1
|
Sanchez GM, Hirsch ES, VanValkenburg A, Mayer DP, Gbedande K, Francis RL, Song W, Antao OQ, Brimmer KE, Lemenze A, Stephens R, Johnson WE, Weinstein JS. Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus. Cell Rep 2024; 43:114978. [PMID: 39527476 PMCID: PMC11682828 DOI: 10.1016/j.celrep.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Autoimmune diseases such as lupus are characterized by polyclonal B cell activation, leading to the production of autoantibodies. The mechanism leading to B cell dysregulation is unclear; however, the defect may lie in selection within germinal centers (GCs). GC B cells cycle between proliferation and mutation in the dark zone and selection in the light zone (LZ). Temporal assessment of GCs from mice with either persistent infection or lupus showed an accumulation of LZ B cells. Yet, only in lupus, GC B cells exhibited reduced proliferation and progressive loss of MYC and FOXO1, which regulate zonal recycling and differentiation. As lupus progressed, decreased mutational frequency and repertoire diversity were associated with reduced responsiveness to CD40 signaling, despite accumulation of plasma cells. Collectively, these findings suggest that lupus disease progression coincides with an intrinsic defect in LZ B cell signaling, altering the zonal recycling, selection, and differentiation of autoreactive B cells.
Collapse
Affiliation(s)
- Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Eden S Hirsch
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arthur VanValkenburg
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel P Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Komi Gbedande
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Rebecca L Francis
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kyleigh E Brimmer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - W Evan Johnson
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
2
|
Bravo M, Dileepan T, Dolan M, Hildebrand J, Wolford J, Hanson ID, Hamilton SE, Frosch AE, Burrack KS. IL-15 Complex-Induced IL-10 Enhances Plasmodium-specific CD4+ T Follicular Helper Differentiation and Antibody Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:992-1001. [PMID: 38305633 PMCID: PMC10932862 DOI: 10.4049/jimmunol.2300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Malaria, which results from infection with Plasmodium parasites, remains a major public health problem. Although humans do not develop long-lived, sterilizing immunity, protection against symptomatic disease develops after repeated exposure to Plasmodium parasites and correlates with the acquisition of humoral immunity. Despite the established role Abs play in protection from malaria disease, dysregulated inflammation is thought to contribute to the suboptimal immune response to Plasmodium infection. Plasmodium berghei ANKA (PbA) infection results in a fatal severe malaria disease in mice. We previously demonstrated that treatment of mice with IL-15 complex (IL-15C; IL-15 bound to an IL-15Rα-Fc fusion protein) induces IL-10 expression in NK cells, which protects mice from PbA-induced death. Using a novel MHC class II tetramer to identify PbA-specific CD4+ T cells, in this study we demonstrate that IL-15C treatment enhances T follicular helper (Tfh) differentiation and modulates cytokine production by CD4+ T cells. Moreover, genetic deletion of NK cell-derived IL-10 or IL-10R expression on T cells prevents IL-15C-induced Tfh differentiation. Additionally, IL-15C treatment results in increased anti-PbA IgG Ab levels and improves survival following reinfection. Overall, these data demonstrate that IL-15C treatment, via its induction of IL-10 from NK cells, modulates the dysregulated inflammation during Plasmodium infection to promote Tfh differentiation and Ab generation, correlating with improved survival from reinfection. These findings will facilitate improved control of malaria infection and protection from disease by informing therapeutic strategies and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Jacob Hildebrand
- Center for Immunology, University of Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | | | | | - Sara E. Hamilton
- Center for Immunology, University of Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Anne E. Frosch
- Hennepin Healthcare Research Institute
- Center for Immunology, University of Minnesota
| | - Kristina S. Burrack
- Hennepin Healthcare Research Institute
- Center for Immunology, University of Minnesota
| |
Collapse
|
3
|
Bensussen A, Torres-Magallanes JA, Álvarez-Buylla ER, de Álvarez-Buylla ER. Hybrid lineages of CD4 + T cells: a handbook update. Front Immunol 2024; 15:1344078. [PMID: 38312841 PMCID: PMC10834732 DOI: 10.3389/fimmu.2024.1344078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
CD4+ T lymphocytes have been classified into several lineages, according to their gene expression profiles and their effector responses. Interestingly, recent evidence is showing that many lineages could yield hybrid phenotypes with unique properties and functions. It has been reported that such hybrid lineages might underlie pathologies or may function as effector cells with protection capacities against molecular threats. In this work, we reviewed the characteristics of the hybrid lineages reported in the literature, in order to identify the expression profiles that characterize them and the markers that could be used to identify them. We also review the differentiation cues that elicit their hybrid origin and what is known about their physiological roles.
Collapse
Affiliation(s)
- Antonio Bensussen
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - José Antonio Torres-Magallanes
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena Roces de Álvarez-Buylla
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| |
Collapse
|
4
|
Ibitokou SA, Gbedande K, Opata MM, Carpio VH, Marshall KM, Stephens R. Effects of Low-Level Persistent Infection on Maintenance of Immunity by CD4 T Cell Subsets and Th1 Cytokines. Infect Immun 2023; 91:e0053122. [PMID: 36920200 PMCID: PMC10016079 DOI: 10.1128/iai.00531-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
CD4 T cells are required, along with antibodies, for complete protection from blood-stage infection with Plasmodium spp., which cause malaria. Without continuous exposure, as on emigration of people from endemic areas, protection from malaria decays. As in other persistent infections, low-level Plasmodium chabaudi infection protects the host from reinfection at 2 months postinfection, a phenomenon termed premunition. Premunition is correlated with T cell responses, rather than antibody levels. We previously showed that while both effector T cells (Teff) and memory T cells (Tmem) are present after infection, Teff protect better than Tmem. Here, we studied T cell kinetics post-infection by labeling dividing Ifng+ T cells with 5-bromo-2'-deoxyuridine (BrdU) in infected Ifng reporter mice. Large drops in specific T cell numbers and Ifng+ cells upon clearance of parasites suggest a mechanism for decay of protection. Although protection decays, CD4 Tmem persist, including a highly differentiated CD27- effector memory (Tem) subset that maintains some Ifng expression. In addition, pretreatment of chronically infected animals with neutralizing antibody to interferon gamma (IFN-γ) or with clodronate liposomes before reinfection decreases premunition, supporting a role for Th1-type immunity to reinfection. A pulse-chase experiment comparing chronically infected to treated animals showed that recently divided Ifng+ T cells, particularly IFN-γ+ TNF+ IL-2- T cells, are promoted by persistent infection. These data suggest that low-level persistent infection reduces CD4+ Tmem and multifunctional Teff survival, but promotes IFN-γ+ TNF+ IL-2- T cells and Ifng+ terminally differentiated effector T cells, and prolongs immunity.
Collapse
Affiliation(s)
- Samad A. Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael M. Opata
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Victor H. Carpio
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karis M. Marshall
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Osum KC, Jenkins MK. Toward a general model of CD4 + T cell subset specification and memory cell formation. Immunity 2023; 56:475-484. [PMID: 36921574 PMCID: PMC10084496 DOI: 10.1016/j.immuni.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
In the past few decades, a number of transformative discoveries have been made regarding memory CD8+ T cell biology; meanwhile, the CD4+ T cell field has lagged behind this progress. This perspective focuses on CD4+ helper T (Th) cell subset specification and memory cell formation. Here, we argue that the sheer number of Th effector and memory cell subsets and a focus on their differences have been a barrier to a general model of CD4+ memory T cell formation that applies to all immune responses. We highlight a bifurcation model that relies on an IL-2 signal-dependent switch as an explanation for the balanced production of diverse Th memory cells that participate in cell-mediated or humoral immunity in most contexts.
Collapse
Affiliation(s)
- Kevin C Osum
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Smith MR, Gbedande K, Johnson CM, Campbell LA, Onjiko RS, Domingo ND, Opata MM. Model of severe malaria in young mice suggests unique response of CD4 T cells. Parasite Immunol 2022; 44:e12952. [PMID: 36131528 PMCID: PMC9787679 DOI: 10.1111/pim.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/30/2022]
Abstract
Severe malaria occurs most in young children but is poorly understood due to the absence of a developmentally-equivalent rodent model to study the pathogenesis of the disease. Though functional and quantitative deficiencies in innate response and a biased T helper 1 (Th1) response are reported in newborn pups, there is little information available about this intermediate stage of the adaptive immune system in murine neonates. To fill this gap in knowledge, we have developed a mouse model of severe malaria in young mice using 15-day old mice (pups) infected with Plasmodium chabaudi. We observe similar parasite growth pattern in pups and adults, with a 60% mortality and a decrease in the growth rate of the surviving young mice. Using a battery of behavioral assays, we observed neurological symptoms in pups that do not occur in infected wildtype adults. CD4+ T cells were activated and differentiated to an effector T cell (Teff) phenotype in both adult and pups. However, there were relatively fewer and less terminally differentiated pup CD4+ Teff than adult Teff. Interestingly, despite less activation, the pup Teff expressed higher T-bet than adults' cells. These data suggest that Th1 cells are functional in pups during Plasmodium infection but develop slowly.
Collapse
Affiliation(s)
- Margaret R. Smith
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
- Present address:
Cancer Biology Ph.D. ProgramWake Forest College of MedicineWinston SalemNorth CarolinaUSA
| | - Komi Gbedande
- Division of Infectious Diseases, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Corey M. Johnson
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
| | - Logan A. Campbell
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
| | - Robert S. Onjiko
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
| | - Nadia D. Domingo
- Division of Infectious Diseases, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Michael M. Opata
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
7
|
Feng H, Zhao Z, Dong C. Adapting to the world: The determination and plasticity of T follicular helper cells. J Allergy Clin Immunol 2022; 150:981-989. [DOI: 10.1016/j.jaci.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
8
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Chan JA, Loughland JR, de la Parte L, Okano S, Ssewanyana I, Nalubega M, Nankya F, Musinguzi K, Rek J, Arinaitwe E, Tipping P, Bourke P, Andrew D, Dooley N, SheelaNair A, Wines BD, Hogarth PM, Beeson JG, Greenhouse B, Dorsey G, Kamya M, Hartel G, Minigo G, Feeney M, Jagannathan P, Boyle MJ. Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children. Nat Commun 2022; 13:4159. [PMID: 35851033 PMCID: PMC9293980 DOI: 10.1038/s41467-022-31880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/08/2022] [Indexed: 01/29/2023] Open
Abstract
T-follicular helper (Tfh) cells are key drivers of antibodies that protect from malaria. However, little is known regarding the host and parasite factors that influence Tfh and functional antibody development. Here, we use samples from a large cross-sectional study of children residing in an area of high malaria transmission in Uganda to characterize Tfh cells and functional antibodies to multiple parasites stages. We identify a dramatic re-distribution of the Tfh cell compartment with age that is independent of malaria exposure, with Th2-Tfh cells predominating in early childhood, while Th1-Tfh cell gradually increase to adult levels over the first decade of life. Functional antibody acquisition is age-dependent and hierarchical acquired based on parasite stage, with merozoite responses followed by sporozoite and gametocyte antibodies. Antibodies are boosted in children with current infection, and are higher in females. The children with the very highest antibody levels have increased Tfh cell activation and proliferation, consistent with a key role of Tfh cells in antibody development. Together, these data reveal a complex relationship between the circulating Tfh compartment, antibody development and protection from malaria.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica R Loughland
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | | | - Satomi Okano
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Mayimuna Nalubega
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Peta Tipping
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | - Peter Bourke
- Division of Medicine, Cairns Hospital, Manunda, QLD, Australia
| | - Dean Andrew
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas Dooley
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Griffith University, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Grant Dorsey
- University of California San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gunter Hartel
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
- College of Health and Human Sciences, Charles Darwin University, Darwin, NT, Australia
| | - Margaret Feeney
- University of California San Francisco, San Francisco, CA, USA
| | | | - Michelle J Boyle
- Burnet Institute, Melbourne, VIC, Australia.
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia.
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Zolfaghari Emameh R, Barker HR, Turpeinen H, Parkkila S, Hytönen VP. A reverse vaccinology approach on transmembrane carbonic anhydrases from Plasmodium species as vaccine candidates for malaria prevention. Malar J 2022; 21:189. [PMID: 35706028 PMCID: PMC9199335 DOI: 10.1186/s12936-022-04186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a significant parasitic infection, and human infection is mediated by mosquito (Anopheles) biting and subsequent transmission of protozoa (Plasmodium) to the blood. Carbonic anhydrases (CAs) are known to be highly expressed in the midgut and ectoperitrophic space of Anopheles gambiae. Transmembrane CAs (tmCAs) in Plasmodium may be potential vaccine candidates for the control and prevention of malaria. METHODS In this study, two groups of transmembrane CAs, including α-CAs and one group of η-CAs were analysed by immunoinformatics and computational biology methods, such as predictions on transmembrane localization of CAs from Plasmodium spp., affinity and stability of different HLA classes, antigenicity of tmCA peptides, epitope and proteasomal cleavage of Plasmodium tmCAs, accessibility of Plasmodium tmCAs MHC-ligands, allergenicity of Plasmodium tmCAs, disulfide-bond of Plasmodium tmCAs, B cell epitopes of Plasmodium tmCAs, and Cell type-specific expression of Plasmodium CAs. RESULTS Two groups of α-CAs and one group of η-CAs in Plasmodium spp. were identified to contain tmCA sequences, having high affinity towards MHCs, high stability, and strong antigenicity. All putative tmCAs were predicted to contain sequences for proteasomal cleavage in antigen presenting cells (APCs). CONCLUSIONS The predicted results revealed that tmCAs from Plasmodium spp. can be potential targets for vaccination against malaria.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Surette FA, Butler NS. Temporally Evolving and Context-Dependent Functions of Cytokines That Regulate Murine Anti-Plasmodium Humoral Immunity. Pathogens 2022; 11:pathogens11050523. [PMID: 35631044 PMCID: PMC9144513 DOI: 10.3390/pathogens11050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protective immunity against blood-stage Plasmodium infection and the disease malaria depends on antibodies secreted from high-affinity B cells selected during the germinal center (GC) response. The induction and stability of the GC response require the activation and direct cell–cell communication between parasite-specific CD4 helper T cells and B cells. However, cytokines secreted by helper T cells, B cells, and multiple other innate and adaptive immune cells also contribute to regulating the magnitude and protective functions of GC-dependent humoral immune responses. Here, we briefly review emerging data supporting the finding that specific cytokines can exhibit temporally distinct and context-dependent influences on the induction and maintenance of antimalarial humoral immunity.
Collapse
|
12
|
O’Neal KA, Latham LE, Ntirandekura E, Foscue CL, Stumhofer JS. ICOS Expression Is Required for Maintenance but Not the Formation of Germinal Centers in the Spleen in Response to Plasmodium yoelii Infection. Infect Immun 2022; 90:e0046821. [PMID: 35007126 PMCID: PMC8929343 DOI: 10.1128/iai.00468-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
Inducible T cell costimulator (ICOS) plays a key role in the differentiation and maintenance of follicular helper T (Tfh) cells and, thus, germinal center (GC) formation. Previously, our laboratory showed in a Plasmodium chabaudi infection model that Icos-/- mice were significantly impaired in their ability to form GCs despite persistent infection and, thus, a continued antigen (Ag) load. Here, we show that the resolution of primary infection with Plasmodium yoelii was delayed in Icos-/- mice. This phenotype was associated with a reduction in the accumulation of Tfh-like and GC Tfh cells and an early deficiency in Ag-specific antibody (Ab) production. However, Icos-/- mice could form GCs, although they were less frequent in number than in wild-type (WT) mice. Nonetheless, the Ag-specific Abs from Icos-/- mice lacked signs of affinity maturation, suggesting functional defects associated with these GCs. Eventually, these GC structures dissipated more rapidly in Icos-/- mice than in WT mice. Moreover, the ability of Icos-/- mice to form these GC structures is not reliant on the high Ag loads associated with P. yoelii infections, as GC formation was preserved in Icos-/- mice treated with atovaquone. Finally, mice were unable to form secondary GCs in the absence of ICOS after rechallenge. Overall, these data demonstrate the necessity of ICOS in the maintenance of Tfh cells, the formation and maintenance of sufficient numbers of functioning GCs, and the ability to generate new GC structures after reinfection with P. yoelii.
Collapse
Affiliation(s)
- Kara A. O’Neal
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Leah E. Latham
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Enatha Ntirandekura
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Camille L. Foscue
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Jason S. Stumhofer
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| |
Collapse
|
13
|
Fischer J, Dirks J, Klaussner J, Haase G, Holl-Wieden A, Hofmann C, Hackenberg S, Girschick H, Morbach H. Clonally expanded PD-1 hi CXCR5 - CD4 + peripheral T helper cells promote differentiation of CD21 lo/- CD11c + double negative B cells in the joints of ANA+ JIA patients. Arthritis Rheumatol 2021; 74:150-162. [PMID: 34196496 DOI: 10.1002/art.41913] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Antinuclear antibody (ANA) positive Juvenile Idiopathic Arthritis (JIA) is characterized by synovial B cell hyperactivity, but the precise role of CD4+ T cells in promoting local B cell activation is unknown. The objective of this study is to unravel the phenotype and function of synovial CD4+ T cells that promote the aberrant B cell activation in JIA. METHODS Flow cytometric analysis was performed to compare the phenotype and cytokine pattern of synovial fluid (SF) PD-1hi CD4+ T cells with tonsil TFH cells. TCRVB next generation sequencing was applied to analyze T cell subsets for signs of clonal expansion. The functional impact of these T cell subsets on B cells was dissected in in vitro co-cultures. RESULTS Multidimensional flow-cytometric analysis revealed the expansion of IL-21 and IFN-γ co-expressing PD-1hi CXCR5- HLA-DR+ CD4+ T cells that accumulate in the joints of ANA+ JIA patients. These T cells exhibited signs of clonal expansion with restricted TCR clonotypes. Phenotypically they resembled peripheral T helper (TPH ) cells with an extrafollicular chemokine receptor pattern and high T-bet and Blimp-1 but low Bcl-6 expression. SF TPH cells particularly skewed B cell differentiation towards a CD21lo/- CD11c+ phenotype by provision of IL-21 and IFN-γ in vitro and correlated with the appearance of SF CD21lo/- CD11c+ CD27- IgM- double-negative B cells (BDN ) in situ. CONCLUSION Clonally expanded CD4+ TPH cells accumulate in the joints of ANA+ JIA patients and particularly promote CD21lo/- CD11c+ BDN cell differentiation The expansion of TPH and BDN cells might reflect the autoimmune response present in the joints of ANA+ JIA patients.
Collapse
Affiliation(s)
- Jonas Fischer
- Pediatric Immunology, Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - Johannes Dirks
- Pediatric Immunology, Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - Julia Klaussner
- Pediatric Immunology, Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - Gabriele Haase
- Pediatric Immunology, Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - Annette Holl-Wieden
- Pediatric Rheumatology and Osteology, Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - Christine Hofmann
- Pediatric Rheumatology and Osteology, Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Würzburg, Würzburg, Germany
| | - Hermann Girschick
- Children's Hospital, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Henner Morbach
- Pediatric Immunology, Department of Pediatrics, University of Würzburg, Würzburg, Germany.,Pediatric Rheumatology and Osteology, Department of Pediatrics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Soon MSF, Nalubega M, Boyle MJ. T-follicular helper cells in malaria infection and roles in antibody induction. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab008. [PMID: 36845571 PMCID: PMC9914587 DOI: 10.1093/oxfimm/iqab008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/29/2023] Open
Abstract
Immunity to malaria is mediated by antibodies that block parasite replication to limit parasite burden and prevent disease. Cytophilic antibodies have been consistently shown to be associated with protection, and recent work has improved our understanding of the direct and Fc-mediated mechanisms of protective antibodies. Antibodies also have important roles in vaccine-mediated immunity. Antibody induction is driven by the specialized CD4+ T cells, T-follicular helper (Tfh) cells, which function within the germinal centre to drive B-cell activation and antibody induction. In humans, circulating Tfh cells can be identified in peripheral blood and are differentiated into subsets that appear to have pathogen/vaccination-specific roles in antibody induction. Tfh cell responses are essential for protective immunity from Plasmodium infection in murine models of malaria. Our understanding of the activation of Tfh cells during human malaria infection and the importance of different Tfh cell subsets in antibody development is still emerging. This review will discuss our current knowledge of Tfh cell activation and development in malaria, and the potential avenues and pitfalls of targeting Tfh cells to improve malaria vaccines.
Collapse
Affiliation(s)
- Megan S F Soon
- Department of Infectious Diseases, QIMR-Berghofer, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Mayimuna Nalubega
- Infectious Diseases Research Collaboration, Tororo District Hospital, Tororo, Uganda
| | - Michelle J Boyle
- Department of Infectious Diseases, QIMR-Berghofer, 300 Herston Road, Herston, QLD, 4006, Australia,Correspondence address. QIMR Berghofer Medical Research Institute, Brisbane, Australia. E-mail:
| |
Collapse
|
15
|
Ghosh D, Stumhofer JS. The spleen: "epicenter" in malaria infection and immunity. J Leukoc Biol 2021; 110:753-769. [PMID: 33464668 PMCID: PMC8518401 DOI: 10.1002/jlb.4ri1020-713r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
The spleen is a complex secondary lymphoid organ that plays a crucial role in controlling blood‐stage infection with Plasmodium parasites. It is tasked with sensing and removing parasitized RBCs, erythropoiesis, the activation and differentiation of adaptive immune cells, and the development of protective immunity, all in the face of an intense inflammatory environment. This paper describes how these processes are regulated following infection and recognizes the gaps in our current knowledge, highlighting recent insights from human infections and mouse models.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
16
|
Elsner RA, Shlomchik MJ. IL-12 Blocks Tfh Cell Differentiation during Salmonella Infection, thereby Contributing to Germinal Center Suppression. Cell Rep 2020; 29:2796-2809.e5. [PMID: 31775046 DOI: 10.1016/j.celrep.2019.10.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Germinal centers (GC) are crucial for the formation of long-lived humoral immunity. Many pathogens suppress GC, including Salmonella enterica serovar Typhimurium (STm), but the mechanisms driving suppression remain unknown. We report that neither plasmablasts nor STm-specific B cells are required for GC suppression in mice. Rather, we identify that interleukin-12 (IL-12), but not interferon-γ (IFN-γ), directly suppresses T follicular helper (Tfh) cell differentiation of T cells intrinsically. Administering recombinant IL-12 during nitrophenyl-Chicken Gamma Globulin (NP-CGG) immunization also suppresses Tfh cell differentiation and GC B cells, indicating that IL-12 is sufficient to suppress Tfh cell differentiation independent of STm infection. Recombinant IL-12 induces high levels of T-bet, and T-bet is necessary for Tfh cell suppression. Therefore, IL-12 induced during STm infection in mice contributes to GC suppression via suppression of Tfh cell differentiation. More broadly, these data suggest that IL-12 can tailor the proportions of humoral (Tfh cell) and cellular (T helper type 1 [Th1] cell) immunity to the infection, with implications for IL-12 targeting therapies in autoimmunity and vaccination.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
17
|
Levack RC, Newell KL, Popescu M, Cabrera-Martinez B, Winslow GM. CD11c + T-bet + B Cells Require IL-21 and IFN-γ from Type 1 T Follicular Helper Cells and Intrinsic Bcl-6 Expression but Develop Normally in the Absence of T-bet. THE JOURNAL OF IMMUNOLOGY 2020; 205:1050-1058. [PMID: 32680956 DOI: 10.4049/jimmunol.2000206] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
CD11c+ T-bet+ B cells generated during ehrlichial infection require CD4+ T cell help and IL-21 signaling for their development, but the exact T cell subset required had not been known. In this study, we show in a mouse model of Ehrlichia muris that type 1 T follicular helper (TFH1) cells provide help to CD11c+ T-bet+ B cells via the dual secretion of IL-21 and IFN-γ in a CD40/CD40L-dependent manner. TFH1 cell help was delivered in two phases: IFN-γ signals were provided early in infection, whereas CD40/CD40L help was provided late in infection. In contrast to T-bet+ T cells, T-bet+ B cells did not develop in the absence of B cell-intrinsic Bcl-6 but were generated in the absence of T-bet. T-bet-deficient memory B cells were largely indistinguishable from their wild-type counterparts, although they no longer underwent switching to IgG2c. These data suggest that a primary function of T-bet in B cells during ehrlichial infection is to promote appropriate class switching, not lineage specification. Thus, CD11c+ memory B cells develop normally without T-bet but require Bcl-6 and specialized help from dual cytokine-producing TFH1 cells.
Collapse
Affiliation(s)
- Russell C Levack
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | - Krista L Newell
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | - Maria Popescu
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | | | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
18
|
Carpio VH, Aussenac F, Puebla-Clark L, Wilson KD, Villarino AV, Dent AL, Stephens R. T Helper Plasticity Is Orchestrated by STAT3, Bcl6, and Blimp-1 Balancing Pathology and Protection in Malaria. iScience 2020; 23:101310. [PMID: 32634740 PMCID: PMC7339051 DOI: 10.1016/j.isci.2020.101310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hybrid Th1/Tfh cells (IFN-γ+IL-21+CXCR5+) predominate in response to several persistent infections. In Plasmodium chabaudi infection, IFN-γ+ T cells control parasitemia, whereas antibody and IL-21+Bcl6+ T cells effect final clearance, suggesting an evolutionary driver for the hybrid population. We found that CD4-intrinsic Bcl6, Blimp-1, and STAT3 coordinately regulate expression of the Th1 master regulator T-bet, supporting plasticity of CD4 T cells. Bcl6 and Blimp-1 regulate CXCR5 levels, and T-bet, IL-27Rα, and STAT3 modulate cytokines in hybrid Th1/Tfh cells. Infected mice with STAT3 knockout (KO) T cells produced less antibody and more Th1-like IFN-γ+IL-21−CXCR5lo effector and memory cells and were protected from re-infection. Conversely, T-bet KO mice had reduced Th1-bias upon re-infection and prolonged secondary parasitemia. Therefore, each feature of the CD4 T cell population phenotype is uniquely regulated in this persistent infection, and the cytokine profile of memory T cells can be modified to enhance the effectiveness of the secondary response. Plasmodium infection induces a CXCR5+IFN-γ+IL-21+ hybrid Th1/Tfh cell subset STAT3/WSX-1, T-bet, Bcl6, and Blimp-1 regulate different aspects of Th1/Tfh phenotype T cell-intrinsic STAT3 regulates degree of Th1 commitment of hybrid Th1/Tfh Shifting the plastic response toward Th1-like cells promotes resistance from reinfection
Collapse
Affiliation(s)
- Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Florentin Aussenac
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Lucinda Puebla-Clark
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Kyle D Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Robin Stephens
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0435, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA.
| |
Collapse
|
19
|
Gryzik S, Hoang Y, Lischke T, Mohr E, Venzke M, Kadner I, Poetzsch J, Groth D, Radbruch A, Hutloff A, Baumgrass R. Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception. eLife 2020; 9:53226. [PMID: 32441253 PMCID: PMC7274784 DOI: 10.7554/elife.53226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/20/2020] [Indexed: 01/20/2023] Open
Abstract
Dysregulated cytokine expression by T cells plays a pivotal role in the pathogenesis of autoimmune diseases. However, the identification of the corresponding pathogenic subpopulations is a challenge, since a distinction between physiological variation and a new quality in the expression of protein markers requires combinatorial evaluation. Here, we were able to identify a super-functional follicular helper T cell (Tfh)-like subpopulation in lupus-prone NZBxW mice with our binning approach "pattern recognition of immune cells (PRI)". PRI uncovered a subpopulation of IL-21+ IFN-γhigh PD-1low CD40Lhigh CXCR5- Bcl-6- T cells specifically expanded in diseased mice. In addition, these cells express high levels of TNF-α and IL-2, and provide B cell help for IgG production in an IL-21 and CD40L dependent manner. This super-functional T cell subset might be a superior driver of autoimmune processes due to a polyfunctional and high cytokine expression combined with Tfh-like properties.
Collapse
Affiliation(s)
- Stefanie Gryzik
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Yen Hoang
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.,University of Potsdam, Potsdam, Germany
| | - Timo Lischke
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Elodie Mohr
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Melanie Venzke
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Isabelle Kadner
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.,University of Potsdam, Potsdam, Germany
| | - Josephine Poetzsch
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.,University of Potsdam, Potsdam, Germany
| | | | - Andreas Radbruch
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.,Charité, Campus Mitte, Berlin, Germany
| | - Andreas Hutloff
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Ria Baumgrass
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.,University of Potsdam, Potsdam, Germany
| |
Collapse
|
20
|
Latham LE, Wikenheiser DJ, Stumhofer JS. ICOS signaling promotes a secondary humoral response after re-challenge with Plasmodium chabaudi chabaudi AS. PLoS Pathog 2020; 16:e1008527. [PMID: 32348365 PMCID: PMC7213745 DOI: 10.1371/journal.ppat.1008527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/11/2020] [Accepted: 04/08/2020] [Indexed: 02/03/2023] Open
Abstract
The co-stimulatory molecule ICOS is associated with the induction and regulation of T helper cell responses, including the differentiation of follicular helper T (Tfh) cells and the formation and maintenance of memory T cells. However, the role of ICOS signaling in secondary immune responses is largely unexplored. Here we show that memory T cell formation and maintenance are influenced by persistent infection with P. chabaudi chabaudi AS infection, as memory T cell numbers decline in wild-type and Icos-/- mice after drug-clearance. Following drug-clearance Icos-/- mice display a relapsing parasitemia that occurs more frequently and with higher peaks compared to wild-type mice after re-challenge. The secondary immune response in Icos-/- mice is characterized by significant impairment in the expansion of effector cells with a Tfh-like phenotype, which is associated with a diminished and delayed parasite-specific Ab response and the absence of germinal centers. Similarly, the administration of an anti-ICOSL antagonizing antibody to wild-type mice before and after reinfection with P. c. chabaudi AS leads to an early defect in Tfh cell expansion and parasite-specific antibody production, confirming a need for ICOS-ICOSL interactions to promote memory B cell responses. Furthermore, adoptive transfer of central memory T (TCM) cells from wild-type and Icos-/- mice into tcrb-/- mice to directly evaluate the ability of TCM cells to give rise to Tfh cells revealed that TCM cells from wild-type mice acquire a mixed Th1- and Tfh-like phenotype after P. c. chabaudi AS infection. While TCM cells from Icos-/- mice expand and display markers of activation to a similar degree as their WT counterparts, they displayed a reduced capacity to upregulate markers indicative of a Tfh cell phenotype, resulting in a diminished humoral response. Together these findings verify that ICOS signaling in memory T cells plays an integral role in promoting T cell effector responses during secondary infection with P. c. chabaudi AS.
Collapse
Affiliation(s)
- Leah E. Latham
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| | - Daniel J. Wikenheiser
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| | - Jason S. Stumhofer
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| |
Collapse
|
21
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
22
|
Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev 2019; 288:85-96. [PMID: 30874350 DOI: 10.1111/imr.12740] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
T follicular helper (Tfh) cells play a crucial role in orchestrating the humoral arm of adaptive immune responses. Mature Tfh cells localize to follicles in secondary lymphoid organs (SLOs) where they provide help to B cells in germinal centers (GCs) to facilitate immunoglobulin affinity maturation, class-switch recombination, and generation of long-lived plasma cells and memory B cells. Beyond the canonical GC Tfh cells, it has been increasingly appreciated that the Tfh phenotype is highly diverse and dynamic. As naive CD4+ T cells progressively differentiate into Tfh cells, they migrate through a variety of microanatomical locations to obtain signals from other cell types, which in turn alters their phenotypic and functional profiles. We herein review the heterogeneity of Tfh cells marked by the dynamic phenotypic changes accompanying their developmental program. Focusing on the various locations where Tfh and Tfh-like cells are found, we highlight their diverse states of differentiation. Recognition of Tfh cell heterogeneity has important implications for understanding the nature of T helper cell identity specification, especially the plasticity of the Tfh cells and their ontogeny as related to conventional T helper subsets.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
23
|
Solaymani-Mohammadi S, Eckmann L, Singer SM. Interleukin (IL)-21 in Inflammation and Immunity During Parasitic Diseases. Front Cell Infect Microbiol 2019; 9:401. [PMID: 31867283 PMCID: PMC6904299 DOI: 10.3389/fcimb.2019.00401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
Parasitic diseases cause significant morbidity and mortality in the developing and underdeveloped countries. No efficacious vaccines are available against most parasitic diseases and there is a critical need for developing novel vaccine strategies for care. IL-21 is a pleiotropic cytokine whose functions in protection and immunopathology during parasitic diseases have been explored in limited ways. IL-21 and its cognate receptor, IL-21R, are highly expressed in parasitized organs of infected humans as well in murine models of the human parasitic diseases. Prior studies have indicated the ability of the IL-21/IL-21R signaling axis to regulate the effector functions (e.g., cytokine production) of T cell subsets by enhancing the expression of T-bet and STAT4 in human T cells, resulting in an augmented production of IFN-γ. Mice deficient for either IL-21 (Il21−/−) or IL-21R (Il21r−/−) showed significantly reduced inflammatory responses following parasitic infections as compared with their WT counterparts. Targeting the IL-21/IL-21R signaling axis may provide a novel approach for the development of new therapeutic agents for the prevention of parasite-induced immunopathology and tissue destruction.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
24
|
Powell MD, Read KA, Sreekumar BK, Jones DM, Oestreich KJ. IL-12 signaling drives the differentiation and function of a T H1-derived T FH1-like cell population. Sci Rep 2019; 9:13991. [PMID: 31570752 PMCID: PMC6769002 DOI: 10.1038/s41598-019-50614-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
CD4+ T follicular helper (TFH) cells provide help to B cells and promote antibody-mediated immune responses. Increasing evidence supports the existence of TFH populations that secrete cytokines typically associated with the effector functions of other CD4+ T cell subsets. These include T helper 1 (TH1)-biased TFH (TFH1) cells that have recognized roles in both immune responses to pathogens and also the pathogenesis of autoimmune disease. Given their apparent importance to human health, there is interest in understanding the mechanisms that regulate TFH1 cell formation and function. However, their origin and the molecular requirements for their differentiation are unclear. Here, we describe a population of murine TH1-derived, TFH1-like cells that express the chemokine receptor Cxcr3 and produce both the TH1 cytokine interferon-γ and the TFH-associated cytokine interleukin-21 (IL-21). Furthermore, these TFH1-like cells promote B cell activation and antibody production at levels indistinguishable from conventional IL-6-derived TFH-like cells. Regarding their regulatory requirements, we find that IL-12 signaling is necessary for the differentiation and function of this TFH1-like cell population. Specifically, IL-12-dependent activation of STAT4, and unexpectedly STAT3, promotes increased expression of IL-21 and the TFH lineage-defining transcription factor Bcl-6 in TFH1-like cells. Taken together, these findings provide insight into the potential origin and differentiation requirements of TFH1 cells.
Collapse
Affiliation(s)
- Michael D Powell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Kaitlin A Read
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Virginia, USA
| | - Bharath K Sreekumar
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Virginia, USA
| | - Devin M Jones
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Virginia, USA
| | - Kenneth J Oestreich
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA. .,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA. .,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
25
|
Seth A, Craft J. Spatial and functional heterogeneity of follicular helper T cells in autoimmunity. Curr Opin Immunol 2019; 61:1-9. [PMID: 31374450 DOI: 10.1016/j.coi.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Follicular helper T cells provide signals that promote B cell development, proliferation, and production of affinity matured and appropriately isotype switched antibodies. In addition to their classical locations within B cell follicles and germinal centers therein, B cell helper T cells are also found in extrafollicular spaces - either in secondary lymphoid or non-lymphoid tissues. Both follicular and extrafollicular T helper cells drive autoantibody-mediated autoimmunity. Interfering with B cell help provided by T cells can ameliorate autoimmune disease in animal models and human patients. The next frontier in Tfh cell biology will be identification of Tfh cell-specific pathogenic changes in autoimmunity and exploiting them for therapeutic purposes.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Internal Medicine, Section of Rheumatology, New Haven, CT, United States
| | - Joe Craft
- Department of Internal Medicine, Section of Rheumatology, New Haven, CT, United States; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
26
|
Abstract
A single exposure to many viral and bacterial pathogens typically induces life-long immunity, however, the development of the protective immunity to Plasmodium parasites is strikingly less efficient and achieves only partial protection, with adults residing in endemic areas often experiencing asymptomatic infections. Although naturally acquired immunity to malaria requires both cell-mediated and humoral immune responses, antibodies govern the control of malarial disease caused by the blood-stage form of the parasites. A large body of epidemiological evidence described that antibodies to Plasmodium antigens are inefficiently generated and rapidly lost without continued parasite exposure, suggesting that malaria is accompanied by defects in the development of immunological B cell memory. This topic has been of focus of recent studies of malaria infection in humans and mice. This review examines the main findings to date on the processes that modulate the acquisition of memory B cell responses to malaria, and highlights the importance of closing outstanding gaps of knowledge in the field for the rational design of next generation therapeutics against malaria.
Collapse
Affiliation(s)
- Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Pérez-Mazliah D, Gardner PJ, Schweighoffer E, McLaughlin S, Hosking C, Tumwine I, Davis RS, Potocnik AJ, Tybulewicz VLJ, Langhorne J. Plasmodium-specific atypical memory B cells are short-lived activated B cells. eLife 2018; 7:e39800. [PMID: 30387712 PMCID: PMC6242553 DOI: 10.7554/elife.39800] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
A subset of atypical memory B cells accumulates in malaria and several infections, autoimmune disorders and aging in both humans and mice. It has been suggested these cells are exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear upon natural resolution of chronic infection. These cells show features of activation, proliferation, DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells, and part of a physiologic ongoing B-cell response.
Collapse
Affiliation(s)
| | - Peter J Gardner
- MRC National Institute for Medical ResearchLondonUnited Kingdom
| | | | | | | | | | - Randall S Davis
- Department of MedicineUniversity of Alabama at BirminghamBirminghamUnited States
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamUnited States
- Department of Biochemistry and Molecular GeneticsUniversity of Alabama at BirminghamBirminghamUnited States
| | | | | | | |
Collapse
|
28
|
Wikenheiser DJ, Brown SL, Lee J, Stumhofer JS. NK1.1 Expression Defines a Population of CD4 + Effector T Cells Displaying Th1 and Tfh Cell Properties That Support Early Antibody Production During Plasmodium yoelii Infection. Front Immunol 2018; 9:2277. [PMID: 30374346 PMCID: PMC6196288 DOI: 10.3389/fimmu.2018.02277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022] Open
Abstract
Early plasmablast induction is a hallmark of Plasmodium infection and is thought to contribute to the control of acute parasite burden. Although long understood to be a T-cell dependent phenomenon, regulation of early plasmablast differentiation, however, is poorly understood. Here, we identify a population of CD4+ T cells that express the innate NK cell marker NK1.1 as an important source of T cell help for early plasmablast and parasite-specific Ab production. Interestingly, NK1.1+ CD4+ T cells arise from conventional, naive NK1.1− CD4+ T cells, and their generation is independent of CD1d but critically reliant on MHC-II. CD4+ T cells that express NK1.1 early after activation produce IFN-γ and IL-21, and express the follicular helper T (Tfh) cell markers ICOS, PD-1 and CXCR5 more frequently than NK1.1− CD4+ T cells. Further analysis of this population revealed that NK1.1+ Tfh-like cells were more regularly complexed with plasmablasts than NK1.1− Tfh-like cells. Ultimately, depletion of NK1.1+ cells impaired class-switched parasite-specific antibody production during early Plasmodium yoelii infection. Together, these data suggest that expression of NK1.1 defines a population of rapidly expanding effector CD4+ T cells that specifically promote plasmablast induction during Plasmodium infection and represent a subset of T cells whose modulation could promote effective vaccine design.
Collapse
Affiliation(s)
- Daniel J Wikenheiser
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susie L Brown
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Juhyung Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
29
|
Rao DA. T Cells That Help B Cells in Chronically Inflamed Tissues. Front Immunol 2018; 9:1924. [PMID: 30190721 PMCID: PMC6115497 DOI: 10.3389/fimmu.2018.01924] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Chronically inflamed tissues commonly accrue lymphocyte aggregates that facilitate local T cell-B cell interactions. These aggregates can range from small, loosely arranged lymphocyte clusters to large, organized ectopic lymphoid structures. In some cases, ectopic lymphoid structures develop germinal centers that house prototypical T follicular helper (Tfh) cells with high expression of Bcl6, CXCR5, PD-1, and ICOS. However, in many chronically inflamed tissues, the T cells that interact with B cells show substantial differences from Tfh cells in their surface phenotypes, migratory capacity, and transcriptional regulation. This review discusses observations from multiple diseases and models in which tissue-infiltrating T cells produce factors associated with B cell help, including IL-21 and the B cell chemoattractant CXCL13, yet vary dramatically in their resemblance to Tfh cells. Particular attention is given to the PD-1hi CXCR5− Bcl6low T peripheral helper (Tph) cell population in rheumatoid arthritis, which infiltrates inflamed synovium through expression of chemokine receptors such as CCR2 and augments synovial B cell responses via CXCL13 and IL-21. The factors that regulate CD4+ T cell production of CXCL13 and IL-21 in these settings are also discussed. Understanding the range of T cell populations that can provide help to B cells within chronically inflamed tissues is essential to recognize these cells in diverse inflammatory conditions and to optimize either broad or selective therapeutic targeting of B cell-helper T cells.
Collapse
Affiliation(s)
- Deepak A Rao
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Zander RA, Vijay R, Pack AD, Guthmiller JJ, Graham AC, Lindner SE, Vaughan AM, Kappe SHI, Butler NS. Th1-like Plasmodium-Specific Memory CD4 + T Cells Support Humoral Immunity. Cell Rep 2018; 21:1839-1852. [PMID: 29141217 DOI: 10.1016/j.celrep.2017.10.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/15/2017] [Accepted: 10/20/2017] [Indexed: 01/13/2023] Open
Abstract
Effector T cells exhibiting features of either T helper 1 (Th1) or T follicular helper (Tfh) populations are essential to control experimental Plasmodium infection and are believed to be critical for resistance to clinical malaria. To determine whether Plasmodium-specific Th1- and Tfh-like effector cells generate memory populations that contribute to protection, we developed transgenic parasites that enable high-resolution study of anti-malarial memory CD4 T cells in experimental models. We found that populations of both Th1- and Tfh-like Plasmodium-specific memory CD4 T cells persist. Unexpectedly, Th1-like memory cells exhibit phenotypic and functional features of Tfh cells during recall and provide potent B cell help and protection following transfer, characteristics that are enhanced following ligation of the T cell co-stimulatory receptor OX40. Our findings delineate critical functional attributes of Plasmodium-specific memory CD4 T cells and identify a host-specific factor that can be targeted to improve resolution of acute malaria and provide durable, long-term protection against Plasmodium parasite re-exposure.
Collapse
Affiliation(s)
- Ryan A Zander
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Angela D Pack
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Jenna J Guthmiller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amy C Graham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Scott E Lindner
- Center for Malaria Research, Penn State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Graduate Program in Biosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
31
|
Hamid MA, Jackson RJ, Roy S, Khanna M, Ranasinghe C. Unexpected involvement of IL-13 signalling via a STAT6 independent mechanism during murine IgG2a development following viral vaccination. Eur J Immunol 2018; 48:1153-1163. [PMID: 29569714 DOI: 10.1002/eji.201747463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 11/07/2022]
Abstract
In this study, recombinant pox viral vaccination was shown to induce highly elevated IgG2a and low IgG1 antibody expression in mice lacking IL-4 or STAT6, whilst IL-13-/- mice exhibited elevated IgG1, but very low IgG2a. These findings revealed that IL-13 and IL-4 differentially regulated antibody development. To understand this further, when STAT6-/- mice were given a vaccine co-expressing IL-13Rα2 that temporarily sequestered IL-13, significantly reduced IgG2a expression, was detected. These findings for the first time demonstrated that IL-13 regulated IgG2a differentiation utilising an alternative IL-13R signalling pathway independent of STAT6 (IL-13Rα2 pathway). This was further corroborated by the (i) elevated IL-13Rα2 expression detected on STAT6-/- lung MHCII+ CD11c+ cells 24 h post IL-13 inhibitor vaccination and ii) significant up-regulation of IL-13Rα2 expression on spleen and lung derived MHCII+ CD11c+ following inhibition of STAT6 signalling in vitro, or vaccination with IL-4R/STAT6 antagonist in vivo. When T follicular helper (Tfh) cells which regulate antibody differentiation were assessed post vaccination, although no difference in IL-4 expression was observed, greatly reduced IFN-γ expression was detected in IL-13-/- and STAT6-/- mice compared to wild-type. These findings support the notion that the balance of IL-13 level at the vaccination site can differentially regulate T and B-cell immune outcomes.
Collapse
Affiliation(s)
- Megat Abd Hamid
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ronald James Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sreeja Roy
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Mayank Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
32
|
Opata MM, Ibitokou SA, Carpio VH, Marshall KM, Dillon BE, Carl JC, Wilson KD, Arcari CM, Stephens R. Protection by and maintenance of CD4 effector memory and effector T cell subsets in persistent malaria infection. PLoS Pathog 2018; 14:e1006960. [PMID: 29630679 PMCID: PMC5908200 DOI: 10.1371/journal.ppat.1006960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 03/04/2018] [Indexed: 01/12/2023] Open
Abstract
Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for longer-lived vaccine-induced protection against malaria blood-stages. Malaria causes significant mortality but current vaccine candidates have poor efficacy and duration, as does natural immunity to malaria. T helper cells (CD4+) are essential to protection from malaria, but it is unknown what kinds of T cells would be both protective and long-lasting. Here, we explored the mechanisms of survival used by memory T cells in malaria, and their ability to protect immunodeficient animals from malaria. We identified four mechanisms by which memory T cells are maintained in chronic infection. We also showed that highly activated effector T cells protect better than memory T cells in general, however, effector T cells have a shorter lifespan suggesting a mechanism for short-lived immunity. In total, we identified two protective T cell subsets that are long-lived. Unfortunately, the memory T cell subset that protects, is not the predominant memory T cell population generated by natural infection, suggesting a mechanism for the poor immunity seen in malaria. Our work suggests that vaccines that induce these two T cell subsets may improve on current immunity from malaria infection and disease.
Collapse
Affiliation(s)
- Michael M. Opata
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Samad A. Ibitokou
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Victor H. Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Karis M. Marshall
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Brian E. Dillon
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jordan C. Carl
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Kyle D. Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Christine M. Arcari
- Department of Preventive Medicine & Community Health, University of Texas Medical Branch Galveston, TX, United States of America
| | - Robin Stephens
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
33
|
Zander RA, Vijay R, Pack AD, Guthmiller JJ, Graham AC, Lindner SE, Vaughan AM, Kappe SHI, Butler NS. Th1-like Plasmodium-Specific Memory CD4 + T Cells Support Humoral Immunity. Cell Rep 2018; 23:1230-1237. [PMID: 29694898 DOI: 10.1016/j.celrep.2018.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Taylor DK, Mittereder N, Kuta E, Delaney T, Burwell T, Dacosta K, Zhao W, Cheng LI, Brown C, Boutrin A, Guo X, White WI, Zhu J, Dong H, Bowen MA, Lin J, Gao C, Yu L, Ramaswamy M, Gaudreau MC, Woods R, Herbst R, Carlesso G. T follicular helper–like cells contribute to skin fibrosis. Sci Transl Med 2018. [DOI: 10.1126/scitranslmed.aaf5307] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Soon MSF, Haque A. Recent Insights into CD4+Th Cell Differentiation in Malaria. THE JOURNAL OF IMMUNOLOGY 2018; 200:1965-1975. [DOI: 10.4049/jimmunol.1701316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
|
36
|
Weinstein JS, Laidlaw BJ, Lu Y, Wang JK, Schulz VP, Li N, Herman EI, Kaech SM, Gallagher PG, Craft J. STAT4 and T-bet control follicular helper T cell development in viral infections. J Exp Med 2017; 215:337-355. [PMID: 29212666 PMCID: PMC5748849 DOI: 10.1084/jem.20170457] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 09/10/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Follicular helper T (Tfh) cells promote germinal center (GC) B cell survival and proliferation and guide their differentiation and immunoglobulin isotype switching by delivering contact-dependent and soluble factors, including IL-21, IL-4, IL-9, and IFN-γ. IL-21 and IFN-γ are coexpressed by Tfh cells during viral infections, but transcriptional regulation of these cytokines is not completely understood. In this study, we show that the T helper type 1 cell (Th1 cell) transcriptional regulators T-bet and STAT4 are coexpressed with Bcl6 in Tfh cells after acute viral infection, with a temporal decline in T-bet in the waning response. T-bet is important for Tfh cell production of IFN-γ, but not IL-21, and for a robust GC reaction. STAT4, phosphorylated in Tfh cells upon infection, is required for expression of T-bet and Bcl6 and for IFN-γ and IL-21. These data indicate that T-bet is expressed with Bcl6 in Tfh cells and is required alongside STAT4 to coordinate Tfh cell IL-21 and IFN-γ production and for promotion of the GC response after acute viral challenge.
Collapse
Affiliation(s)
- Jason S Weinstein
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yisi Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jessica K Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Ningcheng Li
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| | - Edward I Herman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT.,Department of Pathology and Genetics, Yale University School of Medicine, New Haven, CT
| | - Joe Craft
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
37
|
Marnik EA, Wang X, Sproule TJ, Park G, Christianson GJ, Lane-Reticker SK, Jain S, Duffy T, Wang H, Carter GW, Morse HC, Roopenian DC. Precocious Interleukin 21 Expression in Naive Mice Identifies a Natural Helper Cell Population in Autoimmune Disease. Cell Rep 2017; 21:208-221. [PMID: 28978474 PMCID: PMC5661890 DOI: 10.1016/j.celrep.2017.09.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 01/19/2023] Open
Abstract
Interleukin 21 (IL-21) plays key roles in humoral immunity and autoimmune diseases. It is known to function in mature CD4+ T follicular B cell helper (TFH) cells, but its potential involvement in early T cell ontogeny is unclear. Here, we find that a significant population of newly activated thymic and peripheral CD4+ T cells functionally expresses IL-21 soon after birth. This naturally occurring population, termed natural (n)TH21 cells, exhibits considerable similarity to mature TFH cells. nTH21 cells originating and activated in the thymus are strictly dependent on autoimmune regulator (AIRE) and express high levels of NUR77, consistent with a bias toward self-reactivity. Their activation/expansion in the periphery requires gut microbiota and is held in check by FoxP3+ TREG cells. nTH21 cells are the major thymic and peripheral populations of IL-21+ cells to expand in an IL-21-dependent humoral autoimmune disease. These studies link IL-21 to T cell ontogeny, self-reactivity, and humoral autoimmunity.
Collapse
MESH Headings
- Animals
- Arthritis/genetics
- Arthritis/immunology
- Arthritis/pathology
- Autoimmunity/genetics
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Immunity, Humoral
- Interleukins/genetics
- Interleukins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transcription Factors/genetics
- Transcription Factors/immunology
- AIRE Protein
Collapse
Affiliation(s)
- Elisabeth A Marnik
- The Jackson Laboratory, Bar Harbor, ME, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | | | | | | | - Shweta Jain
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, MD, USA
| | | | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, MD, USA
| | - Gregory W Carter
- The Jackson Laboratory, Bar Harbor, ME, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, MD, USA.
| | - Derry C Roopenian
- The Jackson Laboratory, Bar Harbor, ME, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
38
|
Pérez-Mazliah D, Nguyen MP, Hosking C, McLaughlin S, Lewis MD, Tumwine I, Levy P, Langhorne J. Follicular Helper T Cells are Essential for the Elimination of Plasmodium Infection. EBioMedicine 2017; 24:216-230. [PMID: 28888925 PMCID: PMC5652023 DOI: 10.1016/j.ebiom.2017.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells have been shown to be critical for the activation of germinal center (GC) B-cell responses. Similar to other infections, Plasmodium infection activates both GC as well as non-GC B cell responses. Here, we sought to explore whether Tfh cells and GC B cells are required to eliminate a Plasmodium infection. A CD4 T cell-targeted deletion of the gene that encodes Bcl6, the master transcription factor for the Tfh program, resulted in complete disruption of the Tfh response to Plasmodium chabaudi in C57BL/6 mice and consequent disruption of GC responses and IgG responses and the inability to eliminate the otherwise self-resolving chronic P. chabaudi infection. On the other hand, and contrary to previous observations in immunization and viral infection models, Signaling Lymphocyte Activation Molecule (SLAM)-Associated Protein (SAP)-deficient mice were able to activate Tfh cells, GC B cells, and IgG responses to the parasite. This study demonstrates the critical role for Tfh cells in controlling this systemic infection, and highlights differences in the signals required to activate GC B cell responses to this complex parasite compared with those of protein immunizations and viral infections. Therefore, these data are highly pertinent for designing malaria vaccines able to activate broadly protective B-cell responses. Chronic Plasmodium infection cannot be eliminated in the absence of Tfh cell responses. SAP-deficient mice are able to activate GC Tfh and GC B-cell responses to Plasmodium infection. There is a hierarchical requirement for the control of chronic Plasmodium infection following IL-21R > Tfh cells > SAP.
Successful vaccines work through activation of protective B-cell responses. Malaria, caused by Plasmodium infection transmitted by mosquito bites, remains a global threat. Despite substantial efforts, a vaccine able to bring about high levels of protection from Plasmodium infection remains elusive. Here, using an experimental malaria model including natural mosquito transmission, we demonstrate that proper activation of follicular helper CD4+ T cells is essential for the control and eradication of chronic Plasmodium infection through protective B-cell responses. Thus, it is strongly advisable for novel vaccine efforts to monitor the robust activation of this important immune compartment.
Collapse
|
39
|
Zeng W, Liu Z, Liu X, Zhang S, Khanniche A, Zheng Y, Ma X, Yu T, Tian F, Liu XR, Fan J, Lin Y. Distinct Transcriptional and Alternative Splicing Signatures of Decidual CD4 + T Cells in Early Human Pregnancy. Front Immunol 2017; 8:682. [PMID: 28659920 PMCID: PMC5466981 DOI: 10.3389/fimmu.2017.00682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023] Open
Abstract
Decidual CD4+ T (dCD4 T) cells are crucial for the maternal-fetal immune tolerance required for a healthy pregnancy outcome. However, their molecular and functional characteristics are not well elucidated. In this study, we performed the first analysis of transcriptional and alternative splicing (AS) landscapes for paired decidual and peripheral blood CD4+ T (pCD4 T) cells in human early pregnancy using high throughput mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique transcriptional signature when compared to pCD4 T cells: dCD4 T cells upregulate 1,695 genes enriched in immune system process whereas downregulate 1,011 genes mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells were observed to be at M phase, and show increased activation, proliferation, and cytokine production, as well as display an effector-memory phenotype and a heterogenous nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a comparable number of upregulated and downregulated AS events, both of which are enriched in the genes related to cellular metabolic process. And the changes at the AS event level do not reflect measurable differences at the gene expression level in dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique transcriptional signature and AS profile of CD4+ T cells in human decidua and help us gain more understanding of the functional characteristic of these cells during early pregnancy.
Collapse
Affiliation(s)
- Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicui Liu
- Department of Dermatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinmei Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siming Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Asma Khanniche
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Out-patient Operating Room, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Yu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Carpio VH, Opata MM, Montañez ME, Banerjee PP, Dent AL, Stephens R. Correction: IFN-γ and IL-21 Double Producing T Cells Are Bcl6-Independent and Survive into the Memory Phase in Plasmodium chabaudi Infection. PLoS One 2017; 12:e0174048. [PMID: 28282448 PMCID: PMC5345869 DOI: 10.1371/journal.pone.0174048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Chronic Plasmodium chabaudi Infection Generates CD4 Memory T Cells with Increased T Cell Receptor Sensitivity but Poor Secondary Expansion and Increased Apoptosis. Infect Immun 2017; 85:IAI.00744-16. [PMID: 28031266 DOI: 10.1128/iai.00744-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023] Open
Abstract
Exposure to blood-stage malaria infection is often persistent, leading to generation of CD4 effector and effector memory T cells that contribute to protection. We showed previously that chronic exposure to blood-stage Plasmodium chabaudi offers the best protection from parasitemia and pathology in reinfection cases, correlating with an increase in Th1 cells. Although much is known about the features of resting or exhausted memory T cells (Tmem), little is known about the functional capacities of chronically stimulated but protective T cells. To determine the functional capacity of CD4 T cells generated by chronic infection upon reexposure to parasite, we compared their responses to known features of classical Tmem. The numbers of cytokine-producing T cells increased following infection in the polyclonal populations, suggesting an increase in pathogen-specific T cells. Malaria antigen-specific B5 T cell receptor (TCR) transgenic (Tg) T cells from chronic infection proliferated on reinfection and were highly sensitive to TCR stimulation without costimulation, as shown for Tmem in acute stimulations. However, B5 Tmem did not accumulate more than naive B5 T cells in vivo or in vitro and became apoptotic. Failure to accumulate was partly the result of chronic stimulation, since eliminating persistent parasites before reinfection slightly increased the accumulation of B5 Tg T cells upon reinfection. The levels of specific gamma interferon-positive, interleukin-10-positive T cells, which protect animals from pathology, increased after malaria infection. These data demonstrate that although chronic infection generates a protective T cell population with increased TCR sensitivity and cytokine production, they do not reexpand upon reexposure due to increased apoptosis.
Collapse
|
42
|
Nonencapsulated Trichinella pseudospiralis Infection Impairs Follicular Helper T Cell Differentiation with Subclass-Selective Decreases in Antibody Responses. Infect Immun 2016; 84:3550-3556. [PMID: 27736779 DOI: 10.1128/iai.00597-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
Infectious microorganisms often modify host immunity to escape from immune elimination. Trichinella is a unique nematode of the helminth family, whose members parasitize the muscle cells inside the host without robust eliminative reactions. There are several species of Trichinella; some develop in muscle cells that become encapsulated (e.g., Trichinella spiralis) and others in cells that do not encapsulate (e.g., Trichinella pseudospiralis). It has already been established that Trichinella infection affects host immune responses in several experimental immune diseases in animal models; however, most of those studies were done using T. spiralis infection. As host immune responses to T. spiralis and T. pseudospiralis infections have been reported to be different, it is necessary to clarify how T. pseudospiralis infection influences the host immune responses. In this study, we investigated the influence on host humoral immunity in T. pseudospiralis-infected mice. We demonstrated that T. pseudospiralis infection decreased antigen-specific IgG2a and IgG2b antibody (Ab) production in mice immunized with a model antigen. This selective decrease in gamma interferon (IFN-γ)-dependent Ab production was not due to a decrease in IFN-γ production, and we instead found impaired follicular helper T (Tfh) cell differentiation. The affinity maturation of antigen-specific Ab tended to be delayed but was not significant in T. pseudospiralis-infected mice. We also observed that CD11b+ spleen cells in T. pseudospiralis-infected mice expressed CD206 and PD-L2, the phenotype of which was M2 macrophages with weak production of interleukin-6 (IL-6), possibly resulting in impaired Tfh differentiation. Taken together, our results indicate that nonencapsulated Trichinella infection induces selective dampening in humoral immunity with the suppression of Tfh differentiation.
Collapse
|
43
|
Hansen DS, Obeng-Adjei N, Ly A, Ioannidis LJ, Crompton PD. Emerging concepts in T follicular helper cell responses to malaria. Int J Parasitol 2016; 47:105-110. [PMID: 27866903 DOI: 10.1016/j.ijpara.2016.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/05/2016] [Accepted: 09/02/2016] [Indexed: 11/27/2022]
Abstract
Antibody responses to malaria and candidate malaria vaccines are short-lived in children, leaving them susceptible to repeated malaria episodes. Because T follicular helper (TFH) cells provide critical help to B cells to generate long-lived antibody responses, they have become the focus of recent studies of Plasmodium-infected mice and humans. The emerging data converge on common themes, namely, that malaria-induced TH1 cytokines are associated with the activation of (i) T-like memory TFH cells with impaired B cell helper function, and (ii) pre-TFH cells that acquire Th1-like features (T-bet expression, IFN-γ production), which impede their differentiation into fully functional TFH cells, thus resulting in germinal center dysfunction and suboptimal antibody responses. Deeper knowledge of TFH cells in malaria could illuminate strategies to improve vaccines through modulating TFH cell responses. This review summarizes emerging concepts in TFH cell responses to malaria.
Collapse
Affiliation(s)
- Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nyamekye Obeng-Adjei
- Malaria Infection Biology & Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter D Crompton
- Malaria Infection Biology & Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
44
|
Protective neutralizing influenza antibody response in the absence of T follicular helper cells. Nat Immunol 2016; 17:1447-1458. [DOI: 10.1038/ni.3563] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
|
45
|
Carpio VH, Opata MM, Montañez ME, Banerjee PP, Dent AL, Stephens R. Correction: IFN-γ and IL-21 Double Producing T Cells Are Bcl6-Independent and Survive into the Memory Phase in Plasmodium chabaudi Infection. PLoS One 2016; 11:e0155570. [PMID: 27548065 PMCID: PMC4993439 DOI: 10.1371/journal.pone.0155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0144654.].
Collapse
|