1
|
Martínez-Sánchez JE, Cárdenas Y, Trujillo X, Ríos-Silva M, Díaz-Reval MI, Bricio-Barrios JA, Muñiz J, Alcaraz-Siqueiros J, Huerta M. Increased Frequency of Giant Miniature End-Plate Potentials at the Neuromuscular Junction in Diabetic Rats. Biomedicines 2023; 12:68. [PMID: 38255175 PMCID: PMC10813272 DOI: 10.3390/biomedicines12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
There is a need for research addressing the functional characteristics of the motor end-plate in diabetes to identify mechanisms contributing to neuromuscular dysfunction. Here, we investigated the effect of diabetes on spontaneous acetylcholine release in the rat neuromuscular junction. We studied two randomized groups of male Wistar rats (n = 7 per group, 350 ± 50 g, 12-16 weeks of age): one with streptozotocin-induced experimental diabetes, and a healthy control group without diabetes. After 8 weeks of monitoring after diabetes induction, rats in both groups were anesthetized with pentobarbital. Then, the diaphragm muscle was dissected for electrophysiological recordings of miniature end-plate potentials (MEPPs) using a single electrode located at the region of the muscle end-plate. All experiments were conducted at environmental temperature (20-22 °C) in rat Ringer solution with constant bubbling carbogen (95% O2, 5% CO2). Compared to healthy controls, in the diaphragm neuromuscular end-plate derived from diabetic rats, the MEPPs were higher in amplitude and frequency, and the proportion of giant MEPPs was elevated (7.09% vs. 1.4% in controls). Our results showed that diabetes affected the acetylcholine MEPP pattern and increased the number of giant potentials compared to healthy controls.
Collapse
Affiliation(s)
- Julián Elías Martínez-Sánchez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Yolitzy Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Mónica Ríos-Silva
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima—CONAHCyT, Av. 25 de Julio 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico
| | - M. Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Jaime Alberto Bricio-Barrios
- Facultad de Medicina, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Colima, Mexico;
| | - Jesús Muñiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Julio Alcaraz-Siqueiros
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Km 40 Autopista Colima-Manzanillo, Crucero de Tecomán, Tecomán 28930, Colima, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| |
Collapse
|
2
|
Ríos-Silva M, Cárdenas Y, Ortega-Macías AG, Trujillo X, Murillo-Zamora E, Mendoza-Cano O, Bricio-Barrios JA, Ibarra I, Huerta M. Animal models of kidney iron overload and ferroptosis: a review of the literature. Biometals 2023; 36:1173-1187. [PMID: 37356039 DOI: 10.1007/s10534-023-00518-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
In recent years, it has been identified that excess iron contributes to the development of various pathologies and their complications. Kidney diseases do not escape the toxic effects of iron, and ferroptosis is identified as a pathophysiological mechanism that could be a therapeutic target to avoid damage or progression of kidney disease. Ferroptosis is cell death associated with iron-dependent oxidative stress. To study the effects of iron overload (IOL) in the kidney, numerous animal models have been developed. The methodological differences between these models should reflect the IOL-generating mechanisms associated with human IOL diseases. A careful choice of animal model should be considered for translational purposes.
Collapse
Affiliation(s)
- Mónica Ríos-Silva
- Consejo Nacional de Humanidades, Ciencia y Tecnología, Mexico City, Mexico City, Mexico
| | - Yolitzy Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico
| | | | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico
| | - Efrén Murillo-Zamora
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Villa de Álvarez, Colima, Mexico
| | - Oliver Mendoza-Cano
- Facultad de Ingeniería Civil, Universidad de Colima, Coquimatlán, Colima, Mexico
| | | | - Isabel Ibarra
- Facultad de Medicina, Universidad de Colima, Colima, Colima, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico.
| |
Collapse
|
3
|
Wang G, Wang S, Ouyang X, Wang H, Li X, Yao Z, Chen S, Fan C. Glycolipotoxicity conferred tendinopathy through ferroptosis dictation of tendon-derived stem cells by YAP activation. IUBMB Life 2023; 75:1003-1016. [PMID: 37503658 DOI: 10.1002/iub.2771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Tendinopathy is a condition characterized by chronic, complex, and multidimensional pathological changes in the tendons. The etiology of tendinopathy is the combination of several factors, and diabetes mellitus (DM) is a risk factor. Increasing evidence has shown that the diabetic microenvironment plays an important role in tendinopathy. However, the mechanism causing tendinopathy in patients with DM remains unclear. Our study found that ferroptosis played an important role in tendinopathy in patients with DM. In vitro, high glucose and high fat treatment was used to simulate the DM microenvironment. Results showed that such a mechanism significantly increased ferroptosis, which was characterized by mass cell death, lipid peroxide accumulation, mitochondrial morphological changes, mitochondrial membrane potential decline, iron overload, and the activation of ferroptosis-related genes, in tendon-derived stem cells cultured in vitro. In the animal studies, db/db mice were used in the DM model, and the db mice had severe tendon injury and high ACSL4 and TfR1 expressions. These phenomena could be alleviated by the ferroptosis inhibitor ferrostatin-1. In conclusion, ferroptosis is associated with tendinopathy in patients with DM, and ferroptosis targeting may be a novel approach for treating diabetic tendinopathy. Our results can provide a new strategy for managing tendinopathy clinically in patients with DM.
Collapse
Affiliation(s)
- Gang Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shikun Wang
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xingyu Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Wang
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuai Chen
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
4
|
Wikan N, Tocharus J, Oka C, Sivasinprasasn S, Chaichompoo W, Suksamrarn A, Tocharus C. The capsaicinoid nonivamide suppresses the inflammatory response and attenuates the progression of steatosis in a NAFLD-rat model. J Biochem Mol Toxicol 2023; 37:e23279. [PMID: 36541345 DOI: 10.1002/jbt.23279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-β1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
López M, Quintero-Macías L, Huerta M, Rodríguez-Hernández A, Melnikov V, Cárdenas Y, Bricio-Barrios JA, Sánchez-Pastor E, Gamboa-Domínguez A, Leal C, Trujillo X, Ríos-Silva M. Capsaicin Decreases Kidney Iron Deposits and Increases Hepcidin Levels in Diabetic Rats with Iron Overload: A Preliminary Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227764. [PMID: 36431865 PMCID: PMC9695924 DOI: 10.3390/molecules27227764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Iron overload (IOL) increases the risk of diabetes mellitus (DM). Capsaicin (CAP), an agonist of transient receptor potential vanilloid-1 (TRPV1), reduces the effects of IOL. We evaluated the effects of chronic CAP administration on hepcidin expression, kidney iron deposits, and urinary biomarkers in a male Wistar rat model with IOL and DM (DM-IOL). IOL was induced with oral administration of iron for 12 weeks and DM was induced with streptozotocin. Four groups were studied: Healthy, DM, DM-IOL, and DM-IOL + CAP (1 mg·kg-1·day-1 for 12 weeks). Iron deposits were visualized with Perls tissue staining and a colorimetric assay. Serum hepcidin levels were measured with an enzyme-linked immunosorbent assay. Kidney biomarkers were assayed in 24 h urine samples. In the DM-IOL + CAP group, the total area of iron deposits and the total iron content in kidneys were smaller than those observed in both untreated DM groups. CAP administration significantly increased hepcidin levels in the DM-IOL group. Urinary levels of albumin, cystatin C, and beta-2-microglobulin were similar in all three experimental groups. In conclusion, we showed that in a DM-IOL animal model, CAP reduced renal iron deposits and increased the level of circulating hepcidin.
Collapse
Affiliation(s)
- Marisa López
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Laura Quintero-Macías
- Faculty of Medicine, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Mexico
| | - Miguel Huerta
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | | | - Valery Melnikov
- Faculty of Medicine, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Mexico
| | - Yolitzy Cárdenas
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | | | - Enrique Sánchez-Pastor
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Armando Gamboa-Domínguez
- Belisario Domínguez Sección XVI, Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Caridad Leal
- Centro de Investigaciones Biomédicas de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada No. 800, Col. Independencia, Guadalajara 44340, Mexico
| | - Xóchitl Trujillo
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Mónica Ríos-Silva
- University Center of Biomedical Research, CONACyT-Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
- Correspondence: ; Tel./Fax: +52-312-316-1000 (ext. 70557 or 47452)
| |
Collapse
|
6
|
Vargas-Vargas MA, Saavedra-Molina A, Gómez-Barroso M, Peña-Montes D, Cortés-Rojo C, Miguel H, Trujillo X, Montoya-Pérez R. Dietary Iron Restriction Improves Muscle Function, Dyslipidemia, and Decreased Muscle Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2022; 11:antiox11040731. [PMID: 35453417 PMCID: PMC9030937 DOI: 10.3390/antiox11040731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus is a chronic degenerative disease characterized by hyperglycemia and oxidative stress. Iron catalyzes free radical overproduction. High iron concentrations have previously been reported to promote an increase in oxidative stress; however, the effect of iron restriction in diabetes has not yet been explored, so we tested to see if iron restriction in diabetic rats reduces oxidative damage and improved muscle function. Wistar rats were assigned to 4 groups: Control; Diabetic; Diabetic rats with a high iron diet, and Diabetic with dietary iron restriction. After 8 weeks the rats were sacrificed, the muscles were extracted to prepare homogenates, and serum was obtained for biochemical measurements. Low iron diabetic rats showed an increase in the development of muscle strength in both muscles. Dietary iron restriction decreased triglyceride concentrations compared to the untreated diabetic rats and the levels of extremely low-density lipoproteins. Aggravation of lipid peroxidation was observed in the diabetic group with a high iron diet, while these levels remained low with iron restriction. Iron restriction improved muscle strength development and reduced fatigue times; this was related to better lipid profile control and decreased oxidant stress markers.
Collapse
Affiliation(s)
- Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico; (M.A.V.-V.); (A.S.-M.); (M.G.-B.); (D.P.-M.); (C.C.-R.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico; (M.A.V.-V.); (A.S.-M.); (M.G.-B.); (D.P.-M.); (C.C.-R.)
| | - Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico; (M.A.V.-V.); (A.S.-M.); (M.G.-B.); (D.P.-M.); (C.C.-R.)
| | - Donovan Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico; (M.A.V.-V.); (A.S.-M.); (M.G.-B.); (D.P.-M.); (C.C.-R.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico; (M.A.V.-V.); (A.S.-M.); (M.G.-B.); (D.P.-M.); (C.C.-R.)
| | - Huerta Miguel
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Las Víboras, Colima 24040, Mexico; (H.M.); (X.T.)
| | - Xochitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Las Víboras, Colima 24040, Mexico; (H.M.); (X.T.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico; (M.A.V.-V.); (A.S.-M.); (M.G.-B.); (D.P.-M.); (C.C.-R.)
- Correspondence:
| |
Collapse
|
7
|
Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal 2021; 35:387-414. [PMID: 33554718 PMCID: PMC8328045 DOI: 10.1089/ars.2020.8167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Significance: While atherosclerosis is an almost inevitable consequence of aging, food preferences, lack of exercise, and other aspects of the lifestyle in many countries, the identification of new risk factors is of increasing importance to tackle a disease, which has become a major health burden for billions of people. Iron has long been suspected to promote the development of atherosclerosis, but data have been conflicting, and the contribution of iron is still debated controversially. Recent Advances: Several experimental and clinical studies have been recently published about this longstanding controversial problem, highlighting the critical need to unravel the complexity behind this topic. Critical Issues: The aim of the current review is to provide an overview of the current knowledge about the proatherosclerotic impact of iron, and discuss the emerging role of non-transferrin-bound iron (NTBI) as driver of vasculotoxicity and atherosclerosis. Finally, I will provide detailed mechanistic insights on the cellular processes and molecular pathways underlying iron-exacerbated atherosclerosis. Overall, this review highlights a complex framework where NTBI acts at multiple levels in atherosclerosis by altering the serum and vascular microenvironment in a proatherogenic and proinflammatory manner, affecting the functionality and survival of vascular cells, promoting foam cell formation and inducing angiogenesis, calcification, and plaque destabilization. Future Directions: The use of additional iron markers (e.g., NTBI) may help adequately predict predisposition to cardiovascular disease. Clinical studies are needed in the aging population to address the atherogenic role of iron fluctuations within physiological limits and the therapeutic value of iron restriction approaches. Antioxid. Redox Signal. 35, 387-414.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), New York Blood Center (NYBC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
8
|
Tiglis M, Cobilinschi C, Elena Mirea L, Emil Băetu A, Peride I, Paul Neagu T, Niculae A, Alexandru Checherită I, Marina Grintescu I. The Importance of Iron Administration in Correcting Anaemia After Major Surgery. J Crit Care Med (Targu Mures) 2021; 7:184-191. [PMID: 34722921 PMCID: PMC8519388 DOI: 10.2478/jccm-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Postoperative anaemia can affect more than 90% of patients undergoing major surgeries. Patients develop an absolute iron deficiency in the face of significant blood loss or preoperative anaemia and major surgery. Studies have shown the negative impact of these factors on transfusion requirements, infections, increased hospitalisation and long-term morbidities. AIM OF THE STUDY The research was performed to determine the correlation between intravenous iron administration in the postoperative period and improved haemoglobin correction trend. MATERIAL AND METHODS A prospective study was conducted to screen and treat iron deficiency in patients undergoing major surgery associated with significant bleeding. For iron deficiency anaemia screening, in the postoperative period, the following bioumoral parameters were assessed: haemoglobin, serum iron, transferrin saturation (TSAT), and ferritin, direct serum total iron-binding capacity (dTIBC), mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH). In addition, serum glucose, fibrinogen, urea, creatinine and lactate values were also collected. RESULTS Twenty-one patients undergoing major surgeries (52,38% were emergency and 47,61% elective interventions) were included in the study. Iron deficiency, as defined by ferritin 100-300 μg/L along with transferrin saturation (TSAT) < 20 %, mean corpuscular volume (MVC) < 92 fL, mean corpuscular haemoglobin (MCH) < 33 g/dL, serum iron < 10 μmol/L and direct serum total iron-binding capacity (dTIBC) > 36 μmol/L, was identified in all cases. To correct the deficit and optimise the haematological status, all patients received intravenous ferric carboxymaltose (500-1000 mg, single dose). Using Quadratic statistical analysis, the trend of haemoglobin correction was found to be a favourable one. CONCLUSION The administration of intravenous ferric carboxymaltose in the postoperative period showed the beneficial effect of this type of intervention on the haemoglobin correction trend in these groups of patients.
Collapse
Affiliation(s)
- Mirela Tiglis
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Emergency Clinical Hospital of Bucharest, BucharestRomania
| | - Cristian Cobilinschi
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Emergency Clinical Hospital of Bucharest, BucharestRomania
| | - Liliana Elena Mirea
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Emergency Clinical Hospital of Bucharest, BucharestRomania
| | - Alexandru Emil Băetu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Emergency Clinical Hospital of Bucharest, BucharestRomania
| | - Ileana Peride
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Andrei Niculae
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Ioana Marina Grintescu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Emergency Clinical Hospital of Bucharest, BucharestRomania
| |
Collapse
|
9
|
Type 2 Diabetes Alters Vascular Cannabinoid Receptor 1 Expression, Phosphorylation Status, and Vasorelaxation in Rat Aorta. Molecules 2020; 25:molecules25214948. [PMID: 33114620 PMCID: PMC7662259 DOI: 10.3390/molecules25214948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Previous studies have suggested a role of the endocannabinoid system in metabolic diseases, such as diabetes. We investigated the effect of diabetes on cannabinoid receptor type 1 (CB1) expression and cannabinoid-induced vasorelaxation in rat aorta rings. Aortas from healthy rats and from rats with experimentally induced diabetes were used to compare the vasorelaxant effect of the cannabinoid agonist arachidonylcyclopropylamide (ACPA) and CB1 expression and localization. After 4–8 weeks of diabetes induction, CB1 receptor expression and CB1 phosphorylation were higher in aortic rings, in association with greater vasorelaxation induced by the CB1 agonist ACPA compared to healthy rats. The vasorelaxant effect observed in healthy rats is similar throughout the study. Further studies are needed to elucidate the implications of CB1 receptor overexpression in diabetes and its influence on the progression of the cardiovascular complications of this metabolic disease.
Collapse
|
10
|
Staniek HZ, Król E, Wójciak RW. The Interactive Effect of High Doses of Chromium(III) and Different Iron(III) Levels on the Carbohydrate Status, Lipid Profile, and Selected Biochemical Parameters in Female Wistar Rats. Nutrients 2020; 12:nu12103070. [PMID: 33050015 PMCID: PMC7599772 DOI: 10.3390/nu12103070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to evaluate the main and interactive effects of chromium(III) propionate complex (Cr3) supplementation and different iron supply on the carbohydrate metabolism, lipid profile and other selected biochemical parameters of rats. The experiment was carried out in a two-factor design, in which rats were fed a diet with different proportions of Fe(III) and Cr(III) for six weeks. Fifty-four healthy female Wistar rats were divided into nine experimental groups with different Fe(III) levels, i.e. adequate-control group (45 mg/kg)-100% recommended daily dietary dose of Fe for rodents, deficient (5 mg/kg) and oversupply (180 mg/kg-400%). At the same time they were supplemented with Cr(III) of doses 1 (adequate), 50 and 500 mg/kg of diet. The activity and concentrations of most biochemical parameters were measured with standard enzymatic, kinetic, and colorimetric methods. HOMA-IR and QUICKI indexes were calculated according to appropriate formulas. It was found that there was an interactive effect of high Cr(III) doses and different Fe(III) levels in the diet on the carbohydrate metabolism and insulin resistance indexes. The presented results suggested that iron deficient diet fed animals led to insulin resistance; however, an effect is attenuated by Cr(III) supplementation at high doses. There were no significant changes in the rats' lipid profile (except for the high density lipoprotein cholesterol (HDL-C) level) and most of the other biochemical parameters, such as the leptin, aspartate aminotransferase (AST), alanine transaminase (ALT), total protein (TP), creatinine (Crea) and the urea (BUN) concentrations. The study proved that the Cr(III) supplementation, independently and in combination with diversified Fe(III) content in the diet, affected the carbohydrate metabolism and insulin resistance indexes but did not affect lipid profile and most of the other biochemical parameters in healthy rats. The findings proved the role of Fe and Cr(III) and their interactions on disturbances carbohydrates metabolism.
Collapse
Affiliation(s)
- Halina Zofia Staniek
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-624 Poznan, Poland;
- Correspondence: ; Tel.: +48-(61)-8487334
| | - Ewelina Król
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-624 Poznan, Poland;
| | - Rafał Wojciech Wójciak
- Department of Clinical Psychology, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
11
|
Peña-Montes DJ, Huerta-Cervantes M, Ríos-Silva M, Trujillo X, Cortés-Rojo C, Huerta M, Saavedra-Molina A. Effects of dietary iron restriction on kidney mitochondria function and oxidative stress in streptozotocin-diabetic rats. Mitochondrion 2020; 54:41-48. [DOI: 10.1016/j.mito.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
12
|
Hepcidin Peptide Inhibitor as Cardioprotection by Targeting Oxidative Stress and Inflammation in Type 1 Diabetic. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09912-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Wikan N, Tocharus J, Sivasinprasasn S, Kongkaew A, Chaichompoo W, Suksamrarn A, Tocharus C. Capsaicinoid nonivamide improves nonalcoholic fatty liver disease in rats fed a high-fat diet. J Pharmacol Sci 2020; 143:188-198. [PMID: 32414691 DOI: 10.1016/j.jphs.2020.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic disease that causes morbidity associated with metabolic syndrome. NAFLD is a worldwide problem and represents a major cause of liver injury, which can lead to liver cell death. We investigated the effects of nonivamide (pelargonic acid vanillylamide, PAVA; 1 mg/kg) and rosuvastatin (RSV; 10 mg/kg) on hepatic steatosis induced by a high-fat diet (HFD). Male Sprague-Dawley rats were fed a HFD for 16 weeks then received PAVA or RSV for 4 additional weeks. We examined the metabolic parameters, function, fat content, histological alterations, reactive oxygen species production, and apoptotic cell death of the liver, in addition to the expression of the following important molecules: transient receptor potential cation channel subfamily V member 1 (TRPV1) phosphorylation of sterol regulatory element binding protein (pSREBP-1c/SREBP-1c), total and membrane glucose transporter 2 (GLUT2), 4-hydroxynonenal (4-HNE), and cleaved caspase-3. HFD-induced hepatic steatosis was associated with significantly increased morphological disorganization, injury markers, oxidative stress, lipid peroxidation, and apoptosis. However, metabolic dysfunction and hepatic injury were reduced by RSV and PAVA treatment. PAVA regulated lipid deposition, improved insulin resistance, and decreased oxidative stress and apoptotic cell death. Therefore, PAVA represents a promising therapeutic approach for treating metabolic disorders in patients with NAFLD.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
14
|
Deferoxamine regulates neuroinflammation and oxidative stress in rats with diabetes-induced cognitive dysfunction. Inflammopharmacology 2019; 28:575-583. [DOI: 10.1007/s10787-019-00665-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
|
15
|
Esfandiar Z, Hosseini-Esfahani F, Mirmiran P, Habibi-Moeini AS, Azizi F. Red meat and dietary iron intakes are associated with some components of metabolic syndrome: Tehran Lipid and Glucose Study. J Transl Med 2019; 17:313. [PMID: 31533731 PMCID: PMC6751740 DOI: 10.1186/s12967-019-2059-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study was conducted to investigate whether the daily consumption of haem, non-haem, total iron and red meat can affect the occurrence of metabolic syndrome (MetS) and its components. METHODS Eligible adults (n = 4654) were selected from among participants of the Tehran Lipid and Glucose Study with an average follow-up of 3.8 years. Dietary intakes were assessed using a valid and reliable semi-quantitative food frequency questionnaire. Anthropometrics and biochemical variables were evaluated at baseline and follow-up examinations. The occurrence of MetS and its components were assessed in relation to haem, non-haem, total iron and red meat intakes. RESULTS There was no relationship between different types of dietary iron and red meat intakes and the incidence of MetS in the Tehranian population. Risk of hypertension decreased from quartiles 1 to 4 for haem iron (HR: 1.00, 0.92, 0.81, 0.80, Ptrend < 0.01) and red meat intake (HR: 1.00, 0.89, 0.84, 0.77, Ptrend < 0.01). The association between hyperglycemia and the fourth quartile of total iron intake was significant (HR = 1.98, 95% CI 1.08-3.63); and the risk of high triglyceride appeared to increase in higher quartiles of total iron intake (HR: 1.00, 1.17, 1.49, 1.75, Ptrend = 0.01) compared to lower quartiles. CONCLUSION Our study suggests a potentially protective relationship of haem and moderate red meat intake against development of high blood pressure; and higher intake of total iron is related to hyperglycemia and high triglyceride.
Collapse
Affiliation(s)
- Zohre Esfandiar
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali-Siamak Habibi-Moeini
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes. Molecules 2018; 24:molecules24010036. [PMID: 30583465 PMCID: PMC6337195 DOI: 10.3390/molecules24010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Capsaicin is an agonist of the transient receptor potential vanilloid type 1 (TRPV1) channel, which has been related to the pathophysiology of kidney disease secondary to diabetes. This study aimed to evaluate the chronic effect of capsaicin administration on biomarkers of kidney injury in an experimental rat model of diabetes. Male Wistar rats were assigned to four groups: (1) healthy controls without diabetes (CON), (2) healthy controls plus capsaicin at 1 mg/kg/day (CON + CAPS), (3) experimental diabetes without capsaicin (DM), and (4) experimental diabetes plus capsaicin at 1 mg/kg/day (DM + CAPS). For each group, 24-h urine samples were collected to determine diuresis, albumin, cystatin C, β2 microglobulin, epidermal growth factor (EGF), alpha (1)-acid glycoprotein, and neutrophil gelatinase-associated lipocalin (NAG-L). Blood samples were drawn to measure fasting glucose. After 8 weeks, the CON + CAPS and DM + CAPS groups showed increased diuresis compared to the CON and DM groups, but the difference was significant only in the DM + CAPS group. The two-way ANOVA only showed a statistically significant effect of CAPS on the urinary EGF levels, as well as a tendency to have a significant effect in the urinary NAG-L levels. The EGF levels decreased in both CAPS-treated groups, but the change was only significant in the CON + CAPS group vs. CON group; and the NAG-L levels were lower in both CAPS-treated groups. These results show that capsaicin had a diuretic effect in healthy and diabetic rats; additionally, it increased the urinary EGF levels and tended to decrease the urinary NAG-L levels.
Collapse
|
17
|
Heme ameliorates dextran sodium sulfate-induced colitis through providing intestinal macrophages with noninflammatory profiles. Proc Natl Acad Sci U S A 2018; 115:8418-8423. [PMID: 30061415 PMCID: PMC6099887 DOI: 10.1073/pnas.1808426115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following hemorrhage in damaged tissues, hemoglobin induces macrophages (Mϕs) possessing ability to protect against tissue inflammation. Hemorrhage-appearing mucosa is observed in patients with inflammatory bowel disease. However, heme-mediated modulation of intestinal Mϕ activity remains poorly understood. Here, we provide evidence that Spi-C induced by heme is a key molecule for providing noninflammatory gene expression patterns of intestinal CX3CR1high Mϕs. We found that the Spic deficiency in intestinal Mϕs resulted in increased sensitivity to dextran sodium sulfate-induced colitis. Heme-mediated Spi-C inhibited a subset of LPS-induced genes such as Il6 and Il1a by intestinal CX3CR1high Mϕs through inhibition of IRF5-NF-κB p65 complex formation. These results reveal a mechanism modulating the noninflammatory phenotype of intestinal Mϕs and may help identify targets for therapy of intestinal inflammation. The local environment is crucial for shaping the identities of tissue-resident macrophages (Mϕs). When hemorrhage occurs in damaged tissues, hemoglobin induces differentiation of anti-inflammatory Mϕs with reparative function. Mucosal bleeding is one of the pathological features of inflammatory bowel diseases. However, the heme-mediated mechanism modulating activation of intestinal innate immune cells remains poorly understood. Here, we show that heme regulates gut homeostasis through induction of Spi-C in intestinal CX3CR1high Mϕs. Intestinal CX3CR1high Mϕs highly expressed Spi-C in a heme-dependent manner, and myeloid lineage-specific Spic-deficient (Lyz2-cre; Spicflox/flox) mice showed severe intestinal inflammation with an increased number of Th17 cells during dextran sodium sulfate-induced colitis. Spi-C down-regulated the expression of a subset of Toll-like receptor (TLR)-inducible genes in intestinal CX3CR1high Mϕs to prevent colitis. LPS-induced production of IL-6 and IL-1α, but not IL-10 and TNF-α, by large intestinal Mϕs from Lyz2-cre; Spicflox/flox mice was markedly enhanced. The interaction of Spi-C with IRF5 was linked to disruption of the IRF5-NF-κB p65 complex formation, thereby abrogating recruitment of IRF5 and NF-κB p65 to the Il6 and Il1a promoters. Collectively, these results demonstrate that heme-mediated Spi-C is a key molecule for the noninflammatory signature of intestinal Mϕs by suppressing the induction of a subset of TLR-inducible genes through binding to IRF5.
Collapse
|
18
|
Landau D, London L, Bandach I, Segev Y. The hypoxia inducible factor/erythropoietin (EPO)/EPO receptor pathway is disturbed in a rat model of chronic kidney disease related anemia. PLoS One 2018; 13:e0196684. [PMID: 29738538 PMCID: PMC5940200 DOI: 10.1371/journal.pone.0196684] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
Objectives Anemia is a known driver for hypoxia inducible factor (HIF) which leads to increased renal erythropoietin (EPO) synthesis. Bone marrow (BM) EPO receptor (EPOR) signals are transduced through a JAK2-STAT5 pathway. The origins of anemia of chronic kidney disease (CKD) are multifactorial, including impairment of both renal EPO synthesis as well as intestinal iron absorption. We investigated the HIF- EPO- EPOR axis in kidney, BM and proximal tibia in anemic juvenile CKD rats. Methods CKD was induced by 5/6 nephrectomy in young (20 days old) male Sprague-Dawley rats while C group was sham operated. Rats were sacrificed 4 weeks after CKD induction and 5 minutes after a single bolus of IV recombinant human EPO. An additional control anemic (C-A) group was daily bled for 7 days. Results Hemoglobin levels were similarly reduced in CKD and C-A (11.4 ± 0.3 and 10.8±0.2 Vs 13.5±0.3 g/dL in C, p<0.0001). Liver hepcidin mRNA was decreased in CA but increased in CKD. Serum iron was unchanged while transferrin levels were mildly decreased in CKD. Kidney HIF2α protein was elevated in C-A but unchanged in CKD. Kidney EPO protein and mRNA levels were unchanged between groups. However, BM EPO protein (which reflects circulating EPO) was increased in C-A but remained unchanged in CKD. BM and proximal tibia EPOR were unchanged in C-A but decreased in CKD. Proximal tibial phospho-STAT5 increased after the EPO bolus in C but not in CKD. Conclusions Compared to blood loss, anemia in young CKD rats is associated with inappropriate responses in the HIF-EPO-EPO-R axis: kidney HIF2α and renal EPO are not increased, BM and bone EPOR levels, as well as bone pSTAT5 response to EPO are reduced. Thus, anemia of CKD may be treated with additional therapeutic avenues beyond iron and EPO supplementation.
Collapse
Affiliation(s)
- Daniel Landau
- Department of Pediatrics B, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Lital London
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Inbar Bandach
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yael Segev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
19
|
Triawanti T, Yunanto A, Dwi Sanyoto D, Wana Nuramin H. Nutritional Status Improvement in Malnourished Rat (Rattus norvegicus) after Seluang Fish (Rasbora spp.) Treatment. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2018. [DOI: 10.12944/crnfsj.6.1.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prevalence of malnutrition in Indonesia is still high although it has some potential source of nutrients. Seluang fish (Rasbora spp.) is a river fish consumed by the people of South Kalimantan, Indonesia. This study analyzed the improvement of nutritional status in the malnourished rats after treatment with Seluang Fish. The study used malnourished white rats (Rattus norvegicus) using a low protein and fat diet for 8 weeks. The rats were divided into three groups; malnourished group (M) without other dietary treatment, standard diet (P1) and seluang diet (P2) for a period of four weeks. The malnourished group was sacrificed first, and after four weeks treatment, other groups were sacrificed; blood and bones were taken for weight, protein levels, hemoglobin levels, bone length, bone calcium levels and IGF-1 levels. The results showed that the average of body weight for all the studied groups ranged between 190 to 220g. Seluang diet had the highest serum protein levels (4.388 mg/dL), hemoglobin (19.7 mg/dL) and IGF levels (388.7 ng/mL). Standard diet had the longest bone length (3.547 cm) and the highest Calcium levels of 1.68 mg/g. Based on these results, it was concluded that Seluang fish may have the potential to improve the nutritional status of malnourished rats.
Collapse
Affiliation(s)
- Triawanti Triawanti
- Department of Biochemistry, Faculty of Medicine, Lambung Mangkurat University
| | - Ari Yunanto
- Department of Pediatrics, Faculty of Medicine, Lambung Mangkurat University
| | | | - Hendra Wana Nuramin
- Department of Pharmacology, Faculty of Medicine, Lambung Mangkurat University
| |
Collapse
|
20
|
Song JX, Ren H, Gao YF, Lee CY, Li SF, Zhang F, Li L, Chen H. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice. Front Physiol 2017; 8:602. [PMID: 28890700 PMCID: PMC5575157 DOI: 10.3389/fphys.2017.00602] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background: The effects of capsaicin on obesity and glucose homeostasis are still controversial and the mechanisms underlying these effects remain largely unknown. This study aimed to investigate the potential relationship between the regulation of obesity and glucose homeostasis by dietary capsaicin and the alterations of gut microbiota in obese diabetic ob/ob mice. Methods: The ob/ob mice were subjected to a normal, low-capsaicin (0.01%), or high-capsaicin (0.02%) diet for 6 weeks, respectively. Obesity phenotypes, glucose homeostasis, the gut microbiota structure and composition, short-chain fatty acids, gastrointestinal hormones, and pro-inflammatory cytokines were measured. Results: Both the low- and high-capsaicin diets failed to prevent the increase in body weight, adiposity index, and Lee's obesity index. However, dietary capsaicin at both the low and high doses significantly inhibited the increase of fasting blood glucose and insulin levels. These inhibitory effects were comparable between the two groups. Similarly, dietary capsaicin resulted in remarkable improvement in glucose and insulin tolerance. In addition, neither the low- nor high-capsaicin diet could alter the α-diversity and β-diversity of the gut microbiota. Taxonomy-based analysis showed that both the low- and high-capsaicin diets, acting in similar ways, significantly increased the Firmicutes/Bacteroidetes ratio at the phylum level as well as increased the Roseburia abundance and decreased the Bacteroides and Parabacteroides abundances at the genus level. Spearman's correlation analysis revealed that the Roseburia abundance was negatively while the Bacteroides and Parabacteroides abundances were positively correlated to the fasting blood glucose level and area under the curve by the oral glucose tolerance test. Finally, the low- and high-capsaicin diets significantly increased the fecal butyrate and plasma total GLP-1 levels, but decreased plasma total ghrelin, TNF-α, IL-1β, and IL-6 levels as compared with the normal diet. Conclusions: The beneficial effects of dietary capsaicin on glucose homeostasis are likely associated with the alterations of specific bacteria at the genus level. These alterations in bacteria induced by dietary capsaicin contribute to improved glucose homeostasis through increasing short-chain fatty acids, regulating gastrointestinal hormones and inhibiting pro-inflammatory cytokines. However, our results should be interpreted cautiously due to the lower caloric intake at the initial stage after capsaicin diet administration.
Collapse
Affiliation(s)
- Jun-Xian Song
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Hui Ren
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Yuan-Feng Gao
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Chong-You Lee
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Su-Fang Li
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Long Li
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| |
Collapse
|
21
|
Association between spicy food consumption and lipid profiles in adults: a nationwide population-based study. Br J Nutr 2017; 118:144-153. [PMID: 28673367 DOI: 10.1017/s000711451700157x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CVD remains the leading cause of mortality worldwide, with abnormal lipid metabolism as a major risk factor. The aim of this study was to investigate associations between spicy food consumption and serum lipids in Chinese adults. Data were extracted from the 2009 phase of the China Health and Nutrition Survey, consisting of 6774 apparently healthy Chinese adults aged 18-65 years. The frequency of consumption and degree of pungency of spicy food were self-reported, and regular spicy food consumption was assessed using three consecutive 24-h recalls. Total cholesterol, TAG, LDL-cholesterol and HDL-cholesterol in fasting serum were measured. Multilevel mixed-effects models were constructed to estimate associations between spicy food consumption and serum lipid profiles. The results showed that the frequency and the average amount of spicy food intake were both inversely associated with LDL-cholesterol and LDL-cholesterol:HDL-cholesterol ratio (all P for trend<0·05) after adjustment for potential confounders and cluster effects. HDL-cholesterol in participants who usually consumed spicy food (≥5 times/week) and who consumed spicy food perceived as moderate in pungency were significantly higher than those who did not (both P<0·01). The frequency and the average amount of spicy food intake and the degree of pungency in spicy food were positively associated with TAG (all P for trend<0·05). Spicy food consumption was inversely associated with serum cholesterol and positively associated with serum TAG, and additional studies are needed to confirm the findings as well as to elucidate the potential roles of spicy food consumption in lipid metabolism.
Collapse
|
22
|
Vinayagam R, Xiao J, Xu B. An insight into anti-diabetic properties of dietary phytochemicals. PHYTOCHEMISTRY REVIEWS 2017; 16:535-553. [DOI: 10.1007/s11101-017-9496-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Soliman AT, De Sanctis V, Yassin M, Soliman N. Iron deficiency anemia and glucose metabolism. ACTA BIO-MEDICA : ATENEI PARMENSIS 2017; 88:112-118. [PMID: 28467345 PMCID: PMC6166192 DOI: 10.23750/abm.v88i1.6049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Iron deficiency anemia (IDA) is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. IDA appears to be more common in diabetic patients compared to non-diabetic population. Iron deficiency (ID) and IDA can impair glucose homeostasis in animals and human and may negatively affect glycemic control and predispose to more complications in diabetic patients. On the other hand diabetes and its complications are associated with anemia and its correction improves diabetes control and may prevent or delay the occurrence of complications. Physicians treating this form of anemia should be aware of its negative effect on glycemic control in normal and diabetic patients (both type 1 and type 2). They should prevent ID and treat early all those with IDA.This brief review aims to enlighten the different effects of IDA on glucose metabolism in normal and diabetic patients.
Collapse
Affiliation(s)
- Ashraf T Soliman
- Department of Pediatrics, Alexandria University Children Hospital, Elchatby, Alexandria, Egypt.
| | | | | | | |
Collapse
|