1
|
Rehem AR, da Gama Viveiro LR, De Souza Santos EL, do Carmo PHF, da Silva NS, Junqueira JC, Scorzoni L. Antifungal and antibiofilm effect of duloxetine hydrochloride against Cryptococcus neoformans and Cryptococcus gattii. Folia Microbiol (Praha) 2024; 69:1247-1254. [PMID: 38652436 DOI: 10.1007/s12223-024-01164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Cryptococcosis is an invasive mycosis caused mainly by Cryptococcus gattii and C. neoformans and is treated with amphotericin B (AMB), fluconazole and 5-fluorocytosine. However, antifungal resistance, limited and toxic antifungal arsenal stimulate the search for therapeutic strategies such as drug repurposing. Among the repurposed drugs studied, the selective serotonin reuptake inhibitors (SSRIs) have shown activity against Cryptococcus spp. However, little is known about the antifungal effect of duloxetine hydrochloride (DH), a selective serotonin and norepinephrine reuptake inhibitor (SSNRI), against C. neoformans and C. gattii. In this study, DH inhibited the growth of several C. neoformans and C. gattii strains at concentrations ranging from 15.62 to 62.50 µg/mL. In addition, DH exhibited fungicidal activity ranging from 15.62 to 250 µg/mL. In biofilm, DH treatment reduced Cryptococcus spp. biomass at a level comparable to AMB, with a significant reduction (85%) for C. neoformans biofilms. The metabolic activity of C. neoformans and C. gattii biofilms decreased significantly (99%) after treatment with DH. Scanning electron micrographs confirmed the anti-biofilm activity of DH, as isolated cells could be observed after treatment. In conclusion, DH showed promising antifungal activity against planktonic cells and biofilms of C. neoformans and C. gattii, opening perspectives for further studies with DH in vivo.
Collapse
Affiliation(s)
- Amanda Rodrigues Rehem
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Letícia Rampazzo da Gama Viveiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Evelyn Luzia De Souza Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Newton Soares da Silva
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil.
- Universidade de Guarulhos (UNG), Programa de Pós-Graduação em Enfermagem, Guarulhos, SP, Brasil.
| |
Collapse
|
2
|
Al-Asfour A, Bhardwaj RG, Karched M. Growth Suppression of Oral Squamous Cell Carcinoma Cells by Lactobacillus Acidophilus. Int Dent J 2024; 74:1151-1160. [PMID: 38679518 DOI: 10.1016/j.identj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is a highly aggressive form of oral cancer. Probiotic lactobacilli have demonstrated anticancer effects, whilst their interaction with Streptococcus mutans in this context remains unexplored. The objective of this study was to investigate the antiproliferative effect of Lactobacillus acidophilus on OSCC and to understand the effect of S mutans on OSCCs and whether it affects the antiproliferative potential of L acidophilus when co-exposed to OSCC. METHODS The human head and neck squamous cell carcinoma cells of the oral cavity (HNO97 cell line) were exposed to cultures of L acidophilus and S mutans separately and in combination. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess the viability of HNO97 cells. Bacterial adhesion to HNO97 cells was examined by confocal microscopy and apoptosis by Nexin staining. To understand the underlying mechanism of apoptosis, expression of the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene and protein were determined by real-time polymerase chain reaction and quantitative enzyme-linked immunosorbent assay, respectively. RESULTS A significant decrease (53%-56%) in the viability of HNO97 cells on exposure to L acidophilus, S mutans, and the 2 species together demonstrated the antiproliferative activity of L acidophilus and S mutans. Both bacteria showed adhesion to HNO97 cells. The expression of the TRAIL gene increased 5-fold in HNO97 cells on treatment with L acidophilus and S mutans, which further increased to ∼17-fold with both species present. Expression levels of the TRAIL protein were significantly (P < .05) increased in bacteria-treated cell lysates. Further, bacteria-treated HNO97 cells exhibited lower live and intact cell percentages with higher proportions of cells in early and late apoptotic stages. CONCLUSIONS L acidophilus exhibits the antiproliferative activity against OSCC cells possibly partially via a TRAIL-induced mechanism of apoptosis, which is not affected by the presence of S mutans. These findings may encourage further investigation into the possible therapeutic application of probiotic L acidophilus in OSCC.
Collapse
Affiliation(s)
- Adel Al-Asfour
- Department of Surgical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait; Department of Biotechnology, School of Arts and Science, American International University, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
3
|
Khan MW, Cruz de Jesus V, Mittermuller BA, Sareen S, Lee V, Schroth RJ, Hu P, Chelikani P. Role of socioeconomic factors and interkingdom crosstalk in the dental plaque microbiome in early childhood caries. Cell Rep 2024; 43:114635. [PMID: 39154338 DOI: 10.1016/j.celrep.2024.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Early childhood caries (ECC) is influenced by microbial and host factors, including social, behavioral, and oral health. In this cross-sectional study, we analyze interkingdom dynamics in the dental plaque microbiome and its association with host variables. We use 16S rRNA and ITS1 amplicon sequencing on samples collected from preschool children and analyze questionnaire data to examine the social determinants of oral health. The results indicate a significant enrichment of Streptococcus mutans and Candida dubliniensis in ECC samples, in contrast to Neisseria oralis in caries-free children. Our interkingdom correlation analysis reveals that Candida dubliniensis is strongly correlated with both Neisseria bacilliformis and Prevotella veroralis in ECC. Additionally, ECC shows significant associations with host variables, including oral health status, age, place of residence, and mode of childbirth. This study provides empirical evidence associating the oral microbiome with socioeconomic and behavioral factors in relation to ECC, offering insights for developing targeted prevention strategies.
Collapse
Affiliation(s)
- Mohd Wasif Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Betty-Anne Mittermuller
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Shaan Sareen
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Victor Lee
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Robert J Schroth
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry, Western University, London, ON, Canada.
| | - Prashen Chelikani
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Elnagar RM. Cross interaction between bacterial and fungal microbiota and their relevance to human health and disease: mechanistic pathways and prospective therapy. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:309-320. [PMID: 39364131 PMCID: PMC11444862 DOI: 10.12938/bmfh.2024-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/27/2024] [Indexed: 10/05/2024]
Abstract
Diverse bacterial and fungal microbiota communities inhabit the human body, and their presence is essential for maintaining host homeostasis. The oral cavity, lung, gut, and vagina are just a few of the bodily cavities where these microorganisms communicate with one another, either directly or indirectly. The effects of this interaction can be either useful or detrimental to the host. When the healthy microbial diversity is disturbed, for instance, as a result of prolonged treatment with broad spectrum antibiotics, this allows the growth of specific microbes at the expense of others and alters their pathogenicity, causing a switch of commensal germs into pathogenic germs, which could promote tissue invasion and damage, as occurs in immunocompromised patients. Consequently, antimicrobials that specifically target pathogens may help in minimizing secondary issues that result from the disruption of useful bacterial/fungal interactions (BFIs). The interface between Candida albicans and Aspergillus fumigatus with bacteria at various body sites is emphasized in the majority of the medically important BFIs that have been reported thus far. This interface either supports or inhibits growth, or it enhances or blocks the generation of virulence factors. The aim of this review is to draw attention to the link between the bacterial and fungal microbiota and how they contribute to both normal homeostasis and disease development. Additionally, recent research that has studied microbiota as novel antimicrobials is summarized.
Collapse
Affiliation(s)
- Rasha Mokhtar Elnagar
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Sulyanto RM, Beall CJ, Ha K, Montesano J, Juang J, Dickson JR, Hashmi SB, Bradbury S, Leys EJ, Edgerton M, Ho SP, Griffen AL. Fungi and bacteria occupy distinct spatial niches within carious dentin. PLoS Pathog 2024; 20:e1011865. [PMID: 38805482 PMCID: PMC11161102 DOI: 10.1371/journal.ppat.1011865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/07/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
The role of bacteria in the etiology of dental caries is long established, while the role of fungi has only recently gained more attention. The microbial invasion of dentin in advanced caries especially merits additional research. We evaluated the fungal and bacterial community composition and spatial distribution within carious dentin. Amplicon 16S rRNA gene sequencing together with quantitative PCR was used to profile bacterial and fungal species in caries-free children (n = 43) and 4 stages of caries progression from children with severe early childhood caries (n = 32). Additionally, healthy (n = 10) and carious (n = 10) primary teeth were decalcified, sectioned, and stained with Grocott's methenamine silver, periodic acid Schiff (PAS) and calcofluor white (CW) for fungi. Immunolocalization was also performed using antibodies against fungal β-D-glucan, gram-positive bacterial lipoteichoic acid, gram-negative endotoxin, Streptococcus mutans, and Candida albicans. We also performed field emission scanning electron microscopy (FESEM) to visualize fungi and bacteria within carious dentinal tubules. Bacterial communities observed included a high abundance of S. mutans and the Veillonella parvula group, as expected. There was a higher ratio of fungi to bacteria in dentin-involved lesions compared to less severe lesions with frequent preponderance of C. albicans, C. dubliniensis, and in one case C. tropicalis. Grocott's silver, PAS, CW and immunohistochemistry (IHC) demonstrated the presence of fungi within carious dentinal tubules. Multiplex IHC revealed that fungi, gram-negative, and gram-positive bacteria primarily occupied separate dentinal tubules, with rare instances of colocalization. Similar findings were observed with multiplex immunofluorescence using anti-S. mutans and anti-C. albicans antibodies. Electron microscopy showed monomorphic bacterial and fungal biofilms within distinct dentin tubules. We demonstrate a previously unrecognized phenomenon in which fungi and bacteria occupy distinct spatial niches within carious dentin and seldom co-colonize. The potential significance of this phenomenon in caries progression warrants further exploration.
Collapse
Affiliation(s)
- Rosalyn M. Sulyanto
- Department of Dentistry, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Clifford J. Beall
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Kasey Ha
- Department of Dentistry, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Joseph Montesano
- Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Jason Juang
- Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John R. Dickson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shahr B. Hashmi
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Seth Bradbury
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
- Division of Pediatric Dentistry, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Eugene J. Leys
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, United States of America
| | - Sunita P. Ho
- Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Ann L. Griffen
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
- Division of Pediatric Dentistry, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Garcia MT, Dos Santos JD, do Carmo PHF, Mendes GV, de Oliveira JR, de Oliveira LD, Junqueira JC. Streptococcus mutans supernatant affects the virulence of Candida albicans. Braz J Microbiol 2024; 55:365-374. [PMID: 38040990 PMCID: PMC10920551 DOI: 10.1007/s42770-023-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Candida albicans causes a variety of clinical manifestations through multiple virulence factors that act simultaneously to overcome the immune system and invade the host tissues. Owing to the limited number of antifungal agents available, new candidiasis therapeutic strategies are required. Previous studies have demonstrated that the metabolites produced by Streptococcus mutans lead to a decrease in the number of Candida cells. Here, for the first time, we evaluated whether the C. albicans cells that survived the pretreatment with S. mutans supernatant can modify their virulence factors and their capability to infect Galleria mellonella larvae. Streptococcus mutans supernatant (SM-S) was obtained by filtering the culture supernatant of this bacterium. Then, C. albicans cells were pretreated with SM-S for 24 h, and the surviving cells were evaluated using in vitro and in vivo assays. The C. albicans pretreated with SM-S showed a significant inhibition of hyphal growth, an altered adhesion pattern, and an impaired capability to form biofilms; however, its proteolytic activity was not affected. In the in vivo assays, C. albicans cells previously exposed to SM-S exhibited a reduced ability to infect G. mellonella and a higher amount of circulating hemocytes. Thus, SM-S could inhibit important virulence factors of C. albicans, which may contribute to the development of new candidiasis therapeutic strategies.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil.
| | - Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Gabriela Vieira Mendes
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Jonatas Rafael de Oliveira
- Anhembi Morumbi University, School of Medicine, Av. Deputado Benedito Matarazzo, 6709, São José dos Campos, SP, 12242-010, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
7
|
Tavvabi-Kashani N, Hasanpour M, Baradaran Rahimi V, Vahdati-Mashhadian N, Askari VR. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024; 238:107607. [PMID: 38191032 DOI: 10.1016/j.toxicon.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.
Collapse
Affiliation(s)
- Negin Tavvabi-Kashani
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Montoya C, Kurylec J, Ossa A, Orrego S. Cyclic strain of poly (methyl methacrylate) surfaces triggered the pathogenicity of Candida albicans. Acta Biomater 2023; 170:415-426. [PMID: 37625677 PMCID: PMC10705016 DOI: 10.1016/j.actbio.2023.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Candida albicans is an opportunistic yeast and the primary etiological factor in oral candidiasis and denture stomatitis. The pathogenesis of C. albicans could be triggered by several variables, including environmental, nutritional, and biomaterial surface cues. Specifically, biomaterial interactions are driven by different surface properties, including wettability, stiffness, and roughness. Dental biomaterials experience repetitive (cyclic) stresses from chewing and biomechanical movements. Pathogenic biofilms are formed over these biomaterial surfaces under cyclic strain. This study investigated the effect of the cyclic strain (deformation) of biomaterial surfaces on the virulence of Candida albicans. Candida biofilms were grown over Poly (methyl methacrylate) (PMMA) surfaces subjected to static (no strain) and cyclic strain with different levels (ε˜x=0.1 and 0.2%). To evaluate the biomaterial-biofilm interactions, the biofilm characteristics, yeast-to-hyphae transition, and the expression of virulent genes were measured. Results showed the biofilm biomass and metabolic activity to be significantly higher when Candida adhered to surfaces subjected to cyclic strain compared to static surfaces. Examination of the yeast-to-hyphae transition showed pseudo-hyphae cells (pathogenic) in cyclically strained biomaterial surfaces, whereas static surfaces showed spherical yeast cells (commensal). RNA sequencing was used to determine and compare the transcriptome profiles of cyclically strained and static surfaces. Genes and transcription factors associated with cell adhesion (CSH1, PGA10, and RBT5), biofilm formation (EFG1), and secretion of extracellular matrix (ECM) (CRH1, ADH5, GCA1, and GCA2) were significantly upregulated in the cyclically strained biomaterial surfaces compared to static ones. Genes and transcription factors associated with virulence (UME6 and HGC1) and the secretion of extracellular enzymes (LIP, PLB, and SAP families) were also significantly upregulated in the cyclically strained biomaterial surfaces compared to static. For the first time, this study reveals a biomaterial surface factor triggering the pathogenesis of Candida albicans, which is essential for understanding, controlling, and preventing oral infections. STATEMENT OF SIGNIFICANCE: Fungal infections produced by Candida albicans are a significant contributor to various health conditions. Candida becomes pathogenic when certain environmental conditions change, including temperature, pH, nutrients, and CO2 levels. In addition, surface properties, including wettability, stiffness, and roughness, drive the interactions between Candida and biomaterials. Clinically, Candida adheres to biomaterials that are under repetitive deformation due to body movements. In this work, we revealed that when Candida adhered to biomaterial surfaces subjected to repetitive deformation, the microorganism becomes pathogenic by increasing the formation of biofilms and the expression of virulent factors related to hyphae formation and secretion of enzymes. Findings from this work could aid the development of new strategies for treating fungal infections in medical devices or implanted biomaterials.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Julia Kurylec
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Alex Ossa
- Production Engineering Department, School of Engineering, Universidad EAFIT, Medellín, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States; Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Zen I, Delbem ACB, Martins TP, de Morais LA, Sampaio C, Hosida TY, Monteiro DR, Pessan JP. Evaluation of Solutions Containing Fluoride, Sodium Trimetaphosphate, Xylitol, and Erythritol, Alone or in Different Associations, on Dual-Species Biofilms. Int J Mol Sci 2023; 24:12910. [PMID: 37629091 PMCID: PMC10454744 DOI: 10.3390/ijms241612910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 08/27/2023] Open
Abstract
Although the association of polyols/polyphosphates/fluoride has been demonstrated to promote remarkable effects on dental enamel, little is known on their combined effects on biofilms. This study assessed the effects of solutions containing fluoride/sodium trimetaphosphate (TMP)/xylitol/erythritol on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were grown in the continuous presence of these actives alone or in different associations. Quantification of viable plate counts, metabolic activity, biofilm biomass, and extracellular matrix components were evaluated. Overall, fluoride and TMP were the main actives that significantly influenced most of the variables analyzed, with a synergistic effect between them for S. mutans CFUs, biofilm biomass, and protein content of the extracellular matrix (p < 0.05). A similar trend was observed for biofilm metabolic activity and carbohydrate concentrations of the extracellular matrix, although without statistical significance. Regarding the polyols, despite their modest effects on most of the parameters analyzed when administered alone, their co-administration with fluoride and TMP led to a greater reduction in S. mutans CFUs and biofilm biomass compared with fluoride alone at the same concentration. It can be concluded that fluoride and TMP act synergistically on important biofilm parameters, and their co-administration with xylitol/erythritol significantly impacts S. mutans CFUs and biomass reduction.
Collapse
Affiliation(s)
- Igor Zen
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Tamires Passadori Martins
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Leonardo Antônio de Morais
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
- Postgraduate Program in Health Sciences, University of Western Saão Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| |
Collapse
|
10
|
Lu Y, Lin Y, Li M, He J. Roles of Streptococcus mutans- Candida albicans interaction in early childhood caries: a literature review. Front Cell Infect Microbiol 2023; 13:1151532. [PMID: 37260705 PMCID: PMC10229052 DOI: 10.3389/fcimb.2023.1151532] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
As one of the most common oral diseases in kids, early childhood caries affects the health of children throughout the world. Clinical investigations show the copresence of Candida albicans and Streptococcus mutans in ECC lesions, and mechanistic studies reveal co-existence of C. albicans and S. mutans affects both of their cariogenicity. Clearly a comprehensive understanding of the interkingdom interaction between these two microorganisms has important implications for ECC treatment and prevention. To this end, this review summarizes advances in our understanding of the virulence of both C. albicans and S. mutans. More importantly, the synergistic and antagonistic interactions between these two microbes are discussed.
Collapse
Affiliation(s)
- Yifei Lu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yifan Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jinzhi He
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Sampaio C, Pessan JP, Nunes GP, Magno MB, Maia LC, Exterkate R, Deng D, Monteiro DR. Are the counts of Streptococcus mutans and Staphylococcus aureus changed in complete denture wearers carrying denture stomatitis? A systematic review with meta-analyses. J Prosthet Dent 2023:S0022-3913(23)00180-4. [PMID: 37080861 DOI: 10.1016/j.prosdent.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
STATEMENT OF PROBLEM Despite the importance of Candida spp. on the etiology of denture stomatitis (DS), information on the role of the bacterial component is still scarce. PURPOSE The purpose of this systematic review was to evaluate whether the counts of Staphylococcus aureus and Streptococcus mutans were changed in complete denture wearers diagnosed with Candida-associated DS. MATERIAL AND METHODS The literature search was performed in 8 databases and by hand searching. The risk of bias was assessed according to the Newcastle-Ottawa qualifier. Meta-analyses were performed considering the microorganism evaluated (S. aureus or S. mutans) and the collection area (mucosa or dentures). The certainty of evidence was assessed according to the grading of recommendations assessment, development and evaluations (GRADE) criteria. RESULTS Participants with DS presented higher counts of S. aureus in the mucosa compared with those from the control group (OR, 3.16 [1.62, 6.15]; P<.001). No significant difference between the groups was observed for samples collected from dentures (OR, 0.73 [0.50, 1.07]; P=.110). Conversely, participants without DS presented higher counts of S. mutans both in the mucosa (OR, 0.19 [0.06, 0.63]; P=.006) and dentures (OR, 0.64 [0.41, 1.0]; P=.050). CONCLUSIONS Microbial counts in participants with DS changed as a function of the type of microorganism and collection site. The certainty of evidence ranged from very low to low. The findings reinforce the fact that bacteria also play a relevant role in DS and should be more extensively studied. Such information may be useful to guide further therapies to prevent or control DS.
Collapse
Affiliation(s)
- Caio Sampaio
- PhD, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Juliano P Pessan
- Associate Professor, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Gabriel P Nunes
- PhD student, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Marcela B Magno
- Postdoctoral Fellow, Department of Pediatric Dentistry, School of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucianne C Maia
- Professor, Department of Pediatric Dentistry, School of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rob Exterkate
- Research Staff Member, Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Dongmei Deng
- Associate Professor, Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Douglas R Monteiro
- Professor, Postgraduate Program in Health Sciences, School of Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil.
| |
Collapse
|
12
|
Junqueira JC, Mylonakis E. Editorial: Candida biofilms. Front Microbiol 2023; 13:1128600. [PMID: 36687614 PMCID: PMC9846752 DOI: 10.3389/fmicb.2022.1128600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil,*Correspondence: Juliana Campos Junqueira ✉
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States,Eleftherios Mylonakis ✉
| |
Collapse
|
13
|
Fenley JDC, de Barros PP, do Carmo PHF, Garcia MT, Rossoni RD, Junqueira JC. Repurposing HIV Protease Inhibitors Atazanavir and Darunavir as Antifungal Treatments against Candida albicans Infections: An In Vitro and In Vivo Study. Curr Issues Mol Biol 2022; 44:5379-5389. [PMID: 36354676 PMCID: PMC9688711 DOI: 10.3390/cimb44110364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Candida albicans is the chief etiological agent of candidiasis, a mycosis prevalent in individuals with acquired immunodeficiency syndrome (AIDS). In recent years, the introduction of human immunodeficiency virus (HIV) protease inhibitors (HIV-PI) has reduced the prevalence of candidiasis in these patients. Seeking new therapeutic strategies based on the perspective of drug repositioning, we evaluated the effects of two second-generation HIV-PIs, atazanavir (ATV) and darunavir (DRV), on virulence factors of C. albicans and experimental candidiasis. For this, clinical strains of C. albicans were subjected to in vitro and in vivo treatments with ATV or DRV. As a result, ATV and DRV exhibited antifungal activity against fungal cells at 512 μg/mL, reduced the viability and biomass of biofilms, and inhibited filamentation of C. albicans. In addition, these HIV-PIs downregulated the expression of SAP2 and BRC1 genes of C. albicans. In an in vivo study, prophylactic use of ATV and DRV prolonged the survival rate of Galleria mellonella larvae infected with C. albicans. Therefore, ATV and DRV showed activity against C. albicans by reducing cell growth, biofilm formation, filamentation, and expression of virulence genes. Furthermore, ATV and DRV decreased experimental candidiasis, suggesting the repurposing of HIV-PIs as antifungal treatments for C. albicans infections.
Collapse
Affiliation(s)
- Juliana de C. Fenley
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil
| | - Patrícia P. de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil
- Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caicó, Rio Grande do Norte 59300-000, Brazil
| | - Paulo H. F. do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil
| | - Maíra T. Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil
| | - Rodnei D. Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil
| | - Juliana C. Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil
| |
Collapse
|
14
|
Yu D, Liu Z. The research progress in the interaction between Candida albicans and cancers. Front Microbiol 2022; 13:988734. [PMID: 36246294 PMCID: PMC9554461 DOI: 10.3389/fmicb.2022.988734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus, which tends to infect the host with defective immune function including cancer patients. A growing number of studies have shown that C. albicans infection increases the host susceptibility to cancer such as oral, gastric, and colorectal cancer. Cancer and anti-cancer treatment may also affect the colonization of C. albicans. C. albicans may promote the development of cancer by damaging mucosal epithelium, inducing the production of carcinogens, triggering chronic inflammation including Th17 cell-mediated immune response. In this article, we aim to elaborate the interaction between C. albicans and cancers development and summarize the potential molecular mechanisms, so as to provide theoretical basis for prevention, diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Dalang Yu
- School of Basic Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Zhiping Liu,
| |
Collapse
|
15
|
Li H, Miao MX, Jia CL, Cao YB, Yan TH, Jiang YY, Yang F. Interactions between Candida albicans and the resident microbiota. Front Microbiol 2022; 13:930495. [PMID: 36204612 PMCID: PMC9531752 DOI: 10.3389/fmicb.2022.930495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is a prevalent, opportunistic human fungal pathogen. It usually dwells in the human body as a commensal, however, once in its pathogenic state, it causes diseases ranging from debilitating superficial to life-threatening systemic infections. The switch from harmless colonizer to virulent pathogen is, in most cases, due to perturbation of the fungus-host-microbiota interplay. In this review, we focused on the interactions between C. albicans and the host microbiota in the mouth, gut, blood, and vagina. We also highlighted important future research directions. We expect that the evaluation of these interplays will help better our understanding of the etiology of fungal infections and shed new light on the therapeutic approaches.
Collapse
Affiliation(s)
- Hao Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-xing Miao
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-lin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: Tian-hua Yan,
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Yuan-ying Jiang,
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Feng Yang,
| |
Collapse
|
16
|
Namba AM, Santos ELDS, Garcia MT, Ribeiro FDC, Figueiredo-Godoi LMA, Rossoni RD, Junqueira JC. Farnesol as a potentiator of antimicrobial photodynamic inactivation on Enterococcus faecalis. Photodiagnosis Photodyn Ther 2022; 39:102928. [DOI: 10.1016/j.pdpdt.2022.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
|
17
|
Peng Z, Tang J. Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Front Microbiol 2022; 12:783010. [PMID: 35185813 PMCID: PMC8847744 DOI: 10.3389/fmicb.2021.783010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The large mortality and morbidity rate of C. albicans infections is a crucial problem in medical mycology. Because the generation of biofilms and drug resistance are growing concerns, the growth of novel antifungal agents and the looking for newer objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent studies on various transcription elements; quorum-sensing molecules; host responses to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and lipid profiles have increased the knowledge of the intricate mechanisms underlying biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature, natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates are being researched. Recently, more and more attention has been given to various metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis and is increasingly associated with various disorders associated with the intestine such as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome, allergies, hepatic inflammation, septic shock, etc. However, whether their involvement in the prevention of other intestinal disorders like IBD are useful in C. albicans remains unknown. Further studies must be carried out in order to validate their inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal C. albicans treatment.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
The importance of combining methods to assess Candida albicans biofilms following photodynamic inactivation. Photodiagnosis Photodyn Ther 2022; 38:102769. [DOI: 10.1016/j.pdpdt.2022.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
|
19
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Ma X, Lang J, Chen P, Yang R. Silver Nanoparticles as an Effective Antimicrobial against Otitis Media Pathogens. AIChE J 2021; 67:e17468. [PMID: 35450419 PMCID: PMC9017526 DOI: 10.1002/aic.17468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/14/2021] [Indexed: 01/06/2023]
Abstract
Otitis Media (OM) is the most common reason for U.S. children to receive prescribed oral antibiotics, leading to potential to cause antibiotic resistance. To minimize oral antibiotic usage, we developed polyvinylpyrrolidone-coated silver nanoparticles (AgNPs-PVP), which completely eradicated common OM pathogens, i.e., Streptococcus pneumoniae and non-typeable Haemophilus influenzae (NTHi) at 1.04μg/mL and 2.13μg/mL. The greater antimicrobial efficacy against S. pneumoniae was a result of the H2O2-producing ability of S. pneumoniae and the known synergistic interactions between H2O2 and AgNPs. To enable the sustained local delivery of AgNPs-PVP (e.g., via injection through perforated tympanic membranes), a hydrogel formulation of 18%(w/v)P407 was developed. Reverse thermal gelation of the AgNPs-PVP-P407 hydrogel could gel rapidly upon entering the warm auditory bullae and thereby sustained release of antimicrobials. This hydrogel-based local delivery system completely eradicated OM pathogens in vitro without cytotoxicity, and thus represents a promising strategy for treating bacterial OM without relying on conventional antibiotics.
Collapse
Affiliation(s)
- Xiaojing Ma
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jiayan Lang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Pengyu Chen
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
21
|
Garcia MT, Ward RADC, Gonçalves NMF, Pedroso LLC, Neto JVDS, Strixino JF, Junqueira JC. Susceptibility of Dental Caries Microcosm Biofilms to Photodynamic Therapy Mediated by Fotoenticine. Pharmaceutics 2021; 13:pharmaceutics13111907. [PMID: 34834321 PMCID: PMC8619263 DOI: 10.3390/pharmaceutics13111907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/20/2023] Open
Abstract
Photodynamic therapy (PDT) mediated by Fotoenticine® (FTC), a new photosensitizer derived from chlorin e-6, has shown in vitro inhibitory activity against the cariogenic bacterium Streptococcus mutans. However, its antimicrobial effects must be investigated on biofilm models that represent the microbial complexity of caries. Thus, we evaluated the efficacy of FTC-mediated PDT on microcosm biofilms of dental caries. Decayed dentin samples were collected from different patients to form in vitro biofilms. Biofilms were treated with FTC associated with LED irradiation and analyzed by counting the colony forming units (log10 CFU) in selective and non-selective culture media. Furthermore, the biofilm structure and acid production by microorganisms were analyzed using microscopic and spectrophotometric analysis, respectively. The biofilms from different patients showed variations in microbial composition, being formed by streptococci, lactobacilli and yeasts. Altogether, PDT decreased up to 3.7 log10 CFU of total microorganisms, 2.8 log10 CFU of streptococci, 3.2 log10 CFU of lactobacilli and 3.2 log10 CFU of yeasts, and reached eradication of mutans streptococci. PDT was also capable of disaggregating the biofilms and reducing acid concentration in 1.1 to 1.9 mmol lactate/L. It was concluded that FTC was effective in PDT against the heterogeneous biofilms of dental caries.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
| | - Rafael Araújo da Costa Ward
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
| | - Nathália Maria Ferreira Gonçalves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
| | - Lara Luise Castro Pedroso
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
| | - José Vieira da Silva Neto
- Associate Laboratory of Sensors and Materials/LABAS, National Institute for Space Research, São José dos Campos 12227-010, Brazil;
| | - Juliana Ferreira Strixino
- Photobiology Applied to Health, Research and Development Institute IP&D, University of Vale do Paraiba/UNIVAP, São José dos Campos 12244-390, Brazil;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
- Correspondence:
| |
Collapse
|
22
|
Dos Santos DDL, Besegato JF, de Melo PBG, Junior JAO, Chorilli M, Deng D, Bagnato VS, de Souza Rastelli AN. Effect of curcumin-encapsulated Pluronic ® F-127 over duo-species biofilm of Streptococcus mutans and Candida albicans. Lasers Med Sci 2021; 37:1775-1786. [PMID: 34664132 DOI: 10.1007/s10103-021-03432-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
To assess the effect of curcumin-encapsulated Pluronic® F-127 (Cur-Plu) during antimicrobial photodynamic therapy (aPDT) over duo-species biofilm of Streptococcus mutans and Candida albicans. Thermal analysis, optical absorption, and fluorescence spectroscopy were evaluated. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungal concentration were obtained. The biofilms were cultured for 48 h at 37 °C and treated according to the groups: P + M + L + (photosensitizer encapsulated with Pluronic® F-127 + light); P + D + L + (photosensitizer incorporated in 1% DMSO + light); P - M + L + (no Pluronic® F-127 + light); P - D + L + (1% DMSO + light); P - L + (Milli-Q water + light); P + M + L - (photosensitizer encapsulated with Pluronic® F-127 no light); P + D + L - (photosensitizer in 1% DMSO, no light); P - M + L - (Pluronic® F-127 no light); P - D + L - (1% DMSO, no light); P - L - (Milli-Q water, no light; negative control group); CHX (0.2% chlorhexidine, positive control group); and NYS (Nystatin). Dark incubation of 5 min was used. The groups that received aPDT were irradiated by blue LED (460 nm, 15 J/cm2). Cell viability of the biofilms was performed by colony-forming units (CFU/mL) and confocal microscopy. Two-way ANOVA followed by Tukey's post hoc test was used at a significance level of 5%. P + D + L + and P + M + L + groups exhibited better log-reduction for both Candida albicans and Streptococcus mutans biofilms than P - M + L + , P - L + , and P - D + L + experimental groups. Furthermore, P + M + L + and P + D + L + showed greater reduction for Candida albicans than for Streptococcus mutans. aPDT mediated by Cur-Plu can be a potential strategy for biofilm control against duo-species biofilm of Streptococcus mutans and Candida albicans.
Collapse
Affiliation(s)
- Diego Dantas Lopes Dos Santos
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, 14801-903, Brazil
| | - João Felipe Besegato
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá St., MailBox: 331, Araraquara, São Paulo, 14.801-903, Brazil
| | - Priscila Borges Gobbo de Melo
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá St., MailBox: 331, Araraquara, São Paulo, 14.801-903, Brazil
| | - João Augusto Oshiro Junior
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, 14800-903, Brazil.,Graduate Program in Pharceutical Sciences, State University of Paraíba-UEPB, Paraíba, 58429-500, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, 14800-903, Brazil
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam - ACTA, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vanderlei Salvador Bagnato
- Department of Physics and Materials Science, Physics Institute of São Carlos - IFSC, University of São Paulo - USP, São Carlos, São Paulo, 13566-590, Brazil
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá St., MailBox: 331, Araraquara, São Paulo, 14.801-903, Brazil.
| |
Collapse
|
23
|
Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 2021; 12:636131. [PMID: 34630340 PMCID: PMC8493257 DOI: 10.3389/fmicb.2021.636131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The influence of microbiological species has gained increased visibility and traction in the medical domain with major revelations about the role of bacteria on symbiosis and dysbiosis. A large reason for these revelations can be attributed to advances in deep-sequencing technologies. However, the research on the role of fungi has lagged. With the continued utilization of sequencing technologies in conjunction with traditional culture assays, we have the opportunity to shed light on the complex interplay between the bacteriome and the mycobiome as they relate to human health. In this review, we aim to offer a comprehensive overview of the human mycobiome in healthy and diseased states in a systematic way. The authors hope that the reader will utilize this review as a scaffolding to formulate their understanding of the mycobiome and pursue further research.
Collapse
Affiliation(s)
- Kirtishri Mishra
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Laura Bukavina
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mahmoud Ghannoum
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Center for Medical Mycology, and Integrated Microbiome Core, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
24
|
Villar CC, Dongari-Bagtzoglou A. Fungal diseases: Oral dysbiosis in susceptible hosts. Periodontol 2000 2021; 87:166-180. [PMID: 34463992 DOI: 10.1111/prd.12378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oral cavity is colonized by a large number of microorganisms that are referred to collectively as the oral microbiota. These indigenous microorganisms have evolved in symbiotic relationships with the oral mucosal immune system and are involved in maintaining homeostasis in the oral cavity. Although Candida species are commonly found in the healthy oral cavity without causing infection, these fungi can become pathogenic. Recents advances indicate that the development of oral candidiasis is driven both by Candida albicans overgrowth in a dysbiotic microbiome and by disturbances in the host's immune system. Perturbation of the oral microbiota triggered by host-extrinsic (ie, medications), host-intrinsic (ie, host genetics), and microbiome-intrinsic (ie, microbial interactions) factors may increase the risk of oral candidiasis. In this review, we provide an overview of the oral mycobiome, with a particular focus on the interactions of Candida albicans with some of the most common oral bacteria and the oral mucosal immune system. Also, we present a summary of our current knowledge of the host-intrinsic and host-extrinsic factors that can predispose to oral candidiasis.
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
25
|
Barber CC, Zhang W. Small molecule natural products in human nasal/oral microbiota. J Ind Microbiol Biotechnol 2021; 48:6129854. [PMID: 33945611 PMCID: PMC8210680 DOI: 10.1093/jimb/kuab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Small molecule natural products are a chemically diverse class of biomolecules that fulfill myriad biological functions, including autoregulation, communication with microbial neighbors and the host, interference competition, nutrient acquisition, and resistance to oxidative stress. Human commensal bacteria are increasingly recognized as a potential source of new natural products, which may provide insight into the molecular ecology of many different human body sites as well as novel scaffolds for therapeutic development. Here, we review the scientific literature on natural products derived from residents of the human nasal/oral cavity, discuss their discovery, biosynthesis, and ecological roles, and identify key questions in the study of these compounds.
Collapse
Affiliation(s)
- Colin Charles Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley 94720, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley 94720, USA.,Chan-Zuckerberg Biohub, San Francisco 94158, USA
| |
Collapse
|
26
|
Hara T, Sonoi A, Handa T, Okamoto M, Kaneko E, Ikeda R, Habe T, Fujinaka H, Inoue S, Ichikawa T. Unsaturated fatty acid salts remove biofilms on dentures. Sci Rep 2021; 11:12524. [PMID: 34131212 PMCID: PMC8206114 DOI: 10.1038/s41598-021-92044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022] Open
Abstract
Candidiasis-causing Candida sp. forms biofilms with various oral bacteria in the dentures of the elderly, making it harder to kill and remove the microorganism due to the extracellular polymeric substances. We found that biofilms on dentures can effectively be removed by immersion in an unsaturated fatty acid salt solution. Using optical coherence tomography to observe the progression of biofilm removal by the fatty acid salt solution, we were able to determine that the removal was accompanied by the production of gaps at the interface between the biofilm and denture resin. Furthermore, microstructural electron microscopy observations and time-of-flight secondary ion mass spectrometry elucidated the site of action, revealing that localization of the fatty acid salt at the biofilm/denture-resin interface is an important factor.
Collapse
Affiliation(s)
- Teruyuki Hara
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Atsunori Sonoi
- Personal Health Care Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Takuya Handa
- Personal Health Care Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Masayuki Okamoto
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Eri Kaneko
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Reiko Ikeda
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Taichi Habe
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Hidetake Fujinaka
- Personal Health Care Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Shigeto Inoue
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan.
| | - Tetsuo Ichikawa
- Department of Prosthodontics and Oral Rehabilitation, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.
| |
Collapse
|
27
|
Effect of LongZhang Gargle on Dual-Species Biofilm of Candida albicans and Streptococcus mutans. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6654793. [PMID: 33824875 PMCID: PMC8007335 DOI: 10.1155/2021/6654793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/05/2021] [Accepted: 03/13/2021] [Indexed: 02/05/2023]
Abstract
Bioactive natural products have become a hot spot for oral disease treatments. At the present study, LongZhang Gargle was investigated for its effects on single-species biofilms of Candida albicans and dual-species biofilms of Candida albicans and Streptococcus mutans. Two different models of single and dual-species biofilms were grown in YNBB medium under appropriate conditions. Biofilm biomass, biofilm architecture, and cell activity in biofilms were assessed using Crystal Violet Staining, MTT, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Significant reductions of biofilm biomass and fungus activity were obtained when treated with LongZhang Gargle at 2% (P < 0.05), 4% (P < 0.05), and 8% (P < 0.05) in single-species biofilms of C. albicans, and at 4% (P < 0.05) and 8% (P < 0.05) in double-species biofilms. Suppression of density, thickness, and the proportion of hyphae and fungal spores were obtained under SEM and CLSM. In conclusion, LongZhang Gargle affects single and dual-species biofilms by inhibiting biofilm biomass, cell activity, and formation of hyphae, but it does not affect the production of Extracellular polysaccharides (EPS). We speculate that LongZhang Gargle would be a promising natural drug, which can be used in treatment against C. albicans and S. mutans in oral diseases.
Collapse
|
28
|
Alves MDS, Fugisaki LRDO, Dos Santos JD, Scorzoni L, Medina RP, Silva DHS, Junqueira JC. Antifungal effects of Streptococcus mutans extract on Candida strains susceptible and resistant to fluconazole: An in vivo study. Med Mycol 2021; 59:744-747. [PMID: 33594432 DOI: 10.1093/mmy/myab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 11/12/2022] Open
Abstract
Previous studies showed that the crude extract obtained from Streptococcus mutans inhibited the growth of Candida albicans reference strains. In this study, we evaluated whether the antifungal effects of S. mutans extract can be extended to clinical Candida isolates, including C. albicans and non-abicans strains with different susceptibilities to fluconazole. We verified that S. mutans extract increased the survival of Galleria mellonella larvae infected with C. albicans and C. glabrata and inhibited the fungal cells in hemolymph. These antifungal effects occurred for both fluconazole-susceptible and fluconazole-resistant strains. However, larvae infected by C. krusei were not affected by S. mutans extract. LAY SUMMARY Streptococcus mutans crude extract shows antifungal effects on clinical Candida strains susceptible and resistant to fluconazole in Galleria mellonella model.
Collapse
Affiliation(s)
- Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| | - Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| |
Collapse
|
29
|
Understanding Human Microbiota Offers Novel and Promising Therapeutic Options against Candida Infections. Pathogens 2021; 10:pathogens10020183. [PMID: 33572162 PMCID: PMC7915436 DOI: 10.3390/pathogens10020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human fungal pathogens particularly of Candida species are one of the major causes of hospital acquired infections in immunocompromised patients. The limited arsenal of antifungal drugs to treat Candida infections with concomitant evolution of multidrug resistant strains further complicates the management of these infections. Therefore, deployment of novel strategies to surmount the Candida infections requires immediate attention. The human body is a dynamic ecosystem having microbiota usually involving symbionts that benefit from the host, but in turn may act as commensal organisms or affect positively (mutualism) or negatively (pathogenic) the physiology and nourishment of the host. The composition of human microbiota has garnered a lot of recent attention, and despite the common occurrence of Candida spp. within the microbiota, there is still an incomplete picture of relationships between Candida spp. and other microorganism, as well as how such associations are governed. These relationships could be important to have a more holistic understanding of the human microbiota and its connection to Candida infections. Understanding the mechanisms behind commensalism and pathogenesis is vital for the development of efficient therapeutic strategies for these Candida infections. The concept of host-microbiota crosstalk plays critical roles in human health and microbiota dysbiosis and is responsible for various pathologies. Through this review, we attempted to analyze the types of human microbiota and provide an update on the current understanding in the context of health and Candida infections. The information in this article will help as a resource for development of targeted microbial therapies such as pre-/pro-biotics and microbiota transplant that has gained advantage in recent times over antibiotics and established as novel therapeutic strategy.
Collapse
|
30
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
31
|
Boyd JD, Stromberg AJ, Miller CS, Grady ME. Biofilm and cell adhesion strength on dental implant surfaces via the laser spallation technique. Dent Mater 2021; 37:48-59. [PMID: 33208265 PMCID: PMC7775913 DOI: 10.1016/j.dental.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aims of this study are to quantify the adhesion strength differential between an oral bacterial biofilm and an osteoblast-like cell monolayer to a dental implant-simulant surface and develop a metric that quantifies the biocompatible effect of implant surfaces on bacterial and cell adhesion. METHODS High-amplitude short-duration stress waves generated by laser pulse absorption are used to spall bacteria and cells from titanium substrates. By carefully controlling laser fluence and calibration of laser fluence with applied stress, the adhesion difference between Streptococcus mutans biofilms and MG 63 osteoblast-like cell monolayers on smooth and rough titanium substrates is obtained. The ratio of cell adhesion strength to biofilm adhesion strength (i.e., Adhesion Index) is determined as a nondimensionalized parameter for biocompatibility assessment. RESULTS Adhesion strength of 143 MPa, with a 95% C.I. (114, 176), is measured for MG 63 cells on smooth titanium and 292 MPa, with a 95% C.I. (267, 306), on roughened titanium. Adhesion strength for S. mutans on smooth titanium is 320 MPa, with a 95% C.I. (304, 333), and remained relatively constant at 332 MPa, with a 95% C.I. (324, 343), on roughened titanium. The calculated Adhesion Index for smooth titanium is 0.451, with a 95% C.I. (0.267, 0.622), which increased to 0.876, with a 95% C.I. (0.780, 0.932), on roughened titanium. SIGNIFICANCE The laser spallation technique provides a platform to examine the tradeoffs of adhesion modulators on both biofilm and cell adhesion. This tradeoff is characterized by the Adhesion Index, which is proposed to aid biocompatibility screening and could help improve implantation outcomes. The Adhesion Index is implemented to determine surface factors that promote favorable adhesion of cells greater than biofilms. Here, an Adhesion Index ≫ 1 suggests favorable biocompatibility.
Collapse
Affiliation(s)
- J D Boyd
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - A J Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - C S Miller
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA; Department of Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - M E Grady
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
32
|
Chitosan enhances the antimicrobial photodynamic inactivation mediated by Photoditazine® against Streptococcus mutans. Photodiagnosis Photodyn Ther 2020; 32:102001. [DOI: 10.1016/j.pdpdt.2020.102001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
33
|
Jafri H, Banerjee G, Khan MSA, Ahmad I, Abulreesh HH, Althubiani AS. Synergistic interaction of eugenol and antimicrobial drugs in eradication of single and mixed biofilms of Candida albicans and Streptococcus mutans. AMB Express 2020; 10:185. [PMID: 33074419 PMCID: PMC7573028 DOI: 10.1186/s13568-020-01123-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
In vitro eradication of the C. albicans and S. mutans mixed biofilms by eugenol alone and in combination with the antimicrobial drugs. Previously characterized strains of C. albicans (CAJ-01 and CAJ-12) and S. mutans MTCC497 were used to evaluate the eradication of biofilms using XTT reduction assay, viability assay, time dependent killing assay and scanning electron microscopy (SEM). Synergistic interaction was assessed by checkerboard method. Sessile MIC (SMIC) of eugenol was equivalent to the planktonic MIC (PMIC) against C. albicans and S. mutans mixed biofilms. SMIC of fluconazole and azithromycin was increased upto 1000-folds over PMIC. Eradication of single or mixed biofilms was evident from the viability assay and SEM. At 1 × MIC of eugenol, log10CFU count of C. albicans cells were decreased from 6.3 to 4.2 and 3.8 (p < 0.05) in single and mixed biofilms, respectively. SEM studies revealed the eradication of C. albicans and S. mutans cells from glass surface at 800 µg/mL concentration of eugenol. Time dependent killing assay showed dose dependent effect of eugenol on pre-formed CAJ-01, CAJ-12 and S. mutans biofilm cells. Eugenol was highly synergistic with fluconazole (FICI = 0.156) against CAJ-12 single biofilms. However, the combination of eugenol and azithromycin showed maximum synergy (FICI = 0.140) against pre-formed C. albicans and S. mutans mixed biofilms. These findings highlighted the promising efficacy of eugenol in the eradication of biofilms of two oral pathogens (C. albicans and S. mutans) in vitro and could also be exploited in synergy with fluconazole and azithromycin in controlling oral infections.
Collapse
Affiliation(s)
- Huma Jafri
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Gopa Banerjee
- Department of Microbiology, King George Medical University, Lucknow, 226020, India
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Hussein Hasan Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Abdullah Safar Althubiani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Wu R, Tao Y, Cao Y, Zhou Y, Lin H. Streptococcus mutans Membrane Vesicles Harboring Glucosyltransferases Augment Candida albicans Biofilm Development. Front Microbiol 2020; 11:581184. [PMID: 33042098 PMCID: PMC7517897 DOI: 10.3389/fmicb.2020.581184] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans, as the most common fungus in the oral cavity, is often detected in early childhood caries. Streptococcus mutans is the major etiological agent of dental caries, but the role of S. mutans on C. albicans growth and biofilm development remains to be elucidated. Membrane vesicles (MVs) are a cell-secreted subcellular fraction that play an important role in intercellular communication and disease progression. In the present study, we investigated whether MVs from S. mutans augment C. albicans growth and biofilm development. The results indicated that S. mutans MVs augmented C. albicans biofilm development but had no significant effect on C. albicans growth under planktonic conditions. Subsequently, we labeled S. mutans MVs with PKH26 and used confocal laser scanning microscopy (CLSM) to track S. mutans MVs, which were observed to be located in the C. albicans biofilm extracellular matrix. Monosaccharide tests showed that S. mutans MVs contribute to sucrose metabolism in C. albicans. Polysaccharides were significantly enriched in the S. mutans MV-treated group. MVs from ΔgtfBC mutant strains were compared with those from the wild-type S. mutans. The results revealed that MVs from the ΔgtfBC mutant had no effect on C. albicans biofilm formation and exopolysaccharide production. In addition, C. albicans biofilm transcriptional regulators (Ndt80, Als1, Mnn9, Van1, Pmr1, Gca1, and Big1) expression were upregulated in S. mutans MV-treated group. In summary, the results of the present study showed that S. mutans MVs harboring glucosyltransferases involved in exopolysaccharide production augment C. albicans biofilm development, revealing a key role for S. mutans MVs in cross-kingdom interactions between S. mutans and C. albicans.
Collapse
Affiliation(s)
- Ruixue Wu
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ye Tao
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yina Cao
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhou
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Bachtiar EW, Bachtiar BM. Effect of cell-free spent media prepared from Aggregatibacter actinomycetemcomitans on the growth of Candida albicans and Streptococcus mutans in co-species biofilms. Eur J Oral Sci 2020; 128:395-404. [PMID: 32808302 DOI: 10.1111/eos.12725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
This study explored the influence of cell-free spent media prepared from Aggregatibacter actinomycetemcomitans LuxS mutant (Aa-LuxS), its wild type strain (Aa-WT), and the laboratory strain (Aa-Y4), on the interaction between Candida albicans and Streptococcus mutans while growing in co-species biofilm for 48 h. By analyzing the results of crystal violet staining, [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays, and quantitative real-time polymerase chain reaction (qPCR), we found that the presence of Aa-LuxS in treated biofilms did not affect biofilm development, while added Aa-WT or Aa-Y4 resulted in a significant decrease in both biofilm mass and the number of cells. The inhibitory effect of Aa-WT or Aa-Y4 was not dependent on the protein concentration in the spent media tested (1 and 10%). Gene transcription analyses indicated that Aa-WT/Aa-Y4 exhibits comparable inhibitory effects on the expression of hyphal-associated genes (ALS3 and HWP1), but not on the expression of YWP1, which encodes a yeast form of C. albicans. In contrast, except for gtfD, the expression of S. mutans gtfB/C genes encoding glucosyltransferase was not affected in Aa-WT and Aa-Y4 treated biofilms compared to the levels found in Aa-LuxS treated biofilms. Our results indicate that AI-2-containing spent media derived from Aa can reduce biofilm biomass without significantly inhibiting the survival rate of S. mutans.
Collapse
Affiliation(s)
- Endang W Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Boy M Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
36
|
Dos Santos JD, Fugisaki LRDO, Medina RP, Scorzoni L, Alves MDS, de Barros PP, Ribeiro FC, Fuchs BB, Mylonakis E, Silva DHS, Junqueira JC. Streptococcus mutans Secreted Products Inhibit Candida albicans Induced Oral Candidiasis. Front Microbiol 2020; 11:1605. [PMID: 32760375 PMCID: PMC7374982 DOI: 10.3389/fmicb.2020.01605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
In the oral cavity, Candida species form mixed biofilms with Streptococcus mutans, a pathogenic bacterium that can secrete quorum sensing molecules with antifungal activity. In this study, we extracted and fractioned culture filtrate of S. mutans, seeking antifungal agents capable of inhibiting the biofilms, filamentation, and candidiasis by Candida albicans. Active S. mutans UA159 supernatant filtrate components were extracted via liquid-liquid partition and fractionated on a C-18 silica column to resolve S. mutans fraction 1 (SM-F1) and fraction 2 (SM-F2). We found anti-biofilm activity for both SM-F1 and SM-F2 in a dose dependent manner and fungal growth was reduced by 2.59 and 5.98 log for SM-F1 and SM-F2, respectively. The SM-F1 and SM-F2 fractions were also capable of reducing C. albicans filamentation, however statistically significant differences were only observed for the SM-F2 (p = 0.004). SM-F2 efficacy to inhibit C. albicans was confirmed by its capacity to downregulate filamentation genes CPH1, EFG1, HWP1, and UME6. Using Galleria mellonella as an invertebrate infection model, therapeutic treatment with SM-F2 prolonged larvae survival. Examination of the antifungal capacity was extended to a murine model of oral candidiasis that exhibited a reduction in C. albicans colonization (CFU/mL) in the oral cavity when treated with SM-F1 (2.46 log) and SM-F2 (2.34 log) compared to the control (3.25 log). Although both SM-F1 and SM-F2 fractions decreased candidiasis in mice, only SM-F2 exhibited significant quantitative differences compared to the non-treated group for macroscopic lesions, hyphae invasion, tissue lesions, and inflammatory infiltrate. Taken together, these results indicate that the SM-F2 fraction contains antifungal components, providing a promising resource in the discovery of new inhibitors for oral candidiasis.
Collapse
Affiliation(s)
- Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Felipe Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| |
Collapse
|
37
|
Septiana S, Bachtiar BM, Yuliana ND, Wijaya CH. Cajuputs candy impairs Candida albicans and Streptococcus mutans mixed biofilm formation in vitro. F1000Res 2020; 8:1923. [PMID: 32528653 PMCID: PMC7269370 DOI: 10.12688/f1000research.20700.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Cajuputs candy (CC), an Indonesian functional food, utilizes
the bioactivity of Melaleuca cajuputi essential oil (MCEO) to
maintain oral cavity health. Synergistic interaction between Candida
albicans and Streptococcus mutans is a crucial
step in the pathogenesis of early childhood caries. Our recent study revealed
several alternative MCEOs as the main flavors in CC. The capacity of CC to
interfere with the fungus-bacterium relationship remains unknown. This study
aimed to evaluate CC efficacy to impair biofilm formation by these dual
cariogenic microbes. Methods: The inhibition capacity of CC against mixed-biofilm
comprising C. albicans and S. mutans was
assessed by quantitative (crystal violet assay, tetrazolium salt [MTT] assay,
colony forming unit/mL counting, biofilm-related gene expression) and
qualitative analysis (light microscopy and scanning electron microscopy). Result: Both biofilm-biomass and viable cells were significantly
reduced in the presence of CC. Scanning electron microscopy imaging confirmed
this inhibition capacity, demonstrating morphology alteration of C.
albicans, along with reduced microcolonies of S.
mutans in the biofilm mass. This finding was related to the
transcription level of selected biofilm-associated genes, expressed either by
C. albicans or S. mutans. Based on qPCR
results, CC could interfere with the transition of C. albicans
yeast form to the hyphal form, while it suppressed insoluble glucan
production by S. mutans. G2 derived from Mojokerto MCEO showed
the greatest inhibition activity on the relationship between these cross-kingdom
oral microorganisms (p < 0.05). Conclusion: In general, all CC formulas showed biofilm inhibition
capacity. Candy derived from Mojokerto MCEO showed the greatest capacity to
maintain the yeast form of C. albicans and to inhibit
extracellular polysaccharide production by S. mutans.
Therefore, the development of dual-species biofilms can be impaired effectively
by the CC tested.
Collapse
Affiliation(s)
- Siska Septiana
- Department of Food Science and Technology, IPB University, Bogor, 16680, Indonesia
| | - Boy Muchlis Bachtiar
- Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor, 16680, Indonesia
| | | |
Collapse
|
38
|
Bernard C, Girardot M, Imbert C. Candida albicans interaction with Gram-positive bacteria within interkingdom biofilms. J Mycol Med 2020; 30:100909. [DOI: 10.1016/j.mycmed.2019.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022]
|
39
|
Salehi B, Kregiel D, Mahady G, Sharifi-Rad J, Martins N, Rodrigues CF. Management of Streptococcus mutans- Candida spp. Oral Biofilms' Infections: Paving the Way for Effective Clinical Interventions. J Clin Med 2020; 9:E517. [PMID: 32075040 PMCID: PMC7074106 DOI: 10.3390/jcm9020517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Oral diseases are considered the most common noncommunicable diseases and are related to serious local and systemic disorders. Oral pathogens can grow and spread in the oral mucosae and frequently in biomaterials (e.g., dentures or prostheses) under polymicrobial biofilms, leading to several disorders such as dental caries and periodontal disease. Biofilms harbor a complex array of interacting microbes, increasingly unapproachable to antimicrobials and with dynamic processes key to disease pathogenicity, which partially explain the gradual loss of response towards conventional therapeutic regimens. New drugs (synthesized and natural) and other therapies that have revealed promising results for the treatment or control of these mixed biofilms are presented and discussed here. A structured search of bibliographic databases was applied to include recent research. There are several promising new approaches in the treatment of Candida spp.-Streptococcus mutans oral mixed biofilms that could be clinically applied in the near future. These findings confirm the importance of developing effective therapies for oral Candida-bacterial infections.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, 90-924 Lodz, Wolczanska 171/173, Poland;
| | - Gail Mahady
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
40
|
Deng L, Xue J, Jiang L, Zou L, Li W. [Research progress on interactions between Candida albicans and common oral pathogens]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:671-676. [PMID: 31875449 DOI: 10.7518/hxkq.2019.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increasing numbers of microbiome studies have enabled the development of a greater understanding of how antagonistic and synergetic microbial interactions influence disease outcomes. Candida albicans is an opportunistic pathogen that is commonly found in human oral microflora. In a healthy oral environment, Candida albicans may potentially but sig-nificantly influence the balance between the oral bacterial ecosystem and the host, leading tooral diseases. The aim of this study is to review the correlation between Candida albicans and oral pathogens and provide a deeper understanding of the nature of oral infec-tious diseases.
Collapse
Affiliation(s)
- Ling Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Septiana S, Bachtiar BM, Yuliana ND, Wijaya CH. Cajuputs candy impairs Candida albicans and Streptococcus mutans mixed biofilm formation in vitro. F1000Res 2019; 8:1923. [DOI: 10.12688/f1000research.20700.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Cajuputs candy (CC), an Indonesian functional food, utilizes the bioactivity of Melaleuca cajuputi essential oil (MCEO) to maintain oral cavity health. Synergistic interaction between Candida albicans and Streptococcus mutans is a crucial step in the pathogenesis of early childhood caries. Our recent study revealed several alternative MCEOs as the main flavors in CC. The capacity of CC to interfere with the fungus-bacterium relationship remains unknown. This study aimed to evaluate CC efficacy to impair biofilm formation by these dual cariogenic microbes. Methods: The inhibition capacity of CC against mixed-biofilm comprising C. albicans and S. mutans was assessed by quantitative (crystal violet assay, tetrazolium salt [MTT] assay, colony forming unit/mL counting, biofilm-related gene expression) and qualitative analysis (light microscopy and scanning electron microscopy). Result: Both biofilm-biomass and viable cells were significantly reduced in the presence of CC. Scanning electron microscopy imaging confirmed this inhibition capacity, demonstrating morphology alteration of C. albicans, along with reduced microcolonies of S. mutans in the biofilm mass. This finding was related to the transcription level of selected biofilm-associated genes, expressed either by C. albicans or S. mutans. Based on qPCR results, CC could interfere with the transition of C. albicans yeast form to the hyphal form, while it suppressed insoluble glucan production by S. mutans. G2 derived from Mojokerto MCEO showed the greatest inhibition activity on the relationship between these cross-kingdom oral microorganisms (p < 0.05). Conclusion: In general, all CC formulas showed biofilm inhibition capacity. Candy derived from Mojokerto MCEO showed the greatest capacity to maintain the commensal form of C. albicans and to inhibit extracellular polysaccharide production by S. mutans. Therefore, the development of dual-species biofilms can be impaired effectively by the CC tested.
Collapse
|
42
|
Arzmi MH, Cirillo N, Lenzo JC, Catmull DV, O'Brien-Simpson N, Reynolds EC, Dashper S, McCullough M. Monospecies and polymicrobial biofilms differentially regulate the phenotype of genotype-specific oral cancer cells. Carcinogenesis 2019; 40:184-193. [PMID: 30428016 DOI: 10.1093/carcin/bgy137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial infection has been shown to involve in oral carcinogenesis; however, the underlying mechanisms remain poorly understood. The present study aimed to characterize the growth of oral microorganisms as both monospecies and polymicrobial biofilms and determine the effects of their products on oral keratinocytes. Candida albicans (ALC3), Actinomyces naeslundii (AN) and Streptococcus mutans (SM) biofilms or a combination of these (TRI) were grown in flow-cell system for 24 h. The biofilms were subjected to fluorescent in situ hybridization using species-specific probes and analysed using confocal laser scanning microscopy. The effluent derived from each biofilm was collected and incubated with malignant (H357) and normal (OKF6) oral keratinocytes to assess extracellular matrix adhesion, epithelial-mesenchymal transition (EMT) and cytokines expression. Incubation of OKF6 with ALC3 and TRI effluent significantly decreased adhesion of the oral keratinocyte to collagen I, whereas incubation of H357 with similar effluent increased adhesion of the oral keratinocyte to laminin I, significantly when compared with incubation with artificial saliva containing serum-free medium (NE; P < 0.05). In OKF6, changes in E-cadherin and vimentin expression were not consistent with EMT although there was evidence of a mesenchymal to epithelial transition in malignant oral keratinocytes incubated with AN and SM effluent. A significant increase of pro-inflammatory cytokines expression, particularly interleukin (IL)-6 and IL-8, was observed when H357 was incubated with all biofilm effluents after 2- and 24-h incubation when compared with NE (P < 0.05). In conclusion, C.albicans, A.naeslundii and S.mutans form polymicrobial biofilms which differentially modulate malignant phenotype of oral keratinocytes.
Collapse
Affiliation(s)
- Mohd Hafiz Arzmi
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia.,Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Nicola Cirillo
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Jason C Lenzo
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Deanne V Catmull
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Neil O'Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Stuart Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Michael McCullough
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
43
|
Boyd JD, Korotkova N, Grady ME. Adhesion of biofilms on titanium measured by laser-induced spallation. EXPERIMENTAL MECHANICS 2019; 59:1275-1284. [PMID: 31798183 PMCID: PMC6886886 DOI: 10.1007/s11340-018-00458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/09/2018] [Indexed: 06/10/2023]
Abstract
Eradication of established implant-associated and bacterial biofilm-forming infections remains difficult in part because these biofilms remain well-adhered to the implant surface. Few experimental techniques are available to measure macro-scale strength of bacterial biofilm-implant adhesion. We have adapted the laser spallation technique to compare the macro-scale adhesion strength of biofilms formed on titanium. By using a rapid pressure wave (35 ns) to load the interface, we prevent disturbance of the biofilm surface prior to measurement, and preclude the time necessary for the biofilm to respond to and adapt under loading. Biofilms of Streptococcus mutans, a Gram-positive bacterium associated with human dental caries (cavities) were cultured directly on commercially pure titanium within our custom substrate assembly. Growth conditions were varied by adding sucrose to the Todd Hewitt Yeast (THY) broth: THY control, 37.5 mM, 75 mM, 375 mM, and 750 mM sucrose. Multiple locations on each biofilm were loaded using the laser spallation technique. Loading pressure wave amplitude was controlled by adjusting laser fluence, energy per area. Initially, addition of sucrose to the media increased biofilm adhesion to titanium. However, once a saturation concentration of 75 mM sucrose was reached, increasing the sucrose concentration further resulted in a decrease in biofilm adhesion. This study is the first demonstration of the adaptation of the laser spallation technique to measure bacterial biofilm adhesion. Establishment of this macro-scale biofilm adhesion measurement technique opens the door for many biofilm-surface adhesion studies. We anticipate further work in this area towards understanding the complex relationships among bacteria species, environmental factors, surface characteristics, and biofilm adhesion strength.
Collapse
Affiliation(s)
- J. D. Boyd
- Department of Mechanical Engineering, University of
Kentucky, Lexington, USA
| | - N. Korotkova
- Department of Molecular & Cellular Biochemistry,
University of Kentucky, Lexington, USA
| | - M. E. Grady
- Department of Mechanical Engineering, University of
Kentucky, Lexington, USA
| |
Collapse
|
44
|
Ikono R, Vibriani A, Wibowo I, Saputro KE, Muliawan W, Bachtiar BM, Mardliyati E, Bachtiar EW, Rochman NT, Kagami H, Xianqi L, Nagamura-Inoue T, Tojo A. Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Res Notes 2019; 12:383. [PMID: 31287001 PMCID: PMC6613267 DOI: 10.1186/s13104-019-4422-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/29/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through biofilm mass quantity and cell viability. RESULTS The present study successfully synthesized nanochitosan with average diameter of approximately 20-30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treatment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nanochitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of incubation. However, greater inhibition of biofilm was observed at 18 h incubation.
Collapse
Affiliation(s)
- Radyum Ikono
- Division of Bionanotechnology, Nano Center Indonesia, Tangerang Selatan, Indonesia
- Department of Metallurgical Engineering, Sumbawa University of Technology, Sumbawa Besar, Indonesia
- Division of Molecular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Agnia Vibriani
- School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
| | - Indra Wibowo
- School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
| | | | - Wibias Muliawan
- Division of Bionanotechnology, Nano Center Indonesia, Tangerang Selatan, Indonesia
| | - Boy Muchlis Bachtiar
- Oral Science Laboratory, Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Etik Mardliyati
- Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application of Technology [BPPT], Tangerang Selatan, Indonesia
| | - Endang Winiati Bachtiar
- Oral Science Laboratory, Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Nurul Taufiqu Rochman
- Research Center for Physics, Indonesian Institute of Science [LIPI], Tangerang Selatan, Indonesia
| | - Hideaki Kagami
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri, Japan
- Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Li Xianqi
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Esteban‐Fernández A, Ferrer MD, Zorraquín‐Peña I, López‐López A, Moreno‐Arribas MV, Mira A. In vitro beneficial effects of
Streptococcus dentisani
as potential oral probiotic for periodontal diseases. J Periodontol 2019; 90:1346-1355. [DOI: 10.1002/jper.18-0751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Adelaida Esteban‐Fernández
- Department of Biotechnology and MicrobiologyInstitute of Food Science Research (CIAL)CSIC‐UAM Madrid Spain
| | - Maria D. Ferrer
- Department of Health and GenomicsCenter for Advanced Research in Public HealthFISABIO Foundation Valencia Spain
| | - Irene Zorraquín‐Peña
- Department of Biotechnology and MicrobiologyInstitute of Food Science Research (CIAL)CSIC‐UAM Madrid Spain
| | - Arantxa López‐López
- Department of Health and GenomicsCenter for Advanced Research in Public HealthFISABIO Foundation Valencia Spain
| | - M. Victoria Moreno‐Arribas
- Department of Biotechnology and MicrobiologyInstitute of Food Science Research (CIAL)CSIC‐UAM Madrid Spain
| | - Alex Mira
- Department of Health and GenomicsCenter for Advanced Research in Public HealthFISABIO Foundation Valencia Spain
| |
Collapse
|
46
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
47
|
Rossoni RD, Ribeiro FDC, dos Santos HFS, dos Santos JD, Oliveira NDS, Dutra MTDS, de Lapena SAB, Junqueira JC. Galleria mellonella as an experimental model to study human oral pathogens. Arch Oral Biol 2019; 101:13-22. [DOI: 10.1016/j.archoralbio.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/28/2022]
|
48
|
Boix-Amorós A, Puente-Sánchez F, du Toit E, Linderborg KM, Zhang Y, Yang B, Salminen S, Isolauri E, Tamames J, Mira A, Collado MC. Mycobiome Profiles in Breast Milk from Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction with Bacteria. Appl Environ Microbiol 2019; 85:e02994-18. [PMID: 30824446 PMCID: PMC6495746 DOI: 10.1128/aem.02994-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recent studies report the presence of fungal species in breast milk of healthy mothers, suggesting a potential role in infant mycobiome development. In the present work, we aimed to determine whether the healthy human breast milk mycobiota is influenced by geographical location and mode of delivery, as well as to investigate its interaction with bacterial profiles in the same samples. A total of 80 mature breast milk samples from 4 different countries were analyzed by Illumina sequencing of the internal transcribed spacer 1 (ITS1) region, joining the 18S and 5.8S regions of the fungal rRNA region. Basidiomycota and Ascomycota were found to be the dominant phyla, with Malassezia and Davidiella being the most prevalent genera across countries. A core formed by Malassezia, Davidiella, Sistotrema, and Penicillium was shared in the milk samples from the different origins, although specific shifts in mycobiome composition were associated with geographic location and delivery mode. The presence of fungi in the breast milk samples was further confirmed by culture and isolate characterization, and fungal loads were estimated by quantitative PCR (qPCR) targeting the fungal ITS1 region. Cooccurrence network analysis of bacteria and fungi showed complex interactions that were influenced by geographical location, mode of delivery, maternal age, and pregestational body mass index. The presence of a breast milk mycobiome was confirmed in all samples analyzed, regardless of the geographic origin.IMPORTANCE During recent years, human breast milk has been documented as a potential source of bacteria for the newborn. Recently, we have reported the presence of fungi in breast milk from healthy mothers. It is well known that environmental and perinatal factors can affect milk bacteria; however, the impact on milk fungi is still unknown. The current report describes fungal communities (mycobiota) in breast milk samples across different geographic locations and the influence of the mode of delivery. We also provide novel insights on bacterium-fungus interactions, taking into account environmental and perinatal factors. We identified a core of four genera shared across locations, consisting of Malassezia, Davidiella, Sistotrema, and Penicillium, which have been reported to be present in the infant gut. Our data confirm the presence of fungi in breast milk across continents and support the potential role of breast milk in the initial seeding of fungal species in the infant gut.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Fernando Puente-Sánchez
- Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elloise du Toit
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Erika Isolauri
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Javier Tamames
- Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
49
|
Jafri H, Khan MSA, Ahmad I. In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:206-213. [PMID: 30668370 DOI: 10.1016/j.phymed.2018.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Candida albicans is frequently associated with mixed infections of Streptococcus mutans in plaque biofilms. These pathogens under chemical interactions resulting in mixed biofilm development have turned it into a prevalent and costly oral disease, which is not successfully being treated by existing chemotherapeutics. HYPOTHESIS Considering the need for newer drugs to overcome this challenge, the present study was aimed to investigate the efficacy of eugenol in inhibiting single and mixed biofilms of C. albicans and S. mutans. METHODS The broth dilution assay was used to determine drug resistance in the test strains. Biofilm formation on polystyrene microtiter plate was studied by XTT reduction assay whereas biofilm development on glass coverslips was assessed using 0.1% crystal violet and visualised under light microscope. Single and mixed biofilms formed on glass coverslips in the presence and absence of eugenol was analysed by scanning electron microscopy. RESULTS In our study, all the thirteen strains of C. albicans were resistant to fluconazole, itraconazole, ketoconazole, amphotericin B except C. albicans (CAJ-01) and C. albicans MTCC3017 which were sensitive to fluconazole. S. mutans MTCC497 was resistant to ampicillin, azithromycin, ceftriaxone and vancomycin. Among all the strains of C. albicans, CAJ-01, C. albicans ATCC90028 and C. albicans MTCC3017 formed strong biofilms and rest of the strains considered as moderate to weak biofilm formers. S. mutans MTCC497 was also formed strong biofilms. Eugenol showed concentration dependent anti-biofilm activity against single and mixed biofilms of C. albicans (CAJ-01) and S. mutans MTCC497. At sub-MIC of eugenol (100 μg/ml), the biofilm formation was 36.37% and 29.72% in CAJ-01 and S. mutans MTCC497, respectively, whereas 52.65% in mixed biofilms. The cell viability assay showed significant reduction (p < 0.05) in the log10 CFU/ml from 6.3 to 4.8 at 200 μg/ml of eugenol for CAJ-01, whereas, from 6.4 to 3.8 and 5.3 for S. mutans MTCC497 strains in single and mixed biofilms, respectively. Scanning electron microscopy showed the disruption of cell membrane and matrix structure in both single and mixed biofilms. CONCLUSIONS Eugenol at sub-MICs effectively inhibited single and mixed biofilms formed by the drug resistant strains of two oral pathogens, C. albicans and S. mutans through multiple mode of action.
Collapse
Affiliation(s)
- Huma Jafri
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Biology Unit, Health Track, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
50
|
Bachtiar EW, Bachtiar BM. Relationship between Candida albicans and Streptococcus mutans in early childhood caries, evaluated by quantitative PCR. F1000Res 2018; 7:1645. [PMID: 30450201 PMCID: PMC6221075 DOI: 10.12688/f1000research.16275.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 01/16/2023] Open
Abstract
Background: The aim of this study was to analyze the synergistic relationship between
Candida albicans and
Streptococcus mutans in children with early childhood caries (ECC) experience. Methods: Dental plaque and unstimulated saliva samples were taken from 30 subjects aged 3-5 years old, half with (n=15, dmft > 4) and half without (n=15) ECC. The abundance of
C. albicans and
S. mutans and relative to total bacteria load were quantify by real-time PCR (qPCR). This method was also employed to investigate the mRNA expression of glycosyltransferase (
gtfB) gene in dental plaque. Student’s t-test and Pearson’s correlation were used to perform statistical analysis. Results: Within the ECC group, the quantity of both microorganisms were higher in the saliva than in dental plaque. The ratio of
C. albicans to total bacteria was higher in saliva than in plaque samples (p < 0.05). We observed the opposite for
S. mutans (p < 0.05). The different value of
C. albicans and
S. mutans in saliva was positively correlated, and negatively correlated in dental plaque. Transcription level of
S. mutans gtfB showed a positive correlation with
C. albicans concentration in dental plaque. Conclusion:C. albicans has a positive correlation with cariogenic traits of
S. mutans in ECC-related biofilm of young children.
Collapse
Affiliation(s)
- Endang W Bachtiar
- Oral Biology and Oral Science Research Center Faculty of Dentistry, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Boy M Bachtiar
- Oral Biology and Oral Science Research Center Faculty of Dentistry, Universitas Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|