1
|
Kang S, Kim S, Park KC, Petrašiūnas A, Shin HC, Jo E, Cho SM, Kim JH. Molecular evidence for multiple origins and high genetic differentiation of non-native winter crane fly, Trichocera maculipennis (Diptera: Trichoceridae), in the maritime Antarctic. ENVIRONMENTAL RESEARCH 2024; 242:117636. [PMID: 37952853 DOI: 10.1016/j.envres.2023.117636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Native biodiversity and ecosystems of Antarctica safeguarded from biological invasion face recent threats from non-native species, accelerated by increasing human activities and climate changes. Over two decades ago, the winter crane fly, Trichocera maculipennis, was first detected on King George Island. It has now successfully colonized several research stations across King George Island. To understand the origin, genetic diversity, and population structure of this Holarctic species, we conducted mitochondrial DNA cytochrome c oxidase subunit I (COI) sequence analysis across both its native and invasive ranges. In parallel, we performed microsatellite loci analysis within the invasive ranges, utilizing 12 polymorphic microsatellite markers. Furthermore, we compared body sizes among adult males and females collected from three different locations of King George Island. Our COI sequence analysis exhibited two different lineages present on King George Island. Lineage I was linked to Arctic Svalbard and Polish cave populations and Lineage II was related to Canadian Terra Nova National Park populations, implying multiple origins. Microsatellite analysis further exhibited high levels of genetic diversity and significant levels of genetic differentiation among invasive populations. Body sizes of adult T. maculipennis were significantly different among invasive populations but were not attributed to genetics. This significant genetic diversity likely facilitated the rapid colonization and establishment of T. maculipennis on King George Island, contributing to their successful invasion. Molecular analysis results revealed a substantial amount of genetic variation within invasive populations, which can serve as management units for invasive species control. Furthermore, the genetic markers we developed in the study will be invaluable tools for tracking impending invasion events and the travel routes of new individuals. Taken together, these findings illustrate the highly invasive and adaptable characteristics of T. maculipennis. Therefore, immediate action is necessary to mitigate their ongoing invasion and facilitate their eradication.
Collapse
Affiliation(s)
- Seunghyun Kang
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Sanghee Kim
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Kye Chung Park
- The New Zealand Institute for Plant and Food Research Ltd., Christchurch, 8140, New Zealand
| | - Andrius Petrašiūnas
- Department of Zoology, Institute of Biosciences, Vilnius University Life Sciences Center, LT 1022, Vilnius, Lithuania
| | | | - Euna Jo
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Sung Mi Cho
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Ji Hee Kim
- Korea Polar Research Institute, Incheon, 21990, South Korea.
| |
Collapse
|
2
|
Rane R, Walsh TK, Lenancker P, Gock A, Dao TH, Nguyen VL, Khin TN, Amalin D, Chittarath K, Faheem M, Annamalai S, Thanarajoo SS, Trisyono YA, Khay S, Kim J, Kuniata L, Powell K, Kalyebi A, Otim MH, Nam K, d’Alençon E, Gordon KHJ, Tay WT. Complex multiple introductions drive fall armyworm invasions into Asia and Australia. Sci Rep 2023; 13:660. [PMID: 36635481 PMCID: PMC9837037 DOI: 10.1038/s41598-023-27501-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is thought to have undergone a rapid 'west-to-east' spread since 2016 when it was first identified in western Africa. Between 2018 and 2020, it was recorded from South Asia (SA), Southeast Asia (SEA), East Asia (EA), and Pacific/Australia (PA). Population genomic analyses enabled the understanding of pathways, population sources, and gene flow in this notorious agricultural pest species. Using neutral single nucleotide polymorphic (SNP) DNA markers, we detected genome introgression that suggested most populations in this study were overwhelmingly C- and R-strain hybrids (n = 252/262). SNP and mitochondrial DNA markers identified multiple introductions that were most parsimoniously explained by anthropogenic-assisted spread, i.e., associated with international trade of live/fresh plants and plant products, and involved 'bridgehead populations' in countries to enable successful pest establishment in neighbouring countries. Distinct population genomic signatures between Myanmar and China do not support the 'African origin spread' nor the 'Myanmar source population to China' hypotheses. Significant genetic differentiation between populations from different Australian states supported multiple pathways involving distinct SEA populations. Our study identified Asia as a biosecurity hotspot and a FAW genetic melting pot, and demonstrated the use of genome analysis to disentangle preventable human-assisted pest introductions from unpreventable natural pest spread.
Collapse
Affiliation(s)
- Rahul Rane
- grid.1016.60000 0001 2173 2719CSIRO, 343 Royal Parade, Parkville, Melbourne, VIC 3052 Australia ,grid.1004.50000 0001 2158 5405Applied BioSciences, Macquarie University, Sydney, NSW Australia
| | - Thomas K. Walsh
- grid.1016.60000 0001 2173 2719CSIRO, Black Mountain Laboratories, Clunies Ross Street, Canberra, ACT 2601 Australia ,grid.1004.50000 0001 2158 5405Applied BioSciences, Macquarie University, Sydney, NSW Australia
| | - Pauline Lenancker
- grid.467576.1Sugar Research Australia, 71378 Bruce Highway, Gordonvale, QLD 4865 Australia
| | - Andrew Gock
- grid.1016.60000 0001 2173 2719CSIRO, Black Mountain Laboratories, Clunies Ross Street, Canberra, ACT 2601 Australia
| | - Thi Hang Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | | | - Divina Amalin
- grid.411987.20000 0001 2153 4317Department of Biology, De La Salle University, Manila, Philippines
| | | | - Muhammad Faheem
- CAB International Southeast Asia, Serdang, Kuala Lumpur, Malaysia
| | | | | | - Y. Andi Trisyono
- grid.8570.a0000 0001 2152 4506Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Depok, Indonesia
| | - Sathya Khay
- grid.473388.3Plant Protection Division of CARDI, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Juil Kim
- grid.412010.60000 0001 0707 9039College of Agriculture and Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Lastus Kuniata
- grid.473451.0New Britain Palm Oil, Ramu Agri Industry Ltd., Lae, Papua New Guinea
| | - Kevin Powell
- grid.467576.1Sugar Research Australia, 71378 Bruce Highway, Gordonvale, QLD 4865 Australia
| | | | - Michael H. Otim
- grid.463519.c0000 0000 9021 5435National Crops Resources Research Institute, Namulonge, Kampala, Uganda
| | - Kiwoong Nam
- grid.503158.aDGIMI, Université Montpellier, INRAE, Montpellier, France
| | | | - Karl H. J. Gordon
- grid.1016.60000 0001 2173 2719CSIRO, Black Mountain Laboratories, Clunies Ross Street, Canberra, ACT 2601 Australia
| | - Wee Tek Tay
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, Canberra, ACT, 2601, Australia. .,Applied BioSciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Tay WT, Rane RV, James W, Gordon KHJ, Downes S, Kim J, Kuniata L, Walsh TK. Resistance Bioassays and Allele Characterization Inform Analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) Introduction Pathways in Asia and Australia. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1790-1805. [PMID: 36515109 PMCID: PMC9748595 DOI: 10.1093/jee/toac151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 06/16/2023]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda (Smith; Lepidoptera: Noctuidae) is present in over 70 countries in Africa, Asia, and Oceania. Its rapid dispersal since 2016 when it was first reported in western Africa, and associated devastation to agricultural productivity, highlight the challenges posed by this pest. Currently, its management largely relies on insecticide sprays and transgenic Bacillus thuringiensis toxins, therefore understanding their responses to these agents and characteristics of any resistance genes enables adaptive strategies. In Australia, S. frugiperda was reported at the end of January 2020 in northern Queensland and by March 2020, also in northern Western Australia. As an urgent first response we undertook bioassays on two Australian populations, one each from these initial points of establishment. To assist with preliminary sensitivity assessment, two endemic noctuid pest species, Helicoverpa armigera (Hübner; Lepidoptera, Noctuidae) and Spodoptera litura (Fabricius; Lepidoptera, Noctuidae), were concurrently screened to obtain larval LC50 estimates against various insecticides. We characterized known resistance alleles from the VGSC, ACE-1, RyR, and ABCC2 genes to compare with published allele frequencies and bioassay responses from native and invasive S. frugiperda populations. An approximately 10× LC50 difference for indoxacarb was detected between Australian populations, which was approximately 28× higher than that reported from an Indian population. Characterization of ACE-1 and VGSC alleles provided further evidence of multiple introductions in Asia, and multiple pathways involving genetically distinct individuals in Australia. The preliminary bioassay results and resistance allele patterns from invasive S. frugiperda populations suggest multiple introductions have contributed to the pest's spread and challenge the axiom of its rapid 'west-to-east' spread.
Collapse
Affiliation(s)
- W T Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia
- Applied BioSciences, Macquarie University, Sydney, NSW 2100, Australia
| | - R V Rane
- Applied BioSciences, Macquarie University, Sydney, NSW 2100, Australia
- CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - W James
- CSIRO Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia
| | - K H J Gordon
- CSIRO Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia
| | - S Downes
- CSIRO McMaster Laboratories, New England Highway, Armidale, NSW 2350, Australia
| | - J Kim
- College of Agriculture and Life Science, Kangwon National University, Republic of Korea
| | | | - T K Walsh
- CSIRO Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia
- Applied BioSciences, Macquarie University, Sydney, NSW 2100, Australia
| |
Collapse
|
4
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
5
|
Konstantinidis K, Bampali M, de Courcy Williams M, Dovrolis N, Gatzidou E, Papazilakis P, Nearchou A, Veletza S, Karakasiliotis I. Dissecting the Species-Specific Virome in Culicoides of Thrace. Front Microbiol 2022; 13:802577. [PMID: 35330767 PMCID: PMC8940260 DOI: 10.3389/fmicb.2022.802577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.
Collapse
Affiliation(s)
| | - Maria Bampali
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolas Dovrolis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Gatzidou
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Stavroula Veletza
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
6
|
Lakew BT, Nicholas AH, Walkden-Brown SW. Spatial and temporal distribution of Culicoides species in the New England region of New South Wales, Australia between 1990 and 2018. PLoS One 2021; 16:e0249468. [PMID: 33819313 PMCID: PMC8021189 DOI: 10.1371/journal.pone.0249468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/18/2021] [Indexed: 11/27/2022] Open
Abstract
Culicoides are one of the smallest hematophagous flies measuring 1-5 mm in size with only females seeking blood for egg development. The present study investigated spatio-temporal distribution of Culicoides species trapped between 1990 and 2018 at 13 sites in the New England region of NSW, Australia using automated light traps. Trapping locations were divided into three subregions (tablelands, slopes and plains). Nineteen Culicoides species were identified. Culicoides marksi and C. austropalpalis were the most abundant and widespread species. Culicoides brevitarsis, the principal vector of livestock diseases in New South Wales comprised 2.9% of the total catch and was detected in 12 of the 13 locations in the study. Abundance as determined by Log10 Culicoides count per trapping event for the eight most abundant species did not vary significantly with season but trended towards higher counts in summer for C. marksi (P = 0.09) and C. austropalpalis (P = 0.05). Significant geographic variation in abundance was observed for C. marksi, C. austropalpalis and C. dycei with counts decreasing with increasing altitude from the plains to the slopes and tablelands. Culicoides victoriae exhibited the reverse trend in abundance (P = 0.08). Greater abundance during the warmer seasons and at lower altitudes for C. marksi and C. austropalpalis was indicative of temperature and rainfall dependence in this region with moderate summer dominance in rainfall. The Shannon-Wiener diversity index of species was higher on the tablelands (H = 1.59) than the slopes (H = 1.33) and plains (H = 1.08) with evenness indices of 0.62, 0.46 and 0.39 respectively. Culicoides species on the tablelands were more diverse than on the slopes and plains where C. marksi and C. austropalpalis dominated. The temporal and spatial variation in abundance, diversity and evenness of species reported in this diverse region of Australia provides additional insight into Culicoides as pests and disease vectors and may contribute to future modelling studies.
Collapse
Affiliation(s)
- Biniam T. Lakew
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
- College of Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
| | - Adrian H. Nicholas
- Department of Regional New South Wales, Central Coast Primary Industries Centre, Ourimbah, New South Wales, Australia
| | - Stephen W. Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
7
|
Tay WT, Elfekih S, Court LN, Gordon KHJ, Delatte H, De Barro PJ. The Trouble with MEAM2: Implications of Pseudogenes on Species Delimitation in the Globally Invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species Complex. Genome Biol Evol 2018; 9:2732-2738. [PMID: 28985301 PMCID: PMC5647793 DOI: 10.1093/gbe/evx173] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 11/23/2022] Open
Abstract
Molecular species identification using suboptimal PCR primers can over-estimate species diversity due to coamplification of nuclear mitochondrial (NUMT) DNA/pseudogenes. For the agriculturally important whitefly Bemisia tabaci cryptic pest species complex, species identification depends primarily on characterization of the mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene. The lack of robust PCR primers for the mtDNA COI gene can undermine correct species identification which in turn compromises management strategies. This problem is identified in the B. tabaci Africa/Middle East/Asia Minor clade which comprises the globally invasive Mediterranean (MED) and Middle East Asia Minor I (MEAM1) species, Middle East Asia Minor 2 (MEAM2), and the Indian Ocean (IO) species. Initially identified from the Indian Ocean island of Réunion, MEAM2 has since been reported from Japan, Peru, Turkey and Iraq. We identified MEAM2 individuals from a Peruvian population via Sanger sequencing of the mtDNA COI gene. In attempting to characterize the MEAM2 mitogenome, we instead characterized mitogenomes of MEAM1. We also report on the mitogenomes of MED, AUS, and IO thereby increasing genomic resources for members of this complex. Gene synteny (i.e., same gene composition and orientation) was observed with published B. tabaci cryptic species mitogenomes. Pseudogene fragments matching MEAM2 partial mtDNA COI gene exhibited low frequency single nucleotide polymorphisms that matched low copy number DNA fragments (<3%) of MEAM1 genomes, whereas presence of internal stop codons, loss of expected stop codons and poor primer annealing sites, all suggested MEAM2 as a pseudogene artifact and so not a real species.
Collapse
Affiliation(s)
- Wee Tek Tay
- CSIRO, Black Mountain Science and Innovation Park, Acton, Australia
| | - Samia Elfekih
- CSIRO, Black Mountain Science and Innovation Park, Acton, Australia
| | - Leon N Court
- CSIRO, Black Mountain Science and Innovation Park, Acton, Australia
| | - Karl H J Gordon
- CSIRO, Black Mountain Science and Innovation Park, Acton, Australia
| | | | - Paul J De Barro
- CSIRO, Ecosciences Precinct, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Firth C, Blasdell KR, Amos-Ritchie R, Sendow I, Agnihotri K, Boyle DB, Daniels P, Kirkland PD, Walker PJ. Genomic analysis of bluetongue virus episystems in Australia and Indonesia. Vet Res 2017; 48:82. [PMID: 29169390 PMCID: PMC5701493 DOI: 10.1186/s13567-017-0488-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022] Open
Abstract
The distribution of bluetongue viruses (BTV) in Australia is represented by two distinct and interconnected epidemiological systems (episystems)—one distributed primarily in the north and one in the east. The northern episystem is characterised by substantially greater antigenic diversity than the eastern episystem; yet the forces that act to limit the diversity present in the east remain unclear. Previous work has indicated that the northern episystem is linked to that of island South East Asia and Melanesia, and that BTV present in Indonesia, Papua New Guinea and East Timor, may act as source populations for new serotypes and genotypes of BTV to enter Australia’s north. In this study, the genomes of 49 bluetongue viruses from the eastern episystem and 13 from Indonesia were sequenced and analysed along with 27 previously published genome sequences from the northern Australian episystem. The results of this analysis confirm that the Australian BTV population has its origins in the South East Asian/Melanesian episystem, and that incursions into northern Australia occur with some regularity. In addition, the presence of limited genetic diversity in the eastern episystem relative to that found in the north supports the presence of substantial, but not complete, barriers to gene flow between the northern and eastern Australian episystems. Genetic bottlenecks between each successive episystem are evident, and appear to be responsible for the reduction in BTV genetic diversity observed in the north to south–east direction.
Collapse
Affiliation(s)
- Cadhla Firth
- CSIRO Health & Biosecurity, 5 Portarlington Road, Geelong, VIC, 3220, Australia. .,School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Kim R Blasdell
- CSIRO Health & Biosecurity, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Rachel Amos-Ritchie
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Indrawati Sendow
- Virology Department, Indonesian Research Center for Veterinary Science, Bogor, West Java, 16114, Indonesia
| | - Kalpana Agnihotri
- Biosecurity Sciences Laboratory, 39 Kessels Road, Coopers Plains, Brisbane, QLD, 4109, Australia
| | - David B Boyle
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Peter Daniels
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Peter D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - Peter J Walker
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.,School of Biological Sciences, University of Queensland, St Lucia, QLD, 4067, Australia
| |
Collapse
|
9
|
Durr PA, Graham K, van Klinken RD. Sellers' Revisited: A Big Data Reassessment of Historical Outbreaks of Bluetongue and African Horse Sickness due to the Long-Distance Wind Dispersion of Culicoides Midges. Front Vet Sci 2017; 4:98. [PMID: 28775987 PMCID: PMC5517479 DOI: 10.3389/fvets.2017.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
The possibility that outbreaks of bluetongue (BT) and African horse sickness (AHS) might occur via long-distance wind dispersion (LDWD) of their insect vector (Culicoides spp.) was proposed by R. F. Sellers in a series of papers published between 1977 and 1991. These investigated the role of LDWD by means of visual examination of the wind direction of synoptic weather charts. Based on the hypothesis that simple wind direction analysis, which does not allow for wind speed, might have led to spurious conclusions, we reanalyzed six of the outbreak scenarios described in Sellers' papers. For this reanalysis, we used a custom-built Big Data application ("TAPPAS") which couples a user-friendly web-interface with an established atmospheric dispersal model ("HYSPLIT"), thus enabling more sophisticated modeling than was possible when Sellers undertook his analyzes. For the two AHS outbreaks, there was strong support from our reanalysis of the role of LDWD for that in Spain (1966), and to a lesser degree, for the outbreak in Cyprus (1960). However, for the BT outbreaks, the reassessments were more complex, and for one of these (western Turkey, 1977) we could discount LDWD as the means of direct introduction of the virus. By contrast, while the outbreak in Cyprus (1977) showed LDWD was a possible means of introduction, there is an apparent inconsistency in that the outbreaks were localized while the dispersion events covered much of the island. For Portugal (1956), LDWD from Morocco on the dates suggested by Sellers is very unlikely to have been the pathway for introduction, and for the detection of serotype 2 in Florida (1982), LDWD from Cuba would require an assumption of a lengthy survival time of the midges in the air column. Except for western Turkey, the BT reanalyses show the limitation of LDWD modeling when used by itself, and indicates the need to integrate susceptible host population distribution (and other covariate) data into the modeling process. A further refinement, which will become increasingly important to assess LDWD, will be the use of virus and vector genome sequence data collected from potential source and the incursion sites.
Collapse
Affiliation(s)
- Peter A Durr
- CSIRO Australian Animal Health Laboratory, East Geelong, VIC, Australia
| | - Kerryne Graham
- CSIRO Australian Animal Health Laboratory, East Geelong, VIC, Australia
| | | |
Collapse
|
10
|
Tay WT, Walsh TK, Downes S, Anderson C, Jermiin LS, Wong TKF, Piper MC, Chang ES, Macedo IB, Czepak C, Behere GT, Silvie P, Soria MF, Frayssinet M, Gordon KHJ. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil. Sci Rep 2017; 7:45302. [PMID: 28350004 PMCID: PMC5368605 DOI: 10.1038/srep45302] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/23/2017] [Indexed: 01/31/2023] Open
Abstract
The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports.
Collapse
Affiliation(s)
- Wee Tek Tay
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
| | - Thomas K. Walsh
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
| | - Sharon Downes
- CSIRO, Myall Vale Laboratories, Kamilaroi Highway, Narrabri, NSW 2390, Australia
| | - Craig Anderson
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Lars S. Jermiin
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Thomas K. F. Wong
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Melissa C. Piper
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
| | - Ester Silva Chang
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
- Universidade de São Paulo, Instituto de Biociências, São Paulo, SP, 05508-090, Brazil
| | - Isabella Barony Macedo
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Belo Horizonte, MG, 31270-901, Brazil
| | - Cecilia Czepak
- Universidade Federal de Goiás, Escola de Agronomia, Goiânia, GO, 75804-020, Brazil
| | - Gajanan T. Behere
- Division of Crop Protection, ICAR Research Complex for North East Hill Region, Umroi Road, Umiam, Meghalaya, 793103, India
| | - Pierre Silvie
- IRD, UMR EGCE, FR-91198 Gif-sur-Yvette Cedex, France
- CIRAD, UPR AÏDA, F-34398 Montpellier Cedex 05, France
| | - Miguel F. Soria
- Bayer S.A., Crop Science Division, São Paulo, SP, 04779-900, Brazil
| | | | - Karl H. J. Gordon
- CSIRO, Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
| |
Collapse
|
11
|
Onyango MG, Aitken NC, Jack C, Chuah A, Oguya J, Djikeng A, Kemp S, Bellis GA, Nicholas A, Walker PJ, Duchemin JB. Genotyping of whole genome amplified reduced representation libraries reveals a cryptic population of Culicoides brevitarsis in the Northern Territory, Australia. BMC Genomics 2016; 17:769. [PMID: 27716062 PMCID: PMC5045647 DOI: 10.1186/s12864-016-3124-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The advent of genotyping by Next Generation Sequencing has enabled rapid discovery of thousands of single nucleotide polymorphism (SNP) markers and high throughput genotyping of large populations at an affordable cost. Genotyping by sequencing (GBS), a reduced representation library sequencing method, allows highly multiplexed sequencing of genomic subsets. This method has limitations for small organisms with low amounts of genomic DNA, such as the bluetongue virus (BTV) vectors, Culicoides midges. RESULTS This study employed the GBS method to isolate SNP markers de novo from whole genome amplified Culicoides brevitarsis genomic DNA. The individuals were collected from regions representing two different Australian patterns of BTV strain distribution: the Northern Territory (NT) and the east coast. We isolated 8145 SNPs using GBS. Phylogenetic analysis conducted using the filtered 3263 SNPs revealed the presence of a distinct C. brevitarsis sub-population in the NT and this was confirmed by analysis of mitochondrial DNA. Two loci showed a very strong signal for selection and were unique to the NT population. Bayesian analysis with STRUCTURE indicated a possible two-population cluster. CONCLUSIONS The results suggest that genotyping vectors with high density markers in combination with biological and environmental data is useful. However, more extensive sampling over a wider spatial and temporal range is needed. The presence of sub-structure in populations and loci under natural selection indicates the need for further investigation of the role of vectors in shaping the two Australian systems of BTV transmission. The described workflow is transferable to genotyping of small, non-model organisms, including arthropod vectors of pathogens of economic and medical importance.
Collapse
Affiliation(s)
- Maria G Onyango
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia.,School of Medicine, Deakin University, 75 Pidgons Road, Waurn Ponds, 3216, VIC, Australia
| | - Nicola C Aitken
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Cameron Jack
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Aaron Chuah
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - James Oguya
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya
| | - Appolinaire Djikeng
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya.,Biosciences eastern and central Africa-ILRI Hub (BecA-ILRI Hub), ILRI, PO Box 30709, 00100, Nairobi, Kenya
| | - Steve Kemp
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya
| | - Glenn A Bellis
- Northern Australia Quarantine Strategy, 1 Pederson Road, Marrara, 0812, NT, Australia.,Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, 0909, NT, Australia
| | - Adrian Nicholas
- NSW Department of Primary Industries, Biosecurity, 4 Marsden Park Road, Calala, 2340, NSW, Australia
| | - Peter J Walker
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia.
| |
Collapse
|