1
|
Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics 2024; 24:150. [PMID: 39222264 DOI: 10.1007/s10142-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.
Collapse
Affiliation(s)
- Fatemeh Ebadi Meinag
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Fatahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Xiao H, Liu L, Huang S. STK32C modulates doxorubicin resistance in triple-negative breast cancer cells via glycolysis regulation. Mol Cell Biochem 2024:10.1007/s11010-024-04989-z. [PMID: 38507019 DOI: 10.1007/s11010-024-04989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Understanding the mechanisms underlying doxorubicin resistance in triple-negative breast cancer (TNBC) holds paramount clinical significance. In our study, we investigate the potential of STK32C, a little-explored kinase, to impact doxorubicin sensitivity in TNBC cells. Our findings reveal elevated STK32C expression in TNBC specimens, associated with unfavorable prognosis in doxorubicin-treated TNBC patients. Subsequent experiments highlighted that STK32C depletion significantly augmented the sensitivity of doxorubicin-resistant TNBC cells to doxorubicin. Mechanistically, we unveiled that the cytoplasmic subset of STK32C plays a pivotal role in mediating doxorubicin sensitivity, primarily through the regulation of glycolysis. Furthermore, the kinase activity of STK32C proved to be essential for its mediation of doxorubicin sensitivity, emphasizing its role as a kinase. Our study suggests that targeting STK32C may represent a novel therapeutic approach with the potential to improve doxorubicin's efficacy in TNBC treatment.
Collapse
Affiliation(s)
- Huawei Xiao
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Shaoyan Huang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China.
| |
Collapse
|
4
|
Wu S, Wu Y, Deng S, Lei X, Yang X. The Impact of miR-122 on Cancer. Curr Pharm Biotechnol 2024; 25:1489-1499. [PMID: 38258767 DOI: 10.2174/0113892010272106231109065912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 01/24/2024]
Abstract
MiRNAs are confirmed to be a kind of short and eminently conserved noncoding RNAs, which regulate gene expression at the post-transcriptional level via binding to the 3'- untranslated region (3'-UTR) of targeting multiple target messenger RNAs. Recently, growing evidence stresses the point that they play a crucial role in a variety of pathological processes, including human cancers. Dysregulated miRNAs act as oncogenes or tumor suppressor genes in many cancer types. Among them, we noticed that miR-122 has been widely reported to significantly influence carcinogenicity in a variety of tumors by regulating target genes and signaling pathways. Here, we focused on the expression of miR-122 in regulatory mechanisms and tumor biological processes. We also discussed the effects of miR-122 dysregulation in various types of human malignancies and the potential to develop new molecular miR-122-targeted therapies. The present review suggests that miR-122 may be a potentially useful cancer diagnosis and treatment biomarker. More clinical diagnoses need to be further launched in the future. A promising direction to improve the outcomes for cancer patients will likely combine miR-122 with other traditional tumor biomarkers.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, P.R. China
| |
Collapse
|
5
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Pendleton KE, Wang K, Echeverria GV. Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. Front Cell Dev Biol 2023; 11:1254313. [PMID: 37779896 PMCID: PMC10534013 DOI: 10.3389/fcell.2023.1254313] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Deregulation of tumor cell metabolism is widely recognized as a "hallmark of cancer." Many of the selective pressures encountered by tumor cells, such as exposure to anticancer therapies, navigation of the metastatic cascade, and communication with the tumor microenvironment, can elicit further rewiring of tumor cell metabolism. Furthermore, phenotypic plasticity has been recently appreciated as an emerging "hallmark of cancer." Mitochondria are dynamic organelles and central hubs of metabolism whose roles in cancers have been a major focus of numerous studies. Importantly, therapeutic approaches targeting mitochondria are being developed. Interestingly, both plastic (i.e., reversible) and permanent (i.e., stable) metabolic adaptations have been observed following exposure to anticancer therapeutics. Understanding the plastic or permanent nature of these mechanisms is of crucial importance for devising the initiation, duration, and sequential nature of metabolism-targeting therapies. In this review, we compare permanent and plastic mitochondrial mechanisms driving therapy resistance. We also discuss experimental models of therapy-induced metabolic adaptation, therapeutic implications for targeting permanent and plastic metabolic states, and clinical implications of metabolic adaptations. While the plasticity of metabolic adaptations can make effective therapeutic treatment challenging, understanding the mechanisms behind these plastic phenotypes may lead to promising clinical interventions that will ultimately lead to better overall care for cancer patients.
Collapse
Affiliation(s)
- Katherine E. Pendleton
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Karen Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
MicroRNA-122 in human cancers: from mechanistic to clinical perspectives. Cancer Cell Int 2023; 23:29. [PMID: 36803831 PMCID: PMC9940444 DOI: 10.1186/s12935-023-02868-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate the expression of target genes post-transcriptionally and interact with mRNA-coding genes. MiRNAs play vital roles in many biological functions, and abnormal miRNA expression has been linked to various illnesses, including cancer. Among the miRNAs, miR-122, miR-206, miR-21, miR-210, miR-223, and miR-424 have been extensively studied in various cancers. Although research in miRNAs has grown considerably over the last decade, much is yet to be discovered, especially regarding their role in cancer therapies. Several kinds of cancer have been linked to dysregulation and abnormal expression of miR-122, indicating that miR-122 may serve as a diagnostic and/or prognostic biomarker for human cancer. Consequently, in this review literature, miR-122 has been analyzed in numerous cancer types to sort out the function of cancer cells miR-122 and enhance patient response to standard therapy.
Collapse
|
8
|
Circ_0003998 upregulates ARK5 expression to elevate 5-Fluorouracil resistance in hepatocellular carcinoma through binding to miR-513a-5p. Anticancer Drugs 2022; 33:1103-1113. [DOI: 10.1097/cad.0000000000001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
10
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
11
|
TRIM46 activates AKT/HK2 signaling by modifying PHLPP2 ubiquitylation to promote glycolysis and chemoresistance of lung cancer cells. Cell Death Dis 2022; 13:285. [PMID: 35354796 PMCID: PMC8967906 DOI: 10.1038/s41419-022-04727-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
The incidence of lung cancer is increasing worldwide. Although great progress in lung cancer treatment has been made, the clinical outcome is still unsatisfactory. Tripartite motif (TRIM)-containing proteins has been shown to be closely related to tumor progression. However, the function of TRIM46 in lung cancer is largely unknown. Here, TRIM46 amplification was found in lung adenocarcinoma (LUAD) tissues and TRIM46 amplification was significantly associated with a poor survival rate. Overexpression of wild type TRIM46 increased the proliferation of LUAD cells and glycolysis, promoted xenografts growth, and enhanced cisplatin (DDP) resistance of LUAD cells via increased ubiquitination of pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) and upregulation of p-AKT. In contrast, overexpression of RING-mutant TRIM46 did not show any effects, suggesting the function of TRIM46 was dependent on the E3 ligase activity. Furthermore, we found that TRIM46 promoted LUAD cell proliferation and DDP resistance by enhancing glycolysis. PHLPP2 overexpression reversed the effects of TRIM46 overexpression. Amplification of TRIM46 also promoted LUAD growth and enhanced its DDP resistance in a patient-derived xenograft (PDX) model. In conclusion, our data highlight the importance of TRIM46/PHLPP2/AKT signaling in lung cancer and provide new insights into therapeutic strategies for lung cancer.
Collapse
|
12
|
Li M, Li Z, Song J, Li X, Zhai P, Mu X, Qiu F, Yao L. miR-205 Reverses MDR-1 Mediated Doxorubicin Resistance via PTEN in Human Liver Cancer HepG2 Cells. CELL JOURNAL 2022; 24:112-119. [PMID: 35451580 PMCID: PMC9035231 DOI: 10.22074/cellj.2022.7231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/04/2020] [Indexed: 11/09/2022]
Abstract
Objective The aim of the recent study was to investigate the effects of miR-205 on reversing Doxorubicin (DOX) resistance, as chemotherapeutic agents through up-regulation of PTEN in human liver cancer HepG2 cells. Materials and Methods In this experimental study, the drug resistance in liver cancer cells via drug efflux inhibition and enhancing apoptosis by the regulation of PTEN and multi-drug resistance/ P-glycoprotein (MDR/P-gp) expression was revealed. Using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, effect of DOX on cell proliferation was evaluated after miR-205 transfection in HepG2 and HepG2/DOX cells. Activity of P-gp on drug efflux was measured by the Rhodamine 123 (Rho-123) assay. PTEN mRNA expression levels were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and flow cytometry was used to measure the apoptotic ratio of HepG2/DOX cells. Results miR-205 overexpression considerably inhibited the HepG2/DOX cells viability (P<0.05). qRT-PCR results revealed that PTEN is a pivotal regulator in PI3K/Akt/P-gp axis. Overexpression miR-205 resulted in up-regulation PTEN and ultimately down-regulation of P-gp. This inhibits drug resistance, proliferation and induces apoptosis in HepG2/DOX cells (P<0.05). Whilst, treatment with 10 μM of special inhibitors, including LY294002 (PI3K) or PD098059 (MAPK), increased Rho 123-associated MFI, treatment with 10 μM of SF1670 (PTEN) almost abolished the effect of miR-205 overexpression (P<0.05). Finally, we found that miR-205 was down-regulated in HepG2/DOX cells, and its overexpression led to enhancing apoptosis with re-sensitization of HepG2/DOX cell lines to DOX through PTEN/PI3K/ Akt/MDR1 pathway. Conclusion These findings may introduce miR-205 as a predictive biomarker and a potential treatment target for liver cancer therapy during MDR.
Collapse
Affiliation(s)
- Mei Li
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Zhubin Li
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Juanrong Song
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Xu Li
- Department of Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Pengtao Zhai
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Xudong Mu
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Fakai Qiu
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Le Yao
- Department of Infectious Diseases, The First Hospital of Yulin, Yulin, Shaanxi, China ,Department of Infectious DiseasesThe First Hospital of YulinYulinShaanxiChina
| |
Collapse
|
13
|
Qian Y, Ding P, Xu J, Nie X, Lu B. CCL2 activates AKT signaling to promote glycolysis and chemoresistance in glioma cells. Cell Biol Int 2022; 46:819-828. [PMID: 35178826 DOI: 10.1002/cbin.11778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/26/2021] [Accepted: 01/22/2022] [Indexed: 11/06/2022]
Abstract
The incidence of gliomas is increasing. Although great progress in glioma treatment has been made, the clinical outcome remains unsatisfactory. Chemokine (C-C motif) ligand 2 (CCL2) plays a key role in different types of cancers, including glioma. However, the function of CCL2 in glioma chemoresistance is not fully understood. In the current study, CCL2 was significantly upregulated in glioma. More importantly, CCL2 and CCR2 were significantly upregulated in temozolomide (TMZ)-resistant glioma. TMZ-resistant malignant glioblastoma cells (U251/TMZ) had higher expressions of CCL2 and CCR2 and a higher level of glycolysis as compared to its parental cell line U251. Silencing of CCL2 in U251/TMZ cells inhibited glycolysis. Overexpression of CCL2 reduced TMZ-induced apoptosis through activation of the AKT pathway and promotion of glycolysis. Moreover, overexpression of CCL2 significantly reduced the antitumor effect of TMZ in vivo. In conclusion, CCL2 overexpression reduced the antitumor effect of TMZ by enhancing glycolysis through activation of AKT signaling. The findings highlighted the importance of CCL2/CCR2/glycolysis and its potential value i developing new treatment for glioma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yafang Qian
- Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University
| | - Peng Ding
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University
| | - Jie Xu
- Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University
| | - Xiaohu Nie
- Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University
| | - Bin Lu
- Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University
| |
Collapse
|
14
|
Arora S, Joshi G, Chaturvedi A, Heuser M, Patil S, Kumar R. A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2. J Med Chem 2022; 65:1171-1205. [PMID: 34726055 DOI: 10.1021/acs.jmedchem.1c00981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The allosteric regulation of pyruvate kinase M2 (PKM2) affects the switching of the PKM2 protein between the high-activity and low-activity states that allow ATP and lactate production, respectively. PKM2, in its low catalytic state (dimeric form), is chiefly active in metabolically energetic cells, including cancer cells. More recently, PKM2 has emerged as an attractive target due to its role in metabolic dysfunction and other interrelated conditions. PKM2 (dimer) activity can be inhibited by modulating PKM2 dimer-tetramer dynamics using either PKM2 inhibitors that bind at the ATP binding active site of PKM2 (dimer) or PKM2 activators that bind at the allosteric site of PKM2, thus activating PKM2 from the dimer formation to the tetrameric formation. The present perspective focuses on medicinal chemistry approaches to design and discover PKM2 inhibitors and activators and further provides a scope for the future design of compounds targeting PKM2 with better efficacy and selectivity.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand 248171, India
| | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Santoshkumar Patil
- Discovery Services, Syngene International Ltd., Biocon Park, SEZ, Bommasandra Industrial Area-Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
15
|
1,8 Cineole and Ellagic acid inhibit hepatocarcinogenesis via upregulation of MiR-122 and suppression of TGF-β1, FSCN1, Vimentin, VEGF, and MMP-9. PLoS One 2022; 17:e0258998. [PMID: 35081125 PMCID: PMC8791452 DOI: 10.1371/journal.pone.0258998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most burdened tumors worldwide, with a complex and multifactorial pathogenesis. Current treatment approaches involve different molecular targets. Phytochemicals have shown considerable promise in the prevention and treatment of HCC. We investigated the efficacy of two natural components, 1,8 cineole (Cin) and ellagic acid (EA), against diethylnitrosamine/2-acetylaminofluorene (DEN/2-AAF) induced HCC in rats. DEN/2-AAF showed deterioration of hepatic cells with an impaired functional capacity of the liver. In addition, the levels of tumor markers including alpha-fetoprotein, arginase-1, alpha-L-fucosidase, and ferritin were significantly increased, whereas the hepatic miR-122 level was significantly decreased in induced-HCC rats. Interestingly, treatment with Cin (100mg/kg) and EA (60mg/kg) powerfully restored these biochemical alterations. Moreover, Cin and EA treatment exhibited significant downregulation in transforming growth factor beta-1 (TGF-β1), Fascin-1 (FSCN1), vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and epithelial-mesenchymal transition (EMT) key marker, vimentin, along with a restoration of histopathological findings compared to HCC group. Such effects were comparable to Doxorubicin (DOX) (2mg/kg); however, a little additive effect was evident through combining these phytochemicals with DOX. Altogether, this study highlighted 1,8 cineole and ellagic acid for the first time as promising phytochemicals for the treatment of hepatocarcinogenesis via regulating multiple targets.
Collapse
|
16
|
Xu Y, Li Y, Chen X, Xiang F, Deng Y, Li Z, Wei D. TGF-β protects osteosarcoma cells from chemotherapeutic cytotoxicity in a SDH/HIF1α dependent manner. BMC Cancer 2021; 21:1200. [PMID: 34763667 PMCID: PMC8582194 DOI: 10.1186/s12885-021-08954-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/01/2021] [Indexed: 03/11/2023] Open
Abstract
Background In the widespread adoption of chemotherapy, drug resistance has been the major obstacle to tumor elimination in cancer patients. Our aim was to explore the role of TGF-β in osteosarcoma-associated chemoresistance. Methods We performed a cytotoxicity analysis of methotrexate (MTX) and cisplatin (CIS) in TGF-β-treated osteosarcoma cells. Then, the metabolite profile of the core metabolic energy pathways in Saos-2 and MG-63 cell extracts was analyzed by 1H-NMR. We detected the expression of succinate dehydrogenase (SDH), STAT1, and hypoxia-inducible factor 1α (HIF1α) in TGF-β-treated osteosarcoma cells and further tested the effects of these molecules on the cytotoxicity induced by chemotherapeutic agents. Using in vivo experiments, we examined the tumor growth and survival time of Saos-2-bearing mice treated with a combination of chemotherapeutic agents and a HIF1α inhibitor. Results The metabolic analysis revealed enhanced succinate production in osteosarcoma cells after TGF-β treatment. We further found a decrease in SDH expression and an increase in HIF1α expression in TGF-β-treated osteosarcoma cells. Consistently, blockade of SDH efficiently enhanced the resistance of Saos-2 and MG-63 cells to MTX and CIS. Additionally, a HIF1α inhibitor significantly strengthened the anticancer efficacy of the chemotherapeutic drugs in mice with osteosarcoma cancer. Conclusion Our study demonstrated that TGF-β attenuated the expression of SDH by reducing the transcription factor STAT1. The reduction in SDH then caused the upregulation of HIF1α, thereby rerouting glucose metabolism and aggravating chemoresistance in osteosarcoma cells. Linking tumor cell metabolism to the formation of chemotherapy resistance, our study may guide the development of additional treatments for osteosarcoma.
Collapse
Affiliation(s)
- Yangbo Xu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Yafei Li
- Department of Oncology, Luzhou People's Hospital, Luzhou, 646000, Sichuan, China
| | - Xiaofan Chen
- Department of Pediatrics, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feifan Xiang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Yong Deng
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
17
|
Jiang CF, Xie YX, Qian YC, Wang M, Liu LZ, Shu YQ, Bai XM, Jiang BH. TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int 2021; 21:542. [PMID: 34663310 PMCID: PMC8522147 DOI: 10.1186/s12935-021-02235-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 02/14/2023] Open
Abstract
Background Chemoresistance is a critical risk problem for breast cancer treatment. However, mechanisms by which chemoresistance arises remains to be elucidated. The expression of T-box transcription factor 15 (TBX-15) was found downregulated in some cancer tissues. However, role and mechanism of TBX15 in breast cancer chemoresistance is unknown. Here we aimed to identify the effects and mechanisms of TBX15 in doxorubicin resistance in breast cancer. Methods As measures of Drug sensitivity analysis, MTT and IC50 assays were used in DOX-resistant breast cancer cells. ECAR and OCR assays were used to analyze the glycolysis level, while Immunoblotting and Immunofluorescence assays were used to analyze the autophagy levels in vitro. By using online prediction software, luciferase reporter assays, co-Immunoprecipitation, Western blotting analysis and experimental animals models, we further elucidated the mechanisms. Results We found TBX15 expression levels were decreased in Doxorubicin (DOX)-resistant breast cancer cells. Overexpression of TBX15 reversed the DOX resistance by inducing microRNA-152 (miR-152) expression. We found that KIF2C levels were highly expressed in DOX-resistant breast cancer tissues and cells, and KIF2C was a potential target of miR-152. TBX15 and miR-152 overexpression suppressed autophagy and glycolysis in breast cancer cells, while KIF2C overexpression reversed the process. Overexpression of KIF2C increased DOX resistance in cancer cells. Furthermore, KIF2C directly binds with PKM2 for inducing the DOX resistance. KIF2C can prevent the ubiquitination of PKM2 and increase its protein stability. In addition, we further identified that Domain-2 of KIF2C played a major role in the binding with PKM2 and preventing PKM2 ubiquitination, which enhanced DOX resistance by promoting autophagy and glycolysis. Conclusions Our data identify a new mechanism by which TBX15 abolishes DOX chemoresistance in breast cancer, and suggest that TBX15/miR-152/KIF2C axis is a novel signaling pathway for mediating DOX resistance in breast cancer through regulating PKM2 ubiquitination and decreasing PKM2 stability. This finding suggests new therapeutic target and/or novel strategy development for cancer treatment to overcome drug resistance in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02235-w.
Collapse
Affiliation(s)
- Cheng-Fei Jiang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yun-Xia Xie
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ying-Chen Qian
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Min Wang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xiao-Ming Bai
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China. .,Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
18
|
Zhang R, Niu C, Guan Y, Wu J, Hu L. LINC00963 silencing inhibits the proliferation and migration of high glucose-induced retinal endothelial cells via targeting miR-27b. Exp Ther Med 2021; 22:1274. [PMID: 34594411 PMCID: PMC8456487 DOI: 10.3892/etm.2021.10709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The association between long intergenic non-protein-coding RNA 963 (LINC00963) and diabetes has not been fully elucidated. Therefore, the present study aimed to investigate the effect of the long non-coding RNA LINC00963 on diabetic retinopathy (DR), in order to provide a new therapeutic target for this condition. Human retinal capillary endothelial cells (HRECs) were induced with high concentrations of glucose to establish a DR model. The expression levels of LINC00963, cell viability, the protein expression levels of proliferating cell nuclear antigen (PCNA) and Ki67, and the migratory capacity of HRECs were determined using reverse transcription-quantitative PCR (RT-qPCR), Cell Counting Kit-8 assay, western blot analysis, and wound healing and Transwell assays, respectively. Furthermore, the Encyclopedia of RNA Interactomes database was used to predict the binding targets of LINC00963, and luciferase reporter assay was used to verify the direct binding of microRNA (miR)-27b to LINC00963. RT-qPCR was also utilized to measure the expression levels of miR-27b, PCNA and Ki67. The results demonstrated that LINC00963 silencing inhibited glucose-induced HREC proliferation and migration, and downregulated PCNA and Ki67 expression. Following transfection with miR-27b inhibitor, cell proliferation and migration were notably enhanced, and the protein expression levels of PCNA and Ki67 were increased. Taken together, the results of the present study suggested that the LINC00963/miR-27b axis may regulate the proliferation and migration of glucose-induced HRECs. Therefore, LINC00963 may be considered as a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Rui Zhang
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| | - Chunhong Niu
- Department of Nursing, The Tianjin 4th Central Hospital, Tianjin 300140, P.R. China
| | - Yuhan Guan
- Department of Nursing, The Tianjin 4th Central Hospital, Tianjin 300140, P.R. China
| | - Jianhua Wu
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| | - Liping Hu
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| |
Collapse
|
19
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Devan AR, Kumar AR, Nair B, Anto NP, Muraleedharan A, Mathew B, Kim H, Nath LR. Insights into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2021; 14:656. [PMID: 34358082 PMCID: PMC8308499 DOI: 10.3390/ph14070656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most lethal cancers worldwide because of its high refractoriness and multi-drug resistance to existing chemotherapies, which leads to poor patient survival. Novel pharmacological strategies to tackle HCC are based on oral multi-kinase inhibitors like sorafenib; however, the clinical use of the drug is restricted due to the limited survival rate and significant side effects, suggesting the existence of a primary or/and acquired drug-resistance mechanism. Because of this hurdle, HCC patients are forced through incomplete therapy. Although multiple approaches have been employed in parallel to overcome multidrug resistance (MDR), the results are varying with insignificant outcomes. In the past decade, cancer immunotherapy has emerged as a breakthrough approach and has played a critical role in HCC treatment. The liver is the main immune organ of the lymphatic system. Researchers utilize immunotherapy because immune evasion is considered a major reason for rapid HCC progression. Moreover, the immune response can be augmented and sustained, thus preventing cancer relapse over the post-treatment period. In this review, we provide detailed insights into the immunotherapeutic approaches to combat MDR by focusing on HCC, together with challenges in clinical translation.
Collapse
Affiliation(s)
- Aswathy R. Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Ayana R. Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India;
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Lekshmi R. Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| |
Collapse
|
21
|
Verma H, Cholia RP, Kaur S, Dhiman M, Mantha AK. A short review on cross-link between pyruvate kinase (PKM2) and Glioblastoma Multiforme. Metab Brain Dis 2021; 36:751-765. [PMID: 33651273 DOI: 10.1007/s11011-021-00690-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Pyruvate kinase (PK) catalyzes the last irreversible reaction of glycolysis pathway, generating pyruvate and ATP, from Phosphoenol Pyruvate (PEP) and ADP precursors. In mammals, four different tissue-specific isoforms (M1, M2, L and R) of PK exist, which are translated from two genes (PKL and PKR). PKM2 is the highly expressed isoform of PK in cancers, which regulates the aerobic glycolysis via reprogramming cancer cell's metabolic pathways to provide an anabolic advantage to the tumor cells. In addition to the established role of PKM2 in aerobic glycolysis of multiple cancer types, various recent findings have highlighted the non-metabolic functions of PKM2 in brain tumor development. Nuclear PKM2 acts as a co-activator and directly regulates gene transcription. PKM2 dependent transactivation of various oncogenic genes is instrumental in the progression and aggressiveness of Glioblastoma Multiforme (GBM). Also, PKM2 acts as a protein kinase in histone modification which regulates gene expression and tumorigenesis. Ongoing research has explored novel regulatory mechanisms of PKM2 and its association in GBM progression. This review enlists and summarizes the metabolic and non-metabolic roles of PKM2 at the cellular level, and its regulatory function highlights the importance of the nuclear functions of PKM2 in GBM progression, and an emerging role of PKM2 as novel cancer therapeutics.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India
| | - Ravi P Cholia
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India.
| |
Collapse
|
22
|
The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to eliminate liver cancer stem cells. Sci Rep 2021; 11:10791. [PMID: 34031441 PMCID: PMC8144399 DOI: 10.1038/s41598-021-89931-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Two ATP-binding cassette transporters, ABCB1/MDR1 and ABCG2/BCRP, are considered the most critical determinants for chemoresistance in hepatocellular carcinoma. However, their roles in the chemoresistance in liver cancer stem cells remain elusive. Here we explored the role of inhibition of MDR1 or ABCG2 in sensitizing liver cancer stem cells to doxorubicin, the most frequently used chemotherapeutic agent in treating liver cancer. We show that the inhibition of MDR1 or ABCG2 in Huh7 and PLC/PRF/5 cells using either pharmacological inhibitors or RNAi resulted in the elevated level of intracellular concentration of doxorubicin and the accompanied increased apoptosis as determined by confocal microscopy, high-performance liquid chromatography, flow cytometry, and annexin V assay. Notably, the inhibition of MDR1 or ABCG2 led to the reversal of the chemoresistance, as evident from the enhanced death of the chemoresistant liver cancer stem cells in tumorsphere-forming assays. Thus, the elevation of effective intracellular concentration of doxorubicin via the inhibition of MDR1 or ABCG2 represents a promising future strategy that transforms doxorubicin from a traditional chemotherapy agent into a robust killer of liver cancer stem cells for patients undergoing transarterial chemoembolization.
Collapse
|
23
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
25
|
Wang J, Dong Z, Lou L, Yang L, Qiu J. MiR-122 Participates in Oxidative Stress and Apoptosis in STZ-Induced Pancreatic β Cells by Regulating PI3K/AKT Signaling Pathway. Int J Endocrinol 2021; 2021:5525112. [PMID: 34054947 PMCID: PMC8133841 DOI: 10.1155/2021/5525112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
At present, there are few reports concerning the relationship between miR-122 and diabetes. In addition, the effect of miR-122 on streptozotocin- (STZ-) induced oxidative damage in INS-1 cells remains unclear. The present study aimed to investigate the role and modulatory mechanisms involving miR-122 in diabetes. STZ was used to induce INS-1 cell damage. Reverse transcription-quantitative PCR was used to investigate the expression of miR-122. A TUNEL cell apoptosis detection kit was used to detect apoptosis. Intracellular ROS levels were determined using dichlorofluorescein-diacetate. The activities of insulin secretion, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) were measured using ELISA kits. Western blotting was used to measure the expression levels of Bax, Bcl-2, PI3K, p-PI3K, caspase-3 and caspase-9, cleaved-caspase-3 and cleaved-caspase-9, AKT, and p-AKT. Then, LY294002 (LY, PI3K inhibitor) was used to treat INS-1 cells, and oxidative stress and apoptosis were measured. The results showed that STZ-induced inhibitory effects on insulin secretion were mitigated by miR-122 inhibitor, and the activities of SOD, CAT, and GSH-px were also increased. Furthermore, miR-122 inhibitor inhibited apoptosis and oxidative stress in STZ-induced INS-1 cells. Finally, the addition of LY increased insulin levels; reduced the activities of SOD, CAT, and GSH-px; and promoted apoptosis in STZ-induced INS-1 cells. In conclusion, interference with miR-122 can inhibit oxidative stress and apoptosis in STZ-induced INS-1 cells, involving a mechanism of action related to the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Endocrinology, Rheumatism and Immunology, Shengzhou People's Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Zhejiang, Shengzhou 312400, China
| | - Zhichun Dong
- Department of Endocrinology, Rheumatism and Immunology, Shengzhou People's Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Zhejiang, Shengzhou 312400, China
| | - Liyin Lou
- Department of Endocrinology, Rheumatism and Immunology, Shengzhou People's Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Zhejiang, Shengzhou 312400, China
| | - Lijuan Yang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Shengzhou 312400, China
| | - Jingying Qiu
- Department of Endocrinology, Rheumatism and Immunology, Shengzhou People's Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Zhejiang, Shengzhou 312400, China
| |
Collapse
|
26
|
Li X, He J, Ren X, Zhao H, Zhao H. Circ_0003998 enhances doxorubicin resistance in hepatocellular carcinoma by regulating miR-218-5p/EIF5A2 pathway. Diagn Pathol 2020; 15:141. [PMID: 33308276 PMCID: PMC7733254 DOI: 10.1186/s13000-020-01056-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The involvement of circular RNAs (circRNAs) in chemoresistance of tumors has been identified. Herein, this study aims to investigate the role and the underlying mechanism of circ_0003998 in doxorubicin (DOX) resistance in hepatocellular carcinoma (HCC). METHODS The expression of circ_0003998 and microRNA (miR)-218-5p and eukaryotic translation initiation factor 5A-2 (EIF5A2) mRNA was detected using quantitative real-time polymerase chain reaction. Cell viability, migration and invasion were analyzed using cell counting kit-8, colony formation and transwell assay, respectively. The levels of matrix metallopeptidase 9 (MMP-9), E-cadherin, Vimentin, N-cadherin and EIF5A2 protein were detected using western blot. The interaction between miR-218-5p and circ_0003998 or EIF5A2 was confirmed by dual-luciferase reporter assay. In vivo experiments were performed using murine xenograft models. RESULTS Circ_0003998 was elevated in HCC tissues, DOX-resistant tissues and cells, and circ_0003998 knockdown promoted DOX-sensitivity in HCC by inhibiting resistant cell viability, migration, invasion and EMT in vitro and enhanced DOX cytotoxicity in vivo. Bioinformatics analysis revealed circ_0003998 inhibited miR-218-5p expression, which was clarified to be a target of circ_0003998, and circ_0003998 knockdown sensitized HCC cell to DOX by sponging miR-218-5p. EIF5A2 was a target of miR-218-5p, and miR-218-5p mitigated DOX resistance in HCC cells through modulating EIF5A2 expression. Additionally, circ_0003998 served as a competing endogenous RNA for miR-218-5p to regulate EIF5A2 expression. CONCLUSION Circ_0003998 knockdown sensitized HCC cell to DOX by regulating miR-218-5p/EIF5A2 axis, indicating new markers of poor response to DOX and potential therapeutic strategies for the chemotherapy of HCC.
Collapse
Affiliation(s)
- Xiaomin Li
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of General Surgery, Shanxi Bethune Hospital, No. 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Jiefeng He
- Department of General Surgery, Shanxi Bethune Hospital, No. 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Xiaojing Ren
- Department of General Surgery, Shanxi Bethune Hospital, No. 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Haichao Zhao
- Department of General Surgery, Shanxi Bethune Hospital, No. 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Haoliang Zhao
- Department of General Surgery, Shanxi Bethune Hospital, No. 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
27
|
Zhu Z, Tang G, Yan J. MicroRNA-122 regulates docetaxel resistance of prostate cancer cells by regulating PKM2. Exp Ther Med 2020; 20:247. [PMID: 33178345 PMCID: PMC7651870 DOI: 10.3892/etm.2020.9377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa), an epithelial malignancy that occurs in the prostate, is the second leading cause of cancer death worldwide. MicroRNAs (miRs/miRNAs) are reported to have important applications in the field of cancer diagnosis and treatment. The present study aimed to investigate the function of miRNA-122 in the chemoresistance of PCa cells and the underlying mechanism. Significantly decreased miR-122 and increased pyruvate kinase (PKM2) levels were observed in docetaxel-resistant PCa cells, and PKM2 was negatively correlated with miR-122. MiR-122 mimic transfection in docetaxel-resistant LNCaP cells significantly inhibited cell proliferation, promoted apoptosis and decreased glucose uptake and lactate production, which was counteracted by PKM2 overexpression. Inhibition of miR-122 in LNCaP cells had an opposite effect to miR-122 mimic transfection. In addition, miR-122 mimic transfection significantly increased the sensitivity of docetaxel-resistant LNCaP cells to docetaxel, while inhibition of miR-122 significantly decreased the sensitivity of LNCaP cells to docetaxel. Luciferase reporter assays showed that miR-122 regulated PKM2 expression by binding to the 3'-untranslated region of PKM2. The results suggest that upregulation of miR-122 could enhance docetaxel sensitivity, inhibit cell proliferation and promote apoptosis in PCa cells,possibly through the downregulation of its target protein PKM2.
Collapse
Affiliation(s)
- Zhirong Zhu
- Department of Urology, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Guiliang Tang
- Department of Urology, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Jiajun Yan
- Department of Urology, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
28
|
Wang X, Li N, Han A, Wang Y, Lin Z, Yang Y. Ezrin promotes hepatocellular carcinoma progression by modulating glycolytic reprogramming. Cancer Sci 2020; 111:4061-4074. [PMID: 32639665 PMCID: PMC7648033 DOI: 10.1111/cas.14562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Ezrin, one of the ezrin-radixin-moesin (ERM) proteins, is involved in the formation of cell membrane processes and has been implicated in the promotion of cancer proliferation and metastasis. However, the possible role of ezrin in hepatocellular carcinoma (HCC) metastasis and glycolysis reprogramming has remained unclear. In this study, we found that ezrin was upregulated in HCC tissues, and its overexpression was linked with HCC patients' aggressive tumor characteristics and poor prognosis. Functional experiments further revealed that ezrin overexpression promoted HCC cell proliferation, epithelial-to-mesenchymal transition (EMT) progression and angiogenesis. In addition, by measuring glucose consumption, lactate production, ATP levels and the expression of glucose metabolism-related markers in HCC cells, we investigated whether ezrin regulated glucose metabolism. Moreover, 2-deoxy-D-glucose (2-DG) affected ezrin-mediated proliferation, migration and EMT of HCC cells, which suggested that ezrin may, at least in part, promote HCC progression by regulating glycolysis reprogramming. Based on our results, we proposed that ezrin was involved in HCC progression and may be a valid prognostic marker.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
| | - Nan Li
- Institute of VirologyWenzhou UniversityWenzhouChina
| | - Anna Han
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
| | - Yixuan Wang
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
| | - Zhenhua Lin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
| | - Yang Yang
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
| |
Collapse
|
29
|
The Role of the Liver-Specific microRNA, miRNA-122 in the HCV Replication Cycle. Int J Mol Sci 2020; 21:ijms21165677. [PMID: 32784807 PMCID: PMC7460827 DOI: 10.3390/ijms21165677] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) replication requires annealing of a liver specific microRNA, miR-122 to 2 sites on 5' untranslated region (UTR). While, microRNAs downregulate gene expression by binding to the 3' untranslated region of the target mRNA, in this case, the microRNA anneals to the 5'UTR of the viral genomes and upregulates the viral lifecycle. In this review, we explore the current understandings of the mechanisms by which miR-122 promotes the HCV lifecycle, and its contributions to pathogenesis. Annealing of miR-122 has been reported to (a) stimulate virus translation by promoting the formation of translationally active internal ribosome entry site (IRES) RNA structure, (b) stabilize the genome, and (c) induce viral genomic RNA replication. MiR-122 modulates lipid metabolism and suppresses tumor formation, and sequestration by HCV may influence virus pathogenesis. We also discuss the possible use of miR-122 as a biomarker for chronic hepatitis and as a therapeutic target. Finally, we discuss roles for miR-122 and other microRNAs in promoting other viruses.
Collapse
|
30
|
Xu J, An P, Winkler CA, Yu Y. Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets. Front Oncol 2020; 10:1271. [PMID: 32850386 PMCID: PMC7399632 DOI: 10.3389/fonc.2020.01271] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that can function as gene regulators and are involved in tumorigenesis. We review the commonly dysregulated miRNAs in liver tumor tissues and plasma/serum of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. The frequently reported up-regulated miRNAs in liver tumor tissues include miR-18a, miR-21, miR-221, miR-222, and miR-224, whereas down-regulated miRNAs include miR-26a, miR-101, miR-122, miR-125b, miR-145, miR-199a, miR-199b, miR-200a, and miR-223. For a subset of these miRNAs (up-regulated miR-222 and miR-224, down-regulated miR-26a and miR-125b), the pattern of dysregulated circulating miRNAs in plasma/serum is mirrored in tumor tissue based on multiple independent studies. Dysregulated miRNAs target oncogenes or tumor suppressor genes involved in hepatocarcinogenesis. Normalization of dysregulated miRNAs by up- or down-regulation has been shown to inhibit HCC cell proliferation or sensitize liver cancer cells to chemotherapeutic treatment. miRNAs hold as yet unrealized potential as biomarkers for early detection of HCC and as precision therapeutic targets, but further studies in diverse populations and across all stages of HCC are needed.
Collapse
Affiliation(s)
- Jinghang Xu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ping An
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Cheryl A. Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Yanyan Yu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
31
|
Non-Coding RNAs: Regulating Disease Progression and Therapy Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051243. [PMID: 32429062 PMCID: PMC7281199 DOI: 10.3390/cancers12051243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the primary liver cancer arising from hepatocytes, is a universal health problem and one of the most common malignant tumors. Surgery followed by chemotherapy as well as tyrosine kinase inhibitors (TKIs), such as sorafenib, are primary treatment procedures for HCC, but recurrence of disease because of therapy resistance results in high mortality. It is necessary to identify novel regulators of HCC for developing effective targeted therapies that can significantly interfere with progression of the disease process. Non-coding RNAs (ncRNAs) are an abundant group of versatile RNA transcripts that do not translate into proteins, rather serve as potentially functional RNAs. The role of ncRNAs in regulating diverse aspects of the carcinogenesis process are gradually being elucidated. Recent advances in RNA sequencing technology have identified a plethora of ncRNAs regulating all aspects of hepatocarcinogenesis process and serving as potential prognostic or diagnostic biomarkers. The present review provides a comprehensive description of the biological roles of ncRNAs in disease process and therapy resistance, and potential clinical application of these ncRNAs in HCC.
Collapse
|
32
|
The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:13-27. [PMID: 32505000 PMCID: PMC7270498 DOI: 10.1016/j.omtn.2020.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human malignancies. Chemotherapeutic agents, such as sorafenib and lenvatinib, can improve the outcomes of HCC patients. Nevertheless, chemoresistance has become a major hurdle in the effective treatment of HCC. Noncoding RNAs (ncRNAs), including mircoRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), have been demonstrated to participate in the onset and progression of HCC. Moreover, multiple lines of evidence have indicated that ncRNAs also play a pivotal role in HCC drug resistance. ncRNAs can regulate drug efflux and metabolism, glucose metabolism, cellular death pathways, and malignant characteristics in HCC. A deeper understanding of the molecular mechanisms responsible for ncRNA-mediated drug resistance in HCC will provide new opportunities for improving the treatment of HCC. In this review, we summarize recent findings on the molecular mechanisms by which ncRNAs regulate HCC chemoresistance, as well as their potential clinical implications in overcoming HCC chemoresistance.
Collapse
|
33
|
Abstract
In the present study, we investigated the role of miR-122 in hepatocarcinoma progression and explored the mechanism. In hepatocarcinoma tissues and cells, we used qRT-PCR to validate the miR-122 expression level. Next, we used colony formation by crystal violet staining assay to compare cell proliferation ability, and we used scratch test or Transwell assay to compare cell migration or invasion ability. We then conducted bioinformatics or luciferase reporter gene assay to prove the regulation effect of miR-122 on lamin B2 (LMNB2), and the biological function of LMNB2 was analyzed. We used nude mouse tumorigenicity assay to test the inhibition effect of miR-122 ASO therapy against hepatocarcinoma. miR-122 was reduced in hepatocarcinoma tissues compared to the paracarcinoma tissues, which was relatively low or high in hepatocarcinoma cell line SMMC7721 or Hep3B, and overexpressed miR-122 inhibited proliferation, migration, and invasion in hepatocarcinoma cells. Additionally, some reports showed that LMNB2 was regulated by miR-122, which inhibited the expression of LMNB2. Moreover, LMNB2 functioned to promote cell proliferation, migration, and invasion. We could achieve the inhibition of hepatocarcinoma using miR-122 therapy through decreasing LMNB2 expression in vivo. Our data indicated that miR-122 could inhibit hepatocellular carcinoma cell progression by targeting LMNB2 and as a therapeutic target for hepatocarcinoma treatment.
Collapse
Affiliation(s)
- Xiao-Na Li
- *The Department of General Surgery, Tongde Hospital of Zhejiang Province, Zhejiang Province, P.R. China
| | - Hong Yang
- †The Department of Medical Oncology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, P.R. China
| | - Tao Yang
- ‡The Department of Hepatological Surgery, Tongde Hospital of Zhejiang Province, Zhejiang Province, P.R. China
| |
Collapse
|
34
|
Ma L, Zong X. Metabolic Symbiosis in Chemoresistance: Refocusing the Role of Aerobic Glycolysis. Front Oncol 2020; 10:5. [PMID: 32038983 PMCID: PMC6992567 DOI: 10.3389/fonc.2020.00005] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular metabolic reprogramming is now recognized as a hallmark of tumors. Altered tumor metabolism determines the malignant biological behaviors and phenotypes of cancer. More recently, studies have begun to reveal that cancer cells generally exhibit increased glycolysis or oxidative phosphorylation (OXPHOS) for Adenosine Triphosphate(ATP)generation, which is frequently associated with drug resistance. The metabolism of drug-resistant cells is regulated by the PI3K/AKT/mTOR pathway which ultimately confer cancer cells drug resistance phenotype. The key enzymes involved in glycolysis and the key molecules in relevant pathways have been used as targets to reverse drug resistance. In this review, we highlight our current understanding of the role of metabolic symbiosis in therapeutic resistance and discuss the ongoing effort to develop metabolic inhibitors as anti-cancer drugs to overcome drug resistance to classical chemotherapy.
Collapse
Affiliation(s)
- Lisi Ma
- Department of Breast Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangyun Zong
- Department of Breast Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
35
|
The molecular mechanisms of LncRNA-correlated PKM2 in cancer metabolism. Biosci Rep 2019; 39:220807. [PMID: 31654067 PMCID: PMC6851521 DOI: 10.1042/bsr20192453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Reprogrammed metabolism is an important hallmark of cancer cells. Pyruvate kinase (PK) is one of the major rate-limiting enzymes in glucose metabolism. The M2 isoform of PK (PKM2), is considered to be an important marker of metabolic reprogramming and one of the key enzymes. Recently, through the continuous development of genome-wide analysis and functional studies, accumulating evidence has demonstrated that long non-coding RNAs (LncRNAs) play vital regulatory roles in cancer progression by acting as either potential oncogenes or tumor suppressors. Furthermore, several studies have shown that up-regulation of PKM2 in cancer tissues is associated with LncRNAs expression and patient survival. Thus, scientists have begun to unveil the mechanism of LncRNA-associated PKM2 in cancer metabolic progression. Based on these novel findings, in this mini-review, we summarize the detailed molecular mechanisms of LncRNA related to PKM2 in cancer metabolism. We expect that this work will promote a better understanding of the molecular mechanisms of PKM2, and provide a profound potential for targeting PKM2 to treat tumors.
Collapse
|
36
|
Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, Xie M, Lei T, Zhang N, Yang M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer 2019; 18:147. [PMID: 31651347 PMCID: PMC6814027 DOI: 10.1186/s12943-019-1086-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumor-specific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jibing Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.,Department of Intervention Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
37
|
Sun J, Liu Q, Zhao L, Cui C, Wu H, Liao L, Tang G, Yang S, Yang S. Potential regulation by miRNAs on glucose metabolism in liver of common carp (Cyprinus carpio) at different temperatures. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100628. [PMID: 31677400 DOI: 10.1016/j.cbd.2019.100628] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Water temperature can affect the metabolism of fish. Common carp (Cyprinus carpio) is a representative eurythermic fish that can survive at a wide range of ambient temperatures, allowing it to live in an extensive geographical range. The goal of this work was to study the glucose metabolism of common carp at different temperatures and determine the miRNAs involved in the regulation of glucose metabolism. We determined the indicators related to glucose metabolism after long-term temperature stress and constructed nine small RNA libraries of livers under different temperature stress (5 °C, 17 °C, and 30 °C, with three biological replicates for each temperature), and subjected these samples to high-throughput sequencing. A positive relationship was observed between weight gain rate (WGR) and temperature increase after 18 days of temperature stress. However, the glucose level in the plasma maintained a gentle decrease. Unexpectedly, liver lactic acid levels were elevated in HTG (high temperature group) and LTG (low temperature group). Six down-regulated miRNAs (miR-122, miR-30b, miR-15b-5p, miR-20a-5p, miR-1, and miR-7b) were identified as involved in the regulation of glycolysis. Twelve genes were predicted as targets of these miRNAs, and these genes are in pathways related to pyruvate metabolism, glycolysis/gluconeogenesis, and the citrate cycle (TCA cycle). The results allowed prediction of a potential regulatory network of miRNAs involved in the regulation of glycolysis. The target genes of six down-regulated miRNAs were up-regulated under temperature stress, including Aldolase C, fructose-bisphosphate, b (ALDOCB), multiple inositol-polyphosphate phosphatase 1 (MINPP1), phosphoenolpyruvate carboxykinase 1 (PCK1), pyruvate dehydrogenase E1 alpha 1 (PDHA1), aldehyde dehydrogenase 9 family member A1a (ALDH9A1A), Acetyl-coenzyme A synthetase (ACSS), lactate dehydrogenase b (LDH-b), and glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Other key genes of glycolysis, glucose transporter 1 (GLUT-1), pyruvate kinase PKM (PKM), and mitochondrial pyruvate carrier (MPC) were significantly up-regulated in LTG and HTG. Overall, the results suggest that miRNAs maintain their energy requirements by regulating glycolysis and play an important role in the molecular response to cold and heat stress of common carp. These data provide the foundation for further studies of the role of miRNAs in environmental adaptation in fish.
Collapse
Affiliation(s)
- JunLong Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - LiuLan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hao Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - ShiYong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
38
|
Su Q, Luo S, Tan Q, Deng J, Zhou S, Peng M, Tao T, Yang X. The role of pyruvate kinase M2 in anticancer therapeutic treatments. Oncol Lett 2019; 18:5663-5672. [PMID: 31788038 PMCID: PMC6865080 DOI: 10.3892/ol.2019.10948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells are characterized by a high glycolytic rate, which leads to energy regeneration and anabolic metabolism; a consequence of this is the abnormal expression of pyruvate kinase isoenzyme M2 (PKM2). Multiple studies have demonstrated that the expression levels of PKM2 are upregulated in numerous cancer types. Consequently, the mechanism of action of certain anticancer drugs is to downregulate PKM2 expression, indicating the significance of PKM2 in a chemotherapeutic setting. Furthermore, it has previously been highlighted that the downregulation of PKM2 expression, using either inhibitors or short interfering RNA, enhances the anticancer effect exerted by THP treatment on bladder cancer cells, both in vitro and in vivo. The present review summarizes the detailed mechanisms and therapeutic relevance of anticancer drugs that inhibit PKM2 expression. In addition, the relationship between PKM2 expression levels and drug resistance were explored. Finally, future directions, such as the targeting of PKM2 as a strategy to explore novel anticancer agents, were suggested. The current review explored and highlighted the important role of PKM2 in anticancer treatments.
Collapse
Affiliation(s)
- Qiongli Su
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Shengping Luo
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Qiuhong Tan
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Tao
- Department of Pharmacy, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
39
|
Pratama MY, Pascut D, Massi MN, Tiribelli C. The role of microRNA in the resistance to treatment of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:577. [PMID: 31807558 DOI: 10.21037/atm.2019.09.142] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death with a limited efficacy of treatment for intermediate and advanced stages of the disease. Several therapeutic approaches such as trans-arterial chemoembolization (TACE) with anthracyclines, cisplatin and multikinase inhibitor sorafenib have been appealing choices of treatments yet failed to reach a satisfactory outcome mainly due to the numerous mechanisms that influence patient's response. MicroRNAs (miRNAs) are key regulators of many intracellular processes related to drug resistance. This phenomenon has been linked to the modulation of several complex pathways, ranging from the loss of ability of drug accumulation, protective mechanism of autophagy, adaptive mechanism of cancer cells towards the drugs-induced environment, decrease DNA damage and suppression of downstream events that transduce its signal into apoptosis. We summarize the recent findings on the involvement of miRNAs in various drug resistance-related mechanisms in the development of resistance to anthracyclines, cisplatin and sorafenib therapies. Furthermore, we describe the possible application of miRNAs as circulating biomarkers predicting therapy response in HCC. Thus, the undeniable potential and paramount role of miRNA in drug resistance may eventually lead to improved clinical strategies and outcomes for HCC patients.
Collapse
Affiliation(s)
- Muhammad Yogi Pratama
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy.,Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Devis Pascut
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy
| | | | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy
| |
Collapse
|
40
|
Mahmoudian-Sani MR, Asgharzade S, Alghasi A, Saeedi-Boroujeni A, Adnani Sadati SJ, Moradi MT. MicroRNA-122 in patients with hepatitis B and hepatitis B virus-associated hepatocellular carcinoma. J Gastrointest Oncol 2019; 10:789-796. [PMID: 31392060 DOI: 10.21037/jgo.2019.02.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection is known as a serious problem in the domain of public health and approximately 350 million people across the world are affected with this infectious disease. As well, microRNAs are recognized as a type of small non-coding RNAs that can be widely used as a diagnostic biomarker and prognosis method of special diseases. In this respect, microRNA-122 or miR-122 can play a significant role in the pathogenesis of several hepatic diseases. Given the importance of microRNA-122 in the liver as well as its pathology, this study focused on the potential functions of microRNA-122 in pathogenesis, diagnosis, and treatment of HBV infection. In this regard, the findings of previous studies had indicated that expression of microRNA-122 in patients with HBV infection could be significantly deregulated. The results of this study were consistent with the idea that diagnosis and treatment of this infectious disease using microRNA-122 could be an efficient method.
Collapse
Affiliation(s)
- Mohammad Reza Mahmoudian-Sani
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Alghasi
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyed Jafar Adnani Sadati
- Department of Microbiology & Immunology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Taghi Moradi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
41
|
Sun W, Zhang Q, Wu Z, Xue N. miR-101-3p sensitizes hepatocellular carcinoma cells to oxaliplatin by inhibiting Beclin-1-mediated autophagy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2056-2065. [PMID: 31934027 PMCID: PMC6949619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increasing evidence has shown that autophagy can contribute to drug resistance. Whether microRNA-101-3p (miR-101-3p) participates in oxaliplatin (OXA) resistance via modulating Beclin-1-mediated autophagy in hepatocellular carcinoma (HCC) has not been reported. METHODS OXA-resistant Huh7 cells (Huh7/OXA) or HepG2 cells (HepG2/OXA) and OXA-sensitive Huh7 or HepG2 cells were treated with OXA in various concentrations. The expressions of miR-101-3p and Beclin-1 were monitored using qRT-PCR. Western blot was used to evaluate cell autophagy. Cell viability and the IC50 of OXA were determined using an MTT assay. Cell apoptosis was evaluated by flow cytometry. A luciferase reporter assay was introduced to confirm the relationship between miR-101-3p and Beclin-1. RESULTS miR-101-3p was decreased in HCC resistant tissues and cells. Moreover, an increased expression of miR-101-3p reduced cell viability and the IC50 of OXA, and it promoted cell apoptosis in Huh7/OXA and HepG2/OXA cells. miR-101-3p negatively modulated the expression of Beclin-1. Interestingly, the overexpression of Beclin-1 receded the effect of the ectopic expression of miR-101-3p in OXA-resistant HCC cells. In OXA-sensitive Huh7 and HepG2 cells, OXA significantly increased the expressions of LC3 and Beclin-1, and it decreased the abundance of p62. Furthermore, OXA markedly blocked cell viability, which was exacerbated by the introduction of the autophagy inhibitor CQ. Additionally, the elevated expression of miR-101-3p suppressed cell autophagy by inhibiting the expression of LC3 and Beclin-1 and facilitating the expression of p62. CONCLUSION miR-101-3p is responsible for the sensitivity of HCC cells to OXA by inhibiting Beclin-1-mediated autophagy.
Collapse
Affiliation(s)
- Wenping Sun
- Department of Abdominal Surgery, Gansu Provincial Cancer HospitalLanzhou, Gansu, China
| | - Qiang Zhang
- Department of Urology, Gansu Provincial Cancer HospitalLanzhou, Gansu, China
| | - Zhiwei Wu
- College of Basic Medicine, Gansu University of Chinese MedicineLanzhou, Gansu, China
| | - Na Xue
- College of Basic Medicine, Gansu University of Chinese MedicineLanzhou, Gansu, China
| |
Collapse
|
42
|
Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, Chen J, Mao Y, Wang F, Dai W, Xu L, Wu J, Guo C. PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:204. [PMID: 31101057 PMCID: PMC6525465 DOI: 10.1186/s13046-019-1194-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The treatment for advanced primary hepatocellular carcinoma (HCC) is sorafenib (SORA), while HCC has become increasingly drug resistant with enhanced aerobic glycolysis. The present study aimed to examine the chemotherapeutic effects of a flavonoid proanthocyanidin B2 (PB2) on HCC. METHODS Five kinds of HCC cell lines and LO2 were used to test the effect of PB2 on aerobic glycolysis. The proliferation, cell cycle, apoptosis and a xenograft mouse model were analyzed. Lentivirus overexpressed pyruvate kinase M2 (PKM2) or sh-PKM2 was used to verify the target of PB2. The detailed mechanism was investigated by immunofluorescence, co-immunoprecipitation, and western blotting. RESULTS PB2 inhibited the proliferation, induced cell cycle arrest, and triggered apoptosis of HCC cells in vivo and in vitro. PB2 also suppressed glucose uptake and lactate levels via the direct inhibition of the key glycolytic enzyme, PKM2. In addition, PKM2 inhibited the nuclear translocation of PKM2 and co-localization of PKM2/HIF-1α in the nucleus, leading to the inhibition of aerobic glycolysis. Co-treatment with PB2 was also effective in enhancing the chemosensitivity of SORA. CONCLUSIONS PB2 inhibited the expression and nuclear translocation of PKM2, therefore disrupting the interaction between PKM2/HSP90/HIF-1α, to suppress aerobic glycolysis and proliferation, and trigger apoptosis in HCC via HIF-1α-mediated transcription suppression.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032 China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032 China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336 China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, NO. 1291, Jiangning Road, Putuo District, Shanghai, 200060 China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, NO. 1291, Jiangning Road, Putuo District, Shanghai, 200060 China
| |
Collapse
|
43
|
Amin S, Yang P, Li Z. Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer 2019; 1871:331-341. [PMID: 30826427 DOI: 10.1016/j.bbcan.2019.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Rewiring glucose metabolism, termed as Warburg effect or aerobic glycolysis, is a common signature of cancer cells to meet their high energetic and biosynthetic demands of rapid growth and proliferation. Pyruvate kinase M2 isoform (PKM2) is a key player in such metabolic reshuffle, which functions as a rate-limiting glycolytic enzyme in the cytosol of highly-proliferative cancer cells. During the recent decades, PKM2 has been extensively studied in non-canonical localizations such as nucleus, mitochondria, and extracellular secretion, and pertained to novel biological functions in tumor progression. Such functions of PKM2 open a new avenue for cancer researchers. This review summarizes up-to-date functions of PKM2 at various subcellular localizations of cancer cells and draws attention to the translocation of PKM2 from cytosol into the nucleus induced by posttranslational modifications. Moreover, PKM2 in tumor cells could have an important role in resistance acquisition processes against various chemotherapeutic drugs, which have raised a concern on PKM2 as a potential therapeutic target. Finally, we summarize the current status and future perspectives to improve the potential of PKM2 as a therapeutic target for the development of anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
44
|
Ye J, Zou M, Li P, Liu H. MicroRNA Regulation of Energy Metabolism to Induce Chemoresistance in Cancers. Technol Cancer Res Treat 2019; 17:1533033818805997. [PMID: 30444190 PMCID: PMC6243412 DOI: 10.1177/1533033818805997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since “Warburg effect” has been firstly uncovered in cancer cells in 1956, mounting evidence has supported the molecular mechanism underlying the energy metabolism in induced chemoresistance in cancers. MicroRNAs can mediate fine-tuning of genes in physiological process. MicroRNAs’ energy metabolic role in chemoresistance has been probed recently. In this review, we summarize 5 microRNAs in regulating glucose and lipid metabolism and other energy metabolism. They partially modulate chemoresistance to cancer treatments. Furthermore, we discuss the great therapeutic potential of metabolism-related microRNAs in novel combinatorial means to treat human cancers.
Collapse
Affiliation(s)
- Jin Ye
- 1 The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Manman Zou
- 1 The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei Li
- 1 The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Liu
- 1 The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Zhu Y, Tang H, Zhang L, Gong L, Wu G, Ni J, Tang X. Suppression of miR-21-3p enhances TRAIL-mediated apoptosis in liver cancer stem cells by suppressing the PI3K/Akt/Bad cascade via regulating PTEN. Cancer Manag Res 2019; 11:955-968. [PMID: 30774424 PMCID: PMC6349085 DOI: 10.2147/cmar.s183328] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background TNF-related apoptosis-inducing ligand (TRAIL) functions as a selective apoptosis-inducing ligand in cancer cells with normal cells remaining unaffected; however, resistance limits its anticancer properties. Cancer stem cells (CSCs) are involved in the treatment of resistant cancer cases including liver cancer (LC). The aim of this study was to look into the approaches for increasing the sensitivity of liver cancer stem cells (LCSCs) toward TRAIL. Methodology PLC, HepG2 and Huh7 LC cell lines were used in this study. Quantitative reverse transcription PCR (qRT-PCR) analysis was done for evaluating the expression of miR-21-3b. Fluorescent-activated cell-sorting equipment was used for separation and identification of LCSCs and non-LCSCs. The cells were transfected with RNA along with miR-21-3p mimics, anti- miR-21-3p, miR-NC and the phosphatase and tensin homologue (PTEN) siRNA. MTT assay for cell viability, Luciferase assay for luciferase activity, Western blots for the expression of proteins and flow cytometry for the measurement of ROS and apoptosis, respectively, were carried out. Tumor xenografts nude mice were used for tumor growth in vivo. Results We found that miR-21-3p was overexpressed in LCSCs compared to non-LCSCs and that the suppression of miR-21-3p along with anti-miR-21-3p enhanced the sensitivity of LCSCs to TRAIL-mediated apoptosis. We further found that miR-21-3p regulated the expression of PTEN in Huh7-LCSCs directly and that the suppression of miR-21-3p enhanced the levels of PTEN. The study confirmed that inhibition of the PI3K/Akt/Bad signaling pathway was involved in enhancing TRAIL-mediated apoptosis of LC cells. Conclusion The study suggested that overexpression of miR-21-3p suppresses the sensitivity to TRAIL in LCSCs. This study concludes that the suppression of miR-21-3p is a potential approach for enhancing the sensitivity of LC cells toward TRAIL by PI3K/Akt/Bad cascade via the miR-21-3p/PTEN axis.
Collapse
Affiliation(s)
- Yingwei Zhu
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Hong Tang
- Department of Pathology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China
| | - Lili Zhang
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Lei Gong
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Gaojue Wu
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Jingbin Ni
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Xuejun Tang
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| |
Collapse
|
46
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Nie W, Ni D, Ma X, Zhang Y, Gao Y, Peng C, Zhang X. miR‑122 promotes proliferation and invasion of clear cell renal cell carcinoma by suppressing Forkhead box O3. Int J Oncol 2018; 54:559-571. [PMID: 30483771 PMCID: PMC6317650 DOI: 10.3892/ijo.2018.4636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) serve an important role in renal cancer, but renal cancer miRNA expression data remains inconsistent. Therefore, there is a requirement for integrated analysis of these data. An increasing number of studies demonstrate that miR‑122 is dysregulated in numerous cancer types, including liver, lung and breast cancer, yet its role in clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, an integrated analysis of four ccRCC miRNAs expression datasets was performed and the expression of miR‑122 in the present cohort was validated. The effects of cell proliferation, colony formation, migration and invasion of ccRCC cells in vitro were assayed following transfection with miR‑122 mimics and inhibitor. The target gene of miR‑122 was confirmed using a luciferase reporter assay, and a xenograft mouse model was used to determine the effect of miR‑122 in ccRCC tumorigenicity in vivo. The present results demonstrated that patients with ccRCC with an increased miR‑122 level in tumor tissues had a shortened metastasis‑free survival time as indicated by The Cancer Genome Atlas‑Kidney Renal Clear Cell Carcinoma dataset and the present ccRCC cohort. Overexpression of miR‑122 in 786‑O cells improved cell proliferation, colony formation, migration and invasion, while knockdown of miR‑122 in SN12‑PM6 cells inhibited cell growth, colony formation, migration and invasion. Western blot analysis and luciferase reporter assays were used to identify FOXO3 as a direct target of miR‑122. The present results indicate that miR‑122 serves a tumor‑promoting role by direct targeting FOXO3 in ccRCC.
Collapse
Affiliation(s)
- Wenyuan Nie
- Department of Urology, Chinese People's Liberation Army, 89th Hospital, Weifang, Shandong 261000, P.R. China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| | - Yu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| | - Yu Gao
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| | - Cheng Peng
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| |
Collapse
|
48
|
van Niekerk G, Engelbrecht AM. Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target. Cell Oncol (Dordr) 2018; 41:343-351. [PMID: 29797241 DOI: 10.1007/s13402-018-0383-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Many of the hallmarks of cancer are not inherently unique to cancer, but rather represent a re-enactment of normal host responses and activities. A vivid example is aerobic glycolysis ('Warburg effect'), which is used not only by cancer cells but also by normal cells that undergo rapid proliferation. A common feature of this metabolic adaptation is a shift in the expression of pyruvate kinase (PK) isoform M1 to isoform M2. Here, we highlight the key role of PKM2 in shifting cancer metabolism between ATP production and biosynthetic processes. Since anabolic processes are highly energy dependent, the fate of glucose in energy production versus the contribution of carbon in biosynthetic processes needs to be finely synchronised. PKM2 acts to integrate cellular signalling and allosteric regulation of metabolites in order to align metabolic activities with the changing needs of the cell. CONCLUSIONS The central role of PKM2 in directing the flow of carbon between catabolic (ATP-producing) and anabolic processes provides unique opportunities for extending the therapeutic window of currently available and/or novel anti-neoplastic agents.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
49
|
Barajas JM, Reyes R, Guerrero MJ, Jacob ST, Motiwala T, Ghoshal K. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer. Sci Rep 2018; 8:9105. [PMID: 29904144 PMCID: PMC6002539 DOI: 10.1038/s41598-018-27358-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Thus, a better understanding of molecular aberrations involved in HCC pathogenesis is necessary for developing effective therapy. It is well established that cancer cells metabolize energy sources differently to rapidly generate biomass. Glucose-6-phosphate-dehydrogenase (G6PD), the rate-limiting enzyme of the Pentose Phosphate Pathway (PPP), is often activated in human malignancies to generate precursors for nucleotide and lipid synthesis. Here, we determined the clinical significance of G6PD in primary human HCC by analyzing RNA-seq and clinical data in The Cancer Genome Atlas. We found that the upregulation of G6PD correlates with higher tumor grade, increased tumor recurrence, and poor patient survival. Notably, liver-specific miR-122, which is essential for metabolic homeostasis, suppresses G6PD expression by directly interacting with its 3'UTR. Luciferase reporter assay confirmed two conserved functional miR-122 binding sites located in the 3'-UTR of G6PD. Furthermore, we show that ectopic expression of miR-122 and miR-1, a known regulator of G6PD expression coordinately repress G6PD expression in HCC cells. These miRNAs also reduced G6PD activity in HepG2 cells that express relatively high activity of this enzyme. Collectively, this study provides evidence that anti-HCC efficacy of miR122 and miR-1 could be mediated, at least in part, through inhibition of PPP by suppressing the expression of G6PD.
Collapse
Affiliation(s)
- Juan M Barajas
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ryan Reyes
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Maria J Guerrero
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Samson T Jacob
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Tasneem Motiwala
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Kalpana Ghoshal
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
50
|
Zhang R, Xu J, Zhao J, Bai J. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex. Oncotarget 2018; 8:45213-45223. [PMID: 28423356 PMCID: PMC5542179 DOI: 10.18632/oncotarget.16779] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs have been proved to participate in multiple biological processes in cancers. For developing resistance to cytotoxic drug, cancer cells, especially the cancer stem cells, usually change their microRNA expression profile to survive in hostile environments. In the present study, we found that expression of microRNA-27a was increased in colorectal cancer stem cells. High level of microRNA-27a was indicated to induce the resistance to TNF-related apoptosis-inducing ligand (TRAIL). Knockdown of microRNA-27a resensitized colorectal cancer stem cells to TRAIL-induced cell death. Mechanically, the gene of Apaf-1, which is associated with the mitochondrial apoptosis, was demonstrated to be the target of microRNA-27a in colorectal cancer stem cells. Knockdown of microRNA-27a increased the expression level of Apaf-1, thus enhancing the formation of Apaf-1-caspase-9 complex and subsequently promoting the TRAIL-induced apoptosis in colorectal cancer stem cells. These findings suggested that knockdown of microRNA-27a in colorectal cancer stem cells by the specific antioligonucleotides was potential to reverse the chemoresistance to TRAIL. It may represent a novel therapeutic strategy for treating the colorectal cancer more effectively.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang 110042, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang 110042, China
| | - Jian Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang 110042, China
| | - Jinghui Bai
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang 110042, China
| |
Collapse
|