1
|
Moiseenko VI, Apryatina VA, Gainetdinov RR, Apryatin SA. Trace Amine-Associated Receptors' Role in Immune System Functions. Biomedicines 2024; 12:893. [PMID: 38672247 PMCID: PMC11047934 DOI: 10.3390/biomedicines12040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Trace amines are a separate, independent group of biogenic amines, close in structure to classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of G protein-coupled trace amine-associated receptors (in humans, TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) that senses trace amines was discovered relatively recently. They are mostly investigated for their involvement in the olfaction of volatile amines encoding innate behaviors and their potential contribution to the pathogenesis of neuropsychiatric disorders, but the expression of the TAAR family of receptors is also observed in various populations of cells in the immune system. This review is focused on the basic information of the interaction of trace amines and their receptors with cells of the general immune systems of humans and other mammals. We also overview the available data on TAARs' role in the function of individual populations of myeloid and lymphoid cells. With further research on the regulatory role of the trace amine system in immune functions and on uncovering the contribution of these processes to the pathogenesis of the immune response, a significant advance in the field could be expected. Furthermore, the determination of the molecular mechanisms of TAARs' involvement in immune system regulation and the further investigation of their potential chemotactic role could bring about the development of new approaches for the treatment of disorders related to immune system dysfunctions.
Collapse
Affiliation(s)
| | | | | | - Sergey A. Apryatin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
2
|
Imbriglio T, Alborghetti M, Bruno V, Battaglia G, Nicoletti F, Cannella M. Up-regulation of the Trace Amine Receptor, TAAR-1, in the Prefrontal Cortex of Individuals Affected by Schizophrenia. Schizophr Bull 2024; 50:374-381. [PMID: 37897399 PMCID: PMC10919763 DOI: 10.1093/schbul/sbad148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Type-1 trace amine-associated receptors (TAAR1) modulate dopaminergic and glutamatergic neurotransmission and are targeted by novel antipsychotic drugs. We hypothesized that schizophrenia (SCZ) causes adaptive changes in TAAR1 expression in the prefrontal cortex. STUDY DESIGN We measured TAAR1 mRNA and protein levels by quantitative PCR and immunoblotting in post-mortem prefrontal cortical samples obtained from 23 individuals affected by SCZ and 23 non-schizophrenic controls (CTRL). Data were correlated with a number of variables in both groups. STUDY RESULTS TAAR1 mRNA levels were largely increased in the SCZ prefrontal cortex, and did not correlate with age, age at onset and duration of SCZ, or duration of antipsychotic treatment. For the analysis of TAAR1 protein levels, CTRL and SCZ were divided into 2 subgroups, distinguished by the extent of neuropathological burden. CTRL with low neuropathological burden (LNB) had lower TAAR1 protein levels than CTRL with high neuropathological burden (HNB), whereas no changes were found between LNB and HNB in the SCZ group. TAAR1 protein levels were lower in CTRL with LNB with respect to all SCZ samples or to SCZ samples with LNB. In the SCZ group, levels showed an inverse correlation with the duration of antipsychotic treatment and were higher in individuals treated with second-generation antipsychotics as compared with those treated with first-generation antipsychotics. CONCLUSIONS The up-regulation of TAAR1 observed in the SCZ prefrontal cortex supports the development of TAAR1 agonists as new promising drugs in the treatment of SCZ.
Collapse
Affiliation(s)
- Tiziana Imbriglio
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Marika Alborghetti
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), University Sapienza, Rome, Italy
| | - Valeria Bruno
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Milena Cannella
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
3
|
Liu H, Zheng Y, Wang Y, Wang Y, He X, Xu P, Huang S, Yuan Q, Zhang X, Wang L, Jiang K, Chen H, Li Z, Liu W, Wang S, Xu HE, Xu F. Recognition of methamphetamine and other amines by trace amine receptor TAAR1. Nature 2023; 624:663-671. [PMID: 37935377 DOI: 10.1038/s41586-023-06775-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1), the founding member of a nine-member family of trace amine receptors, is responsible for recognizing a range of biogenic amines in the brain, including the endogenous β-phenylethylamine (β-PEA)1 as well as methamphetamine2, an abused substance that has posed a severe threat to human health and society3. Given its unique physiological role in the brain, TAAR1 is also an emerging target for a range of neurological disorders including schizophrenia, depression and drug addiction2,4,5. Here we report structures of human TAAR1-G-protein complexes bound to methamphetamine and β-PEA as well as complexes bound to RO5256390, a TAAR1-selective agonist, and SEP-363856, a clinical-stage dual agonist for TAAR1 and serotonin receptor 5-HT1AR (refs. 6,7). Together with systematic mutagenesis and functional studies, the structures reveal the molecular basis of methamphetamine recognition and underlying mechanisms of ligand selectivity and polypharmacology between TAAR1 and other monoamine receptors. We identify a lid-like extracellular loop 2 helix/loop structure and a hydrogen-bonding network in the ligand-binding pockets, which may contribute to the ligand recognition in TAAR1. These findings shed light on the ligand recognition mode and activation mechanism for TAAR1 and should guide the development of next-generation therapeutics for drug addiction and various neurological disorders.
Collapse
Affiliation(s)
- Heng Liu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - You Zheng
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Wang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijie Huang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kexin Jiang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Zhen Li
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China.
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China.
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - H Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Fei Xu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
4
|
Yohe LR, Krell NT. An updated synthesis of and outstanding questions in the olfactory and vomeronasal systems in bats: Genetics asks questions only anatomy can answer. Anat Rec (Hoboken) 2023; 306:2765-2780. [PMID: 37523493 DOI: 10.1002/ar.25290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
The extensive diversity observed in bat nasal chemosensory systems has been well-documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Nicholas T Krell
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
5
|
Burguera D, Dionigi F, Kverková K, Winkler S, Brown T, Pippel M, Zhang Y, Shafer M, Nichols ALA, Myers E, Němec P, Musilova Z. Expanded olfactory system in ray-finned fishes capable of terrestrial exploration. BMC Biol 2023; 21:163. [PMID: 37525196 PMCID: PMC10392011 DOI: 10.1186/s12915-023-01661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Smell abilities differ greatly among vertebrate species due to distinct sensory needs, with exceptional variability reported in the number of olfactory genes and the size of the odour-processing regions of the brain. However, key environmental factors shaping genomic and phenotypic changes linked to the olfactory system remain difficult to identify at macroevolutionary scales. Here, we investigate the association between diverse ecological traits and the number of olfactory chemoreceptors in approximately two hundred ray-finned fishes. RESULTS We found independent expansions producing large gene repertoires in several lineages of nocturnal amphibious fishes, generally able to perform active terrestrial exploration. We reinforced this finding with on-purpose genomic and transcriptomic analysis of Channallabes apus, a catfish species from a clade with chemosensory-based aerial orientation. Furthermore, we also detected an augmented information-processing capacity in the olfactory bulb of nocturnal amphibious fishes by estimating the number of cells contained in this brain region in twenty-four actinopterygian species. CONCLUSIONS Overall, we report a convergent genomic and phenotypic magnification of the olfactory system in nocturnal amphibious fishes. This finding suggests the possibility of an analogous evolutionary event in fish-like tetrapod ancestors during the first steps of the water-to-land transition, favouring terrestrial adaptation through enhanced aerial orientation.
Collapse
Affiliation(s)
- Demian Burguera
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Francesco Dionigi
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristina Kverková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yicheng Zhang
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
7
|
Guo L, Dai W, Xu Z, Liang Q, Miller ET, Li S, Gao X, Baldwin MW, Chai R, Li Q. Evolution of brain-expressed biogenic amine receptors into olfactory trace amine-associated receptors. Mol Biol Evol 2022; 39:6503506. [PMID: 35021231 PMCID: PMC8890504 DOI: 10.1093/molbev/msac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.
Collapse
Affiliation(s)
- Lingna Guo
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wenxuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengrong Xu
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qiaoyi Liang
- Max Planck Institute for Ornithology, Evolution of Sensory Systems Research Group, Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Shengju Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Maude W Baldwin
- Max Planck Institute for Ornithology, Evolution of Sensory Systems Research Group, Seewiesen, Germany
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| |
Collapse
|
8
|
Glyakina AV, Pavlov CD, Sopova JV, Gainetdinov RR, Leonova EI, Galzitskaya OV. Search for Structural Basis of Interactions of Biogenic Amines with Human TAAR1 and TAAR6 Receptors. Int J Mol Sci 2021; 23:ijms23010209. [PMID: 35008636 PMCID: PMC8745718 DOI: 10.3390/ijms23010209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
The identification and characterization of ligand-receptor binding sites are important for drug development. Trace amine-associated receptors (TAARs, members of the class A GPCR family) can interact with different biogenic amines and their metabolites, but the structural basis for their recognition by the TAARs is not well understood. In this work, we have revealed for the first time a group of conserved motifs (fingerprints) characterizing TAARs and studied the docking of aromatic (β-phenylethylamine, tyramine) and aliphatic (putrescine and cadaverine) ligands, including gamma-aminobutyric acid, with human TAAR1 and TAAR6 receptors. We have identified orthosteric binding sites for TAAR1 (Asp68, Asp102, Asp284) and TAAR6 (Asp78, Asp112, Asp202). By analyzing the binding results of 7500 structures, we determined that putrescine and cadaverine bind to TAAR1 at one site, Asp68 + Asp102, and to TAAR6 at two sites, Asp78 + Asp112 and Asp112 + Asp202. Tyramine binds to TAAR6 at the same two sites as putrescine and cadaverine and does not bind to TAAR1 at the selected Asp residues. β-Phenylethylamine and gamma-aminobutyric acid do not bind to the TAAR1 and TAAR6 receptors at the selected Asp residues. The search for ligands targeting allosteric and orthosteric sites of TAARs has excellent pharmaceutical potential.
Collapse
Affiliation(s)
- Anna V. Glyakina
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Constantine D. Pavlov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Julia V. Sopova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (J.V.S.); (R.R.G.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (J.V.S.); (R.R.G.)
| | - Elena I. Leonova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (J.V.S.); (R.R.G.)
- Animal Genetic Technologies Department, University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (E.I.L.); (O.V.G.)
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence: (E.I.L.); (O.V.G.)
| |
Collapse
|
9
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Jia L, Li S, Dai W, Guo L, Xu Z, Scott AM, Zhang Z, Ren J, Zhang Q, Dexheimer TS, Chung-Davidson YW, Neubig RR, Li Q, Li W. Convergent olfactory trace amine-associated receptors detect biogenic polyamines with distinct motifs via a conserved binding site. J Biol Chem 2021; 297:101268. [PMID: 34600890 PMCID: PMC8546428 DOI: 10.1016/j.jbc.2021.101268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.
Collapse
Affiliation(s)
- Liang Jia
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Shengju Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingna Guo
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengrong Xu
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Anne M Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Zhe Zhang
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Jianfeng Ren
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qinghua Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Thomas S Dexheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
11
|
Yohe LR, Fabbri M, Hanson M, Bhullar BAS. Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phenotypic change. Curr Zool 2021; 66:505-514. [PMID: 34484311 DOI: 10.1093/cz/zoaa051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chemosensation is the most ubiquitous sense in animals, enacted by the products of complex gene families that detect environmental chemical cues and larger-scale sensory structures that process these cues. While there is a general conception that olfactory receptor (OR) genes evolve rapidly, the universality of this phenomenon across vertebrates, and its magnitude, are unclear. The supposed correlation between molecular rates of chemosensory evolution and phenotypic diversity of chemosensory systems is largely untested. We combine comparative genomics and sensory morphology to test whether OR genes and olfactory phenotypic traits evolve at faster rates than other genes or traits. Using published genomes, we identified ORs in 21 tetrapods, including amphibians, reptiles, birds, and mammals and compared their rates of evolution to those of orthologous non-OR protein-coding genes. We found that, for all clades investigated, most OR genes evolve nearly an order of magnitude faster than other protein-coding genes, with many OR genes showing signatures of diversifying selection across nearly all taxa in this study. This rapid rate of evolution suggests that chemoreceptor genes are in "evolutionary overdrive," perhaps evolving in response to the ever-changing chemical space of the environment. To obtain complementary morphological data, we stained whole fixed specimens with iodine, µCT-scanned the specimens, and digitally segmented chemosensory and nonchemosensory brain regions. We then estimated phenotypic variation within traits and among tetrapods. While we found considerable variation in chemosensory structures, they were no more diverse than nonchemosensory regions. We suggest chemoreceptor genes evolve quickly in reflection of an ever-changing chemical space, whereas chemosensory phenotypes and processing regions are more conserved because they use a standardized or constrained architecture to receive and process a range of chemical cues.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Matteo Fabbri
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Michael Hanson
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
12
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Dieris M, Kowatschew D, Korsching SI. Olfactory function in the trace amine-associated receptor family (TAARs) evolved twice independently. Sci Rep 2021; 11:7807. [PMID: 33833329 PMCID: PMC8032801 DOI: 10.1038/s41598-021-87236-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Olfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fish. In lamprey, an ancestral gene expanded to generate a large family of olfactory receptors, while the sister gene in jawed vertebrates did not expand and is not expressed in olfactory sensory neurons. Both clades do not exhibit the defining TAAR motif, and we suggest naming them taar-like receptors (tarl). We have identified the evolutionary origin of both taar and tarl genes in a duplication of the serotonergic receptor 4 that occurred in the most recent common ancestor of vertebrates. We infer two ancestral genes in bony fish (TAAR12, TAAR13) which gave rise to the complete repertoire of mammalian olfactory taar genes and to class II of the taar repertoire of teleost fish. We follow their evolution in seventy-one bony fish genomes and report a high evolutionary dynamic, with many late gene birth events and both early and late gene death events.
Collapse
Affiliation(s)
- Milan Dieris
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Daniel Kowatschew
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Sigrun I Korsching
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
14
|
Dewan A. Olfactory signaling via trace amine-associated receptors. Cell Tissue Res 2020; 383:395-407. [PMID: 33237477 DOI: 10.1007/s00441-020-03331-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors that function as odorant receptors in the main olfactory system of vertebrates. TAARs are monoallelically expressed in primary sensory neurons where they couple to the same transduction cascade as canonical olfactory receptors and are mapped onto glomeruli within a specific region of the olfactory bulb. TAARs have a high affinity for volatile amines, a class of chemicals that are generated during the decomposition of proteins and are ubiquitous physiological metabolites that are found in body fluids. Thus, amines are proposed to play an important role in intra- and interspecific communication such as signaling the sex of the conspecific, the quality of the food source, or even the proximity of a predator. TAARs have a crucial role in the perception of these behaviorally relevant compounds as the genetic deletion of all or even individual olfactory TAARs can alter the behavioral response and reduce the sensitivity to amines. The small size of this receptor family combined with the ethological relevance of their ligands makes the TAARs an attractive model system for probing olfactory perception. This review will summarize the current knowledge on the olfactory TAARs and discuss whether they represent a unique subsystem within the main olfactory system.
Collapse
Affiliation(s)
- Adam Dewan
- Department of Psychology, Florida State University, 1107 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
15
|
Kozma MT, Ngo-Vu H, Rump MT, Bobkov YV, Ache BW, Derby CD. Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics 2020; 21:649. [PMID: 32962631 PMCID: PMC7510291 DOI: 10.1186/s12864-020-07034-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.
Collapse
Affiliation(s)
- Mihika T Kozma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Matthew T Rump
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuriy V Bobkov
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
16
|
Kalra S, Mittal A, Gupta K, Singhal V, Gupta A, Mishra T, Naidu S, Sengupta D, Ahuja G. Analysis of single-cell transcriptomes links enrichment of olfactory receptors with cancer cell differentiation status and prognosis. Commun Biol 2020; 3:506. [PMID: 32917933 PMCID: PMC7486295 DOI: 10.1038/s42003-020-01232-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Ectopically expressed olfactory receptors (ORs) have been linked with multiple clinically-relevant physiological processes. Previously used tissue-level expression estimation largely shadowed the potential role of ORs due to their overall low expression levels. Even after the introduction of the single-cell transcriptomics, a comprehensive delineation of expression dynamics of ORs in tumors remained unexplored. Our targeted investigation into single malignant cells revealed a complex landscape of combinatorial OR expression events. We observed differentiation-dependent decline in expressed OR counts per cell as well as their expression intensities in malignant cells. Further, we constructed expression signatures based on a large spectrum of ORs and tracked their enrichment in bulk expression profiles of tumor samples from The Cancer Genome Atlas (TCGA). TCGA tumor samples stratified based on OR-centric signatures exhibited divergent survival probabilities. In summary, our comprehensive analysis positions ORs at the cross-road of tumor cell differentiation status and cancer prognosis.
Collapse
Affiliation(s)
- Siddhant Kalra
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India
| | - Krishan Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.,Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India
| | - Vrinda Singhal
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India
| | - Anku Gupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India
| | - Tripti Mishra
- Pathfinder Research and Training Foundation, 30/7 and 8, Knowledge Park III, Greater Noida, Uttar Pradesh, 201308, India
| | - Srivatsava Naidu
- Center for Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Birla Seed Farms, Rupnagar, Punjab, 140001, India
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India. .,Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India. .,Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110020, India. .,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.
| |
Collapse
|
17
|
Nikaido M, Kondo S, Zhang Z, Wu J, Nishihara H, Niimura Y, Suzuki S, Touhara K, Suzuki Y, Noguchi H, Minakuchi Y, Toyoda A, Fujiyama A, Sugano S, Yoneda M, Kai C. Comparative genomic analyses illuminate the distinct evolution of megabats within Chiroptera. DNA Res 2020; 27:5910551. [PMID: 32966557 PMCID: PMC7547651 DOI: 10.1093/dnares/dsaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/09/2020] [Indexed: 11/12/2022] Open
Abstract
The revision of the sub-order Microchiroptera is one of the most intriguing outcomes in recent mammalian molecular phylogeny. The unexpected sister–taxon relationship between rhinolophoid microbats and megabats, with the exclusion of other microbats, suggests that megabats arose in a relatively short period of time from a microbat-like ancestor. In order to understand the genetic mechanism underlying adaptive evolution in megabats, we determined the whole-genome sequences of two rousette megabats, Leschenault’s rousette (Rousettus leschenaultia) and the Egyptian fruit bat (R. aegyptiacus). The sequences were compared with those of 22 other mammals, including nine bats, available in the database. We identified that megabat genomes are distinct in that they have extremely low activity of SINE retrotranspositions, expansion of two chemosensory gene families, including the trace amine receptor (TAAR) and olfactory receptor (OR), and elevation of the dN/dS ratio in genes for immunity and protein catabolism. The adaptive signatures discovered in the genomes of megabats may provide crucial insight into their distinct evolution, including key processes such as virus resistance, loss of echolocation, and frugivorous feeding.
Collapse
Affiliation(s)
- Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinji Kondo
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Zicong Zhang
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Jiaqi Wu
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshihito Niimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shunta Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-0882, Japan
| | - Hideki Noguchi
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-0882, Japan
| | - Misako Yoneda
- Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Chieko Kai
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
18
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
19
|
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Activation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis pathways, and functions.
Collapse
Affiliation(s)
- Zhengrong Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
20
|
Abstract
Trimethylamine N-Oxide (TMAO) is the product of the monooxygenation reaction catalyzed by a drug-metabolizing enzyme, human flavin-containing monooxygenase 3 (hFMO3), and its animal orthologues. For several years, researchers have looked at TMAO and hFMO3 as two distinct molecules playing specific but separate roles, the former to defend saltwater animals from osmotic or hydrostatic stress and the latter to process xenobiotics in men. The presence of high levels of plasmatic TMAO in elasmobranchs and other animals was demonstrated a long time ago, whereas the actual physiological role of hFMO3 is still unknown because the enzyme has been mainly characterized for its ability to oxidize drugs. Recently TMAO was found to be related to several human health conditions such as atherosclerosis, cardiovascular, and renal diseases. This correlation poses a striking question of how other vertebrates (and invertebrates) can survive in the presence of very high TMAO concentrations (micromolar in humans, millimolar in marine mammals and several hundred millimolar in elasmobranchs). Therefore, it is important to address how TMAO, its precursors, and FMO catalytic activity are interconnected.
Collapse
|
21
|
Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell Mol Neurobiol 2019; 40:239-255. [PMID: 31643000 PMCID: PMC7028809 DOI: 10.1007/s10571-019-00743-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive review of the available evidence on the pathophysiological implications of genetic variants in the human trace amine-associated receptor (TAAR) superfamily. Genes coding for trace amine-associated receptors (taars) represent a multigene family of G-protein-coupled receptors, clustered to a small genomic region of 108 kb located in chromosome 6q23, which has been consistently identified by linkage analyses as a susceptibility locus for schizophrenia and affective disorders. Most TAARs are expressed in brain areas involved in emotions, reward and cognition. TAARs are activated by endogenous trace amines and thyronamines, and evidence for a modulatory action on other monaminergic systems has been reported. Therefore, linkage analyses were followed by fine mapping association studies in schizophrenia and affective disorders. However, none of these reports has received sufficient universal replication, so their status remains uncertain. Single nucleotide polymorphisms in taars have emerged as susceptibility loci from genome-wide association studies investigating migraine and brain development, but none of the detected variants reached the threshold for genome-wide significance. In the last decade, technological advances enabled single-gene or whole-exome sequencing, thus allowing the detection of rare genetic variants, which may have a greater impact on the risk of complex disorders. Using these approaches, several taars (especially taar1) variants have been detected in patients with mental and metabolic disorders, and in some cases, defective receptor function has been demonstrated in vitro. Finally, with the use of transcriptomic and peptidomic techniques, dysregulations of TAARs (especially TAAR6) have been identified in brain disorders characterized by cognitive impairment.
Collapse
|
22
|
Eyun S. Accelerated pseudogenization of trace amine-associated receptor genes in primates. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12543. [PMID: 30536583 PMCID: PMC6849804 DOI: 10.1111/gbb.12543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023]
Abstract
Trace amines (TAs) in the mammalian brain have been investigated for four decades. Trace amine-associated receptors (TAARs) were discovered during the search for receptors activated by TAs. TAARs are considered a second class of vertebrate olfactory receptors and successfully proliferated in conjunction with adaptation to living on the ground to detect carnivore odors. Thus, therian mammals have a high number of TAAR genes due to rapid species-specific gene duplications. In primate lineages, however, their genomes have significantly smaller numbers of TAAR genes than do other mammals. To elucidate the evolutionary force driving these patterns, exhaustive data mining of TAAR genes was performed for 13 primate genomes (covering all four infraorders) and two nonprimate euarchontan genomes. This study identified a large number of pseudogenes in many of these primate genomes and thus investigated the pseudogenization event process for the TAAR repertoires. The degeneration of TAARs is likely associated with arboreal inhabitants reducing their exposure to carnivores, and this was accelerated by the change in the nose shape of haplorhines after their divergence from strepsirrhines. Arboreal life may have decreased the reliance on the chemosensing of predators, suggestive of leading to the depauperation of TAAR subfamilies. The evolutionary deterioration of TAARs in primates has been reestablished in recently derived primates due to high selection pressure and probably functional diversity.
Collapse
Affiliation(s)
- Seong‐il Eyun
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| |
Collapse
|
23
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
24
|
Christian SL, Berry MD. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 2018; 9:680. [PMID: 30013475 PMCID: PMC6036138 DOI: 10.3389/fphar.2018.00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Trace amines and their receptors (trace amine-associated receptors; TAARs) are an emerging pharmacological target for the treatment of human disorders. While most studies have focused on their therapeutic potential for neurologic and psychiatric disorders, TAARs are also expressed throughout the periphery, including prominent expression in human leukocytes. Furthermore, recent independent, unbiased metabolomic studies have consistently identified one or more TAAR ligands as potential etiologic factors in inflammatory bowel disease (IBD). The putative role of TAARs in diseases such as IBD that are associated with hyperactive immune responses has not, however, previously been systematically addressed. Here, we review the current state of the knowledge of the effects of TAARs on leukocyte function, in particular in the context of mucosal epithelial cells that interface with the environment; developing a model whereby TAARs may be considered as a novel therapeutic target for disorders associated with dysregulated immune responses to environmental factors. In this model, we hypothesize that altered trace amine homeostasis results in hyperactivity of the immune system. Such loss of homeostasis can occur through many different mechanisms including TAAR polymorphisms and altered trace amine load due to changes in host synthesis and/or degradative enzymes, diet, or microbial dysbiosis. The resulting alterations in TAAR functioning can then lead to a loss of homeostasis of leukocyte chemotaxis, differentiation, and activation, as well as an altered ability of members of the microbiota to adhere to and penetrate the epithelial cell layers. Such changes would generate a pro-inflammatory state at mucosal epithelial barrier layers that can manifest as clinical symptomatology such as that seen in IBD. These alterations may also have the potential to induce systemic effects, which could possibly contribute to immunomodulatory disorders in other systems, including neurological diseases.
Collapse
|
25
|
Izquierdo C, Gómez-Tamayo JC, Nebel JC, Pardo L, Gonzalez A. Identifying human diamine sensors for death related putrescine and cadaverine molecules. PLoS Comput Biol 2018; 14:e1005945. [PMID: 29324768 PMCID: PMC5783396 DOI: 10.1371/journal.pcbi.1005945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/24/2018] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Pungent chemical compounds originating from decaying tissue are strong drivers of animal behavior. Two of the best-characterized death smell components are putrescine (PUT) and cadaverine (CAD), foul-smelling molecules produced by decarboxylation of amino acids during decomposition. These volatile polyamines act as ‘necromones’, triggering avoidance or attractive responses, which are fundamental for the survival of a wide range of species. The few studies that have attempted to identify the cognate receptors for these molecules have suggested the involvement of the seven-helix trace amine-associated receptors (TAARs), localized in the olfactory epithelium. However, very little is known about the precise chemosensory receptors that sense these compounds in the majority of organisms and the molecular basis of their interactions. In this work, we have used computational strategies to characterize the binding between PUT and CAD with the TAAR6 and TAAR8 human receptors. Sequence analysis, homology modeling, docking and molecular dynamics studies suggest a tandem of negatively charged aspartates in the binding pocket of these receptors which are likely to be involved in the recognition of these small biogenic diamines. The distinctive dead smell comes largely from molecules like cadaverine and putrescine that are produced during decomposition of organic tissues. These volatile compounds act as powerful chemical signals important for the survival of a wide range of species. Previous studies have identified the trace amine-associated receptor 13c (or TAAR13c) in zebrafish as the cognate receptor of cadaverine in bony fishes. In this work, we employed computational strategies to disclose the human TAAR6 and TAAR8 receptors as sensors of the putrescine and cadaverine molecules. Our results indicate that several negatively charged residues in the ligand binding pocket of these receptors constitute the molecular basis for recognition of these necromones in humans.
Collapse
Affiliation(s)
- Cristina Izquierdo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - José C. Gómez-Tamayo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Jean-Christophe Nebel
- Faculty of Science, Engineering and Computing, Kingston University, London, United Kingdom
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Angel Gonzalez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- * E-mail:
| |
Collapse
|
26
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Ali RH, Bark M, Miró J, Muhammad SA, Sjöstrand J, Zubair SM, Abbas RM, Arvestad L. VMCMC: a graphical and statistical analysis tool for Markov chain Monte Carlo traces. BMC Bioinformatics 2017; 18:97. [PMID: 28187712 PMCID: PMC5301390 DOI: 10.1186/s12859-017-1505-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background MCMC-based methods are important for Bayesian inference of phylogeny and related parameters. Although being computationally expensive, MCMC yields estimates of posterior distributions that are useful for estimating parameter values and are easy to use in subsequent analysis. There are, however, sometimes practical difficulties with MCMC, relating to convergence assessment and determining burn-in, especially in large-scale analyses. Currently, multiple software are required to perform, e.g., convergence, mixing and interactive exploration of both continuous and tree parameters. Results We have written a software called VMCMC to simplify post-processing of MCMC traces with, for example, automatic burn-in estimation. VMCMC can also be used both as a GUI-based application, supporting interactive exploration, and as a command-line tool suitable for automated pipelines. Conclusions VMCMC is a free software available under the New BSD License. Executable jar files, tutorial manual and source code can be downloaded from https://bitbucket.org/rhali/visualmcmc/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1505-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raja H Ali
- KTH Royal Institute of Technology, Swedish e-Science Research Centre, Science for Life Laboratory, School of Computer Science and Communication, Solna, SE-171 77, Sweden
| | - Mikael Bark
- KTH Royal Institute of Technology, School of Information and Communication Technology, Kista, SE-164 40, Sweden
| | - Jorge Miró
- KTH Royal Institute of Technology, School of Information and Communication Technology, Kista, SE-164 40, Sweden
| | - Sayyed A Muhammad
- KTH Royal Institute of Technology, Swedish e-Science Research Centre, Science for Life Laboratory, School of Computer Science and Communication, Solna, SE-171 77, Sweden
| | - Joel Sjöstrand
- Department of Numerical Analysis and Computer Science, Swedish e-Science Research Centre, Science for Life Laboratory, Stockholm University, Stockholm, SE-100 44, Sweden
| | - Syed M Zubair
- KTH Royal Institute of Technology, Laboratory for Communication Networks, School of Electrical Engineering, Stockholm, SE-100 44, Sweden.,Department of Computer Science and Information Technology, University of Balochistan, Quetta, PK-87 300, Pakistan
| | - Raja M Abbas
- Department of Computer Science and Engineering, University of Gothenburg, Gothenburg, SE-411 37, Sweden
| | - Lars Arvestad
- Department of Numerical Analysis and Computer Science, Swedish e-Science Research Centre, Science for Life Laboratory, Stockholm University, Stockholm, SE-100 44, Sweden.
| |
Collapse
|
28
|
Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol 2017; 15:6. [PMID: 28137258 PMCID: PMC5282848 DOI: 10.1186/s12915-016-0341-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
Background Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are performed by the biogenic amines octopamine and its precursor tyramine. These chemically similar transmitters signal by related families of G-protein-coupled receptors in vertebrates and invertebrates, suggesting that octopamine/tyramine are the invertebrate equivalents of vertebrate norepinephrine. However, the evolutionary relationships and origin of these transmitter systems remain unclear. Results Using phylogenetic analysis and receptor pharmacology, here we have established that norepinephrine, octopamine, and tyramine receptors coexist in some marine invertebrates. In the protostomes Platynereis dumerilii (an annelid) and Priapulus caudatus (a priapulid), we have identified and pharmacologically characterized adrenergic α1 and α2 receptors that coexist with octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors. These receptors represent the first examples of adrenergic receptors in protostomes. In the deuterostome Saccoglossus kowalevskii (a hemichordate), we have identified and characterized octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors, representing the first examples of these receptors in deuterostomes. S. kowalevskii also has adrenergic α1 and α2 receptors, indicating that all three signaling systems coexist in this animal. In phylogenetic analysis, we have also identified adrenergic and tyramine receptor orthologs in xenacoelomorphs. Conclusions Our results clarify the history of monoamine signaling in bilaterians. Given that all six receptor families (two each for octopamine, tyramine, and norepinephrine) can be found in representatives of the two major clades of Bilateria, the protostomes and the deuterostomes, all six receptors must have coexisted in the last common ancestor of the protostomes and deuterostomes. Adrenergic receptors were lost from most insects and nematodes, and tyramine and octopamine receptors were lost from most deuterostomes. This complex scenario of differential losses cautions that octopamine signaling in protostomes is not a good model for adrenergic signaling in deuterostomes, and that studies of marine animals where all three transmitter systems coexist will be needed for a better understanding of the origin and ancestral functions of these transmitters. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0341-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Bauknecht
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany.
| |
Collapse
|