1
|
Ando S, Tanaka K, Matsumoto M, Oyama Y, Tomabechi Y, Yamagata A, Shirouzu M, Nakagawa R, Okimoto N, Taiji M, Sato K, Ohama T. The luciferase-based in vivo protein-protein interaction assay revealed that CHK1 promotes PP2A and PME-1 interaction. J Biol Chem 2024; 300:107277. [PMID: 38588804 PMCID: PMC11098961 DOI: 10.1016/j.jbc.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.
Collapse
Affiliation(s)
- Sana Ando
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Keiko Tanaka
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Maharu Matsumoto
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Oyama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuri Tomabechi
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Noriaki Okimoto
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan; Drug Discovery Molecular Simulation Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Makoto Taiji
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan; Drug Discovery Molecular Simulation Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
2
|
Mestareehi A, Abu-Farsakh N. Impact of Protein Phosphatase Expressions on the Prognosis of Hepatocellular Carcinoma Patients. ACS OMEGA 2024; 9:10299-10331. [PMID: 38463290 PMCID: PMC10918787 DOI: 10.1021/acsomega.3c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
The study was conducted to unveil the significance of protein phosphatases in the prognosis of hepatocellular carcinoma (HCC) patients and its related molecular biological attributes as well as to discover novel potential biomarkers for therapeutic significance and diagnostic purposes that may benefit clinical practice. Analyzing a data set from 159 HCC patients using high-throughput phosphoproteomics, we examined the dysregulated expression of protein phosphatases. Employing bioinformatic and pathway analyses, we explored differentially expressed genes linked to protein phosphatases. A protein-protein interaction network was constructed using the search tool for the retrieval of interacting genes/proteins database. We quantified a total of 11,547 phosphorylation sites associated with 4043 phosphoproteins from HCC patients. Within this data set, we identified 105 identified phosphorylation sites associated with protein phosphatases; 28 genes were upregulated and 3 were downregulated in HCC. Enriched pathways using Gene Set Enrichment Analysis encompassed oocyte meiosis, proteoglycans in cancer, the oxytocin signaling pathway, the cGMP-PKG signaling pathway, the vascular smooth muscle, and the cAMP signaling pathway. The Kyoto encyclopedia of genes and genomes (KEGG) analysis highlighted pathways like mitogen-activated protein kinase, AMPK, and PI3K-Akt, indicating potential involvement in HCC progression. Notably, the PPI network identified hub genes, emphasizing their interconnections and potential roles in HCC. In our study, we found significantly upregulated levels of CDC25C, PPP1R13L, and PPP1CA, which emerge as promising avenues. This significant expression could serve as potent diagnostic and prognostic markers to enhance the effectiveness of HCC cancer treatment, offering efficiency and accuracy in patient assessment. The findings regarding protein phosphatases reveal their elevated expression in HCC, correlating with unfavorable prognosis. Moreover, the outcomes of gene ontology and KEGG pathway analyses suggest that protein phosphatases may influence liver cancer by engaging diverse targets and pathways, ultimately fostering the progression of HCC. These results underscore the substantial potential of protein phosphatases as key contributors to HCC's development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance the comprehension of the intricate molecular mechanisms underpinning HCC.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
| | - Noor Abu-Farsakh
- Department
of Gastroenterology and Hepatology, Internal Medicine Department, Jordan University Hospital, Amman 11942, Jordan
| |
Collapse
|
3
|
Ikeda S, Sato K, Ohama T. Transcriptome analysis revealed that PME-1 suppresses inflammatory signaling, activates PI3K/Akt signaling, and promotes epithelial-mesenchymal transition. Biochem Biophys Res Commun 2024; 692:149148. [PMID: 38043157 DOI: 10.1016/j.bbrc.2023.149148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023]
Abstract
Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase that belongs to the type2A protein phosphatase family with PP4 and PP6. PP2A functions as a trimeric holoenzyme, and the composition of the trimer is regulated by the methyl-esterification (methylation) of PP2A. Demethylation of PP2A is catalyzed by protein phosphatase methyl-esterase-1 (PME-1). Despite the physiological and pathophysiological importance of PME-1, the impact of changes in PME-1 expression on the transcriptome has not been reported. This study provides transcriptome data to gain a comprehensive understanding of the effects of PME-1 knockout on intracellular signaling of mouse embryonic fibroblasts. Our data showed that PME-1 suppresses inflammatory signaling, activates PI3K/Akt signaling, and promotes epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Shunta Ikeda
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
4
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
5
|
Guffens L, Derua R, Janssens V. PME-1 sensitizes glioblastoma cells to oxidative stress-induced cell death by attenuating PP2A-B55α-mediated inactivation of MAPKAPK2-RIPK1 signaling. Cell Death Discov 2023; 9:265. [PMID: 37500619 PMCID: PMC10374899 DOI: 10.1038/s41420-023-01572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Current standard therapy is surgery followed by radiotherapy, with concurrent and adjuvant temozolomide chemotherapy. GBM is characterized by almost uniformly fatal outcomes, highlighting the unmet clinical need for more efficient, biomarker-guided treatments. Protein phosphatase methylesterase-1 (PME-1), a regulator of the tumor suppressive phosphatase PP2A, promotes PP2A demethylation and inactivation, and is overexpressed in 44% of GBM, associated with increased tumor grade and cellular proliferation. Here, we aimed to investigate how reactive oxygen species (ROS), a frequent by-product of radiotherapy and temozolomide chemotherapy, regulate PP2A function via its methylesterase PME-1, and how PME-1 overexpression impacts the response of GBM cells to oxidative stress. We found that in two glioblastoma cell lines, U87MG and U251MG, expression of PME-1 is positively correlated with the sensitivity of the cells to H2O2 or t-BHP-induced oxidative stress. Experiments using the irreversible pharmacologic PME-1 inhibitor, AMZ30, and different PME-1 mutants, revealed that the methylesterase function, the PP2A binding capacity, and the nuclear localization of PME-1 are all important for the sensitizing effect of PME-1 expression. Furthermore, we identified increased nuclear localization of the PP2A-B55α subunit, increased binding of PP2A-B55α to PME-1, and increased B55α-bound PP2A-C demethylation upon oxidative stress. Lastly, we uncovered increased stress-induced phosphorylation and activity of MAPKAPK2 and RIPK1 in PME-1 overexpressing U87MG cells, which caused the observed sensitization to t-BHP treatment. Our data reveal a novel role for PME-1 in oxidative stress-induced GBM cell death, regulating nuclear PP2A-B55α activity and MAPKAPK2-RIPK1 signaling. Patients with GBM tumors overexpressing PME-1, although having a worse prognosis due to increased cellular proliferation of the tumor, could actually be more responsive to oxidative stress-inducing therapies.
Collapse
Affiliation(s)
- Liesbeth Guffens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- SyBioMa, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
6
|
Zhao M, Yang Y, Shi Y, Chen X, Yang Y, Pan L, Du Z, Sun H, Yao C, Ma G, Du A. PP2Acα-B'/PR61 Holoenzyme of Toxoplasma gondii Is Required for the Amylopectin Metabolism and Proliferation of Tachyzoites. Microbiol Spectr 2023; 11:e0010423. [PMID: 37199633 PMCID: PMC10269777 DOI: 10.1128/spectrum.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Here, we report that the inhibition of the PP2A subfamily by okadaic acid results in an accumulation of polysaccharides in the acute infection stage (tachyzoites) of Toxoplasma gondii, which is a protozoan of global zoonotic importance and a model for the apicomplexan parasites. The loss of the catalytic subunit α of PP2A (ΔPP2Acα) in RHΔku80 leads to the polysaccharide accumulation phenotype in the base of tachyzoites as well as residual bodies and significantly compromises the intracellular growth in vitro and the virulence in vivo. A metabolomic analysis revealed that the accumulated polysaccharides in ΔPP2Acα are derived from interrupted glucose metabolism, which affects the production of ATP and energy homeostasis in the T. gondii knockout. The assembly of the PP2Acα holoenzyme complex involved in the amylopectin metabolism in tachyzoites is possibly not regulated by LCMT1 or PME1, and this finding contributes to the identification of the regulatory B subunit (B'/PR61). The loss of B'/PR61 results in the accumulation of polysaccharide granules in the tachyzoites as well as reduced plaque formation ability, exactly the same as ΔPP2Acα. Taken together, we have identified a PP2Acα-B'/PR61 holoenzyme complex that plays a crucial role in the carbohydrate metabolism and viability in T. gondii, and its deficiency in function remarkably suppresses the growth and virulence of this important zoonotic parasite both in vitro and in vivo. Hence, rendering the PP2Acα-B'/PR61 holoenzyme functionless should be a promising strategy for the intervention of Toxoplasma acute infection and toxoplasmosis. IMPORTANCE Toxoplasma gondii switches back and forth between acute and chronic infections, mainly in response to host immunologic status, which is characterized by flexible but specific energy metabolism. Polysaccharide granules are accumulated in the acute infection stage of T. gondii that have been exposed to a chemical inhibitor of the PP2A subfamily. The genetic depletion of the catalytic subunit α of PP2A leads to this phenotype and significantly affects the cell metabolism, energy production, and viability. Further, a regulatory B subunit PR61 is necessary for the PP2A holoenzyme to function in glucose metabolism and in the intracellular growth of T. gondii tachyzoites. A deficiency of this PP2A holoenzyme complex (PP2Acα-B'/PR61) in T. gondii knockouts results in the abnormal accumulation of polysaccharides and the disruption of energy metabolism, suppressing their growth and virulence. These findings provide novel insights into cell metabolism and identify a potential target for an intervention against a T. gondii acute infection.
Collapse
Affiliation(s)
- Mingxiu Zhao
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lingtao Pan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hongchao Sun
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang Province, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Kokot T, Köhn M. Emerging insights into serine/threonine-specific phosphoprotein phosphatase function and selectivity. J Cell Sci 2022; 135:277104. [DOI: 10.1242/jcs.259618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ABSTRACT
Protein phosphorylation on serine and threonine residues is a widely distributed post-translational modification on proteins that acts to regulate their function. Phosphoprotein phosphatases (PPPs) contribute significantly to a plethora of cellular functions through the accurate dephosphorylation of phosphorylated residues. Most PPPs accomplish their purpose through the formation of complex holoenzymes composed of a catalytic subunit with various regulatory subunits. PPP holoenzymes then bind and dephosphorylate substrates in a highly specific manner. Despite the high prevalence of PPPs and their important role for cellular function, their mechanisms of action in the cell are still not well understood. Nevertheless, substantial experimental advancements in (phospho-)proteomics, structural and computational biology have contributed significantly to a better understanding of PPP biology in recent years. This Review focuses on recent approaches and provides an overview of substantial new insights into the complex mechanism of PPP holoenzyme regulation and substrate selectivity.
Collapse
Affiliation(s)
- Thomas Kokot
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| |
Collapse
|
8
|
Kitamura N, Fujiwara N, Hayakawa K, Ohama T, Sato K. Protein phosphatase 6 promotes neurite outgrowth by promoting mTORC2 activity in N2a cells. J Biochem 2021; 170:131-138. [PMID: 34314486 DOI: 10.1093/jb/mvab028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the molecular mechanism of neuronal differentiation is important to overcome the incurable diseases caused by nervous system damage. Neurite outgrowth is prerequisite for neuronal differentiation and regeneration, and cAMP response element-binding protein (CREB) is one of the major transcriptional factors positively regulating this process. Neuronal differentiation stimuli activate mammalian target of rapamycin (mTOR) complex 2 (mTORC2)/Akt signaling to phosphorylate CREB, however, the precise molecular mechanism of this event has not been fully understood. In this manuscript, we show that neuronal differentiation stimuli increased a protein level of protein phosphatase 6 (PP6), a member of type 2A Ser/Thr protein phosphatases. PP6 knockdown suppressed mTORC2/Akt/CREB signaling and results in failure of neurite outgrowth. SIN1 is a unique component of mTORC2 that enhances mTORC2 activity toward Akt when it is in dephosphorylated form. We found PP6 knockdown increased SIN1 phosphorylation. These data suggest that PP6 may positively regulate neurite outgrowth by dephosphorylating SIN1 to activate mTORC2/Akt/CREB signaling.
Collapse
Affiliation(s)
- Nao Kitamura
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | - Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, 794-8555 Ehime, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
9
|
Ikeda S, Tsuji S, Ohama T, Sato K. Involvement of PP2A methylation in the adipogenic differentiation of bone marrow-derived mesenchymal stem cell. J Biochem 2021; 168:643-650. [PMID: 32663263 DOI: 10.1093/jb/mvaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells with ability to self-replicate and differentiate into mesodermal derivatives, such as adipocytes and osteoblasts. BM-MSCs are a critical component of the tumour microenvironment. They support tumour progression by recruiting additional BM-MSCs and by differentiating into myofibroblasts (also called cancer-associated fibroblasts). Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase that regulates a broad range of cellular signalling. PP2A forms a heterotrimer to dephosphorylate specific substrates. The reversible methylesterification (methylation) of Leu309 in the catalytic subunit of PP2A (PP2Ac) regulates biogenesis of the PP2A holoenzyme. It is unknown whether the methylation of PP2Ac plays a role in BM-MSC differentiation. Our experiments determined that protein levels of PP2A subunits and PP2A methyltransferase (LCMT-1) are significantly altered during differentiation. PP2Ac methylation levels in BM-MSCs decrease over time in response to an adipogenic differentiation stimulus. However, blockage of PP2A demethylation using the PP2A dimethyl-esterase inhibitors enhanced adipocyte differentiation. This suggests that PP2Ac demethylation is involved in adipocyte differentiation resistance. The results of our study provide a greater understanding of the regulation of BM-MSCs differentiation by PP2A holoenzyme.
Collapse
Affiliation(s)
- Shunta Ikeda
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shunya Tsuji
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
10
|
Pan Y, Zhang Y, Liu N, Lu W, Yang J, Li Y, Liu Z, Wei Y, Lou Y, Kong J. Vitamin D Attenuates Alzheimer-like Pathology Induced by Okadaic Acid. ACS Chem Neurosci 2021; 12:1343-1350. [PMID: 33818056 DOI: 10.1021/acschemneuro.0c00812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many elderly individuals suffer from Alzheimer's disease (AD), which causes a growing concern. We investigated the mechanism underlying the effects of vitamin D (VD) as a prophylactic treatment. A mouse model of okadaic-acid-induced AD-like pathology was used in vivo and in vitro. Morris water maze and field trials were used to assess cognitive function. The expression levels of VDR, MTHFR, LCMT-1, PP2A, p-TAU (Thr396), and T-TAU and the methylation level of PP2A were measured by Western blotting, and a reversal of the increase in the levels of these proteins in an AD cell model was observed. We used MTHFR-knockdown SH-SY5Y cells to further test the effects of VD, treated these cells with cycloheximide and MG132, and used RT-PCR to explore the mechanism underlying MTHFR targeting. We found that the effects of VD on AD were impaired by MTHFR knockdown through a pretranscriptional mechanism. In addition, VD attenuated AD-induced cognitive impairment and significantly suppressed the expression of TAU. Our findings indicated that VD treatment alleviated TAU accumulation and rescued methylated PP2A by increasing the expression of LCMT-1 and MTHFR.
Collapse
Affiliation(s)
- Yiming Pan
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yalin Zhang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wanyi Lu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jingxin Yang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ye Li
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zuwang Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yinghong Wei
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yan Lou
- Department of Computer Science, China Medical University, Shenyang 110013, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
11
|
Meep, a Novel Regulator of Insulin Signaling, Supports Development and Insulin Sensitivity via Maintenance of Protein Homeostasis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:4399-4410. [PMID: 32998936 PMCID: PMC7718763 DOI: 10.1534/g3.120.401688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for developmental growth and adult homeostasis, yet the downstream regulators of this signaling pathway are not completely understood. Using the model organism Drosophila melanogaster, we took a genomic approach to identify novel mediators of insulin signaling. These studies led to the identification of Meep, encoded by the gene CG32335. Expression of this gene is both insulin receptor- and diet-dependent. We found that Meep was specifically required in the developing fat body to tolerate a high-sugar diet (HSD). Meep is not essential on a control diet, but when reared on an HSD, knockdown of meep causes hyperglycemia, reduced growth, developmental delay, pupal lethality, and reduced longevity. These phenotypes stem in part from Meep’s role in promoting insulin sensitivity and protein stability. This work suggests a critical role for protein homeostasis in development during overnutrition. Because Meep is conserved and obesity-associated in mammals, future studies on Meep may help to understand the role of proteostasis in insulin-resistant type 2 diabetes.
Collapse
|
12
|
Nasa I, Kettenbach AN. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily. Biochem Soc Trans 2020; 48:2015-2027. [PMID: 33125487 PMCID: PMC8380034 DOI: 10.1042/bst20200177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
Phosphoprotein Phosphatases (PPPs) are enzymes highly conserved from yeast and human and catalyze the majority of the serine and threonine dephosphorylation in cells. To achieve substrate specificity and selectivity, PPPs form multimeric holoenzymes consisting of catalytic, structural/scaffolding, and regulatory subunits. For the Protein Phosphatase 2A (PP2A)-subfamily of PPPs, holoenzyme assembly is at least in part regulated by an unusual carboxyl-terminal methyl-esterification, commonly referred to as 'methylation'. Carboxyl-terminal methylation is catalyzed by Leucine carboxyl methyltransferase-1 (LCMT1) that utilizes S-adenosyl-methionine (SAM) as the methyl donor and removed by protein phosphatase methylesterase 1 (PME1). For PP2A, methylation dictates regulatory subunit selection and thereby downstream phosphorylation signaling. Intriguingly, there are four families of PP2A regulatory subunits, each exhibiting different levels of methylation sensitivity. Thus, changes in PP2A methylation stoichiometry alters the complement of PP2A holoenzymes in cells and creates distinct modes of kinase opposition. Importantly, selective inactivation of PP2A signaling through the deregulation of methylation is observed in several diseases, most prominently Alzheimer's disease (AD). In this review, we focus on how carboxyl-terminal methylation of the PP2A subfamily (PP2A, PP4, and PP6) regulates holoenzyme function and thereby phosphorylation signaling, with an emphasis on AD.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| |
Collapse
|
13
|
Fujiwara N, Shibutani S, Sakai Y, Watanabe T, Kitabayashi I, Oshima H, Oshima M, Hoshida H, Akada R, Usui T, Ohama T, Sato K. Autophagy regulates levels of tumor suppressor enzyme protein phosphatase 6. Cancer Sci 2020; 111:4371-4380. [PMID: 32969571 PMCID: PMC7734157 DOI: 10.1111/cas.14662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 6 (PP6) is an essential serine/threonine protein phosphatase that acts as an important tumor suppressor. However, increased protein levels of PP6 have been observed in some cancer types, and they correlate with poor prognosis in glioblastoma. This raises a question about how PP6 protein levels are regulated in normal and transformed cells. In this study, we show that PP6 protein levels increase in response to pharmacologic and genetic inhibition of autophagy. PP6 associates with autophagic adaptor protein p62/SQSTM1 and is degraded in a p62-dependent manner. Accordingly, protein levels of PP6 and p62 fluctuate in concert under different physiological and pathophysiological conditions. Our data reveal that PP6 is regulated by p62-dependent autophagy and suggest that accumulation of PP6 protein in tumor tissues is caused at least partially by deficiency in autophagy.
Collapse
Affiliation(s)
- Nobuyuki Fujiwara
- Laboratory of Veterinary Pharmacology, Yamaguchi University, Yamaguchi, Japan.,Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Yamaguchi University, Yamaguchi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Rinji Akada
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Yamaguchi University, Yamaguchi, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
14
|
Labuzan SA, Lynch SA, Cooper LM, Waddell DS. Inhibition of protein phosphatase methylesterase 1 dysregulates MAP kinase signaling and attenuates muscle cell differentiation. Gene 2020; 739:144515. [DOI: 10.1016/j.gene.2020.144515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
|
15
|
Du B, Liao H, Zhang S. Expression Pattern and Prognostic Utility of PME-1 in Patients with Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:2937-2945. [PMID: 32431540 PMCID: PMC7197939 DOI: 10.2147/cmar.s252873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) remains one of the most common malignancies. While there is lack of markers capable of predicting which patients are at risk of aggressive course of the disease. Although a few protein phosphatase methyl-esterase-1 (PME-1) tumor-promoting mechanisms have been reported, the role of PME-1 in cancer including HCC occurrence and progression remains to be elucidated. The aim of this study was to explore the expression pattern and relationship between PME-1 with the pathological parameters in patients with HCC. Methods PME-1 expression was assessed from HCC tissue chips via immunohistochemistry. Chi-square test was used to identify the association between PME-1 staining and clinicopathological variables of HCC patients. Kaplan–Meier analysis and Cox regression analysis were performed to draw survival curves and verify the independent prognostic factors of HCC patients, respectively. Results We found that PME-1 expression was significantly higher in HCC tumor tissues compared with non-tumor tissues (P < 0.001). Furthermore, high expression level of PME-1 was significantly associated with differentiation (P = 0.047), tumor number (P = 0.001), intrahepatic or extrahepatic metastasis (P = 0.018), and recurrence (P = 0.001). Kaplan–Meier analysis revealed that high expression level of PME-1 was associated with shorter survival (P < 0.001). Univariate analysis with Log-rank test revealed that PME-1 expression status was significantly correlated with overall survival (P < 0.001). Furthermore, multivariate models with Cox proportional hazards analysis showed that high expression of PME-1 was a statistically independent predictive factor of poor prognosis in HCC patients (hazard ratio, 3.429; 95% confidence interval, 1.369–8.589; P = 0.009). Conclusion In conclusion, these findings indicated that PME-1 expression was associated with aggressive pathological features and worse oncological outcomes, suggesting its potential therapeutic value for patients with HCC.
Collapse
Affiliation(s)
- Baoying Du
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongfeng Liao
- Department of Pathology, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Sheng Zhang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
16
|
PP2A Functions during Mitosis and Cytokinesis in Yeasts. Int J Mol Sci 2019; 21:ijms21010264. [PMID: 31906018 PMCID: PMC6981662 DOI: 10.3390/ijms21010264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is a common mechanism for the regulation of cell cycle progression. The opposing functions of cell cycle kinases and phosphatases are crucial for accurate chromosome segregation and exit from mitosis. Protein phosphatases 2A are heterotrimeric complexes that play essential roles in cell growth, proliferation, and regulation of the cell cycle. Here, we review the function of the protein phosphatase 2A family as the counteracting force for the mitotic kinases. We focus on recent findings in the regulation of mitotic exit and cytokinesis by PP2A phosphatases in S. cerevisiae and other fungal species.
Collapse
|
17
|
Svarcbahs R, Jäntti M, Kilpeläinen T, Julku UH, Urvas L, Kivioja S, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol Res 2019; 151:104558. [PMID: 31759088 DOI: 10.1016/j.phrs.2019.104558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lauri Urvas
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Saara Kivioja
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
18
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
19
|
Ohama T. The multiple functions of protein phosphatase 6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:74-82. [DOI: 10.1016/j.bbamcr.2018.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
|
20
|
Blood-Based Biomarkers for Predicting the Risk for Five-Year Incident Coronary Heart Disease in the Framingham Heart Study via Machine Learning. Genes (Basel) 2018; 9:genes9120641. [PMID: 30567402 PMCID: PMC6315411 DOI: 10.3390/genes9120641] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
An improved approach for predicting the risk for incident coronary heart disease (CHD) could lead to substantial improvements in cardiovascular health. Previously, we have shown that genetic and epigenetic loci could predict CHD status more sensitively than conventional risk factors. Herein, we examine whether similar machine learning approaches could be used to develop a similar panel for predicting incident CHD. Training and test sets consisted of 1180 and 524 individuals, respectively. Data mining techniques were employed to mine for predictive biosignatures in the training set. An ensemble of Random Forest models consisting of four genetic and four epigenetic loci was trained on the training set and subsequently evaluated on the test set. The test sensitivity and specificity were 0.70 and 0.74, respectively. In contrast, the Framingham risk score and atherosclerotic cardiovascular disease (ASCVD) risk estimator performed with test sensitivities of 0.20 and 0.38, respectively. Notably, the integrated genetic-epigenetic model predicted risk better for both genders and very well in the three-year risk prediction window. We describe a novel DNA-based precision medicine tool capable of capturing the complex genetic and environmental relationships that contribute to the risk of CHD, and being mapped to actionable risk factors that may be leveraged to guide risk modification efforts.
Collapse
|
21
|
Tang S, Lu C, Mo L, Wang X, Liang Z, Qin F, Liu Y, Liu Y, Huang H, Huang Y, Cai H, Xiao D, Guo S, Ouyang Y, Sun B, Li X. Hydrogen peroxide redistributes the localization of protein phosphatase methylesterase 1. Life Sci 2018; 213:166-173. [DOI: 10.1016/j.lfs.2018.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
|
22
|
Yabe R, Tsuji S, Mochida S, Ikehara T, Usui T, Ohama T, Sato K. A stable association with PME-1 may be dispensable for PP2A demethylation - implications for the detection of PP2A methylation and immunoprecipitation. FEBS Open Bio 2018; 8:1486-1496. [PMID: 30186749 PMCID: PMC6120246 DOI: 10.1002/2211-5463.12485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 12/03/2022] Open
Abstract
Reversible methyl-esterification (methylation) of Leu309 in the protein phosphatase 2A catalytic subunit (PP2Ac) is essential for proper biogenesis of the PP2A holoenzyme. Accumulating evidence links PP2Ac methylation to diseases, including cancer and neurodegenerative disorders. Protein phosphatase methyl-esterase (PME-1) specifically catalyzes PP2Ac demethylation. We demonstrate that PP2Ac is demethylated in cell extracts even at 0 °C unless prevented by a PME-1 methyl-esterase inhibitor. This promotes dissociation of PP2A heterotrimers with B55 or PR72 subunits, but not those with B56 subunits. These results reveal differential sensitivity of ABC heterotrimers to methylation status of the C subunit. Our study advocates caution when interpreting earlier findings, offers an effective protocol for preserving PP2A complexes, and reveals key distinctions between B subunits and their interactions with the AC core dimer of PP2A.
Collapse
Affiliation(s)
- Ryotaro Yabe
- Laboratory of Veterinary PharmacologyJoint Faculty of Veterinary MedicineYamaguchi UniversityJapan
| | - Shunya Tsuji
- Laboratory of Veterinary PharmacologyJoint Faculty of Veterinary MedicineYamaguchi UniversityJapan
| | - Satoru Mochida
- Priority Organization for Innovation and ExcellenceKumamoto UniversityJapan
| | - Tsuyoshi Ikehara
- Department of Food Science and TechnologyNational Fisheries UniversityShimonosekiJapan
| | - Tatsuya Usui
- Laboratory of Veterinary PharmacologyFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Takashi Ohama
- Laboratory of Veterinary PharmacologyJoint Faculty of Veterinary MedicineYamaguchi UniversityJapan
| | - Koichi Sato
- Laboratory of Veterinary PharmacologyJoint Faculty of Veterinary MedicineYamaguchi UniversityJapan
| |
Collapse
|
23
|
Fan L, Liu MH, Guo M, Hu CX, Yan ZW, Chen J, Chen GQ, Huang Y. FAM122A, a new endogenous inhibitor of protein phosphatase 2A. Oncotarget 2018; 7:63887-63900. [PMID: 27588481 PMCID: PMC5325411 DOI: 10.18632/oncotarget.11698] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023] Open
Abstract
The regulation of the ubiquitously expressed protein phosphatase 2A (PP2A) is essential for various cellular functions such as cell proliferation, transformation, and fate determination. In this study, we demonstrate that the highly conserved protein in mammals, designated FAM122A, directly interacts with PP2A-Aα and B55α rather than B56α subunits, and inhibits the phosphatase activity of PP2A-Aα/B55α/Cα complex. Further, FAM122A potentiates the degradation of catalytic subunit PP2A-Cα with the increased poly-ubiquitination. In agreement, FAM122A silencing inhibits while its overexpression enhances cell growth and colony-forming ability. Collectively, we identify FAM122A as a new endogenous PP2A inhibitor and its physiological and pathophysiological significances warrant to be further investigated.
Collapse
Affiliation(s)
- Li Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Guo
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuan-Xi Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhao-Wen Yan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
24
|
Fan F, Zhao J, Liu Y, Zhao H, Weng L, Li Q, Chen G, Xu Y. Identifying the SUMO1 modification of FAM122A leading to the degradation of PP2A-Cα by ubiquitin-proteasome system. Biochem Biophys Res Commun 2018; 500:676-681. [PMID: 29678583 DOI: 10.1016/j.bbrc.2018.04.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023]
Abstract
FAM122A is a highly conserved protein in mammals. Here, we identify that FAM122A can be sumoylated at lysine 89, which can be de-conjugated by SENP1. Furthermore, the sumoylation of FAM122A reduces the PP2A-Cα protein level together with the reduced phosphatase activity of PP2A, which suppresses cell proliferation. Collectively, our results suggest that the sumoylation of FAM122A may have a significant role in cellular function.
Collapse
Affiliation(s)
- Fangzhi Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junxing Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yali Liu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China
| | - Hongfang Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China
| | - Lietao Weng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingqing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
25
|
Usui T, Sakurai M, Umata K, Elbadawy M, Ohama T, Yamawaki H, Hazama S, Takenouchi H, Nakajima M, Tsunedomi R, Suzuki N, Nagano H, Sato K, Kaneda M, Sasaki K. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture. Int J Mol Sci 2018; 19:ijms19041098. [PMID: 29642386 PMCID: PMC5979580 DOI: 10.3390/ijms19041098] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air-liquid interface (ALI) method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU) and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61) decreases the cell viability of organoids compared with Notch (YO-01027, DAPT) and Wnt (WAV939, Wnt-C59) signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.
Collapse
Affiliation(s)
- Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | - Koji Umata
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada City, Aomori 034-8628, Japan.
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against Cancer, School of Medicine, Yamaguchi University, 1-1-1 Ogushi, Ube, Yamaguchi 755-8505, Japan.
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Ogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Hiroko Takenouchi
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Ogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Ogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Ogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Ogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Ogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
26
|
Therapeutic targeting of PP2A. Int J Biochem Cell Biol 2017; 96:182-193. [PMID: 29107183 DOI: 10.1016/j.biocel.2017.10.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many cellular processes. Given the central role of PP2A in regulating diverse biological functions and its dysregulation in many diseases, including cancer, PP2A directed therapeutics have become of great interest. The main approaches leveraged thus far can be categorized as follows: 1) inhibiting endogenous inhibitors of PP2A, 2) targeted disruption of post translational modifications on PP2A subunits, or 3) direct targeting of PP2A. Additional insight into the structural, molecular, and biological framework driving the efficacy of these therapeutic strategies will provide a foundation for the refinement and development of novel and clinically tractable PP2A targeted therapies.
Collapse
|
27
|
Kawasaki H, Saotome T, Usui T, Ohama T, Sato K. Regulation of intestinal myofibroblasts by KRas-mutated colorectal cancer cells through heparin-binding epidermal growth factor-like growth factor. Oncol Rep 2017; 37:3128-3136. [PMID: 28339087 DOI: 10.3892/or.2017.5520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
In colorectal cancer, gain-of-function mutations in KRas play a critical role in malignant transformation. Tumor growth in colorectal cancer is known to be promoted by the intestinal myofibroblasts (IMFs) that localize adjacent to the cancer cells, but the mechanisms of interaction between KRas-mutated cancer cells and the myofibroblasts remain unclear. Here, we investigated the effects of KRas-mutated cells on the behavior of myofibroblasts by using mouse primary IMFs and cells of an IMF cell line (LmcMF) and a mouse colon epithelial cell line (aMoC1). Conditioned medium (CM) was collected from aMoC1 cells overexpressing a control vector or KRasV12 vector (KRasV12-CM), and the effects of KRasV12-CM on IMFs were analyzed by performing proliferation assays, wound-healing assays, Boyden chamber assays, and western blotting. Whereas KRasV12-CM exerted little effect on the differentiation and proliferation of primary IMFs, the CM promoted migration of both primary IMFs and LmcMF cells. In KRasV12-overexpressing aMoC1 cells, mRNA expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) was higher than in mock-transfected aMoC1 cells, and HB-EGF promoted the migration of primary IMFs and LmcMF cells. Moreover, KRasV12-CM-induced IMF migration was suppressed by dacomitinib, an inhibitor of HB-EGF receptors. Notably, in LmcMF cells, both KRasV12-CM and HB-EGF activated extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK), whereas KRasV12-CM-induced migration of IMFs was suppressed following treatment with either an ERK inhibitor (FR180204) or a JNK inhibitor (SP600125). These results suggest that HB-EGF secreted from KRas-mutated colorectal cancer cells promotes IMF migration through ERK and JNK activation, which, in turn, could support cancer progression.
Collapse
Affiliation(s)
- Hideyoshi Kawasaki
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takuya Saotome
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
28
|
Kake S, Usui T, Ohama T, Yamawaki H, Sato K. Death-associated protein kinase 3 controls the tumor progression of A549 cells through ERK MAPK/c-Myc signaling. Oncol Rep 2017; 37:1100-1106. [PMID: 28075459 DOI: 10.3892/or.2017.5359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 11/06/2022] Open
Abstract
Death-associated protein kinases (DAPKs) are members of the serine/threonine protein kinase family, which regulate cell death. Although DAPK3 has been implicated as a tumor suppressor, a recent study revealed an oncogenic role of DAPK3. However, the role of DAPK3 in non-small cell lung cancer (NSCLC) remains unclear. Therefore, we examined whether DAPK3 controls the progression of NSCLC using the NSCLC cell line, A549. We generated A549 cells stably expressing small hairpin RNA (shRNA) targeting DAPK3. In the A549 cells, the protein level of DAPK3 was decreased and the cell proliferation was inhibited. DAPK3 knockdown caused G1/G0 cell cycle arrest as assessed by flow cytometric assay and reduced cyclin D1 expression in A549 cells. Phosphorylation of ERK and c-Myc, but not Akt and JNK, was inhibited by DAPK3 knockdown. Cell migration and invasion were also inhibited by DAPK3 knockdown as determined by a Boyden chamber assay and an invasion assay, respectively. Moreover, DAPK3 knockdown inhibited anchorage-independent cell growth as determined by soft-agar colony formation assay. In a mouse xenograft model, tumors derived from DAPK3-knockdown cells exhibited reduced tumor growth. The present results demonstrated for the first time that DAPK3 controls proliferation, migration, invasion, soft‑agar colony formation and tumor growth through activation of ERK/c-Myc signaling in A549 cells. These findings indicate that DAPK3 may be a novel target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Satoru Kake
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| |
Collapse
|
29
|
Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1. Biochem Soc Trans 2016; 44:1683-1693. [DOI: 10.1042/bst20160161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023]
Abstract
Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.
Collapse
|
30
|
Fujiwara N, Usui T, Ohama T, Sato K. Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3). J Biol Chem 2016; 291:10858-66. [PMID: 26994142 DOI: 10.1074/jbc.m115.704908] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/30/2022] Open
Abstract
Autophagy is an evolutionarily conserved intracellular degradation system that is involved in cell survival and activated in various diseases, including cancer. Beclin 1 is a central scaffold protein that assembles components for promoting or inhibiting autophagy. Association of Beclin 1 with its interacting proteins is regulated by the phosphorylation of Beclin 1 by various Ser/Thr kinases, but the Ser/Thr phosphatases that regulate these phosphorylation events remain unknown. Here we identify Ser-90 in Beclin 1 as a regulatory site whose phosphorylation is markedly enhanced in cells treated with okadaic acid, an inhibitor of protein phosphatase 2A (PP2A). Beclin 1 Ser-90 phosphorylation is induced in skeletal muscle tissues isolated from starved mice. The Beclin 1 S90A mutant blocked starvation-induced autophagy. We found association of PP2A B55α with Beclin 1, which dissociate by starvation. We also found that death-associated protein kinase 3 directly phosphorylates Beclin 1 Ser-90. We propose that physiological regulation of Beclin 1 Ser-90 phosphorylation by PP2A and death-associated protein kinase 3 controls autophagy.
Collapse
Affiliation(s)
| | - Tatsuya Usui
- Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- From the Laboratories of Veterinary Pharmacology and
| | - Koichi Sato
- From the Laboratories of Veterinary Pharmacology and
| |
Collapse
|