1
|
Plokhovska S, García-Villaraco A, Lucas JA, Gutierrez-Mañero FJ, Ramos-Solano B. Silver nanoparticles coated with metabolites of Pseudomonas sp. N5.12 inhibit bacterial pathogens and fungal phytopathogens. Sci Rep 2025; 15:1522. [PMID: 39789101 PMCID: PMC11717911 DOI: 10.1038/s41598-024-84503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag+, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp. N5.12. Optimization of physicochemical parameters (temperature, pH, and AgNO3 concentration) for the synthesis of AgNP was carried out. In each condition, success on AgNP synthesis was determined by UV-Visible spectra showing peaks between 400 and 450 nm. TEM analysis showed that the AgNP are spherical in shape with an average particle size ranging from 13.75 ± 0.47 nm to 20.71 ± 0.43 nm, covered with a unique organic matter corona of bacterial metabolites. The best parameters for AgNP biosynthesis by Pseudomonas sp. N5.12 occurred with 24 h bacterial metabolites, temperature of 37 °C, pH 9 and a ratio of 2:4 (v: v; bacterial supernatant: 1 mM AgNO3). The biosynthesized AgNP inhibited growth of human pathogenic bacteria better than equivalent AgNO3 concentration. Growth of bacterial and fungal phytopathogens was also inhibited with striking effects on Alternaria sp. (74% inhibition) and Stemphylium sp. (52% inhibition), appearing as promising tools to biocontrol fungal diseases in agriculture.
Collapse
Affiliation(s)
- Svitlana Plokhovska
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain.
- Institute of Food Biotechnology and Genomics, NAS of Ukraine, Baidy-Vyshnevetskoho Str. 2а, Kyiv, Ukraine.
| | - Ana García-Villaraco
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain
| | - Jose Antonio Lucas
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain
| | | | - Beatriz Ramos-Solano
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
2
|
Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2024; 40:3113-3147. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including Escherichia coli, Staphylococcus aureus, Citrobacter koseri, Bacillus cereus, Salmonella typhi, Klebsipneumoniaoniae, Vibrio parahaemolyticus, Pseudomonas Aeruginosa, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
3
|
Girma A, Mebratie G, Mekuye B, Abera B, Bekele T, Alamnie G. Antibacterial Capabilities of Metallic Nanoparticles and Influencing Factors. NANO SELECT 2024; 5. [DOI: 10.1002/nano.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
ABSTRACTThe increase of antibiotic resistance in bacteria has become a major concern for successful diagnosis and treatment of infectious diseases. Over the past few decades, significant progress has been achieved on the development of nanotechnology‐based medicines for combating multidrug resistance in microorganisms. Among these, metallic nanoparticles (MNPs) hold great promise in addressing this challenge due to their broad‐spectrum and robust antimicrobial properties. This review illustrates the antibacterial activities of MNPs and further elucidates how different factors including synthesis method, size, shape, surface charge, pH, dose, type of capping or stabilizing agents of MNPs, and Gram‐type of the bacteria, impact their antibacterial activities, which are expected to promote the future development of more potent MNP‐based antibacterial agents.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Gedefaw Mebratie
- Department of Physics College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
- Department of Physics College of Science Bahir Dar University Bahir Dar Ethiopia
| | - Bawoke Mekuye
- Department of Physics College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Birhanu Abera
- Department of Physics College of Natural and Computational Science Injibara University Injibara Ethiopia
| | - Tigabu Bekele
- Department of Chemistry College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Getachew Alamnie
- Department of Biology College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| |
Collapse
|
4
|
Solanki R, Makwana N, Kumar R, Joshi M, Patel A, Bhatia D, Sahoo DK. Nanomedicines as a cutting-edge solution to combat antimicrobial resistance. RSC Adv 2024; 14:33568-33586. [PMID: 39439838 PMCID: PMC11495475 DOI: 10.1039/d4ra06117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a critical threat to global public health, necessitating the development of novel strategies. AMR occurs when bacteria, viruses, fungi, and parasites evolve to resist antimicrobial drugs, making infections difficult to treat and increasing the risk of disease spread, severe illness, and death. Over 70% of infection-causing microorganisms are estimated to be resistant to one or several antimicrobial drugs. AMR mechanisms include efflux pumps, target modifications (e.g., mutations in penicillin-binding proteins (PBPs), ribosomal subunits, or DNA gyrase), drug hydrolysis by enzymes (e.g., β-lactamase), and membrane alterations that reduce the antibiotic's binding affinity and entry. Microbes also resist antimicrobials through peptidoglycan precursor modification, ribosomal subunit methylation, and alterations in metabolic enzymes. Rapid development of new strategies is essential to curb the spread of AMR and microbial infections. Nanomedicines, with their small size and unique physicochemical properties, offer a promising solution by overcoming drug resistance mechanisms such as reduced drug uptake, increased efflux, biofilm formation, and intracellular bacterial persistence. They enhance the therapeutic efficacy of antimicrobial agents, reduce toxicity, and tackle microbial resistance effectively. Various nanomaterials, including polymeric-based, lipid-based, metal nanoparticles, carbohydrate-derived, nucleic acid-based, and hydrogels, provide efficient solutions for AMR. This review addresses the epidemiology of microbial resistance, outlines key resistance mechanisms, and explores how nanomedicines overcome these barriers. In conclusion, nanomaterials represent a versatile and powerful approach to combating the current antimicrobial crisis.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Nilesh Makwana
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Rahul Kumar
- Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC) Gandhinagar Gujarat India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University Patan 384265 Gujarat India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University Ames IA USA
| |
Collapse
|
5
|
Pineda MEB, Sánchez DFV, Caycedo PAC, -Rozo JC. Nanocomposites: silver nanoparticles and bacteriocins obtained from lactic acid bacteria against multidrug-resistant Escherichia coli and Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:341. [PMID: 39358621 DOI: 10.1007/s11274-024-04151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Drug-resistant bacteria such as Escherichia coli and Staphylococcus aureus represent a global health problem that requires priority attention. Due to the current situation, there is an urgent need to develop new, more effective and safe antimicrobial agents. Biotechnological approaches can provide a possible alternative control through the production of new generation antimicrobial agents, such as silver nanoparticles (AgNPs) and bacteriocins. AgNPs stand out for their antimicrobial potential by employing several mechanisms of action that can act simultaneously on the target cell such as the production of reactive oxygen species and cell wall rupture. On the other hand, bacteriocins are natural peptides synthesized ribosomally that have antimicrobial activity and are produced, among others, by lactic acid bacteria (LAB), whose main mechanism of action is to produce pores at the level of the cell membrane of bacterial cells. However, these agents have disadvantages. Nanoparticles also have limitations such as the tendency to form aggregates, which decreases their antibacterial activity and possible cytotoxic effects, and bacteriocins have a narrow spectrum of action, require high doses to be effective, and can be degraded by proteases. Given these limitations, nanoconjugates of these two agents have been developed that can act synergistically in the control of pathogenic bacteria resistant to antibiotics. This review focuses on knowing relevant aspects of the antibiotic resistance of E. coli and S. aureus, the characteristics of these new generation antibacterial agents, and their effect alone or forming nanoconjugates that are more effective against the multiresistant mentioned bacteria.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Grupo de Investigación Gestión Ambiental-Universidad de Boyacá, Grupo de Investigación Biología Ambiental, Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Macromoléculas. Universidad Nacional de Colombia, Tunja, Colombia
| | | | | | | |
Collapse
|
6
|
Ghaffar N, Javad S, Shah AA, Ilyas S, Hashem A, Avila-Quezada GD, Abd_Allah EF, Tariq A. Restoration of Antibacterial Activity of Inactive Antibiotics via Combined Treatment with AgNPs. ACS OMEGA 2024; 9:13621-13635. [PMID: 38559985 PMCID: PMC10976371 DOI: 10.1021/acsomega.3c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Antimicrobial resistance poses a huge threat to human health around the world and calls for novel treatments. Combined formulations of NPs and antibiotics have emerged as a viable nanoplatform for combating bacterial resistance. The present research work was performed to investigate the effect of combined formulations of AgNPs with streptomycin, cefaclor, ciprofloxacin, and trimethoprim against multidrug-resistant (MDR) isolates of Staphylococcus aureus and Klebsiella pneumoniae. AgNPs have been synthesized by using the Nigella sativa seed extract, and their characteristics were analyzed. AgNPs depicted concentration-dependent antibacterial effects, as the highest concentration of AgNPs showed the strongest antibacterial activity. Interestingly, AgNPs in conjugation with antibiotics showed an enhanced antibacterial potential against both S. aureus and K. pneumoniae, which suggested synergism between the AgNPs and antibiotics. Against S. aureus, streptomycin and trimethoprim in conjugation with AgNPs presented a synergistic effect, while cefaclor and ciprofloxacin in combination with AgNPs showed an additive effect. However, all of the tested antibiotics depicted a synergistic effect against K. pneumoniae. The lowest value of MIC (0.78 μg/mL) was shown by AgNPs-Stp against S. aureus, whereas AgNPs-Tmp showed the lowest value of MIC (1.56 μg/mL) against K. pneumoniae. The most important point of the present study is that both organisms (S. aureus and K. pneumoniae) showed resistance to antibiotics but turned out to be highly susceptible when the same antibiotic was used in combination with AgNPs. These findings highlight the potential of nanoconjugates (the AgNPs-antibiotic complex) to mitigate the present-day crisis of antibiotic resistance and to combat antimicrobial infections efficiently.
Collapse
Affiliation(s)
- Nadia Ghaffar
- Dept.
of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Sumera Javad
- Dept.
of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Anis Ali Shah
- Dept.
of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Saiqa Ilyas
- Dept.
of Biotechnology, Lahore College for Women
University, Lahore 44444, Pakistan
| | - Abeer Hashem
- Botany
and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production
Department, College of Food and Agricultural Sciences, King Saud University,
P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Amina Tariq
- Dept.
of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Ahmad I, Khan MN, Hayat K, Ahmad T, Shams DF, Khan W, Tirth V, Rehman G, Muhammad W, Elhadi M, Alotaibi A, Shah SK. Investigating the Antibacterial and Anti-inflammatory Potential of Polyol-Synthesized Silver Nanoparticles. ACS OMEGA 2024; 9:13208-13216. [PMID: 38524435 PMCID: PMC10956083 DOI: 10.1021/acsomega.3c09851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
Silver nanoparticles (Ag-NPs) were synthesized by using the polyol method. The structural and morphological characteristics of Ag-NPs were studied by using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The XRD analysis revealed the formation of single-phase polycrystalline Ag-NPs with an average crystallite size and lattice constant of ∼23 nm and 4.07 Å, respectively, while the FE-SEM shows the formation of a uniform and spherical morphology. Energy-dispersive X-ray spectroscopy confirmed the formation of single-phase Ag-NPs, and no extra elements were detected. A strong absorption peak at ∼427 nm was observed in the UV-vis spectrum, which reflects the surface plasmon resonance (SPR) behavior characteristic of Ag-NPs with a spherical morphology. Fourier-transform infrared (FTIR) spectra also supported the XRD and EDX results with regard to the purity of the prepared Ag-NPs. Anti-inflammatory activity was tested using HRBCs membrane stabilization and heat-induced hemolysis assays. The antibacterial activity of Ag-NPs was evaluated against four different types of pathogenic bacteria by using the disc diffusion method (DDM). The Gram-negative bacterial strains used in this study are Escherichia coli (E. coli), Klebsiella, Shigella, and Salmonella. The analysis suggested that the antibacterial activities of Ag-NPs have an influential role in inhibiting the growth of the tested Gram-negative bacteria, and thus Ag-NPs can find a potential application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Ibrar Ahmad
- Department
of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome 00185, Italy
| | - Muhammad Nadeem Khan
- Department
of Biotechnology, Abdul Wali Khan University
Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Khizar Hayat
- Department
of Physics, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Tanveer Ahmad
- Department
of Physics, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Dilawar Farhan Shams
- Department
of Environmental Sciences, Abdul Wali Khan
University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Waliullah Khan
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Vineet Tirth
- Mechanical
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Asir, Kingdom of Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, P.O. Box 9004, Abha 61413, Asir, Kingdom of Saudi Arabia
| | - Gauhar Rehman
- Department
of Zoology, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Wazir Muhammad
- Department
of Physics, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Muawya Elhadi
- Department
of Physics, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Afraa Alotaibi
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Said Karim Shah
- Department
of Physics, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Ankudze B, Neglo D, Nsiah F. Green synthesis of silver nanoparticles from discarded shells of velvet tamarind (Dialium cochinchinense) and their antimicrobial synergistic potentials and biofilm inhibition properties. Biometals 2024; 37:143-156. [PMID: 37695459 DOI: 10.1007/s10534-023-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
In the field of nanomedicine, biogenic metal nanoparticles are commonly synthesized using edible plant products as bio-reducing or stabilizing agents. In this study, discarded shell of velvet tamarind fruit is explored as a potent reducing agent for biogenic synthesis of silver nanoparticles (VeV-AgNPs). Silver nanoparticles were formed in minutes under sunlight exposure, which was considerably fast compared to under ambient conditions. The optical, structural and morphological studies revealed that the nanoparticle colloidal solution consisted of particles with quasi-spherical and rodlike morphologies. To investigate antimicrobial properties, eight microorganisms were exposed to the VeV-AgNPs. The results indicated that VeV-AgNPs had enhanced antimicrobial activity, with a recorded minimum inhibitory concentration (MIC) of 3.9 µg/mL against E. coli. Further studies were conducted to examine the biofilm inhibition properties and synergistic effect of the VeV-AgNPs. The findings showed a biofilm inhibition potential of around 98% against E. coli, and the particles were also found to increase the efficacy of standard antimicrobial agents. The combinatory effect with standard antifungal and antibacterial agents ranged from synergistic to antagonistic effects against the tested microorganisms. These results suggest that silver nanoparticles produced from discarded shells of velvet tamarind are potent and could be used as a potential drug candidate to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bright Ankudze
- Department of Chemistry Education, University of Education, P. O. Box 25, Winneba, Ghana.
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Francis Nsiah
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
9
|
Girma A, Abera B, Mekuye B, Mebratie G. Antibacterial Activity and Mechanisms of Action of Inorganic Nanoparticles against Foodborne Bacterial Pathogens: A Systematic Review. IET Nanobiotechnol 2024; 2024:5417924. [PMID: 38863967 PMCID: PMC11095078 DOI: 10.1049/2024/5417924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 06/13/2024] Open
Abstract
Foodborne disease outbreaks due to bacterial pathogens and their toxins have become a serious concern for global public health and security. Finding novel antibacterial agents with unique mechanisms of action against the current spoilage and foodborne bacterial pathogens is a central strategy to overcome antibiotic resistance. This study examined the antibacterial activities and mechanisms of action of inorganic nanoparticles (NPs) against foodborne bacterial pathogens. The articles written in English were recovered from registers and databases (PubMed, ScienceDirect, Web of Science, Google Scholar, and Directory of Open Access Journals) and other sources (websites, organizations, and citation searching). "Nanoparticles," "Inorganic Nanoparticles," "Metal Nanoparticles," "Metal-Oxide Nanoparticles," "Antimicrobial Activity," "Antibacterial Activity," "Foodborne Bacterial Pathogens," "Mechanisms of Action," and "Foodborne Diseases" were the search terms used to retrieve the articles. The PRISMA-2020 checklist was applied for the article search strategy, article selection, data extraction, and result reporting for the review process. A total of 27 original research articles were included from a total of 3,575 articles obtained from the different search strategies. All studies demonstrated the antibacterial effectiveness of inorganic NPs and highlighted their different mechanisms of action against foodborne bacterial pathogens. In the present study, small-sized, spherical-shaped, engineered, capped, low-dissolution with water, high-concentration NPs, and in Gram-negative bacterial types had high antibacterial activity as compared to their counterparts. Cell wall interaction and membrane penetration, reactive oxygen species production, DNA damage, and protein synthesis inhibition were some of the generalized mechanisms recognized in the current study. Therefore, this study recommends the proper use of nontoxic inorganic nanoparticle products for food processing industries to ensure the quality and safety of food while minimizing antibiotic resistance among foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Birhanu Abera
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Bawoke Mekuye
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Gedefaw Mebratie
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| |
Collapse
|
10
|
Sarangi A, Das BS, Panigrahi LL, Arakha M, Bhattacharya D. Formulation of Garlic Essential Oil-assisted Silver Nanoparticles and Mechanistic Evaluation of their Antimicrobial Activity against a Spectrum of Pathogenic Microorganisms. Curr Top Med Chem 2024; 24:2000-2012. [PMID: 39092647 PMCID: PMC11497146 DOI: 10.2174/0115680266322180240712055727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The synthesis of nanoparticles using the principle of green chemistry has achieved huge potential in nanomedicine. Here, we report the synthesis of silver nanoparticles (Ag- NPs) employing garlic essential oil (GEO) due to wide applications of GEO in the biomedical and pharmaceutical industry. OBJECTIVE This study aimed to synthesise garlic essential oil-assisted silver nanoparticles and present their antimicrobial and antibiofilm activities with mechanistic assessment. METHOD Initially, the formulation of AgNPs was confirmed using different optical techniques, such as XRD, FT-IR, DLS, zeta potential, SEM, and EDX analysis, which confirmed the formulation of well-dispersed, stable, and spherical AgNPs. The antimicrobial and antibiofilm activity of GEO-assisted AgNPs was evaluated against a spectrum of pathogenic microorganisms, such as Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and P. aeruginosa) bacteria. RESULTS The AgNPs exhibited remarkable antimicrobial and anti-biofilm activity against all tested strains. The mechanism behind the antimicrobial activity of AgNPs was explored by estimating the amount of reactive oxygen species (ROS) generated due to the interaction of AgNP with bacterial cells and observing the morphological changes of bacteria upon AgNP interaction. CONCLUSION The findings of this study concluded that ROS generation due to the interaction of AgNPs with bacterial cells put stress on bacterial membranes, altering the morphology of bacteria, exhibiting remarkable antimicrobial activity, and preventing biofilm formation.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Bhabani Shankar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Debapriya Bhattacharya
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
11
|
Kaur M, Virender, Khatkar S, Singh B, Kumar A, Dubey SK. Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018-2023). J Fluoresc 2023:10.1007/s10895-023-03494-8. [PMID: 38038876 DOI: 10.1007/s10895-023-03494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
The chemosensors act as powerful tool in the detection of metal ions due to their simplicity, high sensitivity, low cost, low detection limit, rapid photophysical response, and application to the environmental and medical fields. This review article presents an overview for the chemosensing of Ag+ ions based on Calix, MOF, Nanoparticle, COF, Calix, Electrochemical chemosensor published from 2018 to 2023. Here, we have reviewed the sensing of Ag+ ions and summarised the binding response, mechanism, LOD, colorimetric response, adsorption capacity, technique used. The purpose of this review article to provide a detailed summary of the performance of different host chemosensors that are helpful for providing future direction to researchers on Ag+ ion detection and provides path to design effective chemsosensor (simple to synthesize, cost effective, high sensitivity, with more practical application). While studying the related article literature, we came across some challenges and that has been discussed lastly and provided solutions for them.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Sunita Khatkar
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), Dublin, D24 FKT9, Ireland
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Santosh Kumar Dubey
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| |
Collapse
|
12
|
Aina ST, Kyomuhimbo HD, Du Plessis B, Mjimba V, Haneklaus N, Brink HG. Cytotoxic-Ag-Modified Eggshell Membrane Nanocomposites as Bactericides in Concrete Mortar. Int J Mol Sci 2023; 24:15463. [PMID: 37895142 PMCID: PMC10607369 DOI: 10.3390/ijms242015463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Against the backdrop of escalating infrastructure budgets worldwide, a notable portion-up to 45%-is allocated to maintenance endeavors rather than innovative infrastructure development. A substantial fraction of this maintenance commitment involves combatting concrete degradation due to microbial attacks. In response, this study endeavors to propose a remedial strategy employing nano metals and repurposed materials within cement mortar. The methodology entails the adsorption onto eggshell membranes (ESM) of silver nitrate (ESM/AgNO3) or silver nanoparticles (ESM/AgNPs) yielding silver-eggshell membrane composites. Subsequently, the resulting silver-eggshell membrane composites were introduced in different proportions to replace cement, resulting in the formulation of ten distinct mortar compositions. A thorough analysis encompassing a range of techniques, such as spectrophotometry, scanning electron microscopy, thermogravimetric analysis, X-ray fluorescence analysis, X-ray diffraction (XRD), and MTT assay, was performed on these composite blends. Additionally, evaluations of both compressive and tensile strengths were carried out. The mortar blends 3, 5, and 6, characterized by 2% ESM/AgNO3, 1% ESM/AgNPs, and 2% ESM/AgNPs cement replacement, respectively, exhibited remarkable antimicrobial efficacy, manifesting in substantial reduction in microbial cell viability (up to 50%) of typical waste activated sludge. Concurrently, a marginal reduction of approximately 10% in compressive strength was noted, juxtaposed with an insignificant change in tensile strength. This investigation sheds light on a promising avenue for addressing concrete deterioration while navigating the balance between material performance and structural integrity.
Collapse
Affiliation(s)
- Samuel Tomi Aina
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa; (S.T.A.); (H.D.K.); (B.D.P.)
| | - Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa; (S.T.A.); (H.D.K.); (B.D.P.)
| | - Barend Du Plessis
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa; (S.T.A.); (H.D.K.); (B.D.P.)
| | - Vuyo Mjimba
- Human Sciences Research Council, 134 Pretorius Street, Pretoria 0083, South Africa;
| | - Nils Haneklaus
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria;
| | - Hendrik Gideon Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa; (S.T.A.); (H.D.K.); (B.D.P.)
| |
Collapse
|
13
|
Jha A, Pathania D, Sonu, Damathia B, Raizada P, Rustagi S, Singh P, Rani GM, Chaudhary V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. ENVIRONMENTAL RESEARCH 2023; 235:116456. [PMID: 37343760 DOI: 10.1016/j.envres.2023.116456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Bhavna Damathia
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
14
|
Özdemir Y, Birtane H, Çiğil AB. An evaluation of antibacterial properties and cytotoxicity of UV-curable biocompatible films containing hydroxyethyl cellulose and silver nanoparticles. Int J Biol Macromol 2023:125516. [PMID: 37353126 DOI: 10.1016/j.ijbiomac.2023.125516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The present study aimed to develop biocompatible film materials with antibacterial and anticancer properties that can be cured with UV rays depending on the thiol-en click reaction mechanism. The synthesized m-Ag NPs were added to formulations containing acrylate functionality HEC, pentaerythritol tetrarkis(3-mercaptopropionate), and photoinitiator at different rates (0, 20, 40, and 60 parts per hundred (phr)). The antibacterial activity of the films was evaluated against S. aureus, P. aeruginosa and E. coli by the disk diffusion test. The antibacterial effect of the films did not form an inhibition zone for the control formulation (CmAg0) against bacteria whereas the antibacterial property increased as the Ag NPs content increased in formulations containing m-Ag NPs. The strongest resistance film against the three bacterial species was observed in the CmAg60 formulation with 60 phr silver content, and the inhibition zones for S. aureus, P. aeruginosa, and E. coli were measured as 16.5 ± 0.7, 16.5 ± 2.1, and 16 ± 1.4, respectively. The cytotoxicity of the films against healthy cells and breast cancer cell (MCF-7) lines was investigated with MTT, and it was observed that all films did not cause any inhibition in the structure of the living cell but killed the cells at a high rate in the MCF-7 line. It was mainly observed that the CmAg60 formulation showed 95.576 % cell inhibition against MCF-7. According to these results, it has been predicted that the prepared films will play a vital role in the next generation of cancer treatments.
Collapse
Affiliation(s)
- Yusuf Özdemir
- Amasya University, Institute of Science, Department of Chemistry, Amasya, Turkey
| | - Hatice Birtane
- Marmara University, Department of Chemistry, Istanbul, Turkey.
| | - Aslı Beyler Çiğil
- Gazi University, Department of Chemistry and Chemical Process Technology, Ankara, Turkey.
| |
Collapse
|
15
|
Kayhan EY, Yildirim A, Kocer MB, Uysal A, Yilmaz M. A cellulose-based material as a fluorescent sensor for Cr(VI) detection and investigation of antimicrobial properties of its encapsulated form in two different MOFs. Int J Biol Macromol 2023; 240:124426. [PMID: 37060971 DOI: 10.1016/j.ijbiomac.2023.124426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
It is crucial to detect toxic chromium ions quickly, reliably, sensitively and at low concentrations. In recent years, fluorescence-based methods have been developed for the rapid detection and determination of toxic ions such as chromium. In present work, we focused on the development of a cellulose-based fluorescent probe (Cel-Nap) for the determination of Cr(VI). The fluorescent probe bearing the 1,8-naphthalimide group displayed a low LOD of 1.07 μM for Cr(VI) in the working range of 0.33 × 10-5-3.22 × 10-5 M. The fluorescence and antibacterial properties of UiO-66-Cel-Nap and ZIF-8-Cel-Nap materials prepared by encapsulating Cel-Nap with 2 different MOF types (UiO-66 and ZIF-8) were investigated. While it was found that ZIF-8-based materials had better antimicrobial properties compared to those of UiO-66, it was determined that materials containing Ag+ were more effective against microbial than those containing AgNPs. It was found that the most effective material was ZIF-8-Cel-Nap-Ag+ and it had a significant antibacterial effect against E. coli at a MIC value of 0.0024 mg/mL.
Collapse
Affiliation(s)
| | - Ayse Yildirim
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Mustafa Baris Kocer
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Ahmet Uysal
- Selcuk University, Vocational School of Health Services, Department of Medical Services and Techniques, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey.
| |
Collapse
|
16
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
17
|
Nanocrystalline Apatites: Post-Immersion Acidification and How to Avoid It-Application to Antibacterial Bone Substitutes. Bioengineering (Basel) 2023; 10:bioengineering10020220. [PMID: 36829714 PMCID: PMC9952497 DOI: 10.3390/bioengineering10020220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biomimetic nanocrystalline apatites analogous to bone mineral can be prepared using soft chemistry. Due to their high similarity to bone apatite, as opposed to stoichiometric hydroxyapatite for example, they now represent an appealing class of compounds to produce bioactive ceramics for which drug delivery and ion exchange abilities have been described extensively. However, immersion in aqueous media of dried non-carbonated biomimetic apatite crystals may generate an acidification event, which is often disregarded and not been clarified to-date. Yet, this acidification process could limit their further development if it is not understood and overcome if necessary. This may, for example, alter biological test outcomes, during their evaluation as bone repair materials, due to potentially deleterious effects of the acidic environment on cells, especially in in vitro static conditions. In this study, we explore the origins of this acidification phenomenon based on complementary experimental data and we point out the central role of the hydrated ionic layer present on apatite nanocrystals. We then propose a practical strategy to circumvent this acidification effect using an adequate post-precipitation equilibration step that was optimized. Using this enutralization protocol, we then showed the possibility of performing (micro)biological assessments on such compounds and provide an illustration with the examples of post-equilibrated Cu2+- and Ag+-doped nanocrystalline apatites. We demonstrate their non-cytotoxicity to osteoblast cells and their antibacterial features as tested versus five major pathogens involved in bone infections, therefore pointing to their relevance in the field of antibacterial bone substitutes. The preliminary in vivo implantation of a relevant sample in a rat's calvarial defect confirmed its biocompatibility and the absence of adverse reaction. Understanding and eliminating this technical barrier should help promoting biomimetic apatites as a genuine new class of biomaterial-producing compounds for bone regeneration applications, e.g., with antibacterial features, far from being solely considered as "laboratory curiosities".
Collapse
|
18
|
Shabatina TI, Vernaya OI, Melnikov MY. Hybrid Nanosystems of Antibiotics with Metal Nanoparticles-Novel Antibacterial Agents. Molecules 2023; 28:molecules28041603. [PMID: 36838591 PMCID: PMC9959110 DOI: 10.3390/molecules28041603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the last few decades. Nanoscale inorganic materials (metals and metal oxides) with antimicrobial potential are a promising solution to this problem. Here we discuss possible mechanisms of pathogenic microorganisms' resistance to antibiotics, proposed mechanisms of action of inorganic nanoparticles on bacterial cells, and the possibilities and benefits of their combined use with antibacterial drugs. The prospects of using metal and metal oxide nanoparticles as carriers in targeted delivery systems for antibacterial compositions are also discussed.
Collapse
Affiliation(s)
- Tatyana I. Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
- Correspondence:
| | - Olga I. Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
| | - Mikhail Y. Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
19
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
20
|
Antimicrobial and Biofilm Formation Inhibition Properties of Biogenic Silver Nanoparticles Synthesised Using Tuber Extract of Cyperus esculentus. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Plé J, Dabert M, Lecoq H, Hellé S, Ploux L, Balan L. Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:95-109. [PMID: 36761683 PMCID: PMC9843235 DOI: 10.3762/bjnano.14.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The control of microbial proliferation is a constant battle, especially in the medical field where surfaces, equipment, and textiles need to be cleaned on a daily basis. Silver nanoparticles (AgNPs) possess well-documented antimicrobial properties and by combining them with a physical matrix, they can be applied to various surfaces to limit microbial contamination. With this in mind, a rapid and easy way to implement a photoinduced approach was investigated for textile functionalization with a silver@polymer self-assembled nanocomposite. By exposing the photosensitive formulation containing a silver precursor, a photoinitiator, and acrylic monomers to a UV source, highly reflective metallic coatings were obtained directly on the textile support. After assessing their optical and mechanical properties, the antimicrobial properties of the functionalized textiles were tested against Escherichia coli (E. coli) and Candida albicans (C. albicans) strains. In addition to being flexible and adherent to the textile substrates, the nanocomposites exhibited remarkable microbial growth inhibitory effects.
Collapse
Affiliation(s)
- Jessica Plé
- Université d’Orléans, Conditions Extrêmes Matériaux Haute Température et Irradiation CNRS UPR 3079, F-45000, Orléans, France
| | - Marine Dabert
- Université d’Orléans, Conditions Extrêmes Matériaux Haute Température et Irradiation CNRS UPR 3079, F-45000, Orléans, France
| | - Helene Lecoq
- Université d’Orléans, Conditions Extrêmes Matériaux Haute Température et Irradiation CNRS UPR 3079, F-45000, Orléans, France
| | - Sophie Hellé
- Biomaterials Bioengineering INSERM/Université de Strasbourg U1121, Centre de Recherche en Biomédecine de Strasbourg, F-67000 Strasbourg, France
- Université de Strasbourg, Faculté Dentaire, F-67000 Strasbourg, France
| | - Lydie Ploux
- Biomaterials Bioengineering INSERM/Université de Strasbourg U1121, Centre de Recherche en Biomédecine de Strasbourg, F-67000 Strasbourg, France
- Université de Strasbourg, Faculté Dentaire, F-67000 Strasbourg, France
- CNRS, F-67000 Strasbourg, France
| | - Lavinia Balan
- Université d’Orléans, Conditions Extrêmes Matériaux Haute Température et Irradiation CNRS UPR 3079, F-45000, Orléans, France
| |
Collapse
|
22
|
Amor M, Mosselmans JFW, Scoppola E, Li C, Faivre D, Chevrier DM. Crystal-Chemical and Biological Controls of Elemental Incorporation into Magnetite Nanocrystals. ACS NANO 2023; 17:927-939. [PMID: 36595434 DOI: 10.1021/acsnano.2c05469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetite nanoparticles possess numerous fundamental, biomedical, and industrial applications, many of which depend on tuning the magnetic properties. This is often achieved by the incorporation of trace and minor elements into the magnetite lattice. Such incorporation was shown to depend strongly on the magnetite formation pathway (i.e., abiotic vs biological), but the mechanisms controlling element partitioning between magnetite and its surrounding precipitation solution remain to be elucidated. Here, we used a combination of theoretical modeling (lattice and crystal field theories) and experimental evidence (high-resolution inductively coupled plasma-mass spectrometry and X-ray absorption spectroscopy) to demonstrate that element incorporation into abiotic magnetite nanoparticles is controlled principally by cation size and valence. Elements from the first series of transition metals (Cr to Zn) constituted exceptions to this finding, as their incorporation appeared to be also controlled by the energy levels of their unfilled 3d orbitals, in line with crystal field mechanisms. We finally show that element incorporation into biological magnetite nanoparticles produced by magnetotactic bacteria (MTB) cannot be explained by crystal-chemical parameters alone, which points to the biological control exerted by the bacteria over the element transfer between the MTB growth medium and the intracellular environment. This screening effect generates biological magnetite with a purer chemical composition in comparison to the abiotic materials formed in a solution of similar composition. Our work establishes a theoretical framework for understanding the crystal-chemical and biological controls of trace and minor cation incorporation into magnetite, thereby providing predictive methods to tailor the composition of magnetite nanoparticles for improved control over magnetic properties.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| | | | - Ernesto Scoppola
- Biomaterials, Hierarchical Structure of Biological and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Chenghao Li
- Biomaterials, Hierarchical Structure of Biological and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Damien Faivre
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| | - Daniel M Chevrier
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| |
Collapse
|
23
|
Ameera Rosli N, Yeit Haan T, Mahmoudi E. Optimisation for the Synthesis of Uniformly Dispersed Antimicrobial Ag/GO Nanohybrid Latex Film. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Ankudze B, Neglo D. Green synthesis of silver nanoparticles from peel extract of Chrysophyllum albidum fruit and their antimicrobial synergistic potentials and biofilm inhibition properties. Biometals 2022:10.1007/s10534-022-00483-5. [PMID: 36586061 DOI: 10.1007/s10534-022-00483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Current methods for green synthesis of metal nanoparticles often require continuous harvesting of fresh bio-materials for every synthesis cycle. Practices and procedures that economize bio-materials need to be employed if green synthesis could become a sustainable and eco-friendly method for synthesizing metal nanoparticles. This study explores Chrysophyllum albidum peels (mostly regarded as waste) to prepare silver nanoparticles (Alb-AgNPs). The technique employed in the synthesis allows repeated use of the peels, thus, reducing the heavy dependence on bio-materials. The optical and structural properties of the Alb-AgNPs were studied with Scanning electron microscope, Fourier transform infrared spectrometer, UV-Vis spectrophotometer and powder X-ray diffractometer. The antimicrobial properties of the Alb-AgNPs were studied with selected microorganisms namely; S. aureus, E. coli, K. pneumoniae, B. subtilis, S. mutans, P. aeruginosa, S. typhi, and Candida albicans. High inhibitory activity against the microorganisms were exhibited with MICs ranging from 15.62 to 1000 µg/mL. Again, the Alb-AgNPs showed the ability to enhance the efficacy of standard antimicrobial agents. The results of the combined interaction with standard antibacterial and antifungal agents ranged from synergistic to antagonistic effects against the tested microorganisms. In addition, the Alb-AgNPs could serve as a biofilm inhibitor with the highest percent inhibition of about 92% against methicillin-resistant Staphylococcus aureus. The results from this study thus provide access to the simple, sustainable, economic and eco-friendly synthesis of silver nanoparticles with efficient antimicrobial properties as drug candidates as a means of overcoming the prevailing antibiotic resistance menaces.
Collapse
Affiliation(s)
- Bright Ankudze
- Department of Chemistry Education, University of Education, P. O. Box 25, Winneba, Ghana.
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health, PMB 31, Ho, Ghana
| |
Collapse
|
25
|
Silver Nanoparticle Synthesis via Photochemical Reduction with Sodium Citrate. Int J Mol Sci 2022; 24:ijms24010255. [PMID: 36613702 PMCID: PMC9820713 DOI: 10.3390/ijms24010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of this paper is to provide a simple and efficient photoassisted approach to synthesize silver nanoparticles, and to elucidate the role of the key factors (synthesis parameters, such as the concentration of TSC, irradiation time, and UV intensity) that play a major role in the photochemical synthesis of silver nanoparticles using TSC, both as a reducing and stabilizing agent. Concomitantly, we aim to provide an easy way to evaluate the particle size based on Mie theory. One of the key advantages of this method is that the synthesis can be "activated" whenever or wherever silver nanoparticles are needed, by premixing the reactants and irradiating the final solution with UV radiation. UV irradiance was determined by using Keitz's theory. This argument has been verified by premixing the reagents and deposited them in an enclosed space (away from sunlight) at 25 °C, then checking them for three days. Nothing happened, unless the sample was directly irradiated by UV light. Further, obtained materials were monitored for 390 days and characterized using scanning electron microscopy, UV-VIS, and transmission electron microscopy.
Collapse
|
26
|
Aanish Ali M, Rehman N, Park TJ, Basit MA. Antiviral role of nanomaterials: a material scientist's perspective. RSC Adv 2022; 13:47-79. [PMID: 36605642 PMCID: PMC9769549 DOI: 10.1039/d2ra06410c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The present world continues to face unprecedented challenges caused by the COVID-19 pandemic. Collaboration between researchers of multiple disciplines is the need of the hour. There is a need to develop antiviral agents capable of inhibiting viruses and tailoring existing antiviral drugs for efficient delivery to prevent a surge in deaths caused by viruses globally. Biocompatible systems have been designed using nanotechnological principles which showed appreciable results against a wide range of viruses. Many nanoparticles can act as antiviral therapeutic agents if synthesized by the correct approach. Moreover, nanoparticles can act as carriers of antiviral drugs while overcoming their inherent drawbacks such as low solubility, poor bioavailability, uncontrolled release, and side effects. This review highlights the potential of nanomaterials in antiviral applications by discussing various studies and their results regarding antiviral potential of nanoparticles while also suggesting future directions to researchers.
Collapse
Affiliation(s)
- Muhammad Aanish Ali
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| | - Nagina Rehman
- Department of Zoology, Government College University Allama Iqbal Road Faisalabad 38000 Pakistan
| | - Tae Joo Park
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan 15588 Republic of Korea
| | - Muhammad Abdul Basit
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| |
Collapse
|
27
|
Bioactive Carboxymethyl Cellulose (CMC)-Based Films Modified with Melanin and Silver Nanoparticles (AgNPs)-The Effect of the Degree of CMC Substitution on the In Situ Synthesis of AgNPs and Films' Functional Properties. Int J Mol Sci 2022; 23:ijms232415560. [PMID: 36555199 PMCID: PMC9779376 DOI: 10.3390/ijms232415560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Green synthesis of nanoparticles for use in food packaging or biomedical applications is attracting increasing interest. In this study, the effect of the degree of substitution (0.7, 0.9 and 1.2) of a carboxymethylcellulose polymer matrix on the synthesis and properties of silver nanoparticles using melanin as a reductant was investigated. For this purpose, the mechanical, UV-Vis barrier, crystallinity, morphology, antioxidant and antimicrobial properties of the films were determined, as well as the color and changes in chemical bonds. The degree of substitution effected noticeable changes in the color of the films (the L* parameter was 2.87 ± 0.76, 5.59 ± 1.30 and 13.45 ± 1.11 for CMC 0.7 + Ag, CMC 0.9 + Ag and CMC 1.2 + Ag samples, respectively), the UV-Vis barrier properties (the transmittance at 280 nm was 4.51 ± 0.58, 7.65 ± 0.84 and 7.98 ± 0.75 for CMC 0.7 + Ag, CMC 0.9 + Ag and CMC 1.2 + Ag, respectively) or the antimicrobial properties of the films (the higher the degree of substitution, the better the antimicrobial properties of the silver nanoparticle-modified films). The differences in the properties of films with silver nanoparticles synthesized in situ might be linked to the increasing dispersion of silver nanoparticles as the degree of CMC substitution increases. Potentially, such films could be used in food packaging or biomedical applications.
Collapse
|
28
|
Mateo EM, Jiménez M. Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics (Basel) 2022; 11:antibiotics11091205. [PMID: 36139984 PMCID: PMC9495113 DOI: 10.3390/antibiotics11091205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The present review focuses on the potential use of silver nanoparticles in the therapy of diseases caused by antibiotic-resistant bacteria. Such bacteria are known as “superbugs”, and the most concerning species are Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus (methicillin and vancomycin-resistant), and some Enterobacteriaceae. According to the World Health Organization (WHO), there is an urgent need for new treatments against these “superbugs”. One of the possible approaches in the treatment of these species is the use of antibacterial nanoparticles. After a short overview of nanoparticle usage, mechanisms of action, and methods of synthesis of nanoparticles, emphasis has been placed on the use of silver nanoparticles (AgNPs) to combat the most relevant emerging resistant bacteria. The toxicological aspects of the AgNPs, both in vitro using cell cultures and in vivo have been reviewed. It was found that toxic activity of AgNPs is dependent on dose, size, shape, and electrical charge. The mechanism of action of AgNPs involves interactions at various levels such as plasma membrane, DNA replication, inactivation of protein/enzymes necessary, and formation of reactive oxygen species (ROS) leading to cell death. Researchers do not always agree in their conclusions on the topic and more work is needed in this field before AgNPs can be effectively applied in clinical therapy to combat multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Eva M. Mateo
- Department of Microbiology and Ecology, Faculty of Medicine and Odontology, Universitat de Valencia, E-46010 Valencia, Spain
- Correspondence:
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, Faculty of Biological Sciences, Universitat de Valencia, E-46100 Valencia, Spain
| |
Collapse
|
29
|
Bastos IS, Nobre FX, da Silva ER, Orlandi PP, Lima DC, da Cunha Mendes O, Manzato L, Duarte Pereira MLR, Leyet Y, Couceiro PRC, Brito WR. Silver tungstate microcrystals and their performance over several clinical multidrug resistant microorganisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Ryan J, Jacob P, Lee A, Gagnon Z, Pavel IE. Biodistribution and toxicity of antimicrobial ionic silver (Ag +) and silver nanoparticle (AgNP +) species after oral exposure, in Sprague-Dawley rats. Food Chem Toxicol 2022; 166:113228. [PMID: 35710031 DOI: 10.1016/j.fct.2022.113228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 01/22/2023]
Abstract
Although antimicrobial nanosilver finds numerous applications in the health and food industries, the in vivo toxicity of positively charged silver nanoparticles (AgNPs+) and relevant controls are largely unexplored. This study investigates the relationship between the biodistribution and toxicity of the well-known cetyltrimethylammonium bromide (CTAB)-capped AgNPs+ in 6-weeks old female Sprague-Dawley rats, at sublethal doses. Amounts comparative to those leaked from food products or considered for animal feed were administered through daily water intake, for an 18-day period: AgNPs+ (40 μg mL-1), Ag+ (40 μg mL-1), antimicrobial CTAB+ (24 μg mL-1) and tap water. All exposures except for the water control had adverse effects on the health and systemic functions of rats (e.g., lethargy, hepatomegaly, splenomegaly, impediment of bone development, and/or heightened immune response). Although the total Ag accumulation in tissues (1.4-1.6 μg of Ag/g of liver, spleen, jejunum, and brain) was comparable for the two Ag species, AgNPs+ were generally more toxic than Ag+, particularly in spleen (0.8 μg Ag/g). Significantly reduced euthanasia time, alopecia, inflammatory responses in spleen, fragile veins, and enhanced lymphocytosis were observed only for AgNPs+. Overall, this study raises health concerns about the ingestion of capped-AgNPs+ or Ag+ by first-hand consumers and industry workers.
Collapse
Affiliation(s)
- John Ryan
- Wright State University, Department of Chemistry, 3640 Colonel Glenn Hwy, Fairborn, OH, 45435, USA
| | - Paige Jacob
- Cornell University, Department of Civil and Environmental Engineering, 527 College Ave, Ithaca, NY, 14853, USA
| | - Alec Lee
- Marist College, Department of Environmental Science, 3399 North Rd, Poughkeepsie, NY, 12601, USA
| | - Zofia Gagnon
- Marist College, Department of Environmental Science, 3399 North Rd, Poughkeepsie, NY, 12601, USA.
| | - Ioana E Pavel
- Texas A&M University at Corpus Christi, Department of Physical and Environmental Sciences, 6300 Ocean Drive, Corpus Christi, TX, 78412-5800, USA.
| |
Collapse
|
31
|
Campo-Beleño C, Villamizar-Gallardo RA, López-Jácome LE, González EE, Muñoz-Carranza S, Franco B, Morales-Espinosa R, Coria-Jimenez R, Franco-Cendejas R, Hernández-Durán M, Lara-Martínez R, Jiménez-García LF, Fernández-Presas AM, García-Contreras R. Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett Appl Microbiol 2022; 75:680-688. [PMID: 35687297 PMCID: PMC9543579 DOI: 10.1111/lam.13759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa is one of the most worrisome infectious bacteria due to its intrinsic and acquired resistance against several antibiotics and the recalcitrance of its infections; hence, the development of novel antimicrobials effective against multidrug‐resistant P. aeruginosa is mandatory. In this work, silver nanoparticles obtained by green synthesis using a leaf extract and fungi were tested against a battery of clinical strains from cystic fibrosis, pneumonia and burnt patients, some of them with multidrug resistance. Both nanoparticles showed a potent antibacterial effect, causing severe damage to the cell wall, membrane and DNA, and inducing the production of reactive oxygen species. Moreover, the nanoparticles derived from fungi showed synergistic antibacterial effects with the antibiotics meropenem and levofloxacin for some clinical strains and both kinds of nanoparticles were nontoxic for larvae of the moth Galleria mellonella, encouraging further research for their implementation in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- C Campo-Beleño
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R A Villamizar-Gallardo
- Departamento de Medicina, Facultad de Salud, Universidad de Pamplona, Cúcuta, Norte de Santander, Colombia
| | - L E López-Jácome
- Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - E E González
- Centro de Ciencia y Tecnología Nanoescalar, "nanCiTec", Bogotá, Colombia
| | - S Muñoz-Carranza
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - B Franco
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - R Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R Coria-Jimenez
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - R Franco-Cendejas
- Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - M Hernández-Durán
- Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - R Lara-Martínez
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - L F Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - A M Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
32
|
Analysis of Silver Nanoparticles for the Treatment and Prevention of Nucleopolyhedrovirus Affecting Bombyx mori. Int J Mol Sci 2022; 23:ijms23116325. [PMID: 35683003 PMCID: PMC9181153 DOI: 10.3390/ijms23116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) causes major economic losses in sericulture. A number of agents have been employed to treat viral diseases. Silver nanoparticles (AgNPs) have wide applications in biomedical fields due to their unique properties. The anti-BmNPV effect of AgNPs has been evaluated, however, there are insufficient studies concerning its toxicity to other organisms and the environment. We chemically synthesized biocompatible BSA-AgNPs with a diameter range of 2–4 nm and characterized their physical properties. The toxicity of AgNPs towards cells and larvae with different concentrations was examined; the results indicated a biofriendly effect on cells and larvae within specific concentration ranges. The SEM observation of the surface of BmNPV after treatment with AgNPs suggested that AgNPs could destroy the polyhedral structure, and the same result was obtained by Coomassie blue staining. Further assays confirmed the weakened virulence of AgNPs-treated BmNPV toward cells and larvae. AgNPs also could effectively inhibit the replication of BmNPV in infected cells and larvae. In summary, our research provides valuable data for the further development of AgNPs as an antiviral drug for sericulture.
Collapse
|
33
|
Chavan S, Sarangdhar V, Vigneshwaran N. Nanopore-based metagenomic analysis of the impact of nanoparticles on soil microbial communities. Heliyon 2022; 8:e09693. [PMID: 35756110 PMCID: PMC9213711 DOI: 10.1016/j.heliyon.2022.e09693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022] Open
Abstract
The current trend of using nanotechnology products in all spheres of human life, including for crop improvement may have a possible impact on soil microorganisms which influence soil and plant health. Nanopore-based metagenomic study reported here used full-length 16S rRNA gene sequences to assess shifts in community composition of soil microorganisms when treated with silver, titanium dioxide and zinc oxide nanoparticles (S-NP, T-NP, Z-NP, respectively). Firmicutes and Proteobacteria were the two dominant phyla in this soil, and there were no significant differences (p < 0.05) observed in these phyla across treatments. However, in the phylum Firmicutes, the abundance of the order Clostridiales showed a significant decrease (p < 0.05) in the presence of S-NP. Similarly, in the phylum Proteobacteria, a significant decrease in the presence of S-NP was seen for two orders, Vibrionales (p < 0.05) and Rhodobacterales (p < 0.01). Analysis at a further depth revealed that abundance of the genus Clostridium (order Clostridiales) decreased in the presence of both S-NP (p < 0.01) and T-NP (p < 0.05). The abundance of the genus Vibrio (order Vibrionales) was likewise impacted in the presence of all the three NPs — S-NP (p < 0.01), T-NP (p < 0.05) and Z-NP (p < 0.05). Analyses at high taxon ranks such as phyla may not give a good representation of the nature of microbial community shifts, and at times may paint an erroneous picture. The use of full-length 16S rRNA gene sequences here yielded a greater taxonomic depth, and some shifts at the lower ranks were discernible.
Collapse
Affiliation(s)
- Sangeeta Chavan
- Caius Research Laboratory, St Xavier's College, Mumbai, India
| | | | | |
Collapse
|
34
|
Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:1391-1463. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substantial increase in multidrug-resistant (MDR) pathogenic bacteria is a major threat to global health. Recently, the Centers for Disease Control and Prevention reported possibilities of greater deaths due to bacterial infections than cancer. Nanomaterials, especially small-sized (size ≤10 nm) silver nanoparticles (AgNPs), can be employed to combat these deadly bacterial diseases. However, high reactivity, instability, susceptibility to fast oxidation, and cytotoxicity remain crucial shortcomings for their uptake and clinical application. In this review, we discuss various AgNPs-based approaches to eradicate bacterial infections and provide comprehensive mechanistic insights and recent advances in antibacterial activity, antibiofilm activity, and cytotoxicity (both in vitro and in vivo) of AgNPs. The mechanistic of antimicrobial activity involves four steps: (i) adhesion of AgNPs to cell wall/membrane and its disruption; (ii) intracellular penetration and damage; (iii) oxidative stress; and (iv) modulation of signal transduction pathways. Numerous factors affecting the bactericidal activity of AgNPs such as shape, size, crystallinity, pH, and surface coating/charge have also been described in detail. The review also sheds light on antimicrobial photodynamic therapy and the role of AgNPs versus Ag+ ions release in bactericidal activities. In addition, different methods of synthesis of AgNPs have been discussed in brief.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
35
|
Łopusiewicz Ł, Macieja S, Śliwiński M, Bartkowiak A, Roy S, Sobolewski P. Alginate Biofunctional Films Modified with Melanin from Watermelon Seeds and Zinc Oxide/Silver Nanoparticles. MATERIALS 2022; 15:ma15072381. [PMID: 35407714 PMCID: PMC8999530 DOI: 10.3390/ma15072381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Bioactive films find more and more applications in various industries, including packaging and biomedicine. This work describes the preparation, characterization and physicochemical, antioxidant and antimicrobial properties of alginate films modified with melanin from watermelon (Citrullus lanatus) seeds at concentrations of 0.10%, 0.25% and 0.50% w/w and with silver and zinc oxide nanoparticles (10 mM film casting solutions for both metal nanoparticles). Melanin served as the active ingredient of the film and as a nanoparticle stabilizer. The additives affected the color, antioxidant (~90% ABTS and DPPH radicals scavenging for all melanin modified films) and antimicrobial activity (up to 4 mm grow inhibition zones of E. coli and S. aureus for both zinc oxide and silver nanoparticles), mechanical (silver nanoparticles addition effected two-fold higher tensile strength), thermal and barrier properties for water and UV-vis radiation. The addition of ZnONP resulted in improved UV barrier properties while maintaining good visible light transmittance, whereas AgNP resulted in almost complete UV barrier and reduced visible light transmittance of the obtained films. What is more, the obtained films did not have an adverse effect on cell viability in cytotoxicity screening. These films may have potential applications in food packaging or biomedical applications.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (A.B.)
- Correspondence: ; Tel.: +48-91-449-6135
| | - Szymon Macieja
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (A.B.)
| | - Mariusz Śliwiński
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland;
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (A.B.)
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, Himachal Pradesh, India;
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin 45 Piastów Ave, 70-311 Szczecin, Poland;
| |
Collapse
|
36
|
Huang L, Chen R, Luo J, Hasan M, Shu X. Synthesis of phytonic silver nanoparticles as bacterial and ATP energy silencer. J Inorg Biochem 2022; 231:111802. [DOI: 10.1016/j.jinorgbio.2022.111802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/28/2022]
|
37
|
Kinetics of Formation and Characterization of Green Silver Nanoparticles of Ficus variegata Leaf Extract. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.1.34-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to determine the formation rate of silver nanoparticles synthesized using leaf extract of Ficus variegata and characterize their physical, chemical, and antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. For the formation rate determination, an empirical exponential model was proposed and used to fit the absorbance vs. time data (kinetics data). The surface plasmon resonance wavelength was measured using UV-Vis spectroscopy for physical and chemical characterization. The shape and size of the silver nanoparticles were characterized by transmission electron microscopy (TEM), and organic materials on the surface of the particles were identified by characterizing the associated chemical bonding using FTIR spectroscopy. For antibacterial assays, disc diffusion and spectrophotometric methods were used. The formation rates of the silver nanoparticles were 0.036 per hour or 1.0 x 10-5 s-1 (slower rate) and 0.767 per hour or 2.1 x 10-4 s-1 (faster rate). UV-Vis absorption spectrum indicated the surface plasmon resonance peak at 415 nm. Silver nanoparticles formed mainly were spherical, with a mean diameter of 26.5±0.7 nm. The FTIR spectrum indicated the presence of organic materials on the surface of the silver nanoparticles, which indicated the involvement of the extract as a reducing agent in particles formation. Antibacterial assay showed that synthesized silver nanoparticles inhibited the growth of both S. aureus and E. coli. The results from the disc diffusion method imply that the particles inhibited the growth of E. coli more effectively than S. aureus.
Collapse
|
38
|
Dash SS, Banerjee J, Samanta S, Giri B, Dash SK. Microwave-Assisted Fabrication of Silver Nanoparticles Utilizing Seed Extract of Areca catechu with Antioxidant Potency and Evaluation of Antibacterial Efficacy Against Multidrug Resistant Pathogenic Bacterial Strains. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00927-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Rizwana H, Bokahri NA, S. Alkhattaf F, Albasher G, A. Aldehaish H. Antifungal, Antibacterial, and Cytotoxic Activities of Silver Nanoparticles Synthesized from Aqueous Extracts of Mace-Arils of Myristica fragrans. Molecules 2021; 26:7709. [PMID: 34946791 PMCID: PMC8705175 DOI: 10.3390/molecules26247709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 01/09/2023] Open
Abstract
In the present study, mace-mediated silver nanoparticles (mace-AgNPs) were synthesized, characterized, and evaluated against an array of pathogenic microorganisms. Mace, the arils of Myristica fragrans, are a rich source of several bioactive compounds, including polyphenols and aromatic compounds. During nano synthesis, the bioactive compounds in mace aqueous extracts serve as excellent bio reductants, stabilizers, and capping agents. The UV-VIS spectroscopy of the synthesized NPs showed an intense and broad SPR absorption peak at 456 nm. Dynamic light scattering (DLS) analysis showed the size with a Z average of 50 nm, while transmission electron microscopy (TEM) studies depicted the round shape and small size of the NPs, which ranged between 5-28 nm. The peaks related to important functional groups, such as phenols, alcohols, carbonyl groups, amides, alkanes and alkenes, were obtained on a Fourier-transform infrared spectroscopy (FTIR) spectrum. The peak at 3 keV on the energy dispersive X-ray spectrum (EDX) validated the presence of silver (Ag). Mace-silver nanoparticles exhibited potent antifungal and antibacterial activity against several pathogenic microorganisms. Additionally, the synthesized mace-AgNPs displayed an excellent cytotoxic effect against the human cervical cancer cell line. The mace-AgNPs demonstrated robust antibacterial, antifungal, and cytotoxic activity, indicating that the mace-AgNPs might be used in the agrochemical industry, pharmaceutical industry, and biomedical applications. However, future studies to understand its mode of action are needed.
Collapse
Affiliation(s)
- Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (N.A.B.); (F.S.A.); (H.A.A.)
| | - Najat A. Bokahri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (N.A.B.); (F.S.A.); (H.A.A.)
| | - Fatimah S. Alkhattaf
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (N.A.B.); (F.S.A.); (H.A.A.)
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Horiah A. Aldehaish
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (N.A.B.); (F.S.A.); (H.A.A.)
| |
Collapse
|
40
|
Dong F, Quevedo AC, Wang X, Valsami-Jones E, Kreft JU. Experimental evolution of Pseudomonas putida under silver ion versus nanoparticle stress. Environ Microbiol 2021; 24:905-918. [PMID: 34904333 DOI: 10.1111/1462-2920.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/13/2021] [Indexed: 11/30/2022]
Abstract
Whether the antibacterial properties of silver nanoparticles (AgNPs) are simply due to the release of silver ions (Ag+ ) or, additionally, nanoparticle-specific effects, is not clear. We used experimental evolution of the model environmental bacterium Pseudomonas putida to ask whether bacteria respond differently to Ag+ or AgNP treatment. We pre-evolved five cultures of strain KT2440 for 70 days without Ag to reduce confounding adaptations before dividing the fittest pre-evolved culture into five cultures each, evolving in the presence of low concentrations of Ag+ , well-defined AgNPs or Ag-free controls for a further 75 days. The mutations in the Ag+ or AgNP evolved populations displayed different patterns that were statistically significant. The non-synonymous mutations in AgNP-treated populations were mostly associated with cell surface proteins, including cytoskeletal membrane protein (FtsZ), membrane sensor and regulator (EnvZ and GacS) and periplasmic protein (PP_2758). In contrast, Ag+ treatment was selected for mutations linked to cytoplasmic proteins, including metal ion transporter (TauB) and those with metal-binding domains (ThiL and PP_2397). These results suggest the existence of AgNP-specific effects, either caused by sustained delivery of Ag+ from AgNP dissolution, more proximate delivery from cell-surface bound AgNPs, or by direct AgNP action on the cell's outer membrane.
Collapse
Affiliation(s)
- Feng Dong
- School of Biosciences & Institute of Microbiology and Infection (IMI) & Centre for Computational Biology (CCB), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ana C Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Xiang Wang
- School of Biosciences & Institute of Microbiology and Infection (IMI) & Centre for Computational Biology (CCB), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jan-Ulrich Kreft
- School of Biosciences & Institute of Microbiology and Infection (IMI) & Centre for Computational Biology (CCB), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
41
|
Jiang J, You D, Wang Q, Gao G. Novel Fabrication and Biological Characterizations of AgNPs-decorated PEEK with gelatin functional nanocomposite to improve superior biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:590-604. [PMID: 34752202 DOI: 10.1080/09205063.2021.2004632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is an increasing interest in the use of polyether ether ketone (PEEK) for biomedical applications. Herein, we have developed silver nanoparticles (AgNPs) decorated PEEK with gelatin (GEL) nanocomposite hydrogel with enhanced antibacterial and biocompatibility through the blending method. The prepared highly porous PEEK/GEL/AgNPs nanocomposite hydrogel was characterized using SEM, TEM, FT-IR, and XRD analysis. The SEM image showed that AgNPs were encapsulated in the porous PEEK/GEL hydrogel; within this porous hydrogel, the AgNPs were homogeneously dispersed. Furthermore, the tensile strength, flexural strength, and Young's modulus were 99 ± 2.4 MPa, 154 ± 7.7 MPa, and 2.3 ± 0.1 GPa, respectively, when AgNPs were added to PEEK/GEL hydrogels exhibited the mechanical performances. The antibacterial assays demonstrate that the AgNPs-decorated PEEK/GEL nanocomposite hydrogel effectively inhibits the antibacterial effect against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, respectively. Then MC3T3-E1 cells were demonstrated the AgNPs-decorated PEEK/GEL nanocomposite hydrogel was significantly enhanced cell viability and superior alkaline phosphatase (ALP) activity compared with PEEK/GEL hydrogel. This work opens a new avenue of the facile and effective modification of PEEK/GEL/AgNPs nanocomposite hydrogel has increased in vitro antibacterial and biocompatibility properties has great potential to be used as biomedical applications.
Collapse
Affiliation(s)
- Jianhui Jiang
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterials, Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, PR China
| | - Dongdong You
- Department of stomatology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, PR China
| | - Qingmei Wang
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Guanglin Gao
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, PR China
| |
Collapse
|
42
|
Improving acid resistance and characteristics of microencapsulated Lactobacillus brevis RK03 using top fluid bed drying technology. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Syed A, Elgorban AM, Bahkali AH. Improved visible-light driven photocatalysis of a novel heterostructure by the decoration of CuS on Ag2MoO4 nanorod: Synthesis, characterization, elucidation of photocatalytic mechanism and anti-microbial application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Kabeerdass N, Al Otaibi A, Rajendran M, Manikandan A, Kashmery HA, Rahman MM, Madhu P, Khan A, Asiri AM, Mathanmohun M. Bacillus-Mediated Silver Nanoparticle Synthesis and Its Antagonistic Activity against Bacterial and Fungal Pathogens. Antibiotics (Basel) 2021; 10:1334. [PMID: 34827271 PMCID: PMC8614847 DOI: 10.3390/antibiotics10111334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
In this article, the supernatant of the soil-borne pathogen Bacillus mn14 was used as the catalyst for the synthesis of AgNPs. The antibacterial and antifungal activity of Bs-AgNPs was evaluated, in which S. viridans and R. solani showed susceptibility at 70 µL and 100 µL concentrations. Enzyme properties of the isolates, according to minimal inhibitory action and a growth-enhancing hormone-indole acetic acid (IAA) study of the isolates, were expressed in TLC as a purple color with an Rf value of 0.7. UV/Vis spectroscopy revealed the presence of small-sized AgNPs, with a surface plasmon resonance (SPR) peak at 450 nm. The particle size analyzer identified the average diameter of the particles as 40.2 nm. The X-ray diffraction study confirmed the crystalline nature and face-centered cubic type of the silver nanoparticle. Scanning electron microscopy characterized the globular, small, round shape of the silver nanoparticle. AFM revealed the two-dimensional topology of the silver nanoparticle with a characteristic size ranging around 50 nm. Confocal microscopy showed the cell-wall disruption of S. viridans treated with Bs-AgNPs. High-content screening and compound microscopy revealed the destruction of mycelia of R. solani after exposure to Bs-AgNPs. Furthermore, the Bs-AgNPs cured sheath blight disease by reducing lesion length and enhancing root and shoot length in Oryza sativa seeds. This soil-borne pathogen Bacillus-mediated synthesis approach of AgNPs appears to be cost-efficient, ecofriendly, and farmer-friendly, representing an easy way of providing valuable nutritious edibles in the future.
Collapse
Affiliation(s)
- Nivedhitha Kabeerdass
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal DT 637408, Tamil Nadu, India;
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia;
| | - Manikandan Rajendran
- Department of Biotechnology, Padmavani Arts and Science College for Women, Salem 636011, Tamil Nadu, India;
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India;
- Centre for Catalysis and Renewable Energy, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India
| | - Heba A. Kashmery
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - P. Madhu
- Department of Mechanical Engineering, Malnad College of Engineering, Hassan, Visvesvaraya Technological University, Belagavi 590018, Karnataka, India;
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maghimaa Mathanmohun
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal DT 637408, Tamil Nadu, India;
| |
Collapse
|
45
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
46
|
Rosli NA, Teow YH, Mahmoudi E. Current approaches for the exploration of antimicrobial activities of nanoparticles. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:885-907. [PMID: 34675754 PMCID: PMC8525934 DOI: 10.1080/14686996.2021.1978801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/11/2021] [Accepted: 09/02/2021] [Indexed: 05/09/2023]
Abstract
Infectious diseases of bacterial and viral origins contribute to substantial mortality worldwide. Collaborative efforts have been underway between academia and the industry to develop technologies for a more effective treatment for such diseases. Due to their utility in various industrial applications, nanoparticles (NPs) offer promising potential as antimicrobial agents against bacterial and viral infections. NPs have been established to possess potent antimicrobial activities against various types of pathogens due to their unique characteristics and cell-damaging ability through several mechanisms. The recently accepted antimicrobial mechanisms possessed by NPs include metal ion release, oxidative stress induction, and non-oxidative mechanisms. Another merit of NPs lies in the low likelihood of the development of microbial tolerance towards NPs, given the multiple simultaneous mechanisms of action against the pathogens targeting numerous gene mutations in these pathogens. Moreover, NPs provide a fascinating opportunity to curb microbial growth before infections: this outstanding feature has led to their utilization as active antimicrobial agents in different industrial applications, e.g. the coating of medical devices, incorporation in food packaging, promoting wound healing and encapsulation with other potential materials for wastewater treatment. This review discusses the progress and achievements in the antimicrobial applications of NPs, factors contributing to their actions, mechanisms underlying their efficiency, and risks of their applications, including the antimicrobial action of metal nanoclusters (NCs). The review concludes with a discussion of the restrictions on present studies and future prospects of nanotechnology-based NPs development.
Collapse
Affiliation(s)
- Nur Ameera Rosli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Research Centre for Sustainable Process Technology (Cespro), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
47
|
Abada E, Galal T, Ismail I. Biosynthesis of silver nanoparticles by Nocardiopsis sp.-MW279108 and its antimicrobial activity. J Basic Microbiol 2021; 61:993-1001. [PMID: 34520075 DOI: 10.1002/jobm.202100248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 11/12/2022]
Abstract
The utilization of microorganisms like bacteria in the biological synthesis of silver nanoparticles (AgNPs) has attracted widespread attention due to their ability to synthesize different shape sizes, states, and morphology nanoparticles. In the current study, the green synthesis of AgNPs by Nocardiopsis sp. 16S ribosomal RNA analysis was used to characterize the Nocardiopsis sp. The synthesized AgNPs were characterized through multi-instrument platforms such as transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, scanning electron microscope (SEM), and X-ray diffraction analysis (XRD). The antimicrobial activity of the synthesized AgNPs was determined by the agar plate diffusion method. The UV-Vis absorbance analysis of the synthesized AgNPs has a significant absorbance at 384 nm, confirming the AgNPs' surface plasmon resonance. The SEM and TEM characterizations indicate that the particle size ranges from 2 to 10 nm and is spherical. Additionally, the FTIR spectra revealed bands from 476 to 3819cm-1 , respectively. The XRD planes study pronounced strong bands ranging are between 111 and 311 corresponding to cubic face-center of the silver. Also, the antimicrobial activity of AgNPs indicated the biogenic AgNPs could control the growth of the clinical isolates. The AgNPs produced by Nocardiopsis sp. supernatant could be used in different nanomedicinal applications.
Collapse
Affiliation(s)
- Emad Abada
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Tarek Galal
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ismail Ismail
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
48
|
Pilaquinga F, Morey J, Fernandez L, Espinoza-Montero P, Moncada-Basualto M, Pozo-Martinez J, Olea-Azar C, Bosch R, Meneses L, Debut A, Piña MDLN. Determination of Antioxidant Activity by Oxygen Radical Absorbance Capacity (ORAC-FL), Cellular Antioxidant Activity (CAA), Electrochemical and Microbiological Analyses of Silver Nanoparticles Using the Aqueous Leaf Extract of Solanum mammosum L. Int J Nanomedicine 2021; 16:5879-5894. [PMID: 34471354 PMCID: PMC8405165 DOI: 10.2147/ijn.s302935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The importance of studying polyphenolic compounds as natural antioxidants has encouraged the search for new methods of analysis that are quick and simple. The synthesis of silver nanoparticles (AgNPs) using plant extracts has been presented as an alternative to determine the total polyphenolic content and its antioxidant activity. METHODS In this study, aqueous leaf extract of Solanum mammosum, a species of plant endemic to South America, was used to produce AgNPs. The technique of oxygen radical absorption capacity using fluorescein (ORAC-FL) was used to measure antioxidant activity. The oxidation of the 2´,7´-dichlorodihydrofluorescein diacetate (DCFH2-DA) as fluorescent probe was used to measure cellular antioxidant activity (CAA). Electrochemical behavior was also examined using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Total polyphenolic content (TPH) was analyzed using the Folin-Ciocalteu method, and the major polyphenolic compound was analyzed by high performance liquid chromatography with diode array detector (HPLC/DAD). Finally, a microbial analysis was conducted using Escherichia coli and Bacillus sp. RESULTS The average size of nanoparticles was 5.2 ± 2.3 nm measured by high-resolution transmission electron microscopy (HR-TEM). The antioxidant activity measured by ORAC-FL in the extract and nanoparticles were 3944 ± 112 and 637.5 ± 14.8 µM ET/g of sample, respectively. Cellular antioxidant activity was 14.7 ± 0.2 for the aqueous extract and 12.5 ± 0.2 for the nanoparticles. The electrochemical index (EI) was 402 μA/V for the extract and 324 μA/V for the nanoparticles. Total polyphenolic content was 826.6 ± 20.9 and 139.7 ± 20.9 mg EGA/100 g of sample. Gallic acid was the main polyphenolic compound present in the leaf extract. Microbiological analysis revealed that although leaf extract was not toxic for Escherichia coli and Bacillus sp., minor toxic activity for AgNPs was detected for both strains. CONCLUSION It is concluded that the aqueous extract of the leaves of S. mammosum contains nontoxic antioxidant compounds capable of producing AgNPs. The methods using AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Lenys Fernandez
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | | | - Josue Pozo-Martinez
- Department of Inorganic and Analytical Chemistry, University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, University of Chile, Santiago, Chile
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB), and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Lorena Meneses
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | | |
Collapse
|
49
|
De Silva C, Nawawi NM, Abd Karim MM, Abd Gani S, Masarudin MJ, Gunasekaran B, Ahmad SA. The Mechanistic Action of Biosynthesised Silver Nanoparticles and Its Application in Aquaculture and Livestock Industries. Animals (Basel) 2021; 11:ani11072097. [PMID: 34359224 PMCID: PMC8300251 DOI: 10.3390/ani11072097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Nanotechnology is a rapidly developing field due to the emergence of various resistant pathogens and the failure of commercial methods of treatment. AgNPs have emerged as one of the best nanotechnology metal nanoparticles due to their large surface-to-volume ratio and success and efficiency in combating various pathogens over the years, with the biological method of synthesis being the most effective and environmentally friendly method. The primary mode of action of AgNPs against pathogens are via their cytotoxicity, which is influenced by the size and shape of the nanoparticles. The cytotoxicity of the AgNPs gives rise to various theorized mechanisms of action of AgNPs against pathogens such as activation of reactive oxygen species, attachment to cellular membranes, intracellular damage and inducing the viable but non-culturable state (VBNC) of pathogens. This review will be centred on the various theorized mechanisms of actions and its application in the aquaculture, livestock and poultry industries. The application of AgNPs in aquaculture is focused around water treatment, disease control and aquatic nutrition, and in the livestock application it is focused on livestock and poultry.
Collapse
Affiliation(s)
- Catrenar De Silva
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (C.D.S.); (S.A.G.)
| | - Norazah Mohammad Nawawi
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia;
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Timur Tambahan, Bestari Jaya 45600, Selangor, Malaysia
| | - Murni Marlina Abd Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia;
- Laboratory of Sustainable Aquaculture and Aquatic Sciences, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Shafinaz Abd Gani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (C.D.S.); (S.A.G.)
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia;
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Taman Connaught, Kuala Lumpur 56000, Malaysia;
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (C.D.S.); (S.A.G.)
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
50
|
Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A. Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis. Mini Rev Med Chem 2021; 21:245-265. [PMID: 33198616 DOI: 10.2174/1389557520999201116163012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Metal nanoparticles are nanosized entities with dimensions of 1-100 nm that are increasingly in demand due to applications in diverse fields like electronics, sensing, environmental remediation, oil recovery and drug delivery. Metal nanoparticles possess large surface energy and properties different from bulk materials due to their small size, large surface area with free dangling bonds and higher reactivity. High cost and pernicious effects associated with the chemical and physical methods of nanoparticle synthesis are gradually paving the way for biological methods due to their eco-friendly nature. Considering the vast potentiality of microbes and plants as sources, biological synthesis can serve as a green technique for the synthesis of nanoparticles as an alternative to conventional methods. A number of reviews are available on green synthesis of nanoparticles but few have focused on covering the entire biological agents in this process. Therefore present paper describes the use of various living organisms like bacteria, fungi, algae, bryophytes and tracheophytes in the biological synthesis of metal nanoparticles, the mechanisms involved and the advantages associated therein.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | | | - Ahmed M Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia, Egypt
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Govind Gupta
- Sage School of Agriculture, Sage University, Bhopal, India
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|