1
|
Bini D, Mattos BB, Figueiredo JEF, Dos Santos FC, Marriel IE, Dos Santos CA, de Oliveira-Paiva CA. Parameter evaluation for developing phosphate-solubilizing Bacillus inoculants. Braz J Microbiol 2024; 55:737-748. [PMID: 38008804 PMCID: PMC10920567 DOI: 10.1007/s42770-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023] Open
Abstract
Bacterial inoculants have been used in agriculture to improve plant performance. However, laboratory and field requirements must be completed before a candidate can be employed as an inoculant. Therefore, this study aimed to evaluate the parameters for inoculant formulation and the potential of Bacillus subtilis (B70) and B. pumilus (B32) to improve phosphorus availability in maize (Zea mays L.) crops. In vitro experiments assessed the bacterial ability to solubilize and mineralize phosphate, their adherence to roots, and shelf life in cassava starch (CS), carboxymethyl cellulose (CMC), peat, and activated charcoal (AC) stored at 4 °C and room temperature for 6 months. A field experiment evaluated the effectiveness of strains to increase the P availability to plants growing with rock phosphate (RP) and a mixture of RP and triple superphosphate (TS) and their contribution to improving maize yield and P accumulation in grains. The B70 was outstanding in solubilizing RP and phytate mineralization and more stable in carriers and storage conditions than B32. However, root adherence was more noticeable in B32. Among carriers, AC was the most effective for preserving viable cell counts, closely similar to those of the initial inoculum of both strains. Maize productivity using the mixture RPTS was similar for B70 and B32. The best combination was B70 with RP, which improved the maize yield (6532 kg ha-1) and P accumulation in grains (15.95 kg ha-1). Our results indicated that the inoculant formulation with AC carrier and B70 is a feasible strategy for improving phosphorus mobilization in the soil and maize productivity.
Collapse
Affiliation(s)
- Daniel Bini
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
2
|
Fu Q, Qiu Y, Zhao J, Li J, Xie S, Liao Q, Fu X, Huang Y, Yao Z, Dai Z, Qiu Y, Yang Y, Li F, Chen H. Monotonic trends of soil microbiomes, metagenomic and metabolomic functioning across ecosystems along water gradients in the Altai region, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169351. [PMID: 38123079 DOI: 10.1016/j.scitotenv.2023.169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
To investigate microbial communities and their contributions to carbon and nutrient cycling along water gradients can enhance our comprehension of climate change impacts on ecosystem services. Thus, we conducted an assessment of microbial communities, metagenomic functions, and metabolomic profiles within four ecosystems, i.e., desert grassland (DG), shrub-steppe (SS), forest (FO), and marsh (MA) in the Altai region of Xinjiang, China. Our results showed that soil total carbon (TC), total nitrogen, NH4+, and NO3- increased, but pH decreased with soil water gradients. Microbial abundances and richness also increased with soil moisture except the abundances of fungi and protists being lowest in MA. A shift in microbial community composition is evident along the soil moisture gradient, with Proteobacteria, Basidiomycota, and Evosea proliferating but a decline in Actinobacteria and Cercozoa. The β-diversity of microbiomes, metagenomic, and metabolomic functioning were correlated with soil moisture gradients and have significant associations with specific soil factors of TC, NH4+, and pH. Metagenomic functions associated with carbohydrate and DNA metabolisms, as well as phages, prophages, TE, plasmids functions diminished with moisture, whereas the genes involved in nitrogen and potassium metabolism, along with certain biological interactions and environmental information processing functions, demonstrated an augmentation. Additionally, MA harbored the most abundant metabolomics dominated by lipids and lipid-like molecules and organic oxygen compounds, except certain metabolites showing decline trends along water gradients, such as N'-Hydroxymethylnorcotinine and 5-Hydroxyenterolactone. Thus, our study suggests that future ecosystem succession facilitated by changes in rainfall patterns will significantly alter soil microbial taxa, functional potential, and metabolite fractions.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiuchang Liao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Furong Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
3
|
Sharma S, Kumari M, Vakhlu J. Metatranscriptomic insight into the possible role of clay microbiome in skin disease management. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1803-1811. [PMID: 37584759 DOI: 10.1007/s00484-023-02540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Even though the scientific documentation is limited, microbiome of healing clay is gradually gaining attention of the scientific community, as a therapeutic force playing an indispensable role in skin disease management. The present study explores the metatranscriptome profile of the Chamliyal clay, widely known for its efficacy in managing various skin problems, using Illumina NextSeq sequencing technology. The gene expression profile of the clay microbial community was analyzed through SEED subsystems of the MG-RAST server. Due to the unavailability of metatranscriptomic data on other therapeutic clays, Chamliyal's profile was compared to non-therapeutic soils, as well as healthy and diseased human skin microbiomes. The study identified Firmicutes, Proteobacteria, and Actinobacteria as the primary active microbial phyla in Chamliyal clay. These resemble those abundant in a healthy human skin microbiome. This is significant as lower levels of these phyla in the skin are linked to inflammatory skin conditions like psoriasis. Interestingly, pathogenic microbes actively metabolizing in the clay were absent. Importantly, 6% of the transcripts annotated to sulfur and iron metabolism, which are known to play a major role in skin disease management. This study provides the most comprehensive and a novel overview of the metatranscriptome of any of the healing clay available worldwide. The findings offer valuable insights into the clay microbiome's potential in managing skin disorders, inspiring future endeavors to harness these insights for medical applications.
Collapse
Affiliation(s)
- Sakshi Sharma
- School of Biotechnology, University of Jammu, J&K, 180006, India
| | - Monika Kumari
- School of Biotechnology, University of Jammu, J&K, 180006, India
| | - Jyoti Vakhlu
- School of Biotechnology, University of Jammu, J&K, 180006, India.
| |
Collapse
|
4
|
Figueiredo MA, da Silva TH, Pinto OHB, Leite MGP, de Oliveira FS, Messias MCTB, Rosa LH, Câmara PEAS, Lopes FAC, Kozovits AR. Metabarcoding of Soil Fungal Communities in Rupestrian Grassland Areas Preserved and Degraded by Mining: Implications for Restoration. MICROBIAL ECOLOGY 2023; 85:1045-1055. [PMID: 36708392 DOI: 10.1007/s00248-023-02177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/17/2023] [Indexed: 05/04/2023]
Abstract
Rupestrian grasslands are vegetation complexes of the Cerrado biome (Brazilian savanna), exhibiting simultaneously great biodiversity and important open-pit mining areas. There is a strong demand for the conservation of remaining areas and restoration of degraded. This study evaluated, using next-generation sequencing, the diversity and ecological aspects of soil fungal communities in ferruginous rupestrian grassland areas preserved and degraded by bauxite mining in Brazil. In the preserved and degraded area, respectively, 565 and 478 amplicon sequence variants (ASVs) were detected. Basidiomycota and Ascomycota comprised nearly 72% of the DNA, but Ascomycota showed greater abundance than Basidiomycota in the degraded area (64% and 10%, respectively). In the preserved area, taxa of different hierarchical levels (Agaromycetes, Agaricales, Mortierelaceae, and Mortierella) associated with symbiosis and decomposition were predominant. However, taxa that colonize environments under extreme conditions and pathogens (Dothideomycetes, Pleoporales, Pleosporaceae, and Curvularia) prevailed in the degraded area. The degradation reduced the diversity, and modified the composition of taxa and predominant ecological functions in the community. The lack of fungi that facilitate plant establishment and development in the degraded area suggests the importance of seeking the restoration of this community to ensure the success of the ecological restoration of the environment. The topsoil of preserved area can be a source of inocula of several groups of fungi important for the restoration process but which occur in low abundance or are absent in the degraded area.
Collapse
Affiliation(s)
- Maurílio Assis Figueiredo
- Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - Thamar Holanda da Silva
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Alessandra Rodrigues Kozovits
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
5
|
Tran HT, Nguyen HM, Nguyen TMH, Chang C, Huang WL, Huang CL, Chiang TY. Microbial Communities Along 2,3,7,8-tetrachlorodibenzodioxin Concentration Gradient in Soils Polluted with Agent Orange Based on Metagenomic Analyses. MICROBIAL ECOLOGY 2023; 85:197-208. [PMID: 35034142 DOI: 10.1007/s00248-021-01953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The 2,3,7,8-tetrachlorodibenzodioxin (TCDD), a contaminant in Agent Orange released during the US-Vietnam War, led to a severe environmental crisis. Approximately, 50 years have passed since the end of this war, and vegetation has gradually recovered from the pollution. Soil bacterial communities were investigated by 16S metagenomics in habitats with different vegetation physiognomies in Central Vietnam, namely, forests (S0), barren land (S1), grassland (S2), and developing woods (S3). Vegetation complexity was negatively associated with TCDD concentrations, revealing the reasoning behind the utilization of vegetation physiognomy as an indicator for ecological succession along the gradient of pollutants. Stark changes in bacterial composition were detected between S0 and S1, with an increase in Firmicutes and a decrease in Acidobacteria and Bacteroidetes. Notably, dioxin digesters Arthrobacter, Rhodococcus, Comamonadaceae, and Bacialles were detected in highly contaminated soil (S1). Along the TCDD gradients, following the dioxin decay from S1 to S2, the abundance of Firmicutes and Actinobacteria decreased, while that of Acidobacteria increased; slight changes occurred at the phylum level from S2 to S3. Although metagenomics analyses disclosed a trend toward bacterial communities before contamination with vegetation recovery, non-metric multidimensional scaling analysis unveiled a new trajectory deviating from the native state. Recovery of the bacterial community may have been hindered, as indicated by lower bacterial diversity in S3 compared to S0 due to a significant loss of bacterial taxa and recruitment of fewer colonizers. The results indicate that dioxins significantly altered the soil microbiomes into a state of disorder with a deviating trajectory in restoration.
Collapse
Affiliation(s)
- Huyen-Trang Tran
- Department of Biology, Vinh University, Vinh, Nghe An, 461010, Vietnam
| | - Hung-Minh Nguyen
- Center for responding to climate change, Department of Climate Change, Ministry of Natural Resources and Environment, Hanoi, 125000, Vietnam
| | - Thi-Minh-Hue Nguyen
- Analytical laboratory for Environment, Dioxin and Toxins, Northern Center for Environmental Monitoring, Vietnam Environment Administration, Hanoi, 115000, Vietnam
| | - Chieh Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wei-Ling Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chao-Li Huang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
6
|
de Camargo BR, Takematsu HM, Ticona ARP, da Silva LA, Silva FL, Quirino BF, Hamann PRV, Noronha EF. Penicillium polonicum a new isolate obtained from Cerrado soil as a source of carbohydrate-active enzymes produced in response to sugarcane bagasse. 3 Biotech 2022; 12:348. [PMID: 36386566 PMCID: PMC9652181 DOI: 10.1007/s13205-022-03405-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Penicillium species have been studied as producers of plant cell wall degrading enzymes to deconstruct agricultural residues and to be applied in industrial processes. Natural environments containing decaying plant matter are ideal places for isolating fungal strains with cellulolytic and xylanolytic activities. In the present study, Cerrado soil samples were used as source of filamentous fungi able to degrade xylan and cellulose. Penicillium was the most abundant genus among the obtained xylan and carboxymethylcellulose degraders. Penicillium polonicum was one of the best enzyme producers in agar-plate assays. In addition, it secretes CMCase, Avicelase, pectinase, mannanase, and xylanase during growth in liquid media containing sugarcane bagasse as carbon source. The highest value for endo-β-1,4-xylanase activity was obtained after 4 days of growth. Xyl PP, a 20 kDa endo-β-1,4-xylanase, was purified and partially characterized. The purified enzyme presented the remarkable feature of being resistant to the lignin-derived phenolic compounds, p-coumaric and trans-ferulic acids. This feature calls for its further use in bioprocesses that use lignocellulose as feedstock. Furthermore, future work should explore its structural features which may contribute to the understanding of the relationship between its structure and resistance to phenolic compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03405-x.
Collapse
Affiliation(s)
- Brenda Rabelo de Camargo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Hamille Mey Takematsu
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Alonso R. Poma Ticona
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Leonardo Assis da Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Francilene Lopes Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Betania Ferraz Quirino
- Embrapa-Agroenergia, Genetics and Biotechnology Laboratory, Brasilia, DF 70770-901 Brazil
| | - Pedro R. Vieira Hamann
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Eliane Ferreira Noronha
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| |
Collapse
|
7
|
de Souza LC, Procópio L. The adaptations of the microbial communities of the savanna soil over a period of wildfire, after the first rains, and during the rainy season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14070-14082. [PMID: 34601674 DOI: 10.1007/s11356-021-16731-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Annually, the Cerrado ecosystem alternates between dry periods and long rainy seasons. During the dry season, severe forest fires occur, consuming a considerable part of the native vegetation, which impacts directly on the microbiome of the soil. Evaluate the adaptations of the soil microbiome to drought, rain and wildfire. Sequencing of the 16S rRNA gene was carried out for three significant conditions: drought and forest fires ("Fire"), after the first recorded rains ("First_Rain"), and during the rainy season ("Rainy"). It has been shown that under the "Fire" condition, there was a predominance of Phylum Actinobacteria, followed by Proteobacteria and Firmicutes. With the advent of the rainy season, "First_Rain," there was a change in the predominant taxonomic groups, with a higher prevalence of members of Proteobacteria and Firmicutes. During the rainy season, Proteobacteria and Firmicutes continued as the most prevalent groups. However, it was noted that in this period, there was an increase in bacterial diversity when compared with other periods analyzed. These results show how environmental factors influence adaptations in microbial communities. This allows for a better understanding of how to link the structure of the microbial community to the performance of ecosystems, and assist in preventing the consequences of increased frequency of wildfires, and long periods of drought.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Rodrigues GR, Pinto OHB, Schroeder LF, Fernandes GDR, Costa OYA, Quirino BF, Kuramae EE, Barreto CC. Unraveling the xylanolytic potential of Acidobacteria bacterium AB60 from Cerrado soils. FEMS Microbiol Lett 2021; 367:5902847. [PMID: 32897365 DOI: 10.1093/femsle/fnaa149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
The presence of genes for glycosyl hydrolases in many Acidobacteria genomes indicates an important role in the degradation of plant cell wall material. Acidobacteria bacterium AB60 was obtained from Cerrado oligotrophic soil in Brazil, where this phylum is abundant. The 16S rRNA gene analyses showed that AB60 was closely related to the genera Occallatibacter and Telmatobacter. However, AB60 grew on xylan as carbon source, which was not observed in Occallatibacter species; but growth was not detected on medium containing carboxymethyl cellulose, as observed in Telmatobacter. Nevertheless, the genome analysis of AB60 revealed genes for the enzymes involved in cellulose as well as xylan degradation. In addition to enzymes involved in xylan degradation, α-l-rhamnosidase was detected in the cultures of AB60. Functional screening of a small-insert genomic library did not identify any clones capable of carboxymethyl cellulose degradation, but open reading frames coding α-l-arabinofuranosidase and α-l-rhamnosidase were present in clones showing xylan degradation halos. Both enzymes act on the lateral chains of heteropolymers such as pectin and some hemicelluloses. These results indicate that the hydrolysis of α-linked sugars may offer a metabolic niche for slow-growing Acidobacteria, allowing them to co-exist with other plant-degrading microbes that hydrolyze β-linked sugars from cellulose or hemicellulose backbones.
Collapse
Affiliation(s)
- Gisele Regina Rodrigues
- Universidade Católica de Brasília, Graduate Program in Genomic Sciences and Biotechnology, SGAN 916, Brasília, DF 70790-160, Brazil
| | - Otávio Henrique Bezerra Pinto
- Universidade Católica de Brasília, Graduate Program in Genomic Sciences and Biotechnology, SGAN 916, Brasília, DF 70790-160, Brazil
| | - Luís Felipe Schroeder
- Universidade Católica de Brasília, Graduate Program in Genomic Sciences and Biotechnology, SGAN 916, Brasília, DF 70790-160, Brazil
| | | | - Ohana Yonara Assis Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| | - Betania Ferraz Quirino
- Brazilian Agricultural Research Corporation - EMBRAPA/Agroenergy, Brasília, DF 70770-901, Brazil
| | - Eiko Eurya Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - Cristine Chaves Barreto
- Universidade Católica de Brasília, Graduate Program in Genomic Sciences and Biotechnology, SGAN 916, Brasília, DF 70790-160, Brazil
| |
Collapse
|
9
|
Gnangui SLE, Fossou RK, Ebou A, Amon CER, Koua DK, Kouadjo CGZ, Cowan DA, Zézé A. The Rhizobial Microbiome from the Tropical Savannah Zones in Northern Côte d'Ivoire. Microorganisms 2021; 9:microorganisms9091842. [PMID: 34576737 PMCID: PMC8472840 DOI: 10.3390/microorganisms9091842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023] Open
Abstract
Over the past decade, many projects have been initiated worldwide to decipher the composition and function of the soil microbiome, including the African Soil Microbiome (AfSM) project that aims at providing new insights into the presence and distribution of key groups of soil bacteria from across the African continent. In this national study, carried out under the auspices of the AfSM project, we assessed the taxonomy, diversity and distribution of rhizobial genera in soils from the tropical savannah zones in Northern Côte d’Ivoire. Genomic DNA extracted from seven sampled soils was analyzed by sequencing the V4-V5 variable region of the 16S rDNA using Illumina’s MiSeq platform. Subsequent bioinformatic and phylogenetic analyses showed that these soils harbored 12 out of 18 genera of Proteobacteria harboring rhizobia species validly published to date and revealed for the first time that the Bradyrhizobium genus dominates in tropical savannah soils, together with Microvirga and Paraburkholderia. In silico comparisons of different 16S rRNA gene variable regions suggested that the V5-V7 region could be suitable for differentiating rhizobia at the genus level, possibly replacing the use of the V4-V5 region. These data could serve as indicators for future rhizobial microbiome explorations and for land-use decision-making.
Collapse
Affiliation(s)
- Sara Laetitia Elphège Gnangui
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| | - Romain Kouakou Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
- Correspondence:
| | - Anicet Ebou
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
- Équipe Bioinformatique, Département de Formation et de Recherche Agriculture et Ressources Animales, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro 1313, Côte d’Ivoire;
| | - Chiguié Estelle Raïssa Amon
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| | - Dominique Kadio Koua
- Équipe Bioinformatique, Département de Formation et de Recherche Agriculture et Ressources Animales, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro 1313, Côte d’Ivoire;
| | - Claude Ghislaine Zaka Kouadjo
- Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique, 01 Abidjan 1740, Côte d’Ivoire;
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| |
Collapse
|
10
|
Selari PJRG, Olchanheski LR, Ferreira AJ, Paim TDP, Calgaro Junior G, Claudio FL, Alves EM, Santos DDC, Araújo WL, Silva FG. Short-Term Effect in Soil Microbial Community of Two Strategies of Recovering Degraded Area in Brazilian Savanna: A Pilot Case Study. Front Microbiol 2021; 12:661410. [PMID: 34177841 PMCID: PMC8221397 DOI: 10.3389/fmicb.2021.661410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
The Brazilian Cerrado is a highland tropical savanna considered a biodiversity hotspot with many endemic species of plants and animals. Over the years, most of the native areas of this biome became arable areas, and with inadequate management, some are nowadays at varying levels of degradation stage. Crop-livestock integrated systems (CLIS) are one option for the recovery of areas in degradation, improving the physicochemical and biological characteristics of the soil while increasing income and mitigating risks due to product diversification. Little is known about the effect of CLIS on the soil microbial community. Therefore, we perform this pilot case study to support further research on recovering degraded areas. The bacterial and fungal soil communities in the area with CLIS were compared to an area under moderate recovery (low-input recovering - LI) and native savanna (NS) area. Bacterial and fungal communities were investigated by 16S and ITS rRNA gene sequencing (deep rRNA sequencing). Ktedonobacteraceae and AD3 families were found predominantly in LI, confirming the relationship of the members of the Chloroflexi phylum in challenging environmental conditions, which can be evidenced in LI. The CLIS soil presented 63 exclusive bacterial families that were not found in LI or NS and presented a higher bacterial richness, which can be related to good land management. The NS area shared 21 and 6 families with CLIS and LI, respectively, suggesting that the intervention method used in the analyzed period brings microbial diversity closer to the conditions of the native area, demonstrating a trend of approximation between NS and CLIS even in the short term. The most abundant fungal phylum in NS treatment was Basidiomycota and Mucoromycota, whereas Ascomycota predominated in CLIS and LI. The fungal community needs more time to recover and to approximate from the native area than the bacterial community. However, according to the analysis of bacteria, the CLIS area behaved differently from the LI area, showing that this treatment induces a faster response to the increase in species richness, tending to more accelerated recovery. Results obtained herein encourage CLIS as a sustainable alternative for recovery and production in degraded areas.
Collapse
Affiliation(s)
- Priscila Jane Romano Gonçalves Selari
- Laboratory of Microbiology, Department of Biology, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Ceres, Brazil
| | - Luiz Ricardo Olchanheski
- Laboratory of Microbiology, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Almir José Ferreira
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Tiago do Prado Paim
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Guido Calgaro Junior
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Flavio Lopes Claudio
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Estenio Moreira Alves
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Darliane de Castro Santos
- Laboratory of Agricultural Chemistry, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Rio Verde, Brazil
| | - Welington Luiz Araújo
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Plant Tissue and Culture, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Rio Verde, Brazil
| |
Collapse
|
11
|
de Souza LC, Procópio L. The profile of the soil microbiota in the Cerrado is influenced by land use. Appl Microbiol Biotechnol 2021; 105:4791-4803. [PMID: 34061229 DOI: 10.1007/s00253-021-11377-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023]
Abstract
Extensive areas of the Cerrado biome have been deforested by the rapid advance of agricultural frontiers, especially by agricultural monocultures, and cultivated pastures. The objective of this study was to characterize the soil microbial community of an environment without anthropogenic interference and to compare it with soybean soil and pasture areas. For that, metagenomic sequencing techniques of the 16S rRNA gene were employed. Consistent changes in the profiles of diversity and abundance were described between communities in relation to the type of soil. The soil microbiome of the native environment was influenced by the pH level and content of Al3+, whereas the soil microbiomes cultivated with soybean and pasture were associated with the levels of nutrients N and P and the ions Ca2+ and Mg2+, respectively. The analysis of bacterial communities in the soil of the native environment showed a high abundance of members of the Proteobacteria phylum, with emphasis on the Bradyrhizobium and Burkholderia genera. In addition, significant levels of species of the Bacillus genus, and Dyella ginsengisoli, and Edaphobacter aggregans of the Acidobacteria phylum were detected. In the soil community with soybean cultivation, there was a predominance of Proteobacteria, mainly of the Sphingobium and Sphingomonas genera. In the pasture, the soil microbiota was dominated by the Firmicutes, which was almost entirely represented by the Bacillus genus. These results suggest an adaptation of the bacterial community to the soybean and pasture cultivations and will support understanding how environmental and anthropogenic factors shape the soil microbial community. KEY POINTS: • The Cerrado soil microbiota is sensitive to impacts on the biome. • Microbial communities have been altered at all taxonomic levels.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil.
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Rivera-Urbalejo AP, Vázquez D, Fernández Vázquez JL, Rosete Enríquez M, Cesa-Luna C, Morales-García YE, Muñoz Rojas J, Quintero Hernández V. APORTES Y DIFICULTADES DE LA METAGENÓMICA DE SUELOS Y SU IMPACTO EN LA AGRICULTURA. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.85760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los microorganismos son de gran interés porque colonizan todo tipo de ambiente, sin embargo, uno de los problemas al que nos enfrentamos para conocer su diversidad biológica es que no todos los microorganismos son cultivables. El desarrollo de nuevas tecnologías como la generación de vectores de clonación aunado al desarrollo de técnicas de secuenciación de alto rendimiento ha favorecido el surgimiento de una nueva herramienta llamada metagenómica, la cual nos permite estudiar genomas de comunidades enteras de microorganismos. Debido a que ningún ambiente es idéntico a otro, es importante mencionar que dependiendo del tipo de muestra a analizar será el tipo de reto al cual nos enfrentaremos al trabajar con metagenómica, en el caso específico del suelo existen diversas variantes como la contaminación del suelo con metales pesados o diversos compuestos químicos que podrían limitar los estudios. Sin embargo, pese a las limitaciones que el mismo ambiente presenta, la metagenómica ha permitido tanto el descubrimiento de nuevos genes como la caracterización de las comunidades microbianas que influyen positivamente en el desarrollo de plantas, lo cual en un futuro podría generar un gran impacto en la agricultura. En este artículo se realizó una revisión de diversas investigaciones que han empleado metagenómica, reportadas en las bases de datos de PudMed y Google Schoolar, con el objetivo de examinar los beneficios y limitaciones de las diversas metodologías empleadas en el tratamiento del ADN metagenómico de suelo y el impacto de la metagenómica en la agricultura.
Collapse
|
13
|
Silveira R, Silva MRSS, de Roure Bandeira de Mello T, Alvim EACC, Marques NCS, Kruger RH, da Cunha Bustamante MM. Bacteria and Archaea Communities in Cerrado Natural Pond Sediments. MICROBIAL ECOLOGY 2021; 81:563-578. [PMID: 32829441 DOI: 10.1007/s00248-020-01574-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Natural ponds in the Brazilian Cerrado harbor high biodiversity but are still poorly studied, especially their microbial assemblage. The characterization of the microbial community in aquatic environments is fundamental for understanding its functioning, particularly under the increasing pressure posed by land conversion and climate change. Here, we aim to characterize the structure (abundance, richness, and diversity) and composition of the Bacteria and Archaea in the sediment of two natural ponds belonging to different basins that primarily differ in size and depth in the Cerrado. Sediment samples were collected in the dry and rainy seasons and the transition periods between both. The structure and composition of Bacteria and Archaea were assessed by 16S rRNA gene pyrosequencing. We identified 45 bacterial and four archaeal groups. Proteobacteria and Acidobacteria dominated the bacterial community, while Euryarchaeota and Thaumarchaeota dominated the archaeal community. Seasonal fluctuations in the relative abundance of microbial taxa were observed, but pond characteristics were more determinant to community composition differences. Microbial communities are highly diverse, and local variability could partially explain the microbial structure's main differences. Functional predictions based in 16S rRNA gene accessed with Tax4Fun indicated an enriched abundance of predicted methane metabolism in the deeper pond, where higher abundance of methanogenic archaea Methanocella, Methanosaeta, and Methanomicrobiaceae was detected. Our dataset encompasses the more comprehensive survey of prokaryotic microbes in Cerrado's aquatic environments. Here, we present basic and essential information about composition and diversity, for initial insights into the ecology of Bacteria and Archaea in these environments.
Collapse
Affiliation(s)
- Rafaella Silveira
- Microbial Biology, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
- Enzymology Laboratory, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
- Ecosystems Laboratory, Ecology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
| | | | | | | | - Nubia Carla Santos Marques
- Ecosystems Laboratory, Ecology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil
| | - Ricardo Henrique Kruger
- Microbial Biology, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil
- Enzymology Laboratory, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil
| | - Mercedes Maria da Cunha Bustamante
- Microbial Biology, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
- Ecosystems Laboratory, Ecology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
| |
Collapse
|
14
|
Seasonal and long-term effects of nutrient additions and liming on the nifH gene in cerrado soils under native vegetation. iScience 2021; 24:102349. [PMID: 33870141 PMCID: PMC8044383 DOI: 10.1016/j.isci.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation (BNF) represents the main input source of N in tropical savannas. BNF could be particularly important for Brazilian savannas (known as Cerrado) that show a highly conservative N cycle. We evaluated the effects of seasonal precipitation and nutrient additions on the nifH gene abundance in soils from a long-term fertilization experiment in a Cerrado's native area. The experiment consists of five treatments: (1) control, (2) liming, (3) nitrogen (N), (4) nitrogen + phosphorus (NP), and (5) phosphorus (P) additions. The nifH gene sequence was related to Bradyrhizobium members. Seasonal effects on N-fixing potential were observed by a decrease in the nifH relative abundance from rainy to dry season in control, N, and NP treatments. A significant reduction in nifH abundance was found in the liming treatment in both seasons. The findings evidenced the multiple factors controlling the potential N-fixing by free-living diazotrophs in these nutrient-limited and seasonally dry ecosystems.
Collapse
|
15
|
Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PI, Melo IS, Quecine MC. Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Front Microbiol 2021; 11:553223. [PMID: 33519722 PMCID: PMC7845453 DOI: 10.3389/fmicb.2020.553223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community associated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.
Collapse
Affiliation(s)
- Maria Leticia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | - Itamar Soares Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
16
|
Seasonal and Agricultural Response of Acidobacteria Present in Two Fynbos Rhizosphere Soils. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12070277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Acidobacteria is one of the most abundant phyla in most soil types. Fynbos plants are endemic to South Africa, and these soils provide the ideal habitat for Acidobacteria, because of its low pH and oligotrophic properties. However, little is known about their distribution in the fynbos biome and the impact of cultivation of plants on Acidobacterial diversity. Therefore, the aim of this study was to determine the effect of seasonal changes and cultivation on the relative abundance and diversity of Acidobacteria associated with Aspalathus linearis (rooibos) and Cyclopia spp. (honeybush). This study was based on rhizosphere soil. A total of 32 and 31 operational taxonomic units (OTUs) were identified for honeybush and rooibos, respectively. The majority of these were classified as representatives of subdivisions 1, 2, 3, and 10. Significant differences in community compositions were observed between seasons for both honeybush and rooibos, as well as between the cultivated and uncultivated honeybush. Acidobacteria had a significantly positive correlation with pH, C, Ca2+, and P. In this study, we have shown the effect of seasonal changes, in summer and winter, and cultivation farming on the relative abundance and diversity of Acidobacteria present in the soil of rooibos and honeybush.
Collapse
|
17
|
Costa OYA, Oguejiofor C, Zühlke D, Barreto CC, Wünsche C, Riedel K, Kuramae EE. Impact of Different Trace Elements on the Growth and Proteome of Two Strains of Granulicella, Class "Acidobacteriia". Front Microbiol 2020; 11:1227. [PMID: 32625179 PMCID: PMC7315648 DOI: 10.3389/fmicb.2020.01227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Acidobacteria represents one of the most dominant bacterial groups across diverse ecosystems. However, insight into their ecology and physiology has been hampered by difficulties in cultivating members of this phylum. Previous cultivation efforts have suggested an important role of trace elements for the proliferation of Acidobacteria, however, the impact of these metals on their growth and metabolism is not known. In order to gain insight into this relationship, we evaluated the effect of trace element solution SL10 on the growth of two strains (5B5 and WH15) of Acidobacteria belonging to the genus Granulicella and studied the proteomic responses to manganese (Mn). Granulicella species had highest growth with the addition of Mn, as well as higher tolerance to this metal compared to seven other metal salts. Variations in tolerance to metal salt concentrations suggests that Granulicella sp. strains possess different mechanisms to deal with metal ion homeostasis and stress. Furthermore, Granulicella sp. 5B5 might be more adapted to survive in an environment with higher concentration of several metal ions when compared to Granulicella sp. WH15. The proteomic profiles of both strains indicated that Mn was more important in enhancing enzymatic activity than to protein expression regulation. In the genomic analyses, we did not find the most common transcriptional regulation of Mn homeostasis, but we found candidate transporters that could be potentially involved in Mn homeostasis for Granulicella species. The presence of such transporters might be involved in tolerance to higher Mn concentrations, improving the adaptability of bacteria to metal enriched environments, such as the decaying wood-rich Mn environment from which these two Granulicella strains were isolated.
Collapse
Affiliation(s)
- Ohana Y A Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Chidinma Oguejiofor
- Department of Soil Science and Meteorology, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Cristine C Barreto
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Distrito Federal, Brazil
| | - Christine Wünsche
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Waters SM, Purdue SK, Armstrong R, Detrés Y. Metagenomic investigation of African dust events in the Caribbean. FEMS Microbiol Lett 2020; 367:5809963. [PMID: 32189002 DOI: 10.1093/femsle/fnaa051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
African dust from the Sahara and Sahel regions of Northern Africa is blown intercontinental distances and is the highest portion of atmospheric dust generated each year. During the Northern Hemisphere summer months (boreal summer), these dust events travel into the Caribbean and southern United States. While viability assays, microscopy and bacterial amplicon analyses have shown that dust-associated microbes may be diverse, the specific microbial taxa that are transported intercontinental distances with these dust events remain poorly characterized. To provide new insights into these issues, five metagenomes of Saharan dust events occurring in the Caribbean, collected in the summer months of 2002 and 2008, were analyzed. The data revealed that similar microbial composition existed between three out of the five of the distinct dust events and that fungi were a prominent feature of the metagenomes compared to other environmental samples. These results have implications for better understanding of microbial transport through the atmosphere and may implicate that the dust-associated microbial load transiting the Atlantic with Saharan dust is similar from year to year.
Collapse
Affiliation(s)
- Samantha Marie Waters
- Universities Space Research Association, Space Biosciences Division, Ames Research Center, Moffett Field, CA 94035, USA
| | - S K Purdue
- Atmospheric Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - R Armstrong
- NOAA Center for Atmospheric Sciences (NCAS), Department of Marine Sciences, University of Puerto Rico-Mayaguez, Puerto Rico 00682, USA
| | - Y Detrés
- NOAA Center for Atmospheric Sciences (NCAS), Department of Marine Sciences, University of Puerto Rico-Mayaguez, Puerto Rico 00682, USA
| |
Collapse
|
19
|
Protist species richness and soil microbiome complexity increase towards climax vegetation in the Brazilian Cerrado. Commun Biol 2018; 1:135. [PMID: 30272014 PMCID: PMC6127325 DOI: 10.1038/s42003-018-0129-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023] Open
Abstract
Biodiversity underlies ecosystem functioning. While aboveground biodiversity is often well studied, the belowground microbiome, in particular protists, remains largely unknown. Indeed, holistic insights into soil microbiome structures in natural soils, especially in hyperdiverse biomes such as the Brazilian Cerrado, remain unexplored. Here, we study the soil microbiome across four major vegetation zones of the Cerrado, ranging from grass-dominated to tree-dominated vegetation with a focus on protists. We show that protist taxon richness increases towards the tree-dominated climax vegetation. Early successional habitats consisting of primary grass vegetation host most potential plant pathogens and least animal parasites. Using network analyses combining protist with prokaryotic and fungal sequences, we show that microbiome complexity increases towards climax vegetation. Together, this suggests that protists are key microbiome components and that vegetation succession towards climax vegetation is stimulated by higher loads of animal and plant pathogens. At the same time, an increase in microbiome complexity towards climax vegetation might enhance system stability. Araujo et al. investigate the soil microbiome across four major vegetation zones of the Brazilian Cerrado and find that protist taxon richness increases towards the tree-dominated climax vegetation. Their findings suggest that increased microbiome complexity might enhance system stability towards climax vegetation.
Collapse
|
20
|
Environmental Controls on Soil Microbial Communities in a Seasonally Dry Tropical Forest. Appl Environ Microbiol 2018; 84:AEM.00342-18. [PMID: 29959251 DOI: 10.1128/aem.00342-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Several studies have shown that rainfall seasonality, soil heterogeneity, and increased nitrogen (N) deposition may have important effects on tropical forest function. However, the effects of these environmental controls on soil microbial communities in seasonally dry tropical forests are poorly understood. In a seasonally dry tropical forest in the Yucatan Peninsula (Mexico), we investigated the influence of soil heterogeneity (which results in two different soil types, black and red soils), rainfall seasonality (in two successive seasons, wet and dry), and 3 years of repeated N enrichment on soil chemical and microbiological properties, including bacterial gene content and community structure. The soil properties varied with the soil type and the sampling season but did not respond to N enrichment. Greater organic matter content in the black soils was associated with higher microbial biomass, enzyme activities, and abundances of genes related to nitrification (amoA) and denitrification (nirK and nirS) than were observed in the red soils. Rainfall seasonality was also associated with changes in soil microbial biomass and activity levels and N gene abundances. Actinobacteria, Proteobacteria, Firmicutes, and Acidobacteria were the most abundant phyla. Differences in bacterial community composition were associated with soil type and season and were primarily detected at higher taxonomic resolution, where specific taxa drive the separation of communities between soils. We observed that soil heterogeneity and rainfall seasonality were the main correlates of soil bacterial community structure and function in this tropical forest, likely acting through their effects on soil attributes, especially those related to soil organic matter and moisture content.IMPORTANCE Understanding the response of soil microbial communities to environmental factors is important for predicting the contribution of forest ecosystems to global environmental change. Seasonally dry tropical forests are characterized by receiving less than 1,800 mm of rain per year in alternating wet and dry seasons and by high heterogeneity in plant diversity and soil chemistry. For these reasons, N deposition may affect their soils differently than those in humid tropical forests. This study documents the influence of rainfall seasonality, soil heterogeneity, and N deposition on soil chemical and microbiological properties in a seasonally dry tropical forest. Our findings suggest that soil heterogeneity and rainfall seasonality are likely the main factors controlling soil bacterial community structure and function in this tropical forest. Nitrogen enrichment was likely too low to induce significant short-term effects on soil properties, because this tropical forest is not N limited.
Collapse
|
21
|
Sharma S, Grewal S, Vakhlu J. Phylogenetic diversity and metabolic potential of microbiome of natural healing clay from Chamliyal (J&K). Arch Microbiol 2018; 200:1333-1343. [PMID: 29974156 DOI: 10.1007/s00203-018-1549-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 11/26/2022]
Abstract
Clay therapy for skin disease treatment is an ancient practice popular worldwide as a cheap alternative to pharmaceutical products. Effectiveness of clay against skin problems has been linked to its mineral composition and to microbial activity. The clay-water paste of a holy shrine Chamliyal in the Jammu region of J&K, India is used as an ointment to treat different skin disorders particularly psoriasis. Using the 16 SrDNA amplicon pyrosequencing and whole-metagenome direct shotgun Illumina sequencing, microbial phylogeny and potential metabolic functions were catalogued for Chamliyal's clay. Microbial diversity profile of the Chamliyal's clay is similar to other medicinal clays, particularly Dead Sea; there is some uniqueness as well. Although Proteobacteria, Actinomycetes and Firmicutes are common inhabitants of all the clay types, sulphur- and iron-reducing bacteria like Deferribacterales are particular to clays used for skin healing. In the present study it is proposed that healing properties of clay may be due to the microbes and microbial genes associated with metabolism of minerals like iron and sulphur, that lead to mineral acquisition in the Chamliyal's clay.
Collapse
Affiliation(s)
- Sakshi Sharma
- School of Biotechnology, University of Jammu, Jammu, J&K, 180006, India
| | - Simmi Grewal
- School of Biotechnology, University of Jammu, Jammu, J&K, 180006, India
| | - Jyoti Vakhlu
- School of Biotechnology, University of Jammu, Jammu, J&K, 180006, India.
| |
Collapse
|
22
|
Archaea diversity in vegetation gradients from the Brazilian Cerrado. Braz J Microbiol 2018; 49:522-528. [PMID: 29459210 PMCID: PMC6066726 DOI: 10.1016/j.bjm.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 02/01/2023] Open
Abstract
We used 16S rRNA sequencing to assess the archaeal communities across a gradient of Cerrado. The archaeal communities differed across the gradient. Crenarcheota was the most abundant phyla, with Nitrosphaerales and NRPJ as the predominant classes. Euryachaeota was also found across the Cerrado gradient, including the classes Metanocellales and Methanomassiliicoccaceae.
Collapse
|
23
|
Peixoto J, Silva LP, Krüger RH. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:634-644. [PMID: 27889181 DOI: 10.1016/j.jhazmat.2016.11.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 11/13/2016] [Indexed: 05/16/2023]
Abstract
Discarded PE-based products pose a social and environmental threat because of their recalcitrance to degradation, a consequence of the unique set of PE's physicochemical properties. In this study we isolated nine novel PE-degrading bacteria from plastic debris found in soil of the savanna-like Brazilian Cerrado. These bacterial strains from the genera Comamonas, Delftia, and Stenotrophomonas showed metabolic activity and cellular viability after a 90-day incubation with PE as the sole carbon source. ATR/FTIR indicated that biodegraded PE undergone oxidation, vinylene formation, chain scission, among other chemical changes. Considerable nanoroughness shifts and vast damages to the micrometric surface were confirmed by AFM and SEM. Further, phase imaging revealed a 46.7% decrease in the viscous area of biodegraded PE whereas Raman spectroscopy confirmed a loss in its crystalline content, suggesting the assimilation of smaller fragments. Intriguingly, biodegraded PE chemical fingerprint suggests that these strains use novel biochemical strategies in the biodegradation process. Our results indicate that these microbes are capable of degrading unpretreated PE of very high molecular weight (191,000gmol-1) and survive for long periods under this condition, suggesting not only practical applications in waste management and environmental decontamination, but also future directions to understand the unraveled metabolism of synthetic polymers.
Collapse
Affiliation(s)
- Julianna Peixoto
- Laboratory of Enzymology, Cellular Biology Department, Biological Sciences Institute, University of Brasilia, Brasilia, 70910-900, DF, Brazil.
| | - Luciano P Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Brasilia, 70770-917, DF, Brazil.
| | - Ricardo H Krüger
- Laboratory of Enzymology, Cellular Biology Department, Biological Sciences Institute, University of Brasilia, Brasilia, 70910-900, DF, Brazil.
| |
Collapse
|
24
|
Fungal diversity in soils across a gradient of preserved Brazilian Cerrado. J Microbiol 2017; 55:273-279. [DOI: 10.1007/s12275-017-6350-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/22/2016] [Accepted: 12/23/2016] [Indexed: 01/15/2023]
|
25
|
Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado. Antonie van Leeuwenhoek 2017; 110:457-469. [PMID: 28062969 DOI: 10.1007/s10482-016-0815-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
The Cerrado biome in the Sete Cidades National Park, an Ecological Reserve in Northeastern Brazil, has conserved its native biodiversity and presents a variety of plants found in other savannas in Brazil. Despite this finding the soil microbial diversity and community structure are poorly understood. Therefore, we described soil bacterial diversity and distribution along a savanna vegetation gradient taking into account the prevailing environmental factors. The bacterial composition was retrieved by sequencing a fragment of the 16S ribosomal RNA gene. The bacterial operational taxonomic units (OTUs) were assigned to 37 different phyla, 96 classes, and 83 genera. At the phylum level, a core comprised by Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Verrucomicrobia and Planctomycetes, was detected in all areas of Cerrado. 'Cerrado stricto sensu' and 'Cerradao' share more similarities between edaphic properties and vegetation and also present more similar bacterial communities, while 'Floresta decidual' and 'Campo graminoide' show the largest environmental differences and also more distinct bacterial communities. Proteobacteria (26%), Acidobacteria (21%) and Actinobacteria (21%) were the most abundant phyla within the four areas. All the samples present similar bacteria richness (alpha diversity) and the observed differences among them (beta diversity) were more related to the abundance of specific taxon OTUs compared to their presence or absence. Total organic C, N and P are the main abiotic factors structuring the bacterial communities. In summary, our findings show the bacterial community structure was clearly different across the Cerrado gradient, but that these environments share a bacterial phylum-core comprising Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes with other Brazilian savannas.
Collapse
|
26
|
Rughöft S, Herrmann M, Lazar CS, Cesarz S, Levick SR, Trumbore SE, Küsel K. Community Composition and Abundance of Bacterial, Archaeal and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa. Front Microbiol 2016; 7:1638. [PMID: 27807431 PMCID: PMC5069293 DOI: 10.3389/fmicb.2016.01638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
Savannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and the genetic potential for nitrification. Although the basaltic soils were on average 5 times more nutrient rich than the granitic soils, all investigated savanna soil samples showed typically low nutrient availabilities, i.e., up to 38 times lower soil N or C contents than temperate grasslands. Illumina MiSeq amplicon sequencing revealed a unique soil bacterial community dominated by Actinobacteria (20-66%), Chloroflexi (9-29%), and Firmicutes (7-42%) and an increase in the relative abundance of Actinobacteria with increasing soil nutrient content. The archaeal community reached up to 14% of the total soil microbial community and was dominated by the thaumarchaeal Soil Crenarchaeotic Group (43-99.8%), with a high fraction of sequences related to the ammonia-oxidizing genus Nitrosopshaera sp. Quantitative PCR targeting amoA genes encoding the alpha subunit of ammonia monooxygenase also revealed a high genetic potential for ammonia oxidation dominated by archaea (~5 × 107 archaeal amoA gene copies g-1 soil vs. mostly < 7 × 104 bacterial amoA gene copies g-1 soil). Abundances of archaeal 16S rRNA and amoA genes were positively correlated with soil nitrate, N and C contents. Nitrospira sp. was detected as the most abundant group of nitrite oxidizing bacteria. The specific geochemical conditions and particle transport dynamics at the granitic catena were found to affect soil microbial communities through clay and nutrient relocation along the hill slope, causing a shift to different, less diverse bacterial and archaeal communities at the footslope. Overall, our results suggest a strong effect of the savanna soils' nutrient scarcity on all microbial communities, resulting in a distinct community structure that differs markedly from nutrient-rich, temperate grasslands, along with a high relevance of archaeal ammonia oxidation in savanna soils.
Collapse
Affiliation(s)
- Saskia Rughöft
- Chair of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena Jena, Germany
| | - Martina Herrmann
- Chair of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University JenaJena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Cassandre S Lazar
- Chair of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena Jena, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany; Institute of Biology, Leipzig UniversityLeipzig, Germany
| | - Shaun R Levick
- Biogeochemical Processes, Max Planck Institute for Biogeochemistry Jena, Germany
| | - Susan E Trumbore
- Biogeochemical Processes, Max Planck Institute for Biogeochemistry Jena, Germany
| | - Kirsten Küsel
- Chair of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University JenaJena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| |
Collapse
|
27
|
Archaea in Natural and Impacted Brazilian Environments. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1259608. [PMID: 27829818 PMCID: PMC5086508 DOI: 10.1155/2016/1259608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
In recent years, archaeal diversity surveys have received increasing attention. Brazil is a country known for its natural diversity and variety of biomes, which makes it an interesting sampling site for such studies. However, archaeal communities in natural and impacted Brazilian environments have only recently been investigated. In this review, based on a search on the PubMed database on the last week of April 2016, we present and discuss the results obtained in the 51 studies retrieved, focusing on archaeal communities in water, sediments, and soils of different Brazilian environments. We concluded that, in spite of its vast territory and biomes, the number of publications focusing on archaeal detection and/or characterization in Brazil is still incipient, indicating that these environments still represent a great potential to be explored.
Collapse
|