1
|
de Almeida Chuffa LG, Seiva FRF, Silveira HS, Cesário RC, da Silva Tonon K, Simão VA, Zuccari DAPC, Reiter RJ. Melatonin regulates endoplasmic reticulum stress in diverse pathophysiological contexts: A comprehensive mechanistic review. J Cell Physiol 2024; 239:e31383. [PMID: 39039752 DOI: 10.1002/jcp.31383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Henrique S Silveira
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Karolina da Silva Tonon
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinicius Augusto Simão
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Debora Aparecida P C Zuccari
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, Texas, USA
| |
Collapse
|
2
|
Singh A, Anjum B, Naz Q, Raza S, Sinha RA, Ahmad MK, Mehdi AA, Verma N. Night shift-induced circadian disruption: links to initiation of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and risk of hepatic cancer. HEPATOMA RESEARCH 2024:2394-5079.2024.88. [PMID: 39525867 PMCID: PMC7616786 DOI: 10.20517/2394-5079.2024.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The circadian system plays a crucial role in regulating metabolic homeostasis at both systemic and tissue levels by synchronizing the central and peripheral clocks with exogenous time cues, known as zeitgebers (such as the light/dark cycle). Our body's behavioral rhythms, including sleep-wake cycles and feeding-fasting patterns, align with these extrinsic time cues. The body cannot effectively rest and repair itself when circadian rhythms are frequently disrupted. In many shift workers, the internal rhythms fail to fully synchronize with the end and start times of their shifts. Additionally, exposure to artificial light at night (LAN), irregular eating patterns, and sleep deprivation contribute to circadian disruption and misalignment. Shift work and jet lag disrupt the normal circadian rhythm of liver activity, resulting in a condition known as "circadian disruption". This disturbance adversely affects the metabolism and homeostasis of the liver, contributing to excessive fat accumulation and abnormal liver function. Additionally, extended working hours, such as prolonged night shifts, may worsen the progression of non-alcoholic fatty liver disease (NAFLD) toward non-alcoholic steatohepatitis (NASH) and increase disease severity. Studies have demonstrated a positive correlation between night shift work (NSW) and elevated liver enzymes, indicative of hepatic metabolic dysfunction, potentially increasing the risk of hepatocellular carcinoma (HCC) related to NAFLD. This review consolidates research findings on circadian disruption caused by NSW, late chronotype, jet lag, and social jet lag, drawing insights from studies involving both humans and animal models that investigate the effects of these factors on circadian rhythms in liver metabolism.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Physiology, King George’s Medical University, Lucknow226003, India
| | - Baby Anjum
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Qulsoom Naz
- Department of Medicine, King George’s Medical University, Lucknow226003, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | | | | | - Narsingh Verma
- Hind Institute of Medical Sciences, Sitapur 261304, India
| |
Collapse
|
3
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
4
|
Mohamed MR, Osman SA, Hassan AA, Raafat AI, Refaat MM, Fathy SA. Gemcitabine and synthesized silver nanoparticles impact on chemically induced hepatocellular carcinoma in male rats. Int J Immunopathol Pharmacol 2024; 38:3946320241263352. [PMID: 39046434 PMCID: PMC11271163 DOI: 10.1177/03946320241263352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/02/2024] [Indexed: 07/25/2024] Open
Abstract
Objective: Gemcitabine (GEM) is a deoxycytidine analog chemotherapeutic drug widely used to treat many cancers. Silver nanoparticles (AgNPs) are important nanomaterials used to treat many diseases. Using gamma radiation in nanoparticle preparation is a new eco-friendly method. This study aims to evaluate the efficiency of co-treating gemcitabine and silver nanoparticles in treating hepatocellular carcinoma. Method: The AgNPs were characterized using UV-visible spectroscopy, XRD, TEM, and EDX. The MTT cytotoxicity in vitro assay of gemcitabine, doxorubicin, and cyclophosphamide was assessed against Wi38 normal fibroblast and HepG2 HCC cell lines. After HCC development, rats received (10 µg/g b.wt.) of AgNPs three times a week for 4 weeks and/or GEM (5 mg/kg b.wt.) twice weekly for 4 weeks. Liver function enzymes were investigated. Cytochrome P450 and miR-21 genes were studied. Apoptosis was determined by using flow cytometry, and apoptotic modifications in signaling pathways were evaluated via Bcl-2, Bax, Caspase-9, and SMAD-4. Results: The co-treatment of GEM and AgNPs increased apoptosis by upregulating Bax and caspase 9 while diminishing Bcl2 and SMAD4. It also improved cytochrome P450 m-RNA relative expression. The results also proved the cooperation between GEM and AgNPs in deactivating miR21. The impact of AgNPs as an adjuvant treatment with GEM was recognized. Conclusions: The study showed that co-treating AgNPs and GEM can improve the efficiency of GEM alone in treating HCC. This is achieved by enhancing intrinsic and extrinsic apoptotic pathways while diminishing some drawbacks of using GEM alone.
Collapse
Affiliation(s)
- Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Soheir A Osman
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Asmaa A Hassan
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Refaat
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shadia A Fathy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Pan L, E T, Xu C, Fan X, Xia J, Liu Y, Liu J, Zhao J, Bao N, Zhao Y, Sun H, Qin G, Farouk MH. The apoptotic effects of soybean agglutinin were induced through three different signal pathways by down-regulating cytoskeleton proteins in IPEC-J2 cells. Sci Rep 2023; 13:5753. [PMID: 37031286 PMCID: PMC10082828 DOI: 10.1038/s41598-023-32951-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
Soybean agglutinin (SBA) is a main anti-nutritional factor in soybean. SBA exhibits its anti-nutritional functions by binding to intestinal epithelial cells. Keratin8 (KRT8), Keratin18 (KRT18) and Actin (ACTA) are the representative SBA-specific binding proteins. Such cytoskeletal proteins act a crucial role in different cell activities. However, limited reports reveal what the signal transduction pathway of apoptosis caused by SBA when binding to KRT8, KRT18 and ACTA. We aimed to evaluate the effects of SBA on cell apoptosis and the expression of the cytoskeletal protein (KRT8, KRT18 and ACTA), reveal the roles of these cytoskeletal proteins or their combinations on SBA-induced cell apoptosis in IPEC-J2 cell line, evaluate the influences of SBA on the mitochondria, endoplasmic reticulum stress and death receptor-mediated apoptosis signal pathway and to show the roles of KRT8, KRT18 and ACTA in different apoptosis signal pathways induced by SBA. The results showed that SBA induced the IPEC-J2 cell apoptosis and decreased the mRNA expression of KRT8, KRT18 and ACTA (p < 0.05). The degree of effect of three cytoskeleton proteins on cell apoptosis was ACTA > KRT8 > KRT18. The roles of these three cytoskeletal proteins on IPEC-J2 apoptotic rates had a certain accumulation effect. SBA up-regulated mitochondrial fission variant protein (FIS1) and fusion protein (Mfn2) promoted CytC and AIF in mitochondria to enter the cytoplasm, activated caspase-9 and caspase-3, damaged or declined mitochondrial function and reduced ATP synthesis (p < 0.05). Also, SBA up-regulated the expression of GRP78, XBP-1, eIF2α, p-eIF2α and CHOP (p < 0.05), down-regulated the expression level of ASK1 protein (p < 0.05). SBA led to the recruitment of FADD to the cytoplasmic membrane and increased the expression of FasL, resulting in caspase-8 processing. SBA up-regulated the expression level of Bax protein and decreased cytosolic Bcl-2 and Bid (p < 0.05). In addition, there was a significant negative correlation between the gene expression of cytoskeleton proteins and apoptosis, as well as the expression of key proteins of apoptosis-related signal transduction pathways. In conclusion, SBA induced the activation of the mitochondria, endoplasmic reticulum stress and the death receptor-mediated apoptosis signal pathway and the crosstalk between them. The effect of SBA on these three pathways was mainly exhibited via down-regulation of the mRNA expression of the three cytoskeletal expressions. This study elucidates the molecular mechanism and signaling pathway of SBA that lead to apoptosis from the perspective of cell biology and molecular biology and provides a new perspective on the toxicity mechanism of other food-derived anti-nutrients, medical gastrointestinal health and related cancer treatment.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tianjiao E
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Chengyu Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xiapu Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jiajia Xia
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jiawei Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jinpeng Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hui Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
6
|
Martiniakova M, Kovacova V, Mondockova V, Zemanova N, Babikova M, Biro R, Ciernikova S, Omelka R. Honey: A Promising Therapeutic Supplement for the Prevention and Management of Osteoporosis and Breast Cancer. Antioxidants (Basel) 2023; 12:567. [PMID: 36978815 PMCID: PMC10045300 DOI: 10.3390/antiox12030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Osteoporosis and breast cancer are serious diseases that have become a significant socioeconomic burden. There are biochemical associations between the two disorders in terms of the amended function of estrogen, receptor activator of nuclear factor kappa beta ligand, oxidative stress, inflammation, and lipid accumulation. Honey as a functional food with high antioxidant and anti-inflammatory properties can contribute to the prevention of various diseases. Its health benefits are mainly related to the content of polyphenols. This review aims to summarize the current knowledge from in vitro, animal, and human studies on the use of honey as a potential therapeutic agent for osteoporosis and breast cancer. Preclinical studies have revealed a beneficial impact of honey on both bone health (microstructure, strength, oxidative stress) and breast tissue health (breast cancer cell proliferation and apoptosis, tumor growth rate, and volume). The limited number of clinical trials, especially in osteoporosis, indicates the need for further research to evaluate the potential benefits of honey in the treatment. Clinical studies related to breast cancer have revealed that honey is effective in increasing blood cell counts, interleukin-3 levels, and quality of life. In summary, honey may serve as a prospective therapeutic supplement for bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
7
|
A novel mechanistic approach for the anti-fibrotic potential of rupatadine in rat liver via amendment of PAF/NF-ĸB p65/TGF-β1 and hedgehog/HIF-1α/VEGF trajectories. Inflammopharmacology 2023; 31:845-858. [PMID: 36811777 PMCID: PMC10140091 DOI: 10.1007/s10787-023-01147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023]
Abstract
Hepatic fibrosis is one of the major worldwide health concerns which requires tremendous research due to the limited outcomes of the current therapies. The present study was designed to assess, for the first time, the potential therapeutic effect of rupatadine (RUP) in diethylnitrosamine (DEN)-induced liver fibrosis and to explore its possible mechanistic actions. For the induction of hepatic fibrosis, rats were treated with DEN (100 mg/kg, i.p.) once weekly for 6 consecutive weeks, and on the 6th week, RUP (4 mg/kg/day, p.o.) was administered for 4 weeks. Treatment with RUP ameliorated changes in body weights, liver indices, liver function enzymes, and histopathological alterations induced by DEN. Besides, RUP amended oxidative stress, which led to the inhibition of PAF/NF-κB p65-induced inflammation, and, subsequently, prevention of TGF-β1 elevation and HSCs activation as indicated by reduced α-SMA expression and collagen deposition. Moreover, RUP exerted significant anti-fibrotic and anti-angiogenic effects by suppressing Hh and HIF-1α/VEGF signaling pathways. Our results highlight, for the first time, a promising anti-fibrotic potential of RUP in rat liver. The molecular mechanisms underlying this effect involve the attenuation of PAF/NF-κB p65/TGF-β1 and Hh pathways and, subsequently, the pathological angiogenesis (HIF-1α/VEGF).
Collapse
|
8
|
Hamed AR, Yahya SMM, Nabih HK. Anti-drug resistance, anti-inflammation, and anti-proliferation activities mediated by melatonin in doxorubicin-resistant hepatocellular carcinoma: in vitro investigations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1117-1128. [PMID: 36651944 DOI: 10.1007/s00210-023-02385-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the major life-threatening primary liver malignancy in both sexes all over the world. Unfortunately, the majority of patients are diagnosed at later stages because HCC does not elicit obvious symptoms during its early incidence. Consequently, most individuals escape the first-line HCC treatments and are treated with chemotherapy. Regrettably, the therapeutic outcomes for those patients are usually poor because of the development of multidrug resistance phenomena. Furthermore, most anti-HCC therapies cause severe undesired side effects that notably interfere with the life quality of such patients. Accordingly, there is an important need to search for an alternative therapeutic drug or adjuvant which is more efficient with safe or even minimal side effects for HCC treatment. Melatonin was recently reported to exert intrinsic antitumor activity in different cancers. However, the regulatory pathways underlying the antitumor activity of melatonin are poorly understood in resistant liver cells. Furthermore, a limited number of studies have addressed the therapeutic role of melatonin in HCC cells resistant to doxorubicin chemotherapy. In this study, we investigated the antitumor effects of melatonin in doxorubicin-resistant HepG2 cells and explored the regulatory pivotal targets underlying these effects. To achieve our aim, an MTT assay was used to calculate the 50% inhibitory concentration of melatonin and evaluate its antiproliferative effect on resistant cells. Additionally, qRT-PCR was used to quantify genes having a role in drug resistance phenotype (ABCB1, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2); apoptosis (caspases-3, and -7, Bcl2, Bax, and p53); anti-oxidation (NRF2); expression of melatonin receptors (MT1, MT2, and MT3); besides, programmed death receptor PD-1 gene. The active form of the caspase-3 enzyme was estimated by ELISA. A human inflammatory antibody membrane array was employed to quantify forty inflammatory factors expressed in treated cells. We observed that melatonin inhibited the proliferation of doxorubicin-resistant HepG2 cells in a dose-dependent manner after 24-h incubation time with a calculated IC50 greater than 10 mM (13.4 mM), the expression levels of genes involved in drug resistance response (ABCB1, ABCC1, ABCC5, and ABCG2) were downregulated. Also, the expression of caspase-3, Caspase-7, NRF2, and p53 genes were expressed at higher levels as compared to control (DMSO-treated cells). An active form of caspase-3 was confirmed by ELISA. Moreover, the anti-inflammatory effect of melatonin was detected through the calculated fold change to control which was reduced for various mediators that have a role in the inflammation pathway. The current findings introduce melatonin as a promising anti-cancer treatment for human-resistant HCC which could be used in combination with current chemotherapeutic regimens to improve the outcome and reduce the developed multidrug resistance.
Collapse
Affiliation(s)
- Ahmed R Hamed
- Chemistry of Medicinal Plants Department, and Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt
| | - Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
9
|
Lomovsky AI, Baburina YL, Fadeev RS, Lomovskaya YV, Kobyakova MI, Krestinin RR, Sotnikova LD, Krestinina OV. Melatonin Can Enhance the Effect of Drugs Used in the Treatment of Leukemia. BIOCHEMISTRY (MOSCOW) 2023; 88:73-85. [PMID: 37068876 DOI: 10.1134/s0006297923010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL), secreted by the pineal gland, plays an important role in regulation of various functions in the human body. There is evidence that MEL exhibits antitumor effect in various types of cancer. We studied the combined effect of MEL and drugs from different pharmacological groups, such as cytarabine (CYT) and navitoclax (ABT-737), on the state of the pool of acute myeloid leukemia (AML) tumor cell using the MV4-11 cell line as model. The combined action of MEL with CYT or ABT-737 contributed to the decrease in proliferative activity of leukemic cells, decrease in the membrane potential of mitochondria, and increase in the production of reactive oxygen species (ROS) and cytosolic Ca2+. We have shown that introduction of MEL together with CYT or ABT-737 increases expression of the C/EBP homologous protein (CHOP) and the autophagy marker LC3A/B and decreases expression of the protein disulfide isomerase (PDI) and binding immunoglobulin protein (BIP), and, therefore, could modulate endoplasmic reticulum (ER) stress and initiate autophagy. The findings support an early suggestion that MEL is able to provide benefits for cancer treatment and be considered as an adjunct to the drugs used in cancer therapy.
Collapse
Affiliation(s)
- Alexey I Lomovsky
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yulia L Baburina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yana V Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman R Krestinin
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Linda D Sotnikova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Krestinina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
10
|
Gómez-Sierra T, Jiménez-Uribe AP, Ortega-Lozano AJ, Ramírez-Magaña KJ, Pedraza-Chaverri J. Antioxidants affect endoplasmic reticulum stress-related diseases. VITAMINS AND HORMONES 2022; 121:169-196. [PMID: 36707134 DOI: 10.1016/bs.vh.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The endoplasmic reticulum (ER) is a complex multifunctional organelle that maintains cell homeostasis. Intrinsic and extrinsic factors alter ER functions, including the rate of protein folding that triggers the accumulation of misfolded proteins and alters homeostasis, thus generating stress in the ER, which activates the unfolded protein response (UPR) pathway to promote cell survival and restore their homeostasis; however, if the damage is not corrected, it could also trigger cell death. In addition, ER stress and oxidative stress are closely related because excessive production of reactive oxygen species (ROS), a well-known inducer of ER stress, promotes the accumulation of misfolded proteins; at the same time, the ER stress enhances ROS production, generating a pathological cycle. Furthermore, it has been described that the dysregulation of the UPR contributes to the progression of various diseases, so the use of compounds capable of regulating ER stress, such as antioxidants, has been used in several experimental models of diseases to alleviate the damage induced by the maladaptive signaling of the UPR, the mechanism of action of antioxidants generally is dose-dependent, and it is specific in each tissue and pathology, could decrease or enhance specific proteins of the UPR to have beneficial or detrimental effects.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Alexis Paulina Jiménez-Uribe
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Ariadna Jazmín Ortega-Lozano
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
11
|
Florido J, Martinez‐Ruiz L, Rodriguez‐Santana C, López‐Rodríguez A, Hidalgo‐Gutiérrez A, Cottet‐Rousselle C, Lamarche F, Schlattner U, Guerra‐Librero A, Aranda‐Martínez P, Acuña‐Castroviejo D, López LC, Escames G. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. J Pineal Res 2022; 73:e12824. [PMID: 35986493 PMCID: PMC9541246 DOI: 10.1111/jpi.12824] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
The oncostatic effects of melatonin correlate with increased reactive oxygen species (ROS) levels, but how melatonin induces this ROS generation is unknown. In the present study, we aimed to elucidate the two seemingly opposing actions of melatonin regarding its relationship with free radicals. We analyzed the effects of melatonin on head and neck squamous cell carcinoma cell lines (Cal-27 and SCC-9), which were treated with 0.5 or 1 mM melatonin. We further examined the potential effects of melatonin to induce ROS and apoptosis in Cal-27 xenograft mice. Here we report that melatonin mediates apoptosis in head and neck cancer by driving mitochondrial reverse electron transport (RET) to induce ROS production. Melatonin-induced changes in tumoral metabolism led to increased mitochondrial activity, which, in turn, induced ROS-dependent mitochondrial uncoupling. Interestingly, mitochondrial complex inhibitors, including rotenone, abolished the ROS elevation indicating that melatonin increased ROS generation via RET. Melatonin also increased membrane potential and CoQ10 H2 /CoQ10 ratio to elevate mitochondrial ROS production, which are essential conditions for RET. We found that genetic manipulation of cancer cells with alternative oxidase, which transfers electrons from QH2 to oxygen, inhibited melatonin-induced ROS generation, and apoptosis. RET restored the melatonin-induced oncostatic effect, highlighting the importance of RET as the site of ROS production. These results illustrate that RET and ROS production are crucial factors in melatonin's effects in cancer cells and establish the dual effect of melatonin in protecting normal cells and inducing apoptosis in cancer cells.
Collapse
Affiliation(s)
- Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Laura Martinez‐Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - César Rodriguez‐Santana
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Alba López‐Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Agustín Hidalgo‐Gutiérrez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Cécile Cottet‐Rousselle
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Frédéric Lamarche
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Uwe Schlattner
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Ana Guerra‐Librero
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Paula Aranda‐Martínez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Darío Acuña‐Castroviejo
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Luis C. López
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| |
Collapse
|
12
|
Understanding the Mechanism of Action of Melatonin, Which Induces ROS Production in Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11081621. [PMID: 36009340 PMCID: PMC9404709 DOI: 10.3390/antiox11081621] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. In this context, tumor cells have an altered redox balance compared to normal cells, which can be targeted as an antitumoral therapy by ROS levels and by decreasing the capacity of the antioxidant system, leading to programmed cell death. Melatonin is of particular importance in the development of innovative cancer treatments due to its oncostatic impact and lack of adverse effects. Despite being widely recognized as a pro-oxidant molecule in tumor cells, the mechanism of action of melatonin remains unclear, which has hindered its use in clinical treatments. The current review aims to describe and clarify the proposed mechanism of action of melatonin inducing ROS production in cancer cells in order to propose future anti-neoplastic clinical applications.
Collapse
|
13
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Miguel FM, Picada JN, da Silva JB, Schemitt EG, Colares JR, Hartmann RM, Marroni CA, Marroni NP. Melatonin Attenuates Inflammation, Oxidative Stress, and DNA Damage in Mice with Nonalcoholic Steatohepatitis Induced by a Methionine- and Choline-Deficient Diet. Inflammation 2022; 45:1968-1984. [PMID: 35419738 DOI: 10.1007/s10753-022-01667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a disease with a high incidence worldwide, but its diagnosis and treatment are poorly managed. In this study, NASH pathophysiology and DNA damage biomarkers were investigated in mice with NASH treated and untreated with melatonin (MLT). C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet for 4 weeks to develop NASH. Melatonin was administered at 20 mg/kg during the last 2 weeks. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured, and hepatic tissue was dissected for histological analysis, evaluation of lipoperoxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as nuclear factor-erythroid 2 (Nrf2), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), and transforming growth factor beta (TGF-β) expression by immunohistochemistry. DNA damage was evaluated using Comet assay, while a micronucleus test in bone marrow was performed to assess the genomic instability associated with the disease. Melatonin decreased AST and ALT, liver inflammatory processes, balloonization, and fibrosis in mice with NASH, decreasing TNF-α, iNOS, and TGF-β, as well as oxidative stress, shown by reducing lipoperoxidation and intensifying Nrf2 expression. The SOD and GPx activities were increased, while CAT was decreased by treatment with MLT. Although the micronucleus frequency was not increased in mice with NASH, a protective effect on DNA was observed with MLT treatment in blood and liver tissues using Comet assay. As conclusions, MLT slows down the progression of NASH, reducing hepatic oxidative stress and inflammatory processes, inhibiting DNA damage via anti-inflammatory and antioxidant actions.
Collapse
Affiliation(s)
- Fabiano Moraes Miguel
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied To Health, Lutheran University of Brazil, Avenida Farroupilha, 8001, CEP 92425900, Canoas, RS, Brazil.,Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied To Health, Lutheran University of Brazil, Avenida Farroupilha, 8001, CEP 92425900, Canoas, RS, Brazil.
| | - Juliana Bondan da Silva
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied To Health, Lutheran University of Brazil, Avenida Farroupilha, 8001, CEP 92425900, Canoas, RS, Brazil
| | - Elizângela Gonçalves Schemitt
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil
| | - Josieli Raskopf Colares
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil
| | - Renata Minuzzo Hartmann
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil
| | - Cláudio Augusto Marroni
- Department of Gastroenterology and Hepatology, Postgraduate Program - Hepatology, Federal University of Health Sciences, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite, 245, CEP 90050170, Porto Alegre, RS, Brazil
| | - Norma Possa Marroni
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil.,Postgraduate Program in Biological Sciences - Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500, RS, CEP 90050170, Porto Alegre, Brazil
| |
Collapse
|
15
|
Isatin Counteracts Diethylnitrosamine/2-Acetylaminofluorene-Induced Hepatocarcinogenesis in Male Wistar Rats by Upregulating Anti-Inflammatory, Antioxidant, and Detoxification Pathways. Antioxidants (Basel) 2022; 11:antiox11040699. [PMID: 35453384 PMCID: PMC9027254 DOI: 10.3390/antiox11040699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents around 85% of all known types of liver cancers and is estimated to be the fifth most common cause of cancer-related death worldwide. The current study assessed the preventive efficacy of isatin on diethylnitrosamine (DENA)/2-acetylaminofluorene (2-AAF)-induced hepatocarcinogenesis in male Wistar rats and investigated the underlying cellular and molecular mechanisms. HCC was initiated by intraperitoneal injection of DENA (150 mg/kg/week) for two weeks, followed by oral 2-AAF (20 mg/kg) every other day for three successive weeks. Oral isatin or vehicle (control) was administered at 25 mg/kg for 20 weeks during and following HCC induction. Isatin ameliorated the deleterious effects of DENA/2-AAF on liver function as evidenced by reduced serum levels of AST, ALT, total bilirubin, albumin, and liver tumor biomarkers (CA19.9 and AFP) compared to control DENA/2-AAF-treated rats. Histopathological evaluations demonstrated that isatin-mediated protection against hepatocarcinogenesis was accompanied by a decline in hepatic lipid peroxidation, a marker of oxidative stress, and enhanced antioxidant capacity, as evidenced by increased glutathione and superoxide dismutase expression. Isatin treatment also upregulated expression of the major stress-response transcription factor Nrf2 and the detoxifying enzymes NAD(P)H quinine oxidoreductase and glutathione-S-transferase alpha 2 and downregulated expression of the proliferation marker Ki67. Moreover, isatin significantly reduced the DENA/2-AAF-induced decrease in hepatic expression of anti-apoptotic Bcl2 and the DENA/2-AAF-induced increases in pro-inflammatory and pro-apoptotic factors (TNF-α, NF-κB p50, NF-κB p65, p53, and caspase 3). Thus, it can be concluded that isatin may protect against chemically induced hepatocarcinogenesis by enhancing cellular antioxidant, anti-inflammatory, and detoxification mechanisms, in part through upregulation of the Nrf2 signaling pathway.
Collapse
|
16
|
Mohamed H, AL-Ghareeb M, Abd-Allah R. Pharmacological Evaluation of Novel 1,2,4-triazine Derivatives Containing
Thiazole Ring against Hepatocellular Carcinoma. CURRENT BIOACTIVE COMPOUNDS 2022; 18. [DOI: 10.2174/1573407217666210910093142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 09/01/2023]
Abstract
Background:
New 6-hydroxy-5-(p-hydroxybenzylidene)-3-phenyl-2- [(5-pchlorophenyl)-
1,3-thiazol-2-yl]-1, 2, 4-triazine derivatives containing a thiazole ring were synthesised
as potential antitumor agents.
Methods:
Cytotoxicity of compounds (3) and (4) was evaluated in human hepatocellular carcinoma
(HCC) cell lines (HepG2); compound (3) showed more cytotoxicity (IC50=9.0μg/ml) than compound
(4) (IC50=18.40μg/ml) using doxorubicin as standard. The degree of toxicity of compound
(3) was assessed by the LD50 with its anticancer performance by suppressing tumor angiogenesis
against diethylnitrosamine (DENA) induced hepatocellular carcinoma (HCC) in male rat model.
Results :
Carcinogenic rats showed a significant increase in markers of angiogenesis, tumour
growth, and liver function tests and malondialdehyde level coupled with reduced hepatic glutathione
level and caspase-3 activity. The distribution of compound (3) to animals after the development
of HCC improved biochemical alterations from a DENA chemical carcinogen that is confirmed
by hepatic histopathology.
Conclusion:
Compound 3 perhaps utilized as a strong applicant for newly therapeutic protocols
against hepatocarcinogenesis by controlling tumor angiogenesis and renovating the activity of hepatic
marker enzymes in addition to reversing the oxidant-antioxidant imbalance in corporation with
amelioration of histopathology. While the trial supports the use of compound 3 for improved HCC
outcome and the toxicity and side effects should be considered.
Collapse
Affiliation(s)
- Heba Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy
Authority, Nasr City, Cairo, Egypt
| | - Mohamed AL-Ghareeb
- Chemistry Department, Faculty of Science, Port-Said University, Port Said,
Egypt
| | - Raghda Abd-Allah
- Chemistry Department, Faculty of Science, Port-Said University, Port Said,
Egypt
| |
Collapse
|
17
|
Colares JR, Hartmann RM, Schemitt EG, Fonseca SRB, Brasil MS, Picada JN, Dias AS, Bueno AF, Marroni CA, Marroni NP. Melatonin prevents oxidative stress, inflammatory activity, and DNA damage in cirrhotic rats. World J Gastroenterol 2022; 28:348-364. [PMID: 35110954 PMCID: PMC8771613 DOI: 10.3748/wjg.v28.i3.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cirrhosis is an important health problem characterized by a significant change in liver parenchyma. In animals, this can be reproduced by an experimental model of bile duct ligation (BDL). Melatonin (MLT) is a physiological hormone synthesized from serotonin that has been studied for its beneficial properties, including its antioxidant potential.
AIM To evaluate MLT’s effects on oxidative stress, the inflammatory process, and DNA damage in an experimental model of secondary biliary cirrhosis.
METHODS Male Wistar rats were divided into 4 groups: Control (CO), CO + MLT, BDL, and BDL + MLT. MLT was administered (20 mg/kg) daily beginning on day 15 after biliary obstruction. On day 29 the animals were killed. Blood samples, liver tissue, and bone marrow were collected for further analysis.
RESULTS BDL caused changes in biochemical and histological parameters and markers of inflammatory process. Thiobarbituric acid (0.46 ± 0.01) reactive substance levels, superoxide dismutase activity (2.30 ± 0.07) and nitric oxide levels (2.48 ± 0.36) were significantly lower (P < 0.001) n the groups that received MLT. DNA damage was also lower (P < 0.001) in MLT-treated groups (171.6 ± 32.9) than the BDL-only group (295.5 ± 34.8). Tissue damage and the expression of nuclear factor kappa B, interleukin-1β, Nrf2, NQO1 and Hsp70 were significantly lower in animals treated with MLT (P < 0.001).
CONCLUSION When administered to rats with BDL-induced secondary biliary cirrhosis, MLT effectively restored the evaluated parameters.
Collapse
Affiliation(s)
- Josieli R Colares
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Renata M Hartmann
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Elizângela G Schemitt
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Sandielly R B Fonseca
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Marilda S Brasil
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Jaqueline N Picada
- Cellular and Molecular Biology Program, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil
| | - Alexandre S Dias
- Pneumological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Aline F Bueno
- Pneumological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Cláudio A Marroni
- Posgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Norma P Marroni
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| |
Collapse
|
18
|
Abdel-Aziz N, El-Sonbaty SM, Hegazy MGA. Ameliorative potential of manganese nanoparticles with low-level ionizing radiation against experimentally induced hepatocarcinogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65474-65486. [PMID: 34322790 DOI: 10.1007/s11356-021-15571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology is a rich field with infinite possibilities of drug designs for cancer treatment. We aimed to biosynthesize manganese nanoparticles (Mn NPs) using Lactobacillus helveticus to investigate its anticancer synergistic effect with low-dose gamma radiation on HCC-induced rats. Diethylnitrosamine (DEN) (20 mg/kg BW, 5 times a week for 6 weeks) induced HCC in rats. Rats received Mn NPs (5 mg/kg BW/day) by gastric gavage over 4 weeks concomitant with single dose of gamma radiation (γ-R) (0.25 Gy). Characterization, cytotoxicity, and anticancer activity of Mn NPs were evaluated. DEN-induced significant liver dysfunction (alanine transaminase activity ALT, total proteins, and albumin levels) associated with significant increase in lipid peroxidation levels with reduction in super oxide dismutase activity. Furthermore, DEN intoxication is sponsored for remarkable increase in levels of Alfa-fetoprotein, tumor necrosis factor α, vascular endothelial growth factor, and transforming growth factor beta with remarkable decrease in caspase 3 and cytochrome c. Treatment with Mn NPs (4.98-11.58 nm) and single dose gamma radiation evoked significant repair in ALT, total protein, and albumin accompanied with balanced oxidative status, diminished inflammatory biomarkers, angiogenic factor, and growth factor with restoration in apoptotic factors. Mn NPs revealed obvious in vitro cytotoxic activity against HepG2 cell line in a dose-dependent manner. Our findings were well appreciated with the histopathological study. In conclusion, a new approach of the single or combined use of Mn NPs with low-dose γ-radiation regimens as promising paradigm for HCC treatment is recommended.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Marwa G A Hegazy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
19
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
20
|
Ding J, Qi C, Li J, Huang C, Zhang J, Zhang Y, Li Y, Fan B. Se-Methylselenocysteine Alleviates Liver Injury in Diethylnitrosamine (DEN)-Induced Hepatocellular Carcinoma Rat Model by Reducing Liver Enzymes, Inhibiting Angiogenesis, and Suppressing Nitric Oxide (NO)/Nitric Oxide Synthase (NOS) Signaling Pathway. Med Sci Monit 2021; 27:e929255. [PMID: 34344856 PMCID: PMC8351367 DOI: 10.12659/msm.929255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma is the third leading cause of cancer-associated mortality. This study aimed to investigate the effects of se-methylselenocysteine (MSC) on oncogenesis of diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Material/Methods A hepatocellular carcinoma rat model was established by administering DEN. Rat models were divided into Model (0.1 mg/kg MSC), Model+0.3 mg/kg MSC, Model+1 mg/kg MSC, and Model+3 mg/kg MSC groups. A Normal control group consisted of mice not administered MSC. Hematoxylin and eosin staining was used to determine liver injury. Immunohistochemical analysis was conducted to identify CD34 and vascular endothelial growth factor (VEGF) expression. VEGF gene transcription was detected with RT-PCR. Biochemical analyses were performed to determine alanine aminotransferase, aspartate aminotransferase, total bilirubin, γ-glutamyl transpeptidase, alkaline phosphatase, and albumin levels in serum, and nitric oxide (NO)/nitric oxide synthase (NOS) levels in liver tissues. Transmission electron microscopy was used to observe the ultra-microstructures of hepatocytes. Results MSC treatment markedly alleviated liver injury and nuclear lesions in the treatment groups compared to the Model group. MSC treatment significantly improved liver functions in the treatment groups compared to the Model group (P<0.05). MSC treatment significantly decreased CD34 expression and NO and NOS levels in liver tissues and suppressed VEGF expression compared to the Model group (all P<0.05). Conclusions MSC administration alleviated liver injury in a DEN-induced hepatocellular carcinoma rat model through reducing liver enzymes, inhibiting angiogenesis, and suppressing the NO/NOS signaling pathway.
Collapse
Affiliation(s)
- Jun Ding
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Chuang Qi
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Jinmao Li
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Chuying Huang
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Jiayao Zhang
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Yong Zhang
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Yi Li
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Bin Fan
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| |
Collapse
|
21
|
Seasonal dynamics of plant pollinator networks in agricultural landscapes: how important is connector species identity in the network? Oecologia 2021; 196:825-837. [PMID: 34160660 DOI: 10.1007/s00442-021-04975-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Farm habitat enrichment is crucial for sustainable production of pollinator-dependent crops. Correct choice of crop and non-crop plant species in habitat management support resilient pollinator fauna and effective pollination service delivery. We identify key network metrices to recognize suitable crop and non-crop plant species for farm habitat enrichment. We also highlight the importance of seasonal variation of the key plant and pollinator species that will crucially inform farm management. Crop species played a key role in maintaining plant-pollinator network integrity. In contrast to the conventional practice of focussing on non-crop plants for pollination service restoration, we find crop plants across seasons hold a key role in maintaining healthy plant-pollinator networks. Our study highlights the importance of non-bee pollinators especially, flies and butterflies in sustaining healthy plant-pollinator network. Bees were important as connector species and controlled other species in the network. Only 16.67% bees and 33.33% of plant species acted as connector species. Our study also shows that the identity of connector species in a plant-pollinator network can change drastically across seasons.
Collapse
|
22
|
Rosa CGS, Colares JR, da Fonseca SRB, Martins GDS, Miguel FM, Dias AS, Marroni CA, Picada JN, Lehmann M, Marroni NAP. Sarcopenia, oxidative stress and inflammatory process in muscle of cirrhotic rats - Action of melatonin and physical exercise. Exp Mol Pathol 2021; 121:104662. [PMID: 34146550 DOI: 10.1016/j.yexmp.2021.104662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Sarcopenia is one of the most common features of cirrhosis, contributing to morbidity and mortality in this population. We aimed to evaluate the effect of melatonin (MLT) and exercise (EX) on the quadriceps muscle in rats with biliary cirrhosis induced by bile duct ligation (BDL). We used 48 males (mean weight = 300 g), divided into eight groups. A 20 mg/Kg MLT dose was administered via i.p. (1 x daily), and the EX, the animals were set to swim in couples for 10 min each day. Upon completion, blood, liver, and quadriceps samples were taken for analysis. In the liver enzymes analysis and comet assay results, a reduction was observed in the groups treated with MLT with/or EX comparing to the BDL group. In the evaluation of substances that react to thiobarbituric acid (TBARS), nitric oxide levels (NO), and tumor necrosis factor-alpha levels (TNF-α), there was a significant increase in the BDL group and a reduction in the treated groups. In the activity of the superoxide dismutase enzyme (SOD) and interleukin-10 levels (IL-10) concentrations, there was a significant increase in the treated groups of the BDL group. Histological analysis revealed muscle hypotrophy in the BDL group in comparison with the control group (CO) and increased muscle mass in the treated groups. There was an increase in weight gain and phase angle in the groups treated with MLT with/or EX comparing to the BDL group. We suggest that treatments may contribute to the reduction of muscle changes in cirrhotic patients.
Collapse
Affiliation(s)
- Carlos Gustavo Sakuno Rosa
- Postgraduate in Molecular and Cellular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Josieli Raskopf Colares
- Postgraduate in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Gabriela Dos Santos Martins
- Experimental Pneumological Sciences and Inflammation Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano Moraes Miguel
- Postgraduate in Molecular and Cellular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Alexandre Simões Dias
- Experimental Pneumological Sciences and Inflammation Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Posgratuate in Human Movement and Pneumologic Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cláudio Augusto Marroni
- Experimental Pneumological Sciences and Inflammation Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jaqueline Nascimento Picada
- Postgraduate in Molecular and Cellular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Maurício Lehmann
- Postgraduate in Molecular and Cellular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Norma Anair Possa Marroni
- Postgraduate in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Experimental Pneumological Sciences and Inflammation Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Flessa CM, Kyrou I, Nasiri-Ansari N, Kaltsas G, Papavassiliou AG, Kassi E, Randeva HS. Endoplasmic Reticulum Stress and Autophagy in the Pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Evidence and Perspectives. Curr Obes Rep 2021; 10:134-161. [PMID: 33751456 DOI: 10.1007/s13679-021-00431-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease with rising prevalence worldwide. Herein, we provide a comprehensive overview of the current knowledge supporting the role of ER stress and autophagy processes in NAFLD pathogenesis and progression. We also highlight the interrelation between these two pathways and the impact of ER stress and autophagy modulators on NAFLD treatment. RECENT FINDINGS The pathophysiological mechanisms involved in NAFLD progression are currently under investigation. The endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR) seem to contribute to its pathogenesis mainly due to high ER content in the liver which exerts significant metabolic functions and can be dysregulated. Furthermore, disruption of autophagy processes has also been identified in NAFLD. The crucial role of these two pathways in NAFLD is underlined by the fact that they have recently emerged as promising targets of therapeutic interventions. There is a greater need for finding the natural/chemical compounds and drugs which can modulate the ER stress pathway and autophagy for the treatment of NAFLD. Clarifying the inter-relation between these two pathways and their interaction with inflammatory and apoptotic mechanisms will allow the development of additional therapeutic options which can better target and reprogram the underlying pathophysiological pathways, aiming to attenuate NAFLD progression.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, B4 7ET, Birmingham, UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
24
|
Estaras M, Gonzalez-Portillo MR, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco-Fernandez G, Lopez-Guerra D, Roncero V, Salido GM, González A. Melatonin Induces Apoptosis and Modulates Cyclin Expression and MAPK Phosphorylation in Pancreatic Stellate Cells Subjected to Hypoxia. Int J Mol Sci 2021; 22:ijms22115555. [PMID: 34074034 PMCID: PMC8197391 DOI: 10.3390/ijms22115555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In certain diseases of the pancreas, pancreatic stellate cells form an important part of fibrosis and are critical for the development of cancer cells. A hypoxic condition develops within the tumor, to which pancreatic stellate cells adapt and are able to proliferate. The consequence is the growth of the tumor. Melatonin, the product of the pineal gland, is gaining attention as an agent with therapeutic potential against pancreatic cancers. Its actions on tumor cells lead, in general, to a reduction in cell viability and proliferation. However, its effects on pancreatic stellate cells subjected to hypoxia are less known. In this study, we evaluated the actions of pharmacological concentrations of melatonin (1 mM–1 µM) on pancreatic stellate cells subjected to hypoxia. The results show that melatonin induced a decrease in cell viability at the highest concentrations tested. Similarly, the incorporation of BrdU into DNA was diminished by melatonin. The expression of cyclins A and D also was decreased in the presence of melatonin. Upon treatment of cells with melatonin, increases in the expression of major markers of ER stress, namely BIP, phospho-eIF2α and ATF-4, were detected. Modulation of apoptosis was noticed as an increase in caspase-3 activation. In addition, changes in the phosphorylated state of p44/42, p38 and JNK MAPKs were detected in cells treated with melatonin. A slight decrease in the content of α-smooth muscle actin was detected in cells treated with melatonin. Finally, treatment of cells with melatonin decreased the expression of matrix metalloproteinases 2, 3, 9 and 13. Our observations suggest that melatonin, at pharmacological concentrations, diminishes the proliferation of pancreatic stellate cells subjected to hypoxia through modulation of cell cycle, apoptosis and the activation of crucial MAPKs. Cellular responses might involve certain ER stress regulator proteins. In view of the results, melatonin could be taken into consideration as a potential therapeutic agent for pancreatic fibrosis.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Manuel R. Gonzalez-Portillo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Miguel Fernandez-Bermejo
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Jose M. Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Gerardo Blanco-Fernandez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, University Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, University Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain;
| | - Gines M. Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
- Correspondence:
| |
Collapse
|
25
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm 2021; 2021:6655417. [PMID: 33746610 PMCID: PMC7943314 DOI: 10.1155/2021/6655417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved in tumor formation and progression. The epithelial-mesenchymal transition (EMT) is a fundamental process in promoting cancer cell invasion and tumor dissemination leading to metastasis, an often intractable state of the disease. Uncontrolled proliferation and persistent metabolism of cancer cells also induce oxidative stress, hypoxia, and depletion of growth factors and nutrients. These disturbances lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and induce a cellular condition called ER stress (ERS) which is counteracted by activation of the unfolded protein response (UPR). Many GPCRs modulate ERS and UPR signaling via ERS sensors, IRE1α, PERK, and ATF6, to support cancer cell survival and inhibit cell death. By regulating downstream signaling pathways such as NF-κB, MAPK/ERK, PI3K/AKT, TGF-β, and Wnt/β-catenin, GPCRs also upregulate mesenchymal transcription factors including Snail, ZEB, and Twist superfamilies which regulate cell polarity, cytoskeleton remodeling, migration, and invasion. Likewise, ERS-induced UPR upregulates gene transcription and expression of proteins related to EMT enhancing tumor aggressiveness. Though GPCRs are attractive therapeutic targets in cancer biology, much less is known about their roles in regulating ERS and EMT. Here, we will discuss the interplay in GPCR-ERS linked to the EMT process of cancer cells, with a particular focus on oncogenes and molecular signaling pathways.
Collapse
|
27
|
Fernández-Palanca P, Méndez-Blanco C, Fondevila F, Tuñón MJ, Reiter RJ, Mauriz JL, González-Gallego J. Melatonin as an Antitumor Agent against Liver Cancer: An Updated Systematic Review. Antioxidants (Basel) 2021; 10:antiox10010103. [PMID: 33445767 PMCID: PMC7828223 DOI: 10.3390/antiox10010103] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine with antioxidant, chronobiotic and anti-inflammatory properties; reduced levels of this hormone are associated with higher risk of cancer. Several beneficial effects of melatonin have been described in a broad number of tumors, including liver cancers. In this work we systematically reviewed the publications of the last 15 years that assessed the underlying mechanisms of melatonin activities against liver cancers, and its role as coadjuvant in the treatment of these tumors. Literature research was performed employing PubMed, Scopus and Web of Science (WOS) databases and, after screening, 51 articles were included. Results from the selected studies denoted the useful actions of melatonin in preventing carcinogenesis and as a promising treatment option for the primary liver tumors hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), either alone or in combination with other compounds. Different processes were modulated by the indole, such as inhibition of oxidative stress, proliferation, angiogenesis and invasion, promotion of immune system response, cell cycle arrest and apoptosis, as well as recovery of circadian rhythms and autophagy modulation. Taken together, the present systematic review highlights the evidence that document the potential role of melatonin in improving the landscape of liver tumor treatment.
Collapse
Affiliation(s)
- Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (P.F.-P.); (C.M.-B.); (F.F.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (P.F.-P.); (C.M.-B.); (F.F.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Flavia Fondevila
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (P.F.-P.); (C.M.-B.); (F.F.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - María J. Tuñón
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (P.F.-P.); (C.M.-B.); (F.F.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Russel J. Reiter
- Department of Cell Systems & Anatomy, UT Health San Antonio Long School of Medicine, San Antonio, TX 78229, USA;
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (P.F.-P.); (C.M.-B.); (F.F.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Correspondence:
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (P.F.-P.); (C.M.-B.); (F.F.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| |
Collapse
|
28
|
Melatonin Can Modulate the Effect of Navitoclax (ABT-737) in HL-60 Cells. Antioxidants (Basel) 2020; 9:antiox9111143. [PMID: 33218059 PMCID: PMC7698880 DOI: 10.3390/antiox9111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine MEL) is an indolamine that has antioxidant, anti-inflammatory and anti-tumor properties. Moreover, MEL is capable of exhibiting both anti-apoptotic and pro-apoptotic effects. In the normal cells, MEL possesses antioxidant property and has an anti-apoptotic effect, while in the cancer cells it has pro-apoptotic action. We investigated the combined effect of MEL and navitoclax (ABT-737), which promotes cell death, on the activation of proliferation in acute promyelocytic leukemia on a cell model HL-60. The combined effect of these compounds leads to a reduction of the index of mitotic activity. The alterations in the level of anti- and pro-apoptotic proteins such as BclxL, Bclw, Mcl-1, and BAX, membrane potential, Ca2+ retention capacity, and ROS production under the combined action of MEL and ABT-737 were performed. We obtained that MEL in combination with ABT-737 decreased Ca2+ capacity, dropped membrane potential, increased ROS production, suppressed the expression of anti-apoptotic proteins such as BclxL, Bclw, and Mcl-1, and enhanced the expression of pro-apoptotic BAX. Since, MEL modulates autophagy and endoplasmic reticulum (ER) stress in cancer cells, the combined effect of MEL and ABT-737 on the expression of ER stress and autophagy markers was checked. The combined effect of MEL and ABT-737 (0.2 μM) increased the expression of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), leading to a decrease in the level of binding immunoglobulin protein (BIP) followed by an increase in the level of C/EBP homologous protein (CHOP). In this condition, the expression of ERO1 decreased, which could lead to a decrease in the level of protein disulfide isomerase (PDI). The obtained data suggested that melatonin has potential usefulness in the treatment of cancer, where it is able to modulate ER stress, autophagy and apoptosis.
Collapse
|
29
|
Maleki Dana P, Reiter RJ, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Melatonin as a potential inhibitor of kidney cancer: A survey of the molecular processes. IUBMB Life 2020; 72:2355-2365. [PMID: 32918860 DOI: 10.1002/iub.2384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Studies have shown that despite the decreasing mortality rates of kidney cancer patients, its incidence is increasing. Therefore, a comprehensive re-evaluation of treatment options is necessary to provide appropriate treatments for the increasing number of patients. Moreover, the side effects caused by surgery, which is the main treatment of this disease, may lead to higher morbidity rates. Consequently, new safer approaches must be examined and considered. Major advancements have been made in the field of targeted agents as well as treatments based on immunotherapy since renal cell carcinoma (RCC) does not respond well to chemotherapy. While the therapeutic options for this cancer are increasing, the resulting complexity of selecting the best strategy for treating the patients is daunting. Moreover, each therapeutic option must be evaluated concerning toxicity, cost, and clinical advantages. Several characteristics, which are beneficial for cancer therapies have been attributed to melatonin. For decades, investigations have explored the application of melatonin in the treatment of cancer; insufficient attention has been paid to this molecule at the clinical level. Melatonin plays a role in cancer therapy due to its anti-tumor effects as well as by enhancing the efficacy of other drugs as an adjuvant. In this review, we discuss different roles of melatonin in the treatment of kidney cancer. The studies concerned with the applications of melatonin as an adjuvant in the immunotherapy of patients with kidney cancer are summarized. Also, we highlight the apoptotic and anti-angiogenic effects of melatonin on renal cancer cells which are mediated by different molecules (e.g., HIF-1 and VEGF, ADAMTS1, and MMP-9) and signaling pathways (e.g., P56, P52, and JNK). Furthermore, we take a look into available data on melatonin's ability to reduce the toxicities caused by kidney carcinogens, including ochratoxin A, potassium bromate, and Fe-NTA.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Melatonin and Mesenchymal Stem Cells as a Key for Functional Integrity for Liver Cancer Treatment. Int J Mol Sci 2020; 21:ijms21124521. [PMID: 32630505 PMCID: PMC7350224 DOI: 10.3390/ijms21124521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common hepatobiliary malignancy with limited therapeutic options. On the other hand, melatonin is an indoleamine that modulates a variety of potential therapeutic effects. In addition to its important role in the regulation of sleep–wake rhythms, several previous studies linked the biologic effects of melatonin to various substantial endocrine, neural, immune and antioxidant functions, among others. Furthermore, the effects of melatonin could be influenced through receptor dependent and receptor independent manner. Among the other numerous physiological and therapeutic effects of melatonin, controlling the survival and differentiation of mesenchymal stem cells (MSCs) has been recently discussed. Given its controversial interaction, several previous reports revealed the therapeutic potential of MSCs in controlling the hepatocellular carcinoma (HCC). Taken together, the intention of the present review is to highlight the effects of melatonin and mesenchymal stem cells as a key for functional integrity for liver cancer treatment. We hope to provide solid piece of information that may be helpful in designing novel drug targets to control HCC.
Collapse
|
31
|
Kasi R, Yeo PL, Yen NK, Koh RY, Ponnudurai G, Tiong YL, Chye SM. Melatonin Induces Apoptosis and Inhibits the Proliferation of Cancer Cells via Reactive Oxygen Species-mediated MAPK and mTOR Pathways. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212697x06666191116151114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background:
Recent human and animal studies have demonstrated the oncostatic properties
of N-acetyl-5-methoxytryptamine (melatonin) in different types of cancer. However, in few cancer
cell lines including colorectal cancer cell line (HT-29), acute T cell leukemia cell line (JURKAT)
and cervical cancer cell line (HeLa), precise oncostatic mechanism induced by melatonin is yet to be
described.
Objectives:
The aim of this study is to investigate the effects of melatonin in HT-29, JURKAT and
HeLa cells and to determine the underlying molecular mechanism.
Methods:
Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay while cell cycle, apoptosis and membrane potential were analysed by flow cytometry.
Reactive oxygen species (ROS) was detected by 2',7'.dichlorofluorescein diacetate(DCFH-DA)
staining. Protein expressions were determined by Western blot.
Results:
Our results showed that melatonin suppressed cell proliferation, increased the number of sub
G1 hypodiploid cells and cell cycle arrest in HT-29, JURKAT and HeLa cells. Besides, melatonin also
induced early and late apoptosis, although there were marked variations in responses between different
cell lines (sensitivity; HeLa > HT-29 >JURKAT). Apart from that, staining with DCHF-DA
demonstrated ROS production that was induced in a dose-dependent manner in HeLa, HT-29 and
JURKAT cells. Moreover, the apoptotic process and oncostatic effect of melatonin were seen to be
associated with extracellular-signal-regulated kinase (ERK) and stress-activated protein kinase/c-Jun
NH (2)-terminal kinase (SAPK-JNK) signalling cascades in HeLa cells. In HT-29 and JURKAT cells,
melatonin induced apoptosis via activation of p38 mitogen-activated protein kinases (p38), ERK and
SAPK-JNK signalling pathways. In all three cell lines, the apoptotic event was triggered by the
mammalian target of rapamycin (mTOR)-mediated activation of the downstream target rapamycininsensitive
companion of mTOR (RICTOR) and/or regulatory-associated protein of mTOR (RAPTOR)
proteins.
Conclusions:
Our findings confirm that melatonin induces apoptosis through reactive oxygen speciesmediated
dysregulated mitogen-activated protein kinase (MAPK) and mTOR signalling pathways in
these cancer cell lines.
Collapse
Affiliation(s)
- Reena Kasi
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Pei Ling Yeo
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ng. Khuen Yen
- School of Pharmacy, Monash University Malaysia, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Yee Lian Tiong
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
32
|
Cui C, Lin T, Gong Z, Zhu Y. Relationship between autophagy, apoptosis and endoplasmic reticulum stress induced by melatonin in osteoblasts by septin7 expression. Mol Med Rep 2020; 21:2427-2434. [PMID: 32323792 PMCID: PMC7185281 DOI: 10.3892/mmr.2020.11063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Melatonin secreted by the pineal body is associated with the occurrence and development of idiopathic scoliosis. Melatonin has a concentration-dependent dual effect on osteoblast proliferation, in which higher concentrations can inhibit osteoblast proliferation and induce apoptosis; however, the underlying mechanism remains unclear. In the present study, flow cytometry was used to demonstrate that osteoblast cells treated with melatonin exhibited significantly increased early and late stage apoptotic rates as the concentration increased. Chromatin condensation in the nucleus and apoptotic body formation could be observed using fluorescent microscopy in osteoblast cells treated with 2 mM melatonin. Western blotting results showed that there was an upregulation in the expression of apoptosis marker proteins [poly (ADP-ribose) polymerase 1 (PARP-1)], endoplasmic reticulum stress [ERS; C/EBP homologous protein (CHOP) and glucose-regulated protein, 78 kDa (GRP78)] and autophagy [microtubule-associated protein 1 light chain 3β (LC3)-I/LC3II]. PARP-1 expression was not altered when treated with ERS inhibitor 4PBA and autophagy inhibitor 3MA, whereas 4PBA or 3MA in combination with 2 mM melatonin (or the three together) significantly increased PARP-1 expression. Furthermore, the use of septin7 small interfering RNA confirmed that increased expression of GRP78 and CHOP was related to septin7, and melatonin- mediated ERS was necessary for septin7 activation. These findings suggest that ERS and autophagy might occur in the early stage of treatment with a high concentration of melatonin, and each might play a protective role in promoting survival; in a later stage, ERS and autophagy might interact and contribute to the induction of apoptosis. Overall, the results indicated that septin7 may be a target protein of melatonin-induced ERS.
Collapse
Affiliation(s)
- Cui Cui
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Lin
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zunlei Gong
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
33
|
Roshankhah S, Salahshoor M, Jalili C, Abdolmaleki A. Pentoxifylline modulation hepatotoxicity and apoptosis induced by nitrosamine in rats. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2020. [DOI: 10.4103/bbrj.bbrj_54_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Mo'men YS, Hussein RM, Kandeil MA. A novel chemoprotective effect of tiopronin against diethylnitrosamine-induced hepatocellular carcinoma in rats: Role of ASK1/P38 MAPK-P53 signalling cascade. Clin Exp Pharmacol Physiol 2019; 47:322-332. [PMID: 31663622 DOI: 10.1111/1440-1681.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Oxidative stress contributes significantly to HCC pathogenesis. In this study, we investigated the possible chemoprotective effect of the thiol group-containing compound, tiopronin, against HCC induced chemically by diethylnitrosamine (DENA) in rats. In addition, we elucidated the possible underlying molecular mechanism. Adult male Wistar rats were divided into: Control group, DENA-treated group and tiopronin + DENA-treated group. Liver function tests (ALT, AST, ALP, albumin, total and direct bilirubin) as well as alpha fetoprotein (AFP) concentration were measured in the sera of samples. Oxidative stress biomarkers such as malondialdehyde, nitric oxide, catalase and glutathione peroxidase were measured in the liver tissue homogenates. Determination of the phosphorylated apoptosis signal-regulating kinase 1 (phospho-ASK1), phospho-P38 and phospho-P53 proteins by western blotting, caspase 3 by immunofluorescence in addition to histopathological examination of the liver tissues were performed. Our results showed that tiopronin prevented the DENA-induced elevation of the liver function enzymes and AFP. It also preserved the activities of antioxidant enzymes as well as providing protection from the appearance of HCC histopathological features. Interestingly, tiopronin significantly decreased the expression level of phospho-ASK1, phospho-P38 and phospho-P53, caspase 3 in the liver tissues. These novel findings suggested that tiopronin is an antioxidant drug with a chemoprotective effect against DENA-induced HCC through maintaining the normal activity of ASK1/ P38 MAPK/ P53 signalling pathway.
Collapse
Affiliation(s)
- Yomna S Mo'men
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
35
|
Mohamed Y, Basyony MA, El-Desouki NI, Abdo WS, El-Magd MA. The potential therapeutic effect for melatonin and mesenchymal stem cells on hepatocellular carcinoma. Biomedicine (Taipei) 2019; 9:24. [PMID: 31724939 PMCID: PMC6855194 DOI: 10.1051/bmdcn/2019090424] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIM Herein, we investigated the potential therapeutic effect of Melatonin (Mel) and/or mesenchymal stem cells (MSCs) on rat model of HCC. MATERIALS AND METHODS Female mature rats were divided into 5 groups (n = 10/group): normal (Nor), HCC group intraperitoneally injected with 200 mg/kg DEN, and 3 treated groups; HCC + Mel (Mel) group given Mel intraperitoneally 20 mg/kg, twice a week, HCC + MSCs (MSCs) group intravenously injected by 1 × 106 cells, and HCC + MSCs (Mel +MSCs) group. RESULTS Rats in HCC group showed most deteriorated effect in form of increased mortality and relative liver weight, elevated serum levels of ALT, AST, ALP, AFP and GGT in addition to increased pre-neoplastic nodules in liver tissues. Liver tissues of HCC group also exhibited lower level of apoptosis as indicated by decreased DNA fragmentation and expression of p53 caspase 9 and caspase 3 genes and increased PCNA immunoreactivity. Moreover, in this group the expression of IL6 and TGFβ1 genes was significantly upregulated. All these deleterious effects induced by DEN were reversed after administration of Mel and/ or MSCs with best improvement for the combined group (MSCs + Mel). CONCLUSIONS These findings reveal a better therapeutic effect for MSCs when given with Mel and we attribute this beneficial effect, at least in part, to triggering apoptosis and targeting inflammation in HCC. Therefore, combined treatment with Mel and MSCs is recommended to enhance the therapeutic potential against HCC.
Collapse
Affiliation(s)
- Yasser Mohamed
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed A Basyony
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nabila I El-Desouki
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Walied S Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
36
|
Moradkhani F, Moloudizargari M, Fallah M, Asghari N, Heidari Khoei H, Asghari MH. Immunoregulatory role of melatonin in cancer. J Cell Physiol 2019; 235:745-757. [PMID: 31270813 DOI: 10.1002/jcp.29036] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Melatonin is a ubiquitous indole amine that plays a fundamental role in the regulation of the biological rhythm. Disrupted circadian rhythm alters the expression of clock genes and deregulates oncogenes, which finally promote tumor development and progression. An evidence supporting this notion is the higher risk of developing malignancies among night shift workers. Circadian secretion of the pineal hormone also synchronizes the immune system via a reciprocal association that exists between the immune system and melatonin. Immune cells are capable of melatonin biosynthesis in addition to the expression of its receptors. Melatonin induces big changes in different immune cell proportions, enhances their viability and improves immune cell metabolism in the tumor microenvironment. These effects might be directly mediated by melatonin receptors or indirectly through alterations in hormonal and cytokine release. Moreover, melatonin induces apoptosis in tumor cells via the intrinsic and extrinsic pathways of apoptosis, while it protectsthe immune cells. In general, melatonin has a profound impact on immune cell trafficking, cytokine production and apoptosis induction in malignant cells. On such a basis, using melatonin and resynchronization of sleep cycle may have potential implications in immune function enhancement against malignancies, which will be the focus of the present paper.
Collapse
Affiliation(s)
- Fatemeh Moradkhani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Asghari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Heidar Heidari Khoei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
37
|
El-Magd MA, Mohamed Y, El-Shetry ES, Elsayed SA, Abo Gazia M, Abdel-Aleem GA, Shafik NM, Abdo WS, El-Desouki NI, Basyony MA. Melatonin maximizes the therapeutic potential of non-preconditioned MSCs in a DEN-induced rat model of HCC. Biomed Pharmacother 2019; 114:108732. [PMID: 30925457 DOI: 10.1016/j.biopha.2019.108732] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Pretreatment of mesenchymal stem cells (MSCs) with melatonin (Mel) improves their potential therapeutic effect on chronic diseases and cancers. However, this preconditioning strategy may direct the effect of Mel toward MSCs alone and deprive cancer cells of the oncostatic effect of Mel. Herein, we hypothesized that Mel given before transplantation of non-preconditioned MSCs may maximize the therapeutic outcome via the oncostatic effect of Mel by preparing a suitable tumor microenvironment for MSCs. Female rats (n = 60) were equally divided into 6 groups; normal control, diethylnitrosamine (DEN), DEN + Mel, DEN + MSCs, DEN + MSCs preconditioned with Mel, and DEN + MSCs + Mel. The obtained data revealed that administration of Mel before MSCs treatment without preconditioning yielded a better ameliorative effect against DEN-induced hepatocellular carcinoma (HCC) as evidenced by: 1) reduced serum levels of alpha fetoprotein and gamma-glutamyl transferase; 2) decreased number and area of glutathione S-transferase placental positive foci; 3) induced apoptosis (as indicated by increased cleaved caspase-3 activity, upregulated expression of proapoptotic genes Bax and caspase 3 and downregulated expression of anti-apoptotic genes Bcl2, survivin); 4) decreased malondialdehyde level and increased activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes; and 5) reduced inflammation, angiogenesis and metastasis as indicated by downregulated expression of interleukin 1 beta, nuclear factor kappa B, vascular endothelial growth factor, and matrix metallopeptidase 9 genes and upregulated expression of metalloproteinase inhibitor 1 gene. Thus, administration of Mel before MSCs (without preconditioning) fostered the survival and therapeutic potential of MSCs in HCC, possibly through induction of apoptosis and inhibition of inflammation and oxidative stress. This new strategy showed better therapeutic outcomes and may improve MSC-based therapies for HCC.
Collapse
Affiliation(s)
- Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - Yasser Mohamed
- Department of Zoology, Faculty of Science, Tanta University, Egypt
| | - Eman S El-Shetry
- Department of Anatomy, Faculty of Medicine, Zagazig University, Egypt
| | - Shafika A Elsayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Maha Abo Gazia
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Egypt
| | - Ghada A Abdel-Aleem
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt
| | - Noha M Shafik
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt
| | - Walied S Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | | | | |
Collapse
|
38
|
Yu GM, Tan W. Melatonin Inhibits Lipopolysaccharide-Induced Inflammation and Oxidative Stress in Cultured Mouse Mammary Tissue. Mediators Inflamm 2019; 2019:8597159. [PMID: 30890898 PMCID: PMC6390262 DOI: 10.1155/2019/8597159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/30/2018] [Accepted: 11/11/2018] [Indexed: 12/31/2022] Open
Abstract
To determine whether melatonin can protect cultured mouse mammary tissue from lipopolysaccharide- (LPS-) induced damage, we investigated the effects of melatonin on the mRNA and protein levels of proinflammatory cytokines and chemokines in LPS-stimulated mammary tissue in vitro. This study also examined the IgG level in both cultured mammary tissue and the culture medium. In addition, we investigated the potential benefits of melatonin on the expression of antioxidant relative genes following LPS treatment in cultured mammary tissue and evaluated ROS level in the culture medium. The results demonstrate that melatonin inhibited the mRNA expression of TNF-α, IL-1β, IL-6, CXCL1, MCP-1, and RANTES and the production of these cytokines and chemokines and IgG in LPS-stimulated mouse mammary tissue in vitro. In addition, melatonin increased Nrf2 but decreased iNOS and COX-2 mRNA expression after LPS stimulation. Similarly, the decreased level of dityrosine in the culture medium was increased by treatment with melatonin, while increased nitrite level was suppressed. This study confirms that melatonin inhibited LPS-induced inflammation and oxidative stress in cultured mouse mammary tissue. It might contribute to mastitis therapy while treating antibiotic resistance.
Collapse
Affiliation(s)
- Guang-Min Yu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
39
|
Ostjen CA, Rosa CGS, Hartmann RM, Schemitt EG, Colares JR, Marroni NP. Anti-inflammatory and antioxidant effect of melatonin on recovery from muscular trauma induced in rats. Exp Mol Pathol 2019; 106:52-59. [DOI: 10.1016/j.yexmp.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/22/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
40
|
Jalili C, Moradi D, Roshankhah S, Salahshoor MR. Effect of pentoxifylline on kidney damage induced by nitrosamine in male rats. Res Pharm Sci 2019; 14:64-73. [PMID: 30936934 PMCID: PMC6407339 DOI: 10.4103/1735-5362.251854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrosamines are well-known carcinogenic agents. Humans are exposed to nitrosamines in various ways, the most important of which is the diet. Pentoxifylline is a xanthine derivative, which is used as a drug that inhibits inflammatory factors, reduces blood viscosity, improves peripheral blood flow, and increases oxygenation of tissue. This study was designed to evaluate the effects of pentoxifylline against damage induced by nitrosamine to the kidneys of rats. In this study, 48 male rats were randomly assigned to 8 groups: control normal group and nitrosamine control treated group (40 mg/kg); pentoxifylline groups (25, 50, 100 mg/kg) and nitrosamine + pentoxifylline treated groups (25, 50, 100 mg/kg). Treatments were administered either intraperitoneally (nitrosamine) or orally (pentoxifylline) on a daily basis for 28 days. The normalized kidney weight, glomeruli characteristics, thiobarbituric acid reactive species, antioxidant capacity, kidney function indicators, and serum nitrite oxide levels were investigated. Nitrosamine administration increased kidney malondialdehyde (MDA) level, kidney weight, blood urea nitrogen (BUN), creatinine, and nitrite oxide levels and decreased significantly glomeruli number and tissue ferric reducing/antioxidant power (FRAP) level compared to the control normal group (P < 0.05). The pentoxifylline and pentoxifylline + nitrosamine treatments reduced BUN, kidney MDA level, creatinine, glomerular diameter, and nitrite oxide levels significantly at all doses and increased the glomeruli number, kidney weight, and tissue FRAP level compared to the nitrosamine control group (P < 0.05). It seems that pentoxifylline administration improved kidney injury induced by nitrosamine in rats.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Delnia Moradi
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mohammad Reza Salahshoor
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
41
|
Jin X, Zhao T, Shi D, Ye MB, Yi Q. Protective role of fucoxanthin in diethylnitrosamine-induced hepatocarcinogenesis in experimental adult rats. Drug Dev Res 2018; 80:209-217. [PMID: 30379338 DOI: 10.1002/ddr.21451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) accounts for majority of cancer related deaths. Two major risk factors in induction of HCC are chemical and virus, however, the possible mechanisms of their differences remain indefinable. The current study focused on protective role of Fucoxanthin (Fx) in liver affected by diethylnitrosamine (DEN)-induced HCC. In this study, levels of liver enzymes, oxidative stressors, antioxidant status, and lipoproteins were compared both in tissue and blood. Tissues were also analyzed extensively by histological studies using H and E staining and transmission electron microscopy (TEM). Rats were clustered into four groups of six experimental animals. Group I: Control rats were administered isotonic saline intraperitoneal Group II: Animals received 0.01% DEN through drinking water to induce hepatocellular carcinoma. Group III: Animals received 0.01% DEN simultaneously oral supplementation of Fx (50 mg/kg b.w). Group IV: Rats were given Fx alone (50 mg/kg b.w) orally and the treatment is for 15 weeks. Results showed the decrease in body weight, serum albumin, antioxidant enzymes, and increased all the liver enzymes, serum bilirubin, and stress markers in DEN induced rats, where as the simultaneous supplementation of Fx reverted them to normal levels. Administration of only Fx did not show any change. Therefore, Fx may serve as a chemotherapeutic agent against liver cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of General Surgery, Ankang Central Hospital of Shaanxi, Shaanxi, China
| | - TingTing Zhao
- The Center of Experimental Teaching Management, Chongqing Medical University, Chongqing, China
| | - Dan Shi
- Surgical Operating Room, Chinese Medicine Hospital of Dianjiang County, Chongqing, China
| | - Ming Bao Ye
- Department of Urological Surgery, The First People's Hospital of Xianyang, Shaanxi Province, China
| | - Qiying Yi
- The Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R. Promising Antineoplastic Actions of Melatonin. Front Pharmacol 2018; 9:1086. [PMID: 30386235 PMCID: PMC6198052 DOI: 10.3389/fphar.2018.01086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Melatonin is an endogenous indoleamine with an incredible variety of properties and activities. In recent years, an increasing number of studies have investigated this indoleamine’s interaction with cancerous cells. In particular, it seems that melatonin not only has the ability to improve the efficacy of many drugs used in chemotherapy but also has a direct inhibitory action on neoplastic cells. Many publications underlined the ability of melatonin to suppress the proliferation of various cancer cells or to modulate the expression of membrane receptors on these cells, thereby reducing tumor aggressiveness to metastasize. In addition, while melatonin has antiapoptotic actions in normal cells, in many cancer cells it has proapoptotic effects; these dichotomous actions have gained the interest of researchers. The increasing focus on melatonin in the field of oncology and the growing number of studies on this topic require a deep understanding of what we already know about the antineoplastic actions of melatonin. This information would be of value for potential use of melatonin against neoplastic diseases.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX, United States
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| |
Collapse
|
43
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
44
|
Sánchez DI, González-Fernández B, Crespo I, San-Miguel B, Álvarez M, González-Gallego J, Tuñón MJ. Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res 2018; 65:e12506. [PMID: 29770483 DOI: 10.1111/jpi.12506] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Disruption of circadian rhythms, which are regulated by the circadian clock machinery, plays an important role in different long-term diseases including hepatocellular carcinoma (HCC). Melatonin has been reported to alleviate promotion and progression of HCC, but the potential contribution of circadian clock modulation is unknown. We investigated the effects of melatonin in mice which received diethylnitrosamine (DEN) (35 mg/kg body weight ip) once a week for 8 weeks. Melatonin was given at 5 or 10 mg kg-1 d-1 ip beginning 4 weeks after the onset of DEN administration and ending at the sacrifice time (10, 20, 30, or 40 weeks). Liver expression of Bmal1, Clock, Npas2, Rorα, and Sirt1 increased, whereas Cry1, Per1, Per2, Per3, CK1ε, Rev-erbα, and Rev-erbβ decreased following DEN administration. Melatonin treatment prevented changes in the expression of clock genes, and this effect was accompanied by an upregulation of the MT1 receptor and reduced levels of the hypoxia-inducible factors Hif-1α and Hif-2α. An increased expression of p21, p53, and PARP1/2, a higher Bax/Bcl-2 ratio, and a lower expression of Cyclin D1, CDK6, HSP70, HSP90, and GRP78 proteins were also observed in melatonin-treated mice. Melatonin significantly potentiated the suppression of proliferation and cell cycle arrest induced by the synthetic REV-ERB agonist SR9009 in human Hep3B cells, and BMAL1 knocking down attenuated the pro-apoptotic and antiproliferative effect of melatonin. Results support a contribution of changes in the circadian clock components to the beneficial effects of melatonin in HCC and highlight the usefulness of strategies modulating the circadian machinery in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | | | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
45
|
Govender J, Loos B, Marais E, Engelbrecht AM. Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: A possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity? Toxicol Appl Pharmacol 2018; 358:86-101. [PMID: 29966675 DOI: 10.1016/j.taap.2018.06.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Mitochondrial dysfunction is a central element in the development of doxorubicin (DXR)-induced cardiotoxicity. In this context, melatonin is known to influence mitochondrial homeostasis and function. This study aimed to investigate the effects of melatonin on cardiac function, tumor growth, mitochondrial fission and fusion, PGC1-α and sirtuin activity in an acute model of DXR-induced cardiotoxicity. During the in vitro study, H9c2 rat cardiomyoblasts were pre-treated with melatonin (10 μM, 24 h) followed by DXR exposure (3 μM, 24 h). Following treatment, cellular ATP levels and mitochondrial morphology were assessed. In the in vivo study, female Sprague Dawley rats (16 weeks old), were inoculated with a LA7 rat mammary tumor cell line and tumors were measure daily. Animals were injected with DXR (3 × 4 mg/kg) and/or received melatonin (6 mg/kg) for 14 days in their drinking water. Rat hearts were used to conduct isolated heart perfusions to assess cardiac function and thereafter, heart tissue was used for immunoblot analysis. DXR treatment increased cell death and mitochondrial fission which were reduced with melatonin treatment. Cardiac output increased in rats treated with DXR + melatonin compared to DXR-treated rats. Tumor volumes was significantly reduced in DXR + melatonin-treated rats on Day 8 in comparison to DXR-treated rats. Furthermore, DXR + melatonin treatment increased cellular ATP levels, PGC1-α and SIRT1 expression which was attenuated by DXR treatment. These results indicate that melatonin treatment confers a dual cardio-protective and oncostatic effect by improving mitochondrial function and cardiac function whilst simultaneously retarding tumor growth during DXR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jenelle Govender
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Erna Marais
- Department of Medical Physiology, Faculty of Medicine, Stellenbosch University, Tygerberg Campus, 7505, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
46
|
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget 2018; 8:39896-39921. [PMID: 28415828 PMCID: PMC5503661 DOI: 10.18632/oncotarget.16379] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
The epidemiological studies have indicated a possible oncostatic property of melatonin on different types of tumors. Besides, experimental studies have documented that melatonin could exert growth inhibition on some human tumor cells in vitro and in animal models. The underlying mechanisms include antioxidant activity, modulation of melatonin receptors MT1 and MT2, stimulation of apoptosis, regulation of pro-survival signaling and tumor metabolism, inhibition on angiogenesis, metastasis, and induction of epigenetic alteration. Melatonin could also be utilized as adjuvant of cancer therapies, through reinforcing the therapeutic effects and reducing the side effects of chemotherapies or radiation. Melatonin could be an excellent candidate for the prevention and treatment of several cancers, such as breast cancer, prostate cancer, gastric cancer and colorectal cancer. This review summarized the anticancer efficacy of melatonin, based on the results of epidemiological,experimental and clinical studies, and special attention was paid to the mechanisms of action.
Collapse
Affiliation(s)
- Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
47
|
Bona S, Rodrigues G, Moreira AJ, Di Naso FC, Dias AS, Da Silveira TR, Marroni CA, Marroni NP. Antifibrogenic effect of melatonin in rats with experimental liver cirrhosis induced by carbon tetrachloride. JGH OPEN 2018; 2:117-123. [PMID: 30483575 PMCID: PMC6206983 DOI: 10.1002/jgh3.12055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/26/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
Background and Aim Liver diseases are a major public health problem, accounting for a significant number of hospital visits and admissions and an increasing mortality rate. Melatonin (MLT) is a powerful antioxidant molecule that has been shown to be beneficial under various conditions. The objective was to evaluate the effect of MLT on experimental liver cirrhosis induced by carbon tetrachloride (CCl4) in rats. Methods Twenty male Wistar rats (230–250 g) were divided into four groups. I: control group (CO); II: CO + MLT; III: CCl4; and IV: CCl4 + MLT. CCl4 was administered intraperitoneally (i.p.) as follows: 10 doses every 5 days, 10 doses every 4 days, and 7 doses every 3 days. MLT was administered i.p. at a dose of 20 mg/kg from the 10th week to the end of the experiment (16th week). Results In the CCl4 + MLT group, we found that MLT caused a decrease in the level of F2‐isoprostanes and NQO1 expression. We also found that MLT reduced the inflammatory process as shown by decreased expressions of NF‐KB/p65 and inducible nitric oxide synthase (iNOS) and a smaller amount of inflammatory infiltrate. MLT reduced the expression of transforming growth factor beta1 (TGF‐β1), alpha‐smooth muscle actin (α‐SMA), and vascular endothelial growth factor (VEGF). Picrosirius staining showed that MLT decreases fibrosis. Conclusion MLT has a potent antifibrogenic effect, modulating the parameters of oxidative stress, angiogenesis, and inflammation.
Collapse
Affiliation(s)
- Silvia Bona
- Center of Experimental Research Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil.,Postgraduate Program in Medical Sciences: Medicine Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Graziella Rodrigues
- Center of Experimental Research Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil.,Postgraduate Program in Medical Sciences: Medicine Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Andrea J Moreira
- Center of Experimental Research Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil.,Postgraduate Program in Biological Sciences: Physiology Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Fábio C Di Naso
- Center of Experimental Research Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil.,Postgraduate Program in Pneumological Sciences Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Alexandre S Dias
- Postgraduate Program in Pneumological Sciences Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Thêmis R Da Silveira
- Center of Experimental Research Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
| | - Claudio A Marroni
- Center of Experimental Research Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil.,Postgraduate Program in Liver Diseases Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre RS Brazil
| | - Norma P Marroni
- Center of Experimental Research Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil.,Postgraduate Program in Medical Sciences: Medicine Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil.,Postgraduate Program in Biological Sciences: Physiology Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil.,Postgraduate Program in Cell and Molecular Biology Applied to Health Universidade Luterana do Brasil Canoas RS Brazil
| |
Collapse
|
48
|
Akshatha GM, Raval SK, Arpitha GM, Raval SH, Ghodasara DJ. Immunohistochemical, histopathological study and chemoprotective effect of Solanum nigrum in N-nitrosodiethylamine-induced hepatocellular carcinoma in Wistar rats. Vet World 2018; 11:402-409. [PMID: 29805203 PMCID: PMC5960777 DOI: 10.14202/vetworld.2018.402-409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/28/2018] [Indexed: 01/18/2023] Open
Abstract
Background and Aim Cancer is a devastating disease with a severe impact on the physical and psychological well-being of patients. Hepatocellular carcinoma (HCC) has been reported in various species of animals including dogs, cats, sheep, and pigs. The present study aimed to study the immunohistochemical and histopathological changes andchemoprotective effect of aqueous and alcoholic extracts of Solanum nigrum on N-nitrosodiethylamine (NDEA)-induced HCC rat model. Materials and Methods Eighty-two male Wistar rats of 15 weeks of age weighing 200-250 g were selected for the experiment. They were randomly divided into ten groups. Group I served as normal control consisted of healthy rats. HCC was induced in Group II, IV, V, VI, VII, and X rats using NDEA as inducing agent followed by phenobarbitone as a promoter for 16 weeks. Group II rats were kept untreated as HCC control. Group III rats were kept as vehicle control (0.05% Sodium bicarbonate). Group IV and V rats were treated with aqueous extract of S. nigrum at 200 mg/kg and 400 mg/kg, respectively, and Group VI and VII rats were treated with an alcoholic extract of S. nigrum at 200 mg/kg and 400 mg/kg, respectively, daily orally for 28 days. Group X rats were treated withsorafenib as reference drug at a dose of 11.4 mg/kg daily orally for 28 days. Group VIII and IX rats were kept as aqueous and alcoholic extract control for studying the effect of the same on normal rats. Liver samples were collected to study the gross and histopathological lesions and the activity of cleaved caspase-3 and chemopreventive effect of aqueous and alcoholic extracts of S. nigrum on HCC. Results The liver sections of rats from HCC control (Group II) showed loss of lobular architecture, necrosis, fatty change, enlarged and darkened nuclei with variable size, dilatation of hepatic sinusoids with Kupffer cell hyperplasia, dilatation and proliferation of bile duct, and intranuclear vacuoles and also showed the presence of more than one nucleolus. Administration of alcoholic extract of S. nigrum and sorafenib to NDEA/phenobarbital-treated rats reduced the severity of lesions in the liver. Immunohistochemical analysis of liver sections for caspase-3-positive cells of hepatic cancer-induced group showed immunoreactivity to rarely few. The immunoreactivity of the hepatocytes treated with a higher dose of alcoholic extract of S. nigrum was limited and was comparable to a standard drug, sorafenib. Conclusion Oral administration of aqueous and alcoholic extracts of S. nigrum for 28 days showed significant rejuvenation in the structure of the liver in the histopathological section in a dose-dependent manner in rats.
Collapse
Affiliation(s)
- G M Akshatha
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - S K Raval
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - G M Arpitha
- Department of Veterinary Parasitology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - S H Raval
- Department of Veterinary Pathology, College of Veterinary Sciences and Animal Husbandry, Sardarkrushinagar Dantiwada University, Dantiwada, Gujarat, India
| | - D J Ghodasara
- Department of Veterinary Pathology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
49
|
Fouad AA, Qutub HO, Al Rashed AS, Al-Melhim WN. Therapeutic effect of carnosine in rat model of experimental liver carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:10-14. [PMID: 28863318 DOI: 10.1016/j.etap.2017.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The possible anticancer effect of carnosine versus doxorubicin was investigated against hepatocellular carcinoma (HCC) induced by trichloroacetic acid (TCA) (500mg/kg/day, p.o., for 5days) in rats. Following induction of HCC, rats treated with either carnosine (10mg/kg/day, i.p.), or doxorubicin (2.5mg/kg, i.p., once weekly), for 2 weeks. Carnosine significantly decreased serum alanine aminotransferase, and hepatic lipid peroxidation, nitric oxide, tumor necrosis factor-α, and nuclear factor-κB p65 unit, and significantly increased liver total antioxidant status in TCA-challenged rats. The effects of doxorubicin on oxidative, nitrative, and inflammatory biomarkers were less significant than carnosine. However, both carnosine and doxorubicin significantly induced liver tissue apoptotic biomarkers, Bax, cytosolic cytochrome C, and caspase-3, in a comparable manner. Additionally, carnosine and doxorubicin reduced the histopathological dysplastic changes, and alpha-fetoprotein expression in liver of rats with HCC. It was concluded that carnosine significantly protected against TCA-induced liver carcinogenesis in rats, through its antioxidant, antinitrative, and anti-inflammatory effects, and induction of apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- Biomedical Sciences Department, Division of Pharmacology, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Hatem O Qutub
- Internal Medicine Department, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | - Abdullatif S Al Rashed
- Student Research Committee, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Walid N Al-Melhim
- Biomedical Sciences Department, Division of Histopathology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
50
|
Meng X, Zhu Y, Tao L, Zhao S, Qiu S. Periostin has a protective role in melatonin‑induced cell apoptosis by inhibiting the eIF2α‑ATF4 pathway in human osteoblasts. Int J Mol Med 2017; 41:1003-1012. [PMID: 29207036 DOI: 10.3892/ijmm.2017.3300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the role of periostin (POSTN) and high melatonin concentrations in the apoptosis of hFOB 1.19 human normal fetal osteoblastic cells. hFOB 1.19 human osteoblastic cells were stably cultured and treated in different concentrations of melatonin for different durations of action. Apoptosis was assessed quantitatively using flow cytometric analysis. The results of western blot analysis demonstrated that the treatment of cells with different concentrations of melatonin for different durations of action revealed a positive association between melatonin and the expression levels of glucose‑regulated protein (GRP)78, GRP94, phosphorylated (p‑) eukaryotic initiation factor 2α (eIF2α), activating transcription factor (ATF)4, CCAAT/enhanced binding protein homologous protein (CHOP), cleaved caspase‑3, p‑c‑Jun N‑terminal kinase (JNK) and POSTN. When POSTN was inhibited, the levels of p‑JNK, CHOP, p‑eIF2α, ATF4 and cleaved caspase‑3 were significantly increased, whereas other proteins associated with the endoplasmic reticulum stress (ERS) pathways, including ATF6 and X‑box binding protein 1 (XBP1), were not significantly altered. Reverse transcription‑quantitative polymerase chain reaction analysis was also performed to assess the relative mRNA levels of ATF4, ATF6 and XBP1. The results of the present study are the first, to the best of our knowledge, to demonstrate that melatonin induced apoptosis in hFOB 1.19 human osteoblastic cells by activating the ERS‑associated eIF2α‑ATF4 pathway and subsequently triggered the cascade effects of CHOP, caspase‑3 and JNK. POSTN may function as a protective factor for osteoblasts during this process by inhibiting the eIF2α‑ATF4 pathway.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Sichao Zhao
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shui Qiu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|