies. Thus, there is a significant unmet need for biomarkers to assess prognosis, response to therapy, or potential treatment complications. Here we describe emerging biomarkers that are in development, focusing on those from peripheral blood. There are several limitations in the process of discovery and validation of a good biomarker, such as the pathophysiological complexity of MS and the technical difficulties in globally standardizing methods for sampling, processing, and conserving biological specimens. In spite of these limitations, ongoing international collaborations allow the exploration of many interesting molecules and markers to validate diagnostic, prognostic, and therapeutic-response biomarkers.
Collapse
Affiliation(s)
- Nabil K El Ayoubi
- American University of Beirut and Medical Center, Nehme and Therese Tohme Multiple Sclerosis Center, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Samia J Khoury
- American University of Beirut and Medical Center, Nehme and Therese Tohme Multiple Sclerosis Center, Riad El Solh, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
38
|
Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis. Mol Neurobiol 2016; 54:7520-7533. [DOI: 10.1007/s12035-016-0257-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
|
39
|
Serum BAFF levels, Methypredsinolone therapy, Epstein-Barr Virus and Mycobacterium avium subsp. paratuberculosis infection in Multiple Sclerosis patients. Sci Rep 2016; 6:29268. [PMID: 27383531 PMCID: PMC4935889 DOI: 10.1038/srep29268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/15/2016] [Indexed: 01/20/2023] Open
Abstract
Elevated B lymphocyte activating factor BAFF levels have been reported in multiple sclerosis (MS) patients; moreover, disease-modifying treatments (DMT) have shown to influence blood BAFF levels in MS patients, although the significance of these changes is still controversial. In addition, BAFF levels were reported increased during infectious diseases. In our study, we wanted to investigate on the serum BAFF concentrations correlated to the antibody response against Mycobacterium avium subspecies paratuberculosis (MAP), Epstein-Barr virus (EBV) and their human homologous epitopes in MS and in patients affected with other neurological diseases (OND), divided in Inflammatory Neurological Diseases (IND), Non Inflammatory Neurological Diseases (NIND) and Undetermined Neurological Diseases (UND), in comparison to healthy controls (HCs). Our results confirmed a statistically significant high BAFF levels in MS and IND patients in comparison to HCs but not NIND and UND patients. Interestingly, BAFF levels were inversely proportional to antibodies level against EBV and MAP peptides and the BAFF levels significantly decreased in MS patients after methylprednisolone therapy. These results implicate that lower circulating BAFF concentrations were present in MS patients with humoral response against MAP and EBV. In conclusion MS patients with no IgGs against EBV and MAP may support the hypothesis that elevated blood BAFF levels could be associated with a more stable disease.
Collapse
|
40
|
Mameli G, Cossu D, Caggiu E, Arru G, Niegowska M, Cocco E, Frau J, Marrosu MG, Sechi LA. Soluble BAFF Level Is Not Correlated to Mycobacterium avium Subspecies Paratuberculosis Antibodies and Increases After Interferon-β Therapy in Multiple Sclerosis Patients. J Mol Neurosci 2016; 60:91-3. [PMID: 27370541 DOI: 10.1007/s12031-016-0787-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022]
Abstract
B cells are being recognized as one of the major players in the pathogenesis of multiple sclerosis (MS). The B cell activating factor (BAFF) system plays an essential role in B cell homeostasis and function in the periphery. Mycobacterium avium subspecies paratuberculosis (MAP) has been previously associated to MS in Sardinia. Antibodies against a MAP surface protein, MAP_2694, have been found significantly associated to MS patients, and this response was modified by interferon-β therapy. Increased BAFF levels following IFN-β therapy have been also described in MS patients. In this study, we evaluated whether soluble BAFF levels are comparable in men and women affected by MS and performed a correlation of the reported BAFF increase in MS patients under IFN-β therapy with changes of humoral response against MAP_2694. For these reasons, we investigated 44 MS patients before and after IFN-β therapy. A significant difference of BAFF levels was found between men and women with MS; moreover, we confirmed that IFN-β therapy strongly induces BAFF serum levels, but this was not related to the modification of immunological response against MAP_2694. In conclusion, our study highlights that IFN-β therapy induces the potent B cell survival factor BAFF without alterations of the humoral immune response against MAP.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy
| | - Elisa Caggiu
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy
| | - Giannina Arru
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy
| | - Magdalena Niegowska
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy
| | - Eleonora Cocco
- Centro Sclerosi Multipla, Dipartimento di Sanità Pubblica Medicina Clinica e Molecolare, Università di Cagliari, Via Is Guadazzonis 2, 09126, Cagliari, Italy
| | - Jessica Frau
- Centro Sclerosi Multipla, Dipartimento di Sanità Pubblica Medicina Clinica e Molecolare, Università di Cagliari, Via Is Guadazzonis 2, 09126, Cagliari, Italy
| | - Maria Giovanna Marrosu
- Centro Sclerosi Multipla, Dipartimento di Sanità Pubblica Medicina Clinica e Molecolare, Università di Cagliari, Via Is Guadazzonis 2, 09126, Cagliari, Italy
| | - Leonardo A Sechi
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy.
| |
Collapse
|
41
|
|
42
|
Lin JD, Yang SF, Wang YH, Fang WF, Lin YC, Lin YF, Tang KT, Wu MY, Cheng CW. Analysis of Associations of Human BAFF Gene Polymorphisms with Autoimmune Thyroid Diseases. PLoS One 2016; 11:e0154436. [PMID: 27136204 PMCID: PMC4852922 DOI: 10.1371/journal.pone.0154436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/13/2016] [Indexed: 11/19/2022] Open
Abstract
Background The B-lymphocyte-activating factor (BAFF) is associated with B-cell functions, and gene polymorphisms of the BAFF have been linked to autoimmune diseases (AIDs). In this study, we explored possible associations of two BAFF single-nucleotide polymorphisms (SNPs), rs1041569 and rs2893321, with autoimmune thyroid diseases (AITDs) in an ethnic Chinese population. Material and Methods In total, 319 Graves’ disease (GD), 83 Hashimoto’s thyroiditis (HT) patients, and 369 healthy controls were enrolled. Polymerase chain reaction-restriction fragment length polymorphism and direct sequencing were used to genotype rs2893321 and rs1041569. Results There was a significant difference in frequencies of the G allele and AG+GG genotype of rs2893321 between the GD and control groups (p = 0.013, odds ratio (OR) = 0.76, and p = 0.017, OR = 0.68, respectively) and between the AITD and control groups (p = 0.009, OR = 0.76, and, p = 0.014, OR = 0.69, respectively). The AA genotype of rs2893321 was associated with low titers of the thyroid-stimulating hormone receptor antibody (TSHRAb) (p = 0.015) in males but not in females. The AA genotype of rs2893321 was associated with the presence of two different types of thyroid autoantibody (TAb) (TSHRAb and Hashimoto’s autoantibody (anti-thyroglobulin or anti-microsomal antibody)) in females and with that of one type in males. Conclusions rs2893321 may be a susceptible genetic variant for the development of GD and AITDs. Associations of rs2893321 with susceptibility to GD and AITDs and the correlation between rs2893321 and TAb exhibit a dimorphic pattern. Additional studies with larger sample sizes are required to confirm our findings.
Collapse
Affiliation(s)
- Jiunn-Diann Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Fang Fang
- Department of Family Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kam-Tsun Tang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Veterans General Hospital, Taipei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- * E-mail: (CWC); (MYW)
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (CWC); (MYW)
| |
Collapse
|