1
|
Kepple D, Ford CT, Williams J, Abagero B, Li S, Popovici J, Yewhalaw D, Lo E. Comparative transcriptomics reveal differential gene expression among Plasmodium vivax geographical isolates and implications on erythrocyte invasion mechanisms. PLoS Negl Trop Dis 2024; 18:e0011926. [PMID: 38285730 PMCID: PMC10901308 DOI: 10.1371/journal.pntd.0011926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
The documentation of Plasmodium vivax malaria across Africa especially in regions where Duffy negatives are dominant suggests possibly alternative erythrocyte invasion mechanisms. While the transcriptomes of the Southeast Asian and South American P. vivax are well documented, the gene expression profile of P. vivax in Africa is unclear. In this study, we examined the expression of 4,404 gene transcripts belong to 12 functional groups and 43 erythrocyte binding gene candidates in Ethiopian isolates and compared them with the Cambodian and Brazilian P. vivax transcriptomes. Overall, there were 10-26% differences in the gene expression profile amongst geographical isolates, with the Ethiopian and Cambodian P. vivax being most similar. Majority of the gene transcripts involved in protein transportation, housekeeping, and host interaction were highly transcribed in the Ethiopian isolates. Members of the reticulocyte binding protein PvRBP2a and PvRBP3 expressed six-fold higher than Duffy binding protein PvDBP1 and 60-fold higher than PvEBP/DBP2 in the Ethiopian isolates. Other genes including PvMSP3.8, PvMSP3.9, PvTRAG2, PvTRAG14, and PvTRAG22 also showed relatively high expression. Differential expression patterns were observed among geographical isolates, e.g., PvDBP1 and PvEBP/DBP2 were highly expressed in the Cambodian but not the Brazilian and Ethiopian isolates, whereas PvRBP2a and PvRBP2b showed higher expression in the Ethiopian and Cambodian than the Brazilian isolates. Compared to Pvs25, gametocyte genes including PvAP2-G, PvGAP (female gametocytes), and Pvs47 (male gametocytes) were highly expressed across geographical samples.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Colby T. Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, United States of America
- School of Data Science, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Jonathan Williams
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Beka Abagero
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Shaoyu Li
- Mathematics and Statistics, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
- Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Siau A, Ang JW, Sheriff O, Hoo R, Loh HP, Tay D, Huang X, Yam XY, Lai SK, Meng W, Julca I, Kwan SS, Mutwil M, Preiser PR. Comparative spatial proteomics of Plasmodium-infected erythrocytes. Cell Rep 2023; 42:113419. [PMID: 37952150 DOI: 10.1016/j.celrep.2023.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Plasmodium parasites contribute to one of the highest global infectious disease burdens. To achieve this success, the parasite has evolved a range of specialized subcellular compartments to extensively remodel the host cell for its survival. The information to fully understand these compartments is likely hidden in the so far poorly characterized Plasmodium species spatial proteome. To address this question, we determined the steady-state subcellular location of more than 12,000 parasite proteins across five different species by extensive subcellular fractionation of erythrocytes infected by Plasmodium falciparum, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. This comparison of the pan-species spatial proteomes and their expression patterns indicates increasing species-specific proteins associated with the more external compartments, supporting host adaptations and post-transcriptional regulation. The spatial proteome offers comprehensive insight into the different human, simian, and rodent Plasmodium species, establishing a powerful resource for understanding species-specific host adaptation processes in the parasite.
Collapse
Affiliation(s)
- Anthony Siau
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Jing Wen Ang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Omar Sheriff
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Regina Hoo
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Han Ping Loh
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Donald Tay
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Ximei Huang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Xue Yan Yam
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Soak Kuan Lai
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Wei Meng
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Irene Julca
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Sze Siu Kwan
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Peter R Preiser
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
3
|
Kundu P, Naskar D, McKie SJ, Dass S, Kanjee U, Introini V, Ferreira MU, Cicuta P, Duraisingh M, Deane JE, Rayner JC. The structure of a Plasmodium vivax Tryptophan Rich Antigen domain suggests a lipid binding function for a pan-Plasmodium multi-gene family. Nat Commun 2023; 14:5703. [PMID: 37709739 PMCID: PMC10502043 DOI: 10.1038/s41467-023-40885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.
Collapse
Affiliation(s)
- Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Deboki Naskar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Shannon J McKie
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Pietro Cicuta
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Kepple D, Ford CT, Williams J, Abagero B, Li S, Popovici J, Yewhalaw D, Lo E. Comparative transcriptomics reveal differential gene expression in Plasmodium vivax geographical isolates and implications on erythrocyte invasion mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528793. [PMID: 36824754 PMCID: PMC9949051 DOI: 10.1101/2023.02.16.528793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Plasmodium vivax uses Duffy binding protein (PvDBP1) to bind to the Duffy Antigen-Chemokine Receptor (DARC) to invade human erythrocytes. Individuals who lack DARC expression (Duffy-negative) are thought to be resistance to P. vivax. In recent years, P. vivax malaria is becoming more prevalent in Africa with a portion of these cases detected in Duffy-negatives. Apart from DBP1, members of the reticulocyte binding protein (RBP) and tryptophan-rich antigen (TRAg) families may also play a role in erythrocyte invasion. While the transcriptomes of the Southeast Asian and South American P. vivax are well documented, the gene expression profile of P. vivax in Africa and more specifically the expression level of several erythrocyte binding gene candidates as compared to DBP1 are largely unknown. This paper characterized the first P. vivax transcriptome in Africa and compared with those from the Southeast Asian and South American isolates. The expression of 4,404 gene transcripts belong to 12 functional groups including 43 specific erythrocyte binding gene candidates were examined. Overall, there were 10-26% differences in the gene expression profile amongst the geographical isolates, with the Ethiopian and Cambodian P. vivax being most similar. Majority of the gene transcripts involved in protein transportation, housekeeping, and host interaction were highly transcribed in the Ethiopian P. vivax. Erythrocyte binding genes including PvRBP2a and PvRBP3 expressed six-fold higher than PvDBP1and 60-fold higher than PvEBP/DBP2. Other genes including PvRBP1a, PvMSP3.8, PvMSP3.9, PvTRAG2, PvTRAG14, and PvTRAG22 also showed relatively high expression. Differential expression was observed among geographical isolates, e.g., PvDBP1 and PvEBP/DBP2 were highly expressed in the Cambodian but not the Brazilian and Ethiopian isolates, whereas PvRBP2a and PvRBP2b showed higher expression in the Ethiopian and Cambodian than the Brazilian isolates. Compared to Pvs25, the standard biomarker for detecting female gametocytes, PvAP2-G (PVP01_1440800), GAP (PVP01_1403000), and Pvs47 (PVP01_1208000) were highly expressed across geographical samples. These findings provide an important baseline for future comparisons of P. vivax transcriptomes from Duffy-negative infections and highlight potential biomarkers for improved gametocyte detection.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Colby T. Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Jonathan Williams
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Beka Abagero
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Shaoyu Li
- Mathematics and Statistics, University of North Carolina, Charlotte, NC 28223, USA
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| |
Collapse
|
5
|
Bouyssou I, Martínez FJ, Campagne P, Ma L, Doderer-Lang C, Chitnis CE, Ménard D. Plasmodium vivax blood stage invasion pathways: Contribution of omics technologies in deciphering molecular and cellular mechanisms. C R Biol 2022; 345:91-133. [PMID: 36847467 DOI: 10.5802/crbiol.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022]
Abstract
Vivax malaria is an infectious disease caused by Plasmodium vivax, a parasitic protozoan transmitted by female Anopheline mosquitoes. Historically, vivax malaria has often been regarded as a benign self-limiting infection due to the observation of low parasitemia in Duffy-positive patients in endemic transmission areas and the virtual absence of infections in Duffy-negative individuals in Sub Saharan Africa. However, the latest estimates show that the burden of the disease is not decreasing in many countries and cases of vivax infections in Duffy-negative individuals are increasingly reported throughout Africa. This raised questions about the accuracy of diagnostics and the evolution of interactions between humans and parasites. For a long time, our knowledge on P. vivax biology has been hampered due to the limited access to biological material and the lack of robust in vitro culture methods. Consequently, little is currently known about P. vivax blood stage invasion mechanisms. The introduction of omics technologies with novel and accessible techniques such as third generation sequencing and RNA sequencing at single cell level, two-dimensional electrophoresis, liquid chromatography, and mass spectrometry, has progressively improved our understanding of P. vivax genetics, transcripts, and proteins. This review aims to provide broad insights into P. vivax invasion mechanisms generated by genomics, transcriptomics, and proteomics and to illustrate the importance of integrated multi-omics studies.
Collapse
|
6
|
A member of the tryptophan-rich protein family is required for efficient sequestration of Plasmodium berghei schizonts. PLoS Pathog 2022; 18:e1010846. [PMID: 36126089 PMCID: PMC9524624 DOI: 10.1371/journal.ppat.1010846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Protein export and host membrane remodeling are crucial for multiple Plasmodium species to establish a niche in infected hosts. To better understand the contribution of these processes to successful parasite infection in vivo, we sought to find and characterize protein components of the intraerythrocytic Plasmodium berghei-induced membrane structures (IBIS) that form in the cytoplasm of infected erythrocytes. We identified proteins that immunoprecipitate with IBIS1, a signature member of the IBIS in P. berghei-infected erythrocytes. In parallel, we also report our data describing proteins that co-precipitate with the PTEX (Plasmodium translocon of exported proteins) component EXP2. To validate our findings, we examined the location of three candidate IBIS1-interactors that are conserved across multiple Plasmodium species, and we found they localized to IBIS in infected red blood cells and two further colocalized with IBIS1 in the liver-stage parasitophorous vacuole membrane. Successful gene deletion revealed that these two tryptophan-rich domain-containing proteins, termed here IPIS2 and IPIS3 (for intraerythrocytic Plasmodium-induced membrane structures), are required for efficient blood-stage growth. Erythrocytes infected with IPIS2-deficient schizonts in particular fail to bind CD36 as efficiently as wild-type P. berghei-infected cells and therefore fail to effectively sequester out of the circulating blood. Our findings support the idea that intra-erythrocytic membrane compartments are required across species for alterations of the host erythrocyte that facilitate interactions of infected cells with host tissues.
Collapse
|
7
|
Hang JW, Tukijan F, Lee EQH, Abdeen SR, Aniweh Y, Malleret B. Zoonotic Malaria: Non- Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens 2021; 10:889. [PMID: 34358039 PMCID: PMC8308728 DOI: 10.3390/pathogens10070889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.
Collapse
Affiliation(s)
- Jing-Wen Hang
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Farhana Tukijan
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Erica-Qian-Hui Lee
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Shifana Raja Abdeen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| | - Yaw Aniweh
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana;
| | - Benoit Malleret
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| |
Collapse
|
8
|
Kepple D, Pestana K, Tomida J, Abebe A, Golassa L, Lo E. Alternative Invasion Mechanisms and Host Immune Response to Plasmodium vivax Malaria: Trends and Future Directions. Microorganisms 2020; 9:E15. [PMID: 33374596 PMCID: PMC7822457 DOI: 10.3390/microorganisms9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Plasmodium vivax malaria is a neglected tropical disease, despite being more geographically widespread than any other form of malaria. The documentation of P. vivax infections in different parts of Africa where Duffy-negative individuals are predominant suggested that there are alternative pathways for P. vivax to invade human erythrocytes. Duffy-negative individuals may be just as fit as Duffy-positive individuals and are no longer resistant to P.vivax malaria. In this review, we describe the complexity of P. vivax malaria, characterize pathogenesis and candidate invasion genes of P. vivax, and host immune responses to P. vivax infections. We provide a comprehensive review on parasite ligands in several Plasmodium species that further justify candidate genes in P. vivax. We also summarize previous genomic and transcriptomic studies related to the identification of ligand and receptor proteins in P. vivax erythrocyte invasion. Finally, we identify topics that remain unclear and propose future studies that will greatly contribute to our knowledge of P. vivax.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Kareen Pestana
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Junya Tomida
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa 1000, Ethiopia;
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1000, Ethiopia;
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| |
Collapse
|
9
|
Ford A, Kepple D, Abagero BR, Connors J, Pearson R, Auburn S, Getachew S, Ford C, Gunalan K, Miller LH, Janies DA, Rayner JC, Yan G, Yewhalaw D, Lo E. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Negl Trop Dis 2020; 14:e0008234. [PMID: 33044985 PMCID: PMC7581005 DOI: 10.1371/journal.pntd.0008234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/22/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium vivax malaria is much less common in Africa than the rest of the world because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC) to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently, there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a high number of them being in Duffy negative individuals, potentially indicating P. vivax has evolved an alternative invasion mechanism that can overcome Duffy negativity. Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation (CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and Duffy negative individuals are found. A total of 123,711 SNPs were detected, of which 22.7% were nonsynonymous and 77.3% were synonymous mutations. The largest number of SNPs were detected on chromosomes 9 (24,007 SNPs; 19.4% of total) and 10 (16,852 SNPs, 13.6% of total). There were particularly high levels of polymorphism in erythrocyte binding gene candidates including merozoite surface protein 1 (MSP1) and merozoite surface protein 3 (MSP3.5, MSP3.85 and MSP3.9). Two genes, MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. Variation in gene copy number was also concentrated in genes involved in host-parasite interactions, including the expansion of the Duffy binding protein gene (PvDBP) on chromosome 6 and MSP3.11 on chromosome 10. Based on the phylogeny constructed from the whole genome sequences, the expansion of these genes was an independent process among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P. vivax infections among study sites and showed various levels of gene flow at a small geographical scale. The genomic features of P. vivax provided baseline data for future comparison with those in Duffy-negative individuals and allowed us to develop a panel of informative Single Nucleotide Polymorphic markers diagnostic at a micro-geographical scale. Plasmodium vivax is the most geographically widespread parasite species that causes malaria in humans. Although it occurs in Africa as a member of a mix of Plasmodium species, P. vivax is dominant in other parts of the world outside of Africa (e.g., Brazil). It was previously thought that most African populations were immune to P. vivax infections due to the absence of Duffy antigen chemokine receptor (DARC) gene expression required for erythrocyte invasion. However, several recent reports have indicated the emergence and potential spread of P. vivax across human populations in Africa. Compared to Southeast Asia and South America where P. vivax is highly endemic, data on polymorphisms in erythrocyte binding gene candidates of P. vivax from Africa is limited. Filling this knowlege gap is critical for identifying functional genes in erythrocyte invasion, biomarkers for tracking the P. vivax isolates from Africa, as well as potential gene targets for vaccine development. This paper examined the level of genetic polymorphisms in a panel of 43 potential erythrocyte binding protein genes based on whole genome sequences and described transmission patterns of P. vivax infections from different study sites in Ethiopia based on the genetic variants. Our analyses showed that chromosomes 9 and 10 of the P. vivax genomes isolated in Ethiopia had the most high-quality genetic polymorphisms. Among all erythrocyte binding protein gene candidates, the merozoite surface proteins 1 and merozoite surface protein 3 showed high levels of polymorphism. MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. The expansion of the Duffy binding protein and merozoite surface protein 3 gene copies was an independent process among the P. vivax lineages in Ethiopia. Various levels of gene flow were observed even at a smaller geographical scale. Our study provided baseline data for future comparison with P. vivax in Duffy negative individuals and help develop a panel of genetic markers that are informative at a micro-geographical scale.
Collapse
Affiliation(s)
- Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
- * E-mail: (AF); (GY); (EL)
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Jordan Connors
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Richard Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United States of America
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Colby Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Julian C. Rayner
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, United Kingdom
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, United States of America
- * E-mail: (AF); (GY); (EL)
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
- * E-mail: (AF); (GY); (EL)
| |
Collapse
|
10
|
Lee SK, Han JH, Park JH, Ha KS, Park WS, Hong SH, Na S, Cheng Y, Han ET. Evaluation of antibody responses to the early transcribed membrane protein family in Plasmodium vivax. Parasit Vectors 2019; 12:594. [PMID: 31856917 PMCID: PMC6921578 DOI: 10.1186/s13071-019-3846-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria parasites form intracellular membranes that separate the parasite from the internal space of erythrocytes, and membrane proteins from the parasites are exported to the host via the membrane. In our previous study, Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2, an intracellular membrane protein that is highly expressed in blood-stage parasites, was characterized as a highly immunogenic protein in P. vivax malaria patients. However, the other PvETRAMP family proteins have not yet been investigated. In this study, PvETRAMPs were expressed and evaluated to determine their immunological profiles. Methods The protein structure and amino acid alignment were carried out using bioinformatics analysis software. A total of six PvETRAMP family proteins were successfully expressed and purified using a wheat germ cell free protein expression system and the purified proteins were used for protein microarray and immunization of mice. The localization of the protein was determined with serum against PvETRAMP4. IgG subclasses were assessed from the immunized mice. Results In silico analysis showed that P. vivax exhibits nine genes encoding the ETRAMP family. The ETRAMP family proteins are relatively small molecules with conserved structural features. A total of 6 recombinant ETRAMP proteins were successfully expressed and purified. The serum positivity of P. vivax malaria patients and healthy individuals was evaluated using a protein microarray method. Among the PvETRAMPs, ETRAMP4 showed the highest positivity rate of 62%, comparable to that of PvETRAMP11.2, which served as the positive control, and a typical export pattern of PvETRAMP4 was observed in the P. vivax parasite. The assessment of IgG subclasses in mice immunized with PvETRAMP4 showed high levels of IgG1 and IgG2b. PvETRAMP family proteins were identified and characterized as serological markers. Conclusions The relatively high antibody responses to PvETRAMP4 as well as the specific IgG subclasses observed in immunized mice suggest that the ETRAMP family is immunogenic in pathogens and can be used as a protein marker and for vaccine development.![]()
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
11
|
Transcriptome profiling of Plasmodium vivax in Saimiri monkeys identifies potential ligands for invasion. Proc Natl Acad Sci U S A 2019; 116:7053-7061. [PMID: 30872477 DOI: 10.1073/pnas.1818485116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.
Collapse
|
12
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
13
|
Gunalan K, Niangaly A, Thera MA, Doumbo OK, Miller LH. Plasmodium vivax Infections of Duffy-Negative Erythrocytes: Historically Undetected or a Recent Adaptation? Trends Parasitol 2018. [PMID: 29530446 DOI: 10.1016/j.pt.2018.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmodium vivax is the main cause of malarial disease in Asia and South America. Plasmodium vivax infection was thought to be absent in African populations who are Duffy blood group antigen negative (Duffy-negative). However, many cases of P. vivax infection have recently been observed in Duffy-negative Africans. This raises the question: were P. vivax infections in Duffy-negative populations previously missed or has P. vivax adapted to infect Duffy-negative populations? This review focuses on recent P. vivax findings in Africa and reports views on the parasite ligands that may play a role in Duffy-negative P. vivax infections. In addition, clues gained from studying P. vivax infection of reticulocytes are presented, which may provide possible avenues for establishing P. vivax culture in vitro.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; These authors contributed equally.
| | - Amadou Niangaly
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali; These authors contributed equally
| | - Mahamadou A Thera
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
14
|
Garzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Evidence of functional divergence in MSP7 paralogous proteins: a molecular-evolutionary and phylogenetic analysis. BMC Evol Biol 2016; 16:256. [PMID: 27894257 PMCID: PMC5126858 DOI: 10.1186/s12862-016-0830-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The merozoite surface protein 7 (MSP7) is a Plasmodium protein which is involved in parasite invasion; the gene encoding it belongs to a multigene family. It has been proposed that MSP7 paralogues seem to be functionally redundant; however, recent experiments have suggested that they could have different roles. Results The msp7 multigene family has been described in newly available Plasmodium genomes; phylogenetic relationships were established in 12 species by using different molecular evolutionary approaches for assessing functional divergence amongst MSP7 members. Gene expansion and contraction rule msp7 family evolution; however, some members could have had concerted evolution. Molecular evolutionary analysis showed that relaxed and/or intensified selection modulated Plasmodium msp7 paralogous evolution. Furthermore, episodic diversifying selection and changes in evolutionary rates suggested that some paralogous proteins have diverged functionally. Conclusions Even though msp7 has mainly evolved in line with a birth-and-death evolutionary model, gene conversion has taken place between some paralogous genes allowing them to maintain their functional redundancy. On the other hand, the evolutionary rate of some MSP7 paralogs has become altered, as well as undergoing relaxed or intensified (positive) selection, suggesting functional divergence. This could mean that some MSP7s can form different parasite protein complexes and/or recognise different host receptors during parasite invasion. These results highlight the importance of this gene family in the Plasmodium genus. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0830-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, DC, Colombia
| | - Johanna Forero-Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, DC, Colombia.
| |
Collapse
|
15
|
Rathore S, Dass S, Kandari D, Kaur I, Gupta M, Sharma YD. Basigin Interacts with Plasmodium vivax Tryptophan-rich Antigen PvTRAg38 as a Second Erythrocyte Receptor to Promote Parasite Growth. J Biol Chem 2016; 292:462-476. [PMID: 27881677 DOI: 10.1074/jbc.m116.744367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/20/2016] [Indexed: 12/17/2022] Open
Abstract
Elucidating the molecular mechanisms of the host-parasite interaction during red cell invasion by Plasmodium is important for developing newer antimalarial therapeutics. Recently, we have characterized a Plasmodium vivax tryptophan-rich antigen PvTRAg38, which is expressed by its merozoites, binds to host erythrocytes, and interferes with parasite growth. Interaction of this parasite ligand with the host erythrocyte occurs through its two regions present at amino acid positions 167-178 (P2) and 197-208 (P4). Each region recognizes its own erythrocyte receptor. Previously, we identified band 3 as the chymotrypsin-sensitive erythrocyte receptor for the P4 region, but the other receptor, binding to P2 region, remained unknown. Here, we have identified basigin as the second erythrocyte receptor for PvTRAg38, which is resistant to chymotrypsin. The specificity of interaction between PvTRAg38 and basigin was confirmed by direct interaction where basigin was specifically recognized by P2 and not by the P4 region of this parasite ligand. Interaction between P2 and basigin is stabilized through multiple amino acid residues, but Gly-171 and Leu-175 of P2 were more critical. These two amino acids were also critical for parasite growth. Synthetic peptides P2 and P4 of PvTRAg38 interfered with the parasite growth independently but had an additive effect if combined together indicating involvement of both the receptors during red cell invasion. In conclusion, PvTRAg38 binds to two erythrocyte receptors basigin and band 3 through P2 and P4 regions, respectively, to facilitate parasite growth. This advancement in our knowledge on molecular mechanisms of host-parasite interaction can be exploited to develop therapeutics against P. vivax malaria.
Collapse
Affiliation(s)
- Sumit Rathore
- From the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi-110029 and
| | - Sheena Dass
- From the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi-110029 and
| | - Divya Kandari
- From the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi-110029 and
| | - Inderjeet Kaur
- the International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mayank Gupta
- the International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Yagya D Sharma
- From the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi-110029 and
| |
Collapse
|