1
|
Özdemir Ş, Şentürk YD, Ünver N, Demircan C, Olivers CNL, Egner T, Günseli E. Effects of Context Changes on Memory Reactivation. J Neurosci 2024; 44:e2096232024. [PMID: 39103222 PMCID: PMC11376331 DOI: 10.1523/jneurosci.2096-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
While the influence of context on long-term memory (LTM) is well documented, its effects on the interaction between working memory (WM) and LTM remain less understood. In this study, we explored these interactions using a delayed match-to-sample task, where participants (6 males, 16 females) encountered the same target object across six consecutive trials, facilitating the transition from WM to LTM. During half of these target repetitions, the background color changed. We measured the WM storage of the target using the contralateral delay activity in electroencephalography. Our results reveal that task-irrelevant context changes trigger the reactivation of long-term memories in WM. This reactivation may be attributed to content-context binding in WM and hippocampal pattern separation.
Collapse
Affiliation(s)
- Şahcan Özdemir
- Department of Psychology, Sabancı University, Istanbul 34956, Turkey
| | | | - Nursima Ünver
- Department of Psychology, Sabancı University, Istanbul 34956, Turkey
| | - Can Demircan
- Department of Psychology, Sabancı University, Istanbul 34956, Turkey
| | - Christian N L Olivers
- Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam 1081 BT, the Netherlands
| | - Tobias Egner
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina 27708
| | - Eren Günseli
- Department of Psychology, Sabancı University, Istanbul 34956, Turkey
| |
Collapse
|
2
|
Wang Y, Feng Y, Pan Q, Qu Q, Wen B, Pang F, Xu J. Fronto-parietal activity changes associated with changes in working memory load: Evidence from simultaneous electroencephalography and functional near-infrared spectroscopy analysis. Eur J Neurosci 2024; 60:5413-5427. [PMID: 39223860 DOI: 10.1111/ejn.16478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Working memory (WM) involves the capacity to maintain and manipulate information over short periods. Previous research has suggested that fronto-parietal activities play a crucial role in WM. However, there remains no agreement on the effect of working memory load (WML) on neural activities and haemodynamic responses. Here, our study seeks to examine the effect of WML through simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). In this study, a delay change detection task was conducted on 23 healthy volunteers. The task included three levels: one item, three items and five items. The EEG and fNIRS were simultaneously recorded during the task. Neural activities and haemodynamic responses at prefrontal and parietal regions were analysed using time-frequency analysis and weighted phase-lag index (wPLI). We observed a significant enhancement in prefrontal and parietal β suppression as WML increased. Furthermore, as WML increased, there was a notable enhancement in fronto-parietal connectivity (FPC), as evidenced by both EEG and fNIRS. Correlation analysis indicated that as WML increased, there was a potential for enhancement of neurovascular coupling (NVC) of FPC.
Collapse
Affiliation(s)
- Yu Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Sichuan Digital Economy Industry Development Research Institute, Chengdu, Sichuan, P. R. China
| | - Yihang Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Qi Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Bin Wen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Fangning Pang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Sichuan Digital Economy Industry Development Research Institute, Chengdu, Sichuan, P. R. China
| |
Collapse
|
3
|
Sookprao P, Benjasupawan K, Phangwiwat T, Chatnuntawech I, Lertladaluck K, Gutchess A, Chunharas C, Itthipuripat S. Conflicting Sensory Information Sharpens the Neural Representations of Early Selective Visuospatial Attention. J Neurosci 2024; 44:e2012232024. [PMID: 38955488 PMCID: PMC11326869 DOI: 10.1523/jneurosci.2012-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Adaptive behaviors require the ability to resolve conflicting information caused by the processing of incompatible sensory inputs. Prominent theories of attention have posited that early selective attention helps mitigate cognitive interference caused by conflicting sensory information by facilitating the processing of task-relevant sensory inputs and filtering out behaviorally irrelevant information. Surprisingly, many recent studies that investigated the role of early selective attention on conflict mitigation have failed to provide positive evidence. Here, we examined changes in the selectivity of early visuospatial attention in male and female human subjects performing an attention-cueing Eriksen flanker task, where they discriminated the shape of a visual target surrounded by congruent or incongruent distractors. We used the inverted encoding model to reconstruct spatial representations of visual selective attention from the topographical patterns of amplitude modulations in alpha band oscillations in scalp EEG (∼8-12 Hz). We found that the fidelity of the alpha-based spatial reconstruction was significantly higher in the incongruent compared with the congruent condition. Importantly, these conflict-related modulations in the reconstruction fidelity occurred at a much earlier time window than those of the lateralized posterior event-related potentials associated with target selection and distractor suppression processes, as well as conflict-related modulations in the frontocentral negative-going wave and midline-frontal theta oscillations (∼3-7 Hz), thought to track executive control functions. Taken together, our data suggest that conflict resolution is supported by the cascade of neural processes underlying early selective visuospatial attention and frontal executive functions that unfold over time.
Collapse
Affiliation(s)
- Panchalee Sookprao
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- SCG Digital Office, Bangkok 10800, Thailand
| | - Kanyarat Benjasupawan
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanagrit Phangwiwat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center (BX), Department of Computer Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10600, Thailand
- Computer Engineering Department, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Kanda Lertladaluck
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Angela Gutchess
- Department of Psychology, Neuroscience Program, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Chaipat Chunharas
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center (BX), Department of Computer Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10600, Thailand
| |
Collapse
|
4
|
Misselhorn J, Fiene M, Radecke JO, Engel AK, Schneider TR. Transcranial Alternating Current Stimulation over Frontal Eye Fields Mimics Attentional Modulation of Visual Processing. J Neurosci 2024; 44:e1510232024. [PMID: 38729759 PMCID: PMC11209665 DOI: 10.1523/jneurosci.1510-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.
Collapse
Affiliation(s)
- Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck 23562, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck 23562, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
5
|
Chota S, Bruat AT, Van der Stigchel S, Strauch C. Steady-state Visual Evoked Potentials Reveal Dynamic (Re)allocation of Spatial Attention during Maintenance and Utilization of Visual Working Memory. J Cogn Neurosci 2024; 36:800-814. [PMID: 38261370 DOI: 10.1162/jocn_a_02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Visual working memory (VWM) allows storing goal-relevant information to guide future behavior. Prior work suggests that VWM is spatially organized and relies on spatial attention directed toward locations at which memory items were encoded, even if location is task-irrelevant. Importantly, attention often needs to be dynamically redistributed between locations, for example, in preparation for an upcoming probe. Very little is known about how attentional resources are distributed between multiple locations during a VWM task and even less about the dynamic changes governing such attentional shifts over time. This is largely due to the inability to use behavioral outcomes to reveal fast dynamic changes within trials. We here demonstrated that EEG steady-state visual evoked potentials (SSVEPs) successfully track the dynamic allocation of spatial attention during a VWM task. Participants were presented with to-be-memorized gratings and distractors at two distinct locations, tagged with flickering discs. This allowed us to dynamically track attention allocated to memory and distractor items via their coupling with space by quantifying the amplitude and coherence of SSVEP responses in the EEG signal to flickering stimuli at the former memory and distractor locations. SSVEP responses did not differ between memory and distractor locations during early maintenance. However, shortly before probe comparison, we observed a decrease in SSVEP coherence over distractor locations indicative of a reallocation of spatial attentional resources. RTs were shorter when preceded by stronger decreases in SSVEP coherence at distractor locations, likely reflecting attentional shifts from the distractor to the probe or memory location. We demonstrate that SSVEPs can inform about dynamic processes in VWM, even if location does not have to be reported by participants. This finding not only supports the notion of a spatially organized VWM but also reveals that SSVEPs betray a dynamic prioritization process of working memory items and locations over time that is directly predictive of memory performance.
Collapse
|
6
|
Sandoval Ortega RA, Renard M, Cohen MX, Nevian T. Interactive effects of pain and arousal state on heart rate and cortical activity in the mouse anterior cingulate and somatosensory cortices. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100157. [PMID: 38764613 PMCID: PMC11099324 DOI: 10.1016/j.ynpai.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Sensory disconnection is a hallmark of sleep, yet the cortex retains some ability to process sensory information. Acute noxious stimulation during sleep increases the heart rate and the likelihood of awakening, indicating that certain mechanisms for pain sensing and processing remain active. However, processing of somatosensory information, including pain, during sleep remains underexplored. To assess somatosensation in natural sleep, we simultaneously recorded heart rate and local field potentials in the anterior cingulate (ACC) and somatosensory (S1) cortices of naïve, adult male mice, while applying noxious and non-noxious stimuli to their hind paws throughout their sleep-wake cycle. Noxious stimuli evoked stronger heart rate increases in both wake and non-rapid eye movement sleep (NREMS), and resulted in larger awakening probability in NREMS, as compared to non-noxious stimulation, suggesting differential processing of noxious and non-noxious information during sleep. Somatosensory information differentially reached S1 and ACC in sleep, eliciting complex transient and sustained responses in the delta, alpha, and gamma frequency bands as well as somatosensory evoked potentials. These dynamics depended on sleep state, the behavioral response to the stimulation and stimulation intensity (non-noxious vs. noxious). Furthermore, we found a correlation of the heart rate with the gamma band in S1 in the absence of a reaction in wake and sleep for noxious stimulation. These findings confirm that somatosensory information, including nociception, is sensed and processed during sleep even in the absence of a behavioral response.
Collapse
Affiliation(s)
| | - Margot Renard
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Michael X. Cohen
- Synchronization in Neural Systems Lab, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - Thomas Nevian
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Petrie J, Kowallis LR, Kamhout S, Bills KB, Adams D, Fleming DE, Brown BL, Steffensen SC. Gender-Specific Interactions in a Visual Object Recognition Task in Persons with Opioid Use Disorder. Biomedicines 2023; 11:2460. [PMID: 37760905 PMCID: PMC10525754 DOI: 10.3390/biomedicines11092460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid use disorder (OUD)-associated overdose deaths have reached epidemic proportions worldwide over the past two decades, with death rates for men reported at twice the rate for women. Using a controlled, cross-sectional, age-matched (18-56 y) design to better understand the cognitive neuroscience of OUD, we evaluated the electroencephalographic (EEG) responses of male and female participants with OUD vs. age- and gender-matched non-OUD controls during a simple visual object recognition Go/No-Go task. Overall, women had significantly slower reaction times (RTs) than men. In addition, EEG N200 and P300 event-related potential (ERP) amplitudes for non-OUD controls were significantly larger for men, while their latencies were significantly shorter than for women. However, while N200 and P300 amplitudes were not significantly affected by OUD for either men or women in this task, latencies were also affected differentially in men vs. women with OUD. Accordingly, for both N200 and P300, male OUD participants exhibited longer latencies while female OUD participants exhibited shorter ones than in non-OUD controls. Additionally, robust oscillations were found in all participants during a feedback message associated with performance in the task. Although alpha and beta power during the feedback message were significantly greater for men than women overall, both alpha and beta oscillations exhibited significantly lower power in all participants with OUD. Taken together, these findings suggest important gender by OUD differences in cognitive processing and reflection of performance in this simple visual task.
Collapse
Affiliation(s)
- JoAnn Petrie
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Logan R. Kowallis
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Sarah Kamhout
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Kyle B. Bills
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
- Department of Neuroscience, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Daniel Adams
- PhotoPharmics, Inc., 947 So, 500 E, Suite 100, American Fork, UT 84003, USA
| | - Donovan E. Fleming
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Bruce L. Brown
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Scott C. Steffensen
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
- Department of Neuroscience, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
8
|
Silas J, Jones A, Yarrow K, Anderson W. Spatial attention is not affected by alpha or beta transcranial alternating current stimulation: A registered report. Cortex 2023; 164:33-50. [PMID: 37148826 DOI: 10.1016/j.cortex.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
Using Electroencephalography (EEG) an event-related change in alpha activity has been observed over primary sensory cortices during the allocation of spatial attention. This is most prominent during top-down, or endogenous, attention, and nearly absent in bottom-up, or exogenous orienting. These changes are highly lateralised, such that an increase in alpha power is seen ipsilateral to the attended region of space and a decrease is seen contralaterally. Whether these changes in alpha oscillatory activity are causally related to attentional resources, or to perceptual processes, or are simply epiphenomenal, is unknown. If alpha oscillations are indicative of a causal mechanism whereby attention is allocated to a region of space, it remains an open question as to whether this is driven by ipsilateral increases or contralateral decreases in alpha power. This preregistered report set out to test these questions. To do so, we used transcranial Alternating Current Stimulation (tACS) to modulate alpha activity in the somatosensory cortex whilst measuring performance on established tactile attention paradigms. All participants completed an endogenous and exogenous tactile attention task in three stimulation conditions; alpha, sham and beta. Sham and beta stimulation operated as controls so that any observed effects could be attributed to alpha stimulation specifically. We replicated previous behavioural findings in all stimulation conditions showing a facilitation of cued trials in the endogenous task, and inhibition of return in the exogenous task. However, these were not affected by stimulation manipulations. Using Bayes-factor analysis we show strong support for the null hypotheses - that the manipulation of Alpha by tACS does not cause changes in tactile spatial attention. This well-powered study, conducted over three separate days, is an important contribution to the current debate regarding the efficiency of brain stimulation.
Collapse
|
9
|
Wang R, Liu Y, Shi J, Peng B, Fei W, Bi L. Sound Target Detection Under Noisy Environment Using Brain-Computer Interface. IEEE Trans Neural Syst Rehabil Eng 2023; 31:229-237. [PMID: 36331633 DOI: 10.1109/tnsre.2022.3219595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As an important means of environmental reconnaissance and regional security protection, sound target detection (STD) has been widely studied in the field of machine learning for a long time. Considering the shortcomings of the robustness and generalization performance of existing methods based on machine learning, we proposed a target detection method by an auditory brain-computer interface (BCI). We designed the experimental paradigm according to the actual application scenarios of STD, recorded the changes in Electroencephalogram (EEG) signals during the process of detecting target sound, and further extracted the features used to decode EEG signals through the analysis of neural representations, including Event-Related Potential (ERP) and Event-Related Spectral Perturbation (ERSP). Experimental results showed that the proposed method achieved good detection performance under noisy environment. As the first study of BCI applied to STD, this study shows the feasibility of this scheme in BCI and can serve as the foundation for future related applications.
Collapse
|
10
|
Pattern reinstatement and attentional control overlap during episodic long-term memory retrieval. Sci Rep 2022; 12:10739. [PMID: 35750766 PMCID: PMC9232640 DOI: 10.1038/s41598-022-14090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022] Open
Abstract
Episodic long-term memory (eLTM) retrieval involves the reinstatement of neural patterns from the encoding phase. However, recent evidence suggests that comparable cortical activity patterns can also be linked to attentional control processes on the level of memory representations. The current investigation assesses these two processes independently based on alpha-beta-band activity in the electroencephalogram (EEG). During encoding, subjects were presented with an object on a certain position on the screen and had to imagine it on a new position. In each trial, either the task-irrelevant presentation position or the task-relevant imagination position was lateralized. In the retrieval phase, subjects first made an old/new judgement based on centrally presented objects and then reported the imagination position. Pattern reinstatement should be reflected in similar lateralized alpha-beta activity during encoding and retrieval. Conversely, the influence of attentional control processes during retrieval would be associated with the suppression of alpha-beta power contralateral to the to-be-reported imagination position and with the increase of activity contralateral to the irrelevant presentation position. Our results support this latter pattern. This shows that an experimental differentiation between selective attention and pattern reinstatement processes is necessary when studying the neural basis of eLTM retrieval.
Collapse
|
11
|
Klatt LI, Getzmann S, Schneider D. Attentional Modulations of Alpha Power Are Sensitive to the Task-relevance of Auditory Spatial Information. Cortex 2022; 153:1-20. [DOI: 10.1016/j.cortex.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
|
12
|
Fu X, Ye C, Hu Z, Li Z, Liang T, Liu Q. The impact of retro-cue validity on working memory representation: Evidence from electroencephalograms. Biol Psychol 2022; 170:108320. [PMID: 35337895 DOI: 10.1016/j.biopsycho.2022.108320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
Abstract
Visual working memory (VWM) performance can be improved by retrospectively cueing an item. The validity of retro-cues has an impact on the mechanisms underlying the retro-cue effect, but how non-cued representations are handled under different retro-cue validity conditions is not yet clear. Here, we used electroencephalograms to investigate whether retro-cue validity can affect the fate of non-cued representations in VWM. The participants were required to perform a change-detection task using a retro-cue with 80% or 20% validity. Contralateral delay activity and the lateralized alpha power were used to assess memory storage and selective attention, respectively. The retro-cue could redirect selective attention to the cued item under both validity conditions; however, the participants maintained the non-cued representations under the low-validity condition but dropped them from VWM under the high-validity condition. These results suggest that the maintenance of non-cued representations in VWM is affected by the expectation of cue validity and may be partially strategically driven. DATA AVAILABILITY: The datasets generated/analyzed during this study and experimental script have been added to https://osf.io/qtwc9/.
Collapse
Affiliation(s)
- Xueying Fu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, 610000, Chengdu, China; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, EV Maastricht, 6229, the Netherlands
| | - Chaoxiong Ye
- Institute of Brain and Psychological Sciences, Sichuan Normal University, 610000, Chengdu, China; Department of Psychology, University of Jyvaskyla, 40014, Jyvaskyla, Finland; Center for Machine Vision and Signal Analysis, University of Oulu, 90014, Oulu, Finland
| | - Zhonghua Hu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, 610000, Chengdu, China
| | - Ziyuan Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029, Dalian, China
| | - Tengfei Liang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029, Dalian, China
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, 610000, Chengdu, China.
| |
Collapse
|
13
|
Ros T, Michela A, Mayer A, Bellmann A, Vuadens P, Zermatten V, Saj A, Vuilleumier P. Disruption of large-scale electrophysiological networks in stroke patients with visuospatial neglect. Netw Neurosci 2022; 6:69-89. [PMID: 35356193 PMCID: PMC8959119 DOI: 10.1162/netn_a_00210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Stroke frequently produces attentional dysfunctions including symptoms of hemispatial neglect, which is characterized by a breakdown of awareness for the contralesional hemispace. Recent studies with functional MRI (fMRI) suggest that hemineglect patients display abnormal intra- and interhemispheric functional connectivity. However, since stroke is a vascular disorder and fMRI signals remain sensitive to nonneuronal (i.e., vascular) coupling, more direct demonstrations of neural network dysfunction in hemispatial neglect are warranted. Here, we utilize electroencephalogram (EEG) source imaging to uncover differences in resting-state network organization between patients with right hemispheric stroke (N = 15) and age-matched, healthy controls (N = 27), and determine the relationship between hemineglect symptoms and brain network organization. We estimated intra- and interregional differences in cortical communication by calculating the spectral power and amplitude envelope correlations of narrow-band EEG oscillations. We first observed focal frequency-slowing within the right posterior cortical regions, reflected in relative delta/theta power increases and alpha/beta/gamma decreases. Secondly, nodes within the right temporal and parietal cortex consistently displayed anomalous intra- and interhemispheric coupling, stronger in delta and gamma bands, and weaker in theta, alpha, and beta bands. Finally, a significant association was observed between the severity of left-hemispace search deficits (e.g., cancellation test omissions) and reduced functional connectivity within the alpha and beta bands. In sum, our novel results validate the hypothesis of large-scale cortical network disruption following stroke and reinforce the proposal that abnormal brain oscillations may be intimately involved in the pathophysiology of visuospatial neglect. Stroke patients often exhibit a disabling deficit of visual awareness in the hemifield opposite to their brain lesion, known as hemineglect. Recent studies with functional MRI (fMRI) suggest that hemineglect patients display abnormal functional coupling (i.e., connectivity) within and between brain hemispheres. However, since stroke is a vascular disorder and fMRI measures nonneuronal (i.e., vascular) coupling, we here provide direct evidence of neural network dysfunction in hemineglect by using electroencephalogram (EEG) source imaging, which measures the electrical fluctuations of large neuronal populations. Overall, we observed a breakdown of interhemispheric network connectivity within alpha/beta rhythms, which specifically correlated with the degree of patients’ hemispatial errors. The high temporal resolution and frequency content of EEG signals could lead to more sensitive markers and targeted rehabilitation approaches of hemineglect.
Collapse
Affiliation(s)
- Tomas Ros
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Abele Michela
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Anaïs Mayer
- Romand Clinic of Readaptation, SUVA, Sion, Switzerland
| | - Anne Bellmann
- Romand Clinic of Readaptation, SUVA, Sion, Switzerland
| | | | | | - Arnaud Saj
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | | |
Collapse
|
14
|
Alpha suppression indexes a spotlight of visual-spatial attention that can shine on both perceptual and memory representations. Psychon Bull Rev 2021; 29:681-698. [PMID: 34877635 PMCID: PMC10067153 DOI: 10.3758/s13423-021-02034-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
Although researchers have been recording the human electroencephalogram (EEG) for almost a century, we still do not completely understand what cognitive processes are measured by the activity of different frequency bands. The 8- to 12-Hz activity in the alpha band has long been a focus of this research, but our understanding of its links to cognitive mechanisms has been rapidly evolving recently. Here, we review and discuss the existing evidence for two competing perspectives about alpha activity. One view proposes that the suppression of alpha-band power following the onset of a stimulus array measures attentional selection. The competing view is that this same activity measures the buffering of the task-relevant representations in working memory. We conclude that alpha-band activity following the presentation of stimuli appears to be due to the operation of an attentional selection mechanism, with characteristics that mirror the classic views of attention as selecting both perceptual inputs and representations already stored in memory.
Collapse
|
15
|
Lee HH, Chen ZL, Yeh SL, Hsiao JH, Wu AY(A. When Eyes Wander Around: Mind-Wandering as Revealed by Eye Movement Analysis with Hidden Markov Models. SENSORS (BASEL, SWITZERLAND) 2021; 21:7569. [PMID: 34833644 PMCID: PMC8622810 DOI: 10.3390/s21227569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Mind-wandering has been shown to largely influence our learning efficiency, especially in the digital and distracting era nowadays. Detecting mind-wandering thus becomes imperative in educational scenarios. Here, we used a wearable eye-tracker to record eye movements during the sustained attention to response task. Eye movement analysis with hidden Markov models (EMHMM), which takes both spatial and temporal eye-movement information into account, was used to examine if participants' eye movement patterns can differentiate between the states of focused attention and mind-wandering. Two representative eye movement patterns were discovered through clustering using EMHMM: centralized and distributed patterns. Results showed that participants with the centralized pattern had better performance on detecting targets and rated themselves as more focused than those with the distributed pattern. This study indicates that distinct eye movement patterns are associated with different attentional states (focused attention vs. mind-wandering) and demonstrates a novel approach in using EMHMM to study attention. Moreover, this study provides a potential approach to capture the mind-wandering state in the classroom without interrupting the ongoing learning behavior.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, College of Science, National Taiwan University, Taipei City 10617, Taiwan;
| | - Zih-Ling Chen
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei City 10051, Taiwan;
| | - Su-Ling Yeh
- Department of Psychology, College of Science, National Taiwan University, Taipei City 10617, Taiwan;
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei City 10051, Taiwan;
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei City 10617, Taiwan
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei City 10617, Taiwan
- Center for Advanced Study in the Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Janet Huiwen Hsiao
- Department of Psychology, The University of Hong Kong, Pok Fu Lam, Hong Kong;
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - An-Yeu (Andy) Wu
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei City 10617, Taiwan;
| |
Collapse
|
16
|
Transcranial magnetic stimulation entrains alpha oscillatory activity in occipital cortex. Sci Rep 2021; 11:18562. [PMID: 34535692 PMCID: PMC8448857 DOI: 10.1038/s41598-021-96849-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
Parieto-occipital alpha rhythms (8-12 Hz) underlie cortical excitability and influence visual performance. Whether the synchrony of intrinsic alpha rhythms in the occipital cortex can be entrained by transcranial magnetic stimulation (TMS) is an open question. We applied 4-pulse, 10-Hz rhythmic TMS to entrain intrinsic alpha oscillators targeting right V1/V2, and tested four predictions with concurrent electroencephalogram (EEG): (1) progressive enhancement of entrainment across time windows, (2) output frequency specificity, (3) dependence on the intrinsic oscillation phase, and (4) input frequency specificity to individual alpha frequency (IAF) in the neural signatures. Two control conditions with an equal number of pulses and duration were arrhythmic-active and rhythmic-sham stimulation. The results confirmed the first three predictions. Rhythmic TMS bursts significantly entrained local neural activity. Near the stimulation site, evoked oscillation amplitude and inter-trial phase coherence (ITPC) were increased for 2 and 3 cycles, respectively, after the last TMS pulse. Critically, ITPC following entrainment positively correlated with IAF rather than with the degree of similarity between IAF and the input frequency (10 Hz). Thus, we entrained alpha-band activity in occipital cortex for ~ 3 cycles (~ 300 ms), and IAF predicts the strength of entrained occipital alpha phase synchrony indexed by ITPC.
Collapse
|
17
|
Forner-Phillips NA, Brown JE, Silck BM, Ross RS. Alpha oscillatory power decreases are associated with better memory for higher valued information. Cogn Neurosci 2021; 13:87-98. [PMID: 34423739 DOI: 10.1080/17588928.2021.1963694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Items associated with high value are often better remembered. Value may increase attention toward item in context associations. Alpha oscillations (8-13 Hz) are thought to underlie attention and their observation may reveal the role attention plays in value-based memory. In the current study, EEG is used to record brain activity while participants (n = 30) completed a source recognition memory task where items were associated with either high or low value backgrounds to determine whether greater attentional resources are deployed when encoding high value information. Participants demonstrated better memory for objects associated with high value backgrounds. Alpha oscillatory power in occipital/temporal brain regions exhibited greater desynchronization when encoding objects associated with high value that were later successfully recalled compared to those associated with low value. In addition, beta oscillatory power in midfrontal brain regions exhibited greater desynchronization during successful recall of high value objects compared to low value objects. Together these results suggest that more attentional resources are used to encode information that is associated with high value, which increases the likelihood of later successful memory recall.
Collapse
Affiliation(s)
| | | | - Briana M Silck
- Department of Psychology, William James College, William James College, Newton, MA, USA
| | - Robert S Ross
- Department of Psychology and the Neuroscience and Behavior Program, The University of New Hampshire, Durham, NH, USA
| |
Collapse
|
18
|
Solís‐Vivanco R, Jensen O, Bonnefond M. New insights on the ventral attention network: Active suppression and involuntary recruitment during a bimodal task. Hum Brain Mapp 2021; 42:1699-1713. [PMID: 33347695 PMCID: PMC7978122 DOI: 10.1002/hbm.25322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023] Open
Abstract
Detection of unexpected, yet relevant events is essential in daily life. fMRI studies have revealed the involvement of the ventral attention network (VAN), including the temporo-parietal junction (TPJ), in such process. In this MEG study with 34 participants (17 women), we used a bimodal (visual/auditory) attention task to determine the neuronal dynamics associated with suppression of the activity of the VAN during top-down attention and its recruitment when information from the unattended sensory modality is involuntarily integrated. We observed an anticipatory power increase of alpha/beta oscillations (12-20 Hz, previously associated with functional inhibition) in the VAN following a cue indicating the modality to attend. Stronger VAN power increases were associated with better task performance, suggesting that the VAN suppression prevents shifting attention to distractors. Moreover, the TPJ was synchronized with the frontal eye field in that frequency band, indicating that the dorsal attention network (DAN) might participate in such suppression. Furthermore, we found a 12-20 Hz power decrease and enhanced synchronization, in both the VAN and DAN, when information between sensory modalities was congruent, suggesting an involvement of these networks when attention is involuntarily enhanced due to multisensory integration. Our results show that effective multimodal attentional allocation includes the modulation of the VAN and DAN through upper-alpha/beta oscillations. Altogether these results indicate that the suppressing role of alpha/beta oscillations might operate beyond sensory regions.
Collapse
Affiliation(s)
- Rodolfo Solís‐Vivanco
- Laboratory of NeuropsychologyInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezMexico CityMexico
- Donders Institute for Brain, Cognition and BehaviourCentre for Cognitive Neuroimaging, Radboud UniversityNijmegenNetherlands
| | - Ole Jensen
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUnited Kingdom
| | - Mathilde Bonnefond
- Donders Institute for Brain, Cognition and BehaviourCentre for Cognitive Neuroimaging, Radboud UniversityNijmegenNetherlands
- Computation, Cognition and Neurophysiology team (Cophy), INSERM U1028, CNRS UMR5292Lyon Neuroscience Research Center (CRNL)Bron CedexFrance
| |
Collapse
|
19
|
Robles D, Kuziek JWP, Wlasitz NA, Bartlett NT, Hurd PL, Mathewson KE. EEG in motion: Using an oddball task to explore motor interference in active skateboarding. Eur J Neurosci 2021; 54:8196-8213. [PMID: 33644960 DOI: 10.1111/ejn.15163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/18/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
Recent advancements in portable computer devices have opened new avenues in the study of human cognition outside research laboratories. This flexibility in methodology has led to the publication of several electroencephalography studies recording brain responses in real-world scenarios such as cycling and walking outside. In the present study, we tested the classic auditory oddball task while participants moved around an indoor running track using an electric skateboard. This novel approach allows for the study of attention in motion while virtually removing body movement. Using the skateboard auditory oddball paradigm, we found reliable and expected standard-target differences in the P3 and MMN/N2b event-related potentials. We also recorded baseline electroencephalography activity and found that, compared to this baseline, alpha power is attenuated in frontal and parietal regions during skateboarding. In order to explore the influence of motor interference in cognitive resources during skateboarding, we compared participants' preferred riding stance (baseline level of riding difficulty) versus their non-preferred stance (increased level of riding difficulty). We found that an increase in riding difficulty did not modulate the P3 and tonic alpha amplitude during skateboard motion. These results suggest that increases in motor demands might not lead to reductions in cognitive resources as shown in previous literature.
Collapse
Affiliation(s)
- Daniel Robles
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jonathan W P Kuziek
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Nicole A Wlasitz
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan T Bartlett
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Pete L Hurd
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
21
|
Hutchinson BT, Pammer K, Jack B. Pre-stimulus alpha predicts inattentional blindness. Conscious Cogn 2020; 87:103034. [PMID: 33296852 DOI: 10.1016/j.concog.2020.103034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 10/22/2022]
Abstract
Pre- and post-stimulus oscillatory activity between 8 and 12 hertz, referred to as the alpha-band, correlates with conscious visual awareness of stimuli across a variety of psychophysical tasks. Within an EEG-adapted inattentional blindness task, the current study sought to examine whether this relationship holds for conscious awareness of stimuli under conditions of inattentional blindness. Noticing rates of the task-irrelevant unexpected stimulus were correlated with a significant decrease in alpha power over bilateral parietal-occipital areas during the pre-stimulus interval, and a significant decrease in alpha power over parietal-occipital regions in the right hemisphere during the post-stimulus interval. Findings are taken to imply alpha-band neural activity represents a valid correlate of consciousness that is not confounded by task relevancy or the need for report.
Collapse
Affiliation(s)
- Brendan T Hutchinson
- Australian National University, Canberra, Australia; University of Newcastle, Newcastle, Australia.
| | - Kristen Pammer
- Australian National University, Canberra, Australia; University of Newcastle, Newcastle, Australia
| | - Bradley Jack
- Australian National University, Canberra, Australia; University of Newcastle, Newcastle, Australia
| |
Collapse
|
22
|
Desantis A, Chan-Hon-Tong A, Collins T, Hogendoorn H, Cavanagh P. Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha Power. Front Hum Neurosci 2020; 14:570419. [PMID: 33192401 PMCID: PMC7586305 DOI: 10.3389/fnhum.2020.570419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Attention can be oriented in space covertly without the need of eye movements. We used multivariate pattern classification analyses (MVPA) to investigate whether the time course of the deployment of covert spatial attention leading up to the observer’s perceptual decision can be decoded from both EEG alpha power and raw activity traces. Decoding attention from these signals can help determine whether raw EEG signals and alpha power reflect the same or distinct features of attentional selection. Using a classical cueing task, we showed that the orientation of covert spatial attention can be decoded by both signals. However, raw activity and alpha power may reflect different features of spatial attention, with alpha power more associated with the orientation of covert attention in space and raw activity with the influence of attention on perceptual processes.
Collapse
Affiliation(s)
- Andrea Desantis
- Département Traitement de l'Information et Systèmes, ONERA, Palaiseau, France.,Integrative Neuroscience and Cognition Center (UMR 8002), CNRS and Université de Paris, Paris, France.,Institut de Neurosciences de la Timone (UMR 7289), CNRS and Aix-Marseille Université, Marseille, France
| | | | - Thérèse Collins
- Integrative Neuroscience and Cognition Center (UMR 8002), CNRS and Université de Paris, Paris, France
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Patrick Cavanagh
- Integrative Neuroscience and Cognition Center (UMR 8002), CNRS and Université de Paris, Paris, France.,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States.,Department of Psychology, Glendon College, North York, ON, Canada
| |
Collapse
|
23
|
EEG correlates of spatial shifts of attention in a dynamic multi-talker speech perception scenario in younger and older adults. Hear Res 2020; 398:108077. [PMID: 32987238 DOI: 10.1016/j.heares.2020.108077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022]
Abstract
Speech perception under "cocktail-party" conditions critically depends on the focusing of attention toward the talker of interest. In dynamic auditory scenes, changes in talker settings require rapid shifts of attention, which is especially relevant when the position of a target talker switches from one location to another. Here, we explored electrophysiological correlates of shifts in spatial auditory attention, using a free-field speech perception task, in which sequences of short words (a company name, followed by a numeric value, e.g., "Bosch-6") were presented in the participants' left and right horizontal plane. Younger and older participants responded to the value of a pre-defined target company, while ignoring three simultaneously presented pairs of concurrent company names and values from different locations. All four stimulus pairs were spoken by different talkers, alternating from trial-to-trial. The location of the target company was within either the left or right hemisphere for a variable number of consecutive trials (between 3 and 42 trials) and then changed, switching from the left to the right hemispace or vice versa. Thus, when a switch occurred, the participants had to search for the new position of the target company among the concurrent streams of auditory information and re-focus their attention on the relevant location. As correlates of lateralized spatial auditory attention, the anterior contralateral N2 subcomponent (N2ac) and the posterior alpha power lateralization were analyzed in trials immediately before and after switches of the target location. Both measures were increased after switches, while only the increase in N2ac was related to better speech perception performance (i.e., a reduced post-switch decline in accuracy). While both age groups showed a similar pattern of switch-related attentional modulations, N2ac and alpha lateralization to the task-relevant stimulus (the target company's value) was overall greater in the younger, than older, group. The results suggest that N2ac and alpha lateralization reflect different attentional processes in multi-talker speech perception, the first being primarily associated with auditory search and the focusing of attention, and the second with the in-depth attentional processing of task-relevant information. Especially the second process appears to be prone to age-related cognitive decline.
Collapse
|
24
|
Zuo Y, Huang Y, Wu D, Wang Q, Wang Z. Spike Phase Shift Relative to Beta Oscillations Mediates Modality Selection. Cereb Cortex 2020; 30:5431-5448. [PMID: 32494807 DOI: 10.1093/cercor/bhaa125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
How does the brain selectively process signals from stimuli of different modalities? Coherent oscillations may function in coordinating communication between neuronal populations simultaneously involved in such cognitive behavior. Beta power (12-30 Hz) is implicated in top-down cognitive processes. Here we test the hypothesis that the brain increases encoding and behavioral influence of a target modality by shifting the relationship of neuronal spike phases relative to beta oscillations between primary sensory cortices and higher cortices. We simultaneously recorded neuronal spike and local field potentials in the posterior parietal cortex (PPC) and the primary auditory cortex (A1) when male rats made choices to either auditory or visual stimuli. Neuronal spikes exhibited modality-related phase locking to beta oscillations during stimulus sampling, and the phase shift between neuronal subpopulations demonstrated faster top-down signaling from PPC to A1 neurons when animals attended to auditory rather than visual stimuli. Importantly, complementary to spike timing, spike phase predicted rats' attended-to target in single trials, which was related to the animals' performance. Our findings support a candidate mechanism that cortices encode targets from different modalities by shifting neuronal spike phase. This work may extend our understanding of the importance of spike phase as a coding and readout mechanism.
Collapse
Affiliation(s)
- Yanfang Zuo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Future Technology, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dingcheng Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qingxiu Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Future Technology, University of Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
25
|
Sebastián-Romagosa M, Udina E, Ortner R, Dinarès-Ferran J, Cho W, Murovec N, Matencio-Peralba C, Sieghartsleitner S, Allison BZ, Guger C. EEG Biomarkers Related With the Functional State of Stroke Patients. Front Neurosci 2020; 14:582. [PMID: 32733182 PMCID: PMC7358582 DOI: 10.3389/fnins.2020.00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Recent studies explored promising new quantitative methods to analyze electroencephalography (EEG) signals. This paper analyzes the correlation of two EEG parameters, Brain Symmetry Index (BSI) and Laterality Coefficient (LC), with established functional scales for the stroke assessment. Methods Thirty-two healthy subjects and thirty-six stroke patients with upper extremity hemiparesis were recruited for this study. The stroke patients where subdivided in three groups according to the stroke location: Cortical, Subcortical, and Cortical + Subcortical. The participants performed assessment visits to record the EEG in the resting state and perform functional tests using rehabilitation scales. Then, stroke patients performed 25 sessions using a motor-imagery based Brain Computer Interface system (BCI). BSI was calculated with the EEG data in resting state and LC was calculated with the Event-Related Synchronization maps. Results The results of this study demonstrated significant differences in the BSI between the healthy group and Subcortical group (P = 0.001), and also between the healthy and Cortical+Subcortical group (P = 0.019). No significant differences were found between the healthy group and the Cortical group (P = 0.505). Furthermore, the BSI analysis in the healthy group based on gender showed statistical differences (P = 0.027). In the stroke group, the correlation between the BSI and the functional state of the upper extremity assessed by Fugl-Meyer Assessment (FMA) was also significant, ρ = −0.430 and P = 0.046. The correlation between the BSI and the FMA-Lower extremity was not significant (ρ = −0.063, P = 0.852). Similarly, the LC calculated in the alpha band has significative correlation with FMA of upper extremity (ρ = −0.623 and P < 0.001) and FMA of lower extremity (ρ = −0.509 and P = 0.026). Other important significant correlations between LC and functional scales were observed. In addition, the patients showed an improvement in the FMA-upper extremity after the BCI therapy (ΔFMA = 1 median [IQR: 0–8], P = 0.002). Conclusion The quantitative EEG tools used here may help support our understanding of stroke and how the brain changes during rehabilitation therapy. These tools can help identify changes in EEG biomarkers and parameters during therapy that might lead to improved therapy methods and functional prognoses.
Collapse
Affiliation(s)
- Marc Sebastián-Romagosa
- Department of Physiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,g.tec Medical Engineering Spain SL, Barcelona, Spain
| | - Esther Udina
- Department of Physiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rupert Ortner
- g.tec Medical Engineering Spain SL, Barcelona, Spain
| | - Josep Dinarès-Ferran
- g.tec Medical Engineering Spain SL, Barcelona, Spain.,Data and Signal Processing Research Group, Department of Engineering, University of Vic - Central University of Catalonia, Vic, Spain
| | - Woosang Cho
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Nensi Murovec
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | | | | | - Brendan Z Allison
- Department of Cognitive Science, University of California at San Diego, La Jolla, CA, United States
| | - Christoph Guger
- g.tec Medical Engineering Spain SL, Barcelona, Spain.,g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
26
|
Beyond the eye: Cortical differences in primary visual processing in children with cerebral palsy. NEUROIMAGE-CLINICAL 2020; 27:102318. [PMID: 32604019 PMCID: PMC7327303 DOI: 10.1016/j.nicl.2020.102318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Visual processing deficits are common in children with CP. MEG was used to image multispectral cortical oscillations during visual processing. Compared with controls, children with CP had weaker occipital oscillations. Aberrant cortical oscillations likely impact early visual processing abilities.
Despite the growing clinical recognition of visual impairments among people with cerebral palsy (CP), very few studies have evaluated the neurophysiology of the visual circuitry. To this end, the primary aim of this investigation was to use magnetoencephalography and beamforming methods to image the relative change in the alpha–beta and gamma occipital cortical oscillations induced by a spatial grating stimulus (e.g., visual contrast) that was viewed by a cohort of children with CP and typically-developing (TD) children. Our results showed that the high-contrast, visual gratings stimuli induced a decrease in alpha–beta (10 – 20 Hz) activity, and an increase in both low (40 – 56 Hz) and high (60 – 72 Hz) gamma oscillations in the occipital cortices. Compared with the TD children, the strength of the frequency specific cortical oscillations were significantly weaker in the children with CP, suggesting that they had deficient processing of the contrast stimulus. Although CP is largely perceived as a musculoskeletal centric disorder, our results fuel the growing impression that there may also be prominent visual processing deficiencies. These visual processing deficits likely impact the ability to perceive visual changes in the environment.
Collapse
|
27
|
Alzueta E, Melcón M, Jensen O, Capilla A. The 'Narcissus Effect': Top-down alpha-beta band modulation of face-related brain areas during self-face processing. Neuroimage 2020; 213:116754. [PMID: 32194280 PMCID: PMC7181170 DOI: 10.1016/j.neuroimage.2020.116754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022] Open
Abstract
Self-related information, such as one's own face, is prioritized by our cognitive system. Whilst recent theoretical developments suggest that this is achieved by an interplay between bottom-up and top-down attentional mechanisms, their underlying neural dynamics are still poorly understood. Furthermore, it is still matter of discussion as to whether these attentional mechanisms are truly self-specific or instead driven by face familiarity. To address these questions, we used EEG to record the brain activity of twenty-five healthy participants whilst identifying their own face, a friend's face and a stranger's face. Time-frequency analysis revealed a greater sustained power decrease in the alpha and beta frequency bands for the self-face, which emerged at late latencies and was maintained even when the face was no longer present. Critically, source analysis showed that this activity was generated in key brain regions for self-face recognition, such as the fusiform gyrus. As in the Myth of Narcissus, our results indicate that one's own face might have the potential to hijack attention. We suggest that this effect is specific to the self and driven by a top-down attentional control mechanism, which might facilitate further processing of personally relevant events.
Collapse
Affiliation(s)
- Elisabet Alzueta
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain.
| | - María Melcón
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Almudena Capilla
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
28
|
Deng Y, Choi I, Shinn-Cunningham B. Topographic specificity of alpha power during auditory spatial attention. Neuroimage 2020; 207:116360. [PMID: 31760150 PMCID: PMC9883080 DOI: 10.1016/j.neuroimage.2019.116360] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2019] [Accepted: 11/13/2019] [Indexed: 01/31/2023] Open
Abstract
Visual and somatosensory spatial attention both induce parietal alpha (8-14 Hz) oscillations whose topographical distribution depends on the direction of spatial attentional focus. In the auditory domain, contrasts of parietal alpha power for leftward and rightward attention reveal qualitatively similar lateralization; however, it is not clear whether alpha lateralization changes monotonically with the direction of auditory attention as it does for visual spatial attention. In addition, most previous studies of alpha oscillation did not consider individual differences in alpha frequency, but simply analyzed power in a fixed spectral band. Here, we recorded electroencephalography in human subjects when they directed attention to one of five azimuthal locations. After a cue indicating the direction of an upcoming target sequence of spoken syllables (yet before the target began), alpha power changed in a task-specific manner. Individual peak alpha frequencies differed consistently between central electrodes and parieto-occipital electrodes, suggesting multiple neural generators of task-related alpha. Parieto-occipital alpha increased over the hemisphere ipsilateral to attentional focus compared to the contralateral hemisphere, and changed systematically as the direction of attention shifted from far left to far right. These results showing that parietal alpha lateralization changes smoothly with the direction of auditory attention as in visual spatial attention provide further support to the growing evidence that the frontoparietal attention network is supramodal.
Collapse
Affiliation(s)
- Yuqi Deng
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| | - Barbara Shinn-Cunningham
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA,Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA,Corresponding author. Baker Hall 254G, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA. (B. Shinn-Cunningham)
| |
Collapse
|
29
|
Relating alpha power modulations to competing visuospatial attention theories. Neuroimage 2020; 207:116429. [DOI: 10.1016/j.neuroimage.2019.116429] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 11/18/2022] Open
|
30
|
Klatt LI, Schneider D, Schubert AL, Hanenberg C, Lewald J, Wascher E, Getzmann S. Unraveling the Relation between EEG Correlates of Attentional Orienting and Sound Localization Performance: A Diffusion Model Approach. J Cogn Neurosci 2020; 32:945-962. [PMID: 31933435 DOI: 10.1162/jocn_a_01525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the contribution of cognitive processes and their underlying neurophysiological signals to behavioral phenomena has been a key objective in recent neuroscience research. Using a diffusion model framework, we investigated to what extent well-established correlates of spatial attention in the electroencephalogram contribute to behavioral performance in an auditory free-field sound localization task. Younger and older participants were instructed to indicate the horizontal position of a predefined target among three simultaneously presented distractors. The central question of interest was whether posterior alpha lateralization and amplitudes of the anterior contralateral N2 subcomponent (N2ac) predict sound localization performance (accuracy, mean RT) and/or diffusion model parameters (drift rate, boundary separation, non-decision time). Two age groups were compared to explore whether, in older adults (who struggle with multispeaker environments), the brain-behavior relationship would differ from younger adults. Regression analyses revealed that N2ac amplitudes predicted drift rate and accuracy, whereas alpha lateralization was not related to behavioral or diffusion modeling parameters. This was true irrespective of age. The results indicate that a more efficient attentional filtering and selection of information within an auditory scene, reflected by increased N2ac amplitudes, was associated with a higher speed of information uptake (drift rate) and better localization performance (accuracy), while the underlying response criteria (threshold separation), mean RTs, and non-decisional processes remained unaffected. The lack of a behavioral correlate of poststimulus alpha power lateralization constrasts with the well-established notion that prestimulus alpha power reflects a functionally relevant attentional mechanism. This highlights the importance of distinguishing anticipatory from poststimulus alpha power modulations.
Collapse
Affiliation(s)
| | - Daniel Schneider
- Leibniz Research Centre for Working Environment and Human Factors
| | | | | | - Jörg Lewald
- Leibniz Research Centre for Working Environment and Human Factors.,Ruhr-University Bochum
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors
| |
Collapse
|
31
|
Gundlach C, Moratti S, Forschack N, Müller MM. Spatial Attentional Selection Modulates Early Visual Stimulus Processing Independently of Visual Alpha Modulations. Cereb Cortex 2020; 30:3686-3703. [PMID: 31907512 DOI: 10.1093/cercor/bhz335] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/18/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023] Open
Abstract
The capacity-limited human brain is constantly confronted with a huge amount of sensory information. Selective attention is needed for biasing neural processing towards relevant information and consequently allows meaningful interaction with the environment. Activity in the alpha-band has been proposed to be related to top-down modulation of neural inhibition and could thus represent a viable candidate to control the priority of stimulus processing. It is, however, unknown whether modulations in the alpha-band directly relate to changes in the sensory gain control of the early visual cortex. Here, we used a spatial cueing paradigm while simultaneously measuring ongoing alpha-band oscillations and steady-state visual evoked potentials (SSVEPs) as a marker of continuous early sensory processing in the human visual cortex. Thereby, the effects of spatial attention for both of these signals and their potential interactions were assessed. As expected, spatial attention modulated both alpha-band and SSVEP responses. However, their modulations were independent of each other and the corresponding activity profiles differed across task demands. Thus, our results challenge the view that modulations of alpha-band activity represent a mechanism that directly alters or controls sensory gain. The potential role of alpha-band oscillations beyond sensory processing will be discussed in light of the present results.
Collapse
Affiliation(s)
- C Gundlach
- Experimental Psychology and Methods, Universität Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S Moratti
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain
| | - N Forschack
- Experimental Psychology and Methods, Universität Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M M Müller
- Experimental Psychology and Methods, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. Neuroimage 2020; 205:116304. [DOI: 10.1016/j.neuroimage.2019.116304] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/12/2019] [Accepted: 10/19/2019] [Indexed: 11/22/2022] Open
|
33
|
Daniel E, Meindertsma T, Arazi A, Donner TH, Dinstein I. The Relationship between Trial-by-Trial Variability and Oscillations of Cortical Population Activity. Sci Rep 2019; 9:16901. [PMID: 31729426 PMCID: PMC6858466 DOI: 10.1038/s41598-019-53270-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 01/09/2023] Open
Abstract
Neural activity fluctuates over time, creating considerable variability across trials. This trial-by-trial neural variability is dramatically reduced (“quenched”) after the presentation of sensory stimuli. Likewise, the power of neural oscillations, primarily in the alpha-beta band, is also reduced after stimulus onset. Despite their similarity, these phenomena have so far been studied and discussed independently. We hypothesized that the two phenomena are tightly coupled in electrophysiological recordings of large cortical neural populations. To test this, we examined magnetoencephalography (MEG) recordings of healthy subjects viewing repeated presentations of a visual stimulus. The timing, amplitude, and spatial topography of variability-quenching and power-suppression were remarkably similar. Neural variability quenching was eliminated by excluding the alpha-beta band from the recordings, but not by excluding other frequency-bands. Moreover, individual magnitudes of alpha-beta band-power explained 86% of between-subject differences in variability quenching. An alternative mechanism that may generate variability quenching is increased phase alignment across trials. However, changes in inter-trial-phase-coherence (ITPC) exhibited distinct timing and no correlations with the magnitude of variability quenching in individual participants. These results reveal that neural variability quenching is tightly coupled with stimulus-induced changes in the power of alpha-beta band oscillations, associating two phenomena that have so far been studied in isolation.
Collapse
Affiliation(s)
- Edan Daniel
- Department of brain and cognitive science, Ben Gurion University of the Negev, Beer-Sheva, Israel. .,Department of psychology, Ben Gurion University of the Negev, Beer-Sheva, Israel. .,Zlotowski center for neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel.
| | - Thomas Meindertsma
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ayelet Arazi
- Department of brain and cognitive science, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Department of psychology, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski center for neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Tobias H Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ilan Dinstein
- Department of brain and cognitive science, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Department of psychology, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski center for neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
34
|
Tognoli E. More than Meets the Mind's Eye? Preliminary Observations Hint at Heterogeneous Alpha Neuromarkers for Visual Attention. Brain Sci 2019; 9:E307. [PMID: 31684067 PMCID: PMC6896148 DOI: 10.3390/brainsci9110307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
With their salient power distribution and privileged timescale for cognition and behavior, brainwaves within the 10 Hz band are special in human waking electroencephalography (EEG). From the inception of electroencephalographic technology, the contribution of alpha rhythm to attention is well-known: Its amplitude increases when visual attention wanes or visual input is removed. However, alpha is not alone in the 10 Hz frequency band. A number of other 10 Hz neuromarkers have function and topography clearly distinct from alpha. In small pilot studies, an activity that we named xi was found over left centroparietal scalp regions when subjects held their attention to spatially peripheral locations while maintaining their gaze centrally ("looking from the corner of the eyes"). I outline several potential functions for xi as a putative neuromarker of covert attention distinct from alpha. I review methodological aids to test and validate their functional role. They emphasize high spectral resolution, sufficient spatial resolution to provide topographical separation, and an acute attention to dynamics that caters to neuromarkers' transiency.
Collapse
Affiliation(s)
- Emmanuelle Tognoli
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| |
Collapse
|
35
|
Liang T, Chen X, Ye C, Zhang J, Liu Q. Electrophysiological evidence supports the role of sustained visuospatial attention in maintaining visual WM contents. Int J Psychophysiol 2019; 146:54-62. [PMID: 31639381 DOI: 10.1016/j.ijpsycho.2019.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/13/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022]
Abstract
Recent empirical and theoretical work suggests that there is a close relationship between visual working memory (WM) and visuospatial attention. Here, we investigated whether visuospatial attention was involved in maintaining object representations in visual WM. To this end, the alpha lateralization and contralateral delay activity (CDA) were analyzed as neural markers for visuospatial attention and visual WM storage, respectively. In the single-task condition, participants performed a grating change-detection task. To probe the role of visuospatial attention in maintaining WM contents, two color squares were presented above and below the fixation point during the retention interval, which remained visible until the detection display was present. In the dual-task condition, participants were required to maintain lateralized gratings while staring at the center-presented color squares, to detect possible subsequent color change. With this task, sustained visuospatial attention that guided to individual memory representations was disrupted. The behavioral data showed that, the insertion of secondary task significantly deteriorated WM performance. For electrophysiological data, we divided the retention interval into two stages, the early stage and late stage, bounded by the onset of the secondary task. We found that CDA amplitude was lower under the dual-task condition than the single-task condition during the late stage, but not the early stage, and the extent to which CDA reduced tracked the impaired memory performance at the individual level. Also, alpha lateralization only could be observed in the single-task condition of the late stage, and completely disappeared in the dual-task condition, indicating the disruption of visuospatial attention directed to memory representations. Individuals who experienced greater visuospatial attention disruption, as indicated by the alpha lateralization, had lower maintenance-associated neural activity (CDA), and suffered greater impairment of memory performance. These findings confirm that sustained visuospatial attention continues improving visual WM processing after the initial encoding phase, and most likely participates in this process by supporting the maintenance of representations in an active state.
Collapse
Affiliation(s)
- Tengfei Liang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610000, China; Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
| | - Xiaoyu Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
| | - Chaoxiong Ye
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610000, China; Department of Psychology, University of Jyvaskyla, Jyväskylä 40014, Finland
| | - Jiafeng Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610000, China; Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
36
|
Bonacci LM, Dai L, Shinn-Cunningham BG. Weak neural signatures of spatial selective auditory attention in hearing-impaired listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2577. [PMID: 31671991 PMCID: PMC7273515 DOI: 10.1121/1.5129055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 05/17/2023]
Abstract
Spatial attention may be used to select target speech in one location while suppressing irrelevant speech in another. However, if perceptual resolution of spatial cues is weak, spatially focused attention may work poorly, leading to difficulty communicating in noisy settings. In electroencephalography (EEG), the distribution of alpha (8-14 Hz) power over parietal sensors reflects the spatial focus of attention [Banerjee, Snyder, Molholm, and Foxe (2011). J. Neurosci. 31, 9923-9932; Foxe and Snyder (2011). Front. Psychol. 2, 154.] If spatial attention is degraded, however, alpha may not be modulated across parietal sensors. A previously published behavioral and EEG study found that, compared to normal-hearing (NH) listeners, hearing-impaired (HI) listeners often had higher interaural time difference thresholds, worse performance when asked to report the content of an acoustic stream from a particular location, and weaker attentional modulation of neural responses evoked by sounds in a mixture [Dai, Best, and Shinn-Cunningham (2018). Proc. Natl. Acad. Sci. U. S. A. 115, E3286]. This study explored whether these same HI listeners also showed weaker alpha lateralization during the previously reported task. In NH listeners, hemispheric parietal alpha power was greater when the ipsilateral location was attended; this lateralization was stronger when competing melodies were separated by a larger spatial difference. In HI listeners, however, alpha was not lateralized across parietal sensors, consistent with a degraded ability to use spatial features to selectively attend.
Collapse
Affiliation(s)
- Lia M Bonacci
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Lengshi Dai
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
37
|
Banerjee S, Grover S, Sridharan D. Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non-invasive Brain Stimulation. J Indian Inst Sci 2019; 97:451-475. [PMID: 31231154 PMCID: PMC6588534 DOI: 10.1007/s41745-017-0046-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Attention is a process of selection that allows us to intelligently navigate the abundance of information in our world. Attention can be either directed voluntarily based on internal goals-"top-down" or goal-directed attention-or captured automatically, by salient stimuli-"bottom-up" or stimulus-driven attention. Do these two modes of attention control arise from same or different brain circuits? Do they share similar or distinct neural mechanisms? In this review, we explore this dichotomy between the neural bases of top-down and bottom-up attention control, with a special emphasis on insights gained from non-invasive neurostimulation techniques, specifically, transcranial magnetic stimulation (TMS). TMS enables spatially focal and temporally precise manipulation of brain activity. We explore a significant literature devoted to investigating the role of fronto-parietal brain regions in top-down and bottom-up attention with TMS, and highlight key areas of convergence and debate. We also discuss recent advances in combinatorial paradigms that combine TMS with other imaging modalities, such as functional magnetic resonance imaging or electroencephalography. These paradigms are beginning to bridge essential gaps in our understanding of the neural pathways by which TMS affects behavior, and will prove invaluable for unraveling mechanisms of attention control, both in health and in disease.
Collapse
Affiliation(s)
- Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
38
|
Neural Variability Is Quenched by Attention. J Neurosci 2019; 39:5975-5985. [PMID: 31152124 DOI: 10.1523/jneurosci.0355-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/08/2019] [Accepted: 04/21/2019] [Indexed: 01/09/2023] Open
Abstract
Attention can be subdivided into several components, including alertness and spatial attention. It is believed that the behavioral benefits of attention, such as increased accuracy and faster reaction times, are generated by an increase in neural activity and a decrease in neural variability, which enhance the signal-to-noise ratio of task-relevant neural populations. However, empirical evidence regarding attention-related changes in neural variability in humans is extremely rare. Here we used EEG to demonstrate that trial-by-trial neural variability was reduced by visual cues that modulated alertness and spatial attention. Reductions in neural variability were specific to the visual system and larger in the contralateral hemisphere of the attended visual field. Subjects with higher initial levels of neural variability and larger decreases in variability exhibited greater behavioral benefits from attentional cues. These findings demonstrate that both alertness and spatial attention modulate neural variability and highlight the importance of reducing/quenching neural variability for attaining the behavioral benefits of attention.SIGNIFICANCE STATEMENT Attention is thought to improve perception by increasing the signal-to-noise ratio of the neuronal populations that encode the attended stimulus. Signal-to-noise ratio can be enhanced by increasing neural response (signal) and/or by reducing neural variability (noise). The ability of attention to increase neural responses has been studied extensively, but the effects of attention on neural variability have rarely been examined in humans. Here, we demonstrate that modulating different components of attention, including alertness and spatial attention, reduces neural variability in humans. Furthermore, we show that subjects with larger reductions in neural variability exhibit greater behavioral benefits from attention. These results demonstrate that reduction of neural variability is a fundamental feature of attentional processes in humans with clear behavioral importance.
Collapse
|
39
|
10 Hz transcranial alternating current stimulation over posterior parietal cortex facilitates tactile temporal order judgment. Behav Brain Res 2019; 368:111899. [PMID: 30978408 DOI: 10.1016/j.bbr.2019.111899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
The temporal order judgment (TOJ) task has been widely used to investigate spatial attentional bias and the sensitivity of temporal discrimination during the processing of bilateral tactile information. Previous studies have shown that TOJ is impaired in patients who are suffering from chronic pain, stroke, and Parkinson's disease. In addition, studies have indicated that the posterior parietal cortex (PPC) is involved in the TOJ task. However, the neural basis of the TOJ task has not been fully elucidated. To investigate the causal relationship between cortical oscillation and certain behaviors, transcranial alternating current stimulation (tACS) has been used. tACS can entrain an oscillation in the cortex to the applying frequency. In previous studies, increased alpha-band (around 10 Hz) oscillation in the PPC is associated with attentional inhibition of the contralateral side. Therefore, we hypothesized that 10 Hz tACS over PPC would inhibit tactile processing in the contralateral side, leading to ipsilateral spatial attentional bias and impaired temporal discrimination. However, we found that 10 Hz tACS over either side of the PPC facilitated temporal discrimination, with 10 Hz tACS over the right PPC leading to a rightward shift of attentional bias. These findings indicated that 10 Hz tACS over the PPC has a facilitative effect in the processing of bilateral tactile information, and may be useful for modulating or treating spatial bias or temporal discrimination during the integration of bilateral stimulation, at least in the somatosensory domain.
Collapse
|
40
|
Searching for auditory targets in external space and in working memory: Electrophysiological mechanisms underlying perceptual and retroactive spatial attention. Behav Brain Res 2018; 353:98-107. [DOI: 10.1016/j.bbr.2018.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 01/07/2023]
|
41
|
Klatt LI, Getzmann S, Wascher E, Schneider D. The contribution of selective spatial attention to sound detection and sound localization: Evidence from event-related potentials and lateralized alpha oscillations. Biol Psychol 2018; 138:133-145. [DOI: 10.1016/j.biopsycho.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022]
|
42
|
Harris AM, Dux PE, Mattingley JB. Awareness is related to reduced post‐stimulus alpha power: a no‐report inattentional blindness study. Eur J Neurosci 2018; 52:4411-4422. [DOI: 10.1111/ejn.13947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Anthony M. Harris
- Queensland Brain Institute The University of Queensland St Lucia Qld Australia
| | - Paul E. Dux
- School of Psychology The University of Queensland St Lucia Qld Australia
| | - Jason B. Mattingley
- Queensland Brain Institute The University of Queensland St Lucia Qld Australia
- School of Psychology The University of Queensland St Lucia Qld Australia
| |
Collapse
|
43
|
Maksimenko VA, Runnova AE, Zhuravlev MO, Makarov VV, Nedayvozov V, Grubov VV, Pchelintceva SV, Hramov AE, Pisarchik AN. Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface. PLoS One 2017; 12:e0188700. [PMID: 29267295 PMCID: PMC5739396 DOI: 10.1371/journal.pone.0188700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/11/2017] [Indexed: 11/19/2022] Open
Abstract
The influence of motivation and alertness on brain activity associated with visual perception was studied experimentally using the Necker cube, which ambiguity was controlled by the contrast of its ribs. The wavelet analysis of recorded multichannel electroencephalograms (EEG) allowed us to distinguish two different scenarios while the brain processed the ambiguous stimulus. The first scenario is characterized by a particular destruction of alpha rhythm (8–12 Hz) with a simultaneous increase in beta-wave activity (20–30 Hz), whereas in the second scenario, the beta rhythm is not well pronounced while the alpha-wave energy remains unchanged. The experiments were carried out with a group of financially motivated subjects and another group of unpaid volunteers. It was found that the first scenario occurred mainly in the motivated group. This can be explained by the increased alertness of the motivated subjects. The prevalence of the first scenario was also observed in a group of subjects to whom images with higher ambiguity were presented. We believe that the revealed scenarios can occur not only during the perception of bistable images, but also in other perceptual tasks requiring decision making. The obtained results may have important applications for monitoring and controlling human alertness in situations which need substantial attention. On the base of the obtained results we built a brain-computer interface to estimate and control the degree of alertness in real time.
Collapse
Affiliation(s)
- Vladimir A. Maksimenko
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
| | - Anastasia E. Runnova
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
| | - Maksim O. Zhuravlev
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
| | - Vladimir V. Makarov
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
| | - Vladimir Nedayvozov
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
| | - Vadim V. Grubov
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
| | - Svetlana V. Pchelintceva
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
| | - Alexander E. Hramov
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
| | - Alexander N. Pisarchik
- Yuri Gagarin Technical State University of Saratov, Politehnicheskaya, 77, 410054 Saratov, Russia
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid, Spain
- * E-mail:
| |
Collapse
|
44
|
Hramov AE, Maksimenko VA, Pchelintseva SV, Runnova AE, Grubov VV, Musatov VY, Zhuravlev MO, Koronovskii AA, Pisarchik AN. Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks. Front Neurosci 2017; 11:674. [PMID: 29255403 PMCID: PMC5722852 DOI: 10.3389/fnins.2017.00674] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces.
Collapse
Affiliation(s)
- Alexander E Hramov
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia.,Faculty of Nonlinear Processes, Saratov State University, Saratov, Russia
| | - Vladimir A Maksimenko
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia
| | - Svetlana V Pchelintseva
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia
| | - Anastasiya E Runnova
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia
| | - Vadim V Grubov
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia
| | - Vyacheslav Yu Musatov
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia
| | - Maksim O Zhuravlev
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia.,Faculty of Nonlinear Processes, Saratov State University, Saratov, Russia
| | - Alexey A Koronovskii
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia.,Faculty of Nonlinear Processes, Saratov State University, Saratov, Russia
| | - Alexander N Pisarchik
- REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia.,Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain
| |
Collapse
|
45
|
The necessity to choose causes reward-related anticipatory biasing: Parieto-occipital alpha-band oscillations reveal suppression of low-value targets. Sci Rep 2017; 7:14318. [PMID: 29085041 PMCID: PMC5662762 DOI: 10.1038/s41598-017-14742-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023] Open
Abstract
Positive outcome of actions can be maximized by choosing the option with the highest reward. For saccades, it has recently been suggested that the necessity to choose is, in fact, an important factor mediating reward effects: latencies to single low-reward targets increased with an increasing proportion of interleaved choice-trials, in which participants were free to choose between two targets to obtain either a high or low reward. Here, we replicate this finding for manual responses, demonstrating that this effect of choice is a more general, effector-independent phenomenon. Oscillatory activity in the alpha and beta band in the preparatory period preceding target onset was analysed for a parieto-occipital and a centrolateral region of interest to identify an anticipatory neural biasing mechanism related to visuospatial attention or motor preparation. When the proportion of interleaved choices was high, an increase in lateralized posterior alpha power indicated that the hemifield associated with a low reward was suppressed in preparation for reward-maximizing target selection. The larger the individual increase in lateralized alpha power, the slower the reaction times to low-reward targets. At a broader level, these findings support the notion that reward only affects responses when behaviour can be optimized to maximize positive outcome.
Collapse
|
46
|
Gratton G, Cooper P, Fabiani M, Carter CS, Karayanidis F. Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future. Psychophysiology 2017; 55. [DOI: 10.1111/psyp.13016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Gabriele Gratton
- Department of Psychology and Beckman InstituteUniversity of Illinois at Urbana‐ChampaignUrbana Illinois USA
| | - Patrick Cooper
- School of PsychologyUniversity of NewcastleNewcastle New South Wales Australia
| | - Monica Fabiani
- Department of Psychology and Beckman InstituteUniversity of Illinois at Urbana‐ChampaignUrbana Illinois USA
| | - Cameron S. Carter
- Departments of Psychiatry and PsychologyUniversity of California–DavisDavis California USA
| | - Frini Karayanidis
- School of PsychologyUniversity of NewcastleNewcastle New South Wales Australia
| |
Collapse
|
47
|
Increased Alpha-Rhythm Dynamic Range Promotes Recovery from Visuospatial Neglect: A Neurofeedback Study. Neural Plast 2017; 2017:7407241. [PMID: 28529806 PMCID: PMC5424484 DOI: 10.1155/2017/7407241] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/08/2017] [Indexed: 11/22/2022] Open
Abstract
Despite recent attempts to use electroencephalogram (EEG) neurofeedback (NFB) as a tool for rehabilitation of motor stroke, its potential for improving neurological impairments of attention—such as visuospatial neglect—remains underexplored. It is also unclear to what extent changes in cortical oscillations contribute to the pathophysiology of neglect, or its recovery. Utilizing EEG-NFB, we sought to causally manipulate alpha oscillations in 5 right-hemisphere stroke patients in order to explore their role in visuospatial neglect. Patients trained to reduce alpha oscillations from their right posterior parietal cortex (rPPC) for 20 minutes daily, over 6 days. Patients demonstrated successful NFB learning between training sessions, denoted by improved regulation of alpha oscillations from rPPC. We observed a significant negative correlation between visuospatial search deficits (i.e., cancellation test) and reestablishment of spontaneous alpha-rhythm dynamic range (i.e., its amplitude variability). Our findings support the use of NFB as a tool for investigating neuroplastic recovery after stroke and suggest reinstatement of intact parietal alpha oscillations as a promising target for reversing attentional deficits. Specifically, we demonstrate for the first time the feasibility of EEG-NFB in neglect patients and provide evidence that targeting alpha amplitude variability might constitute a valuable marker for clinical symptoms and self-regulation.
Collapse
|
48
|
Feng W, Störmer VS, Martinez A, McDonald JJ, Hillyard SA. Involuntary orienting of attention to a sound desynchronizes the occipital alpha rhythm and improves visual perception. Neuroimage 2017; 150:318-328. [DOI: 10.1016/j.neuroimage.2017.02.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022] Open
|
49
|
de Vries IEJ, van Driel J, Olivers CNL. Posterior α EEG Dynamics Dissociate Current from Future Goals in Working Memory-Guided Visual Search. J Neurosci 2017; 37:1591-1603. [PMID: 28069918 PMCID: PMC5299573 DOI: 10.1523/jneurosci.2945-16.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 12/30/2016] [Indexed: 01/28/2023] Open
Abstract
Current models of visual search assume that search is guided by an active visual working memory representation of what we are currently looking for. This attentional template for currently relevant stimuli can be dissociated from accessory memory representations that are only needed prospectively, for a future task, and that should be prevented from guiding current attention. However, it remains unclear what electrophysiological mechanisms dissociate currently relevant (serving upcoming selection) from prospectively relevant memories (serving future selection). We measured EEG of 20 human subjects while they performed two consecutive visual search tasks. Before the search tasks, a cue instructed observers which item to look for first (current template) and which second (prospective template). During the delay leading up to the first search display, we found clear suppression of α band (8-14 Hz) activity in regions contralateral to remembered items, comprising both local power and interregional phase synchronization within a posterior parietal network. Importantly, these lateralization effects were stronger when the memory item was currently relevant (i.e., for the first search) compared with when it was prospectively relevant (i.e., for the second search), consistent with current templates being prioritized over future templates. In contrast, event-related potential analysis revealed that the contralateral delay activity was similar for all conditions, suggesting no difference in storage. Together, these findings support the idea that posterior α oscillations represent a state of increased processing or excitability in task-relevant cortical regions, and reflect enhanced cortical prioritization of memory representations that serve as a current selection filter.SIGNIFICANCE STATEMENT Our days are filled with looking for relevant objects while ignoring irrelevant visual information. Such visual search activity is thought to be driven by current goals activated in working memory. However, working memory not only serves current goals, but also future goals, with differential impact upon visual selection. Little is known about how the brain differentiates between current and future goals. Here we show, for the first time, that modulations of brain oscillations in the EEG α frequency band in posterior cortex can dissociate current from future search goals in working memory. Moreover, the dynamics of these oscillations uncover how we flexibly switch focus between memory representations. Together, we reveal how the brain assigns priority for selection.
Collapse
Affiliation(s)
- Ingmar E J de Vries
- Institute of Brain and Behavior Amsterdam and Department of Experimental and Applied Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081BT Amsterdam, The Netherlands
| | - Joram van Driel
- Institute of Brain and Behavior Amsterdam and Department of Experimental and Applied Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081BT Amsterdam, The Netherlands
| | - Christian N L Olivers
- Institute of Brain and Behavior Amsterdam and Department of Experimental and Applied Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081BT Amsterdam, The Netherlands
| |
Collapse
|
50
|
van Driel J, Gunseli E, Meeter M, Olivers CNL. Local and interregional alpha EEG dynamics dissociate between memory for search and memory for recognition. Neuroimage 2017; 149:114-128. [PMID: 28132933 DOI: 10.1016/j.neuroimage.2017.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022] Open
Abstract
Attention during visual search is thought to be guided by an active visual working memory (VWM) representation of the search target. We tested the hypothesis that a VWM representation used for searching a target among competing information (a "search template") is distinct from VWM representations used for simple recognition tasks, without competition. We analyzed EEG from 20 human participants while they performed three different VWM-based visual detection tasks. All tasks started with identical lateralized VWM cues, but differed with respect to the presence and nature of competing distractors during the target display at test, where participants performed a simple recognition task without distractors, or visual search in pop-out (distinct) and serial (non-distinct) search displays. Performance was worst for non-distinct search, and best for simple recognition. During the one second delay period between cue and test, we observed robust suppression of EEG dynamics in the alpha (8-14Hz) band over parieto-occipital sites contralateral to the relevant VWM item, both in terms of local power as well as interregional phase synchrony within a posterior-parietal network. Importantly, these lateralization dynamics were more strongly expressed prior to search compared to simple recognition. Furthermore, before the VWM cue, alpha phase synchrony between prefrontal and mid-posterior-parietal sites was strongest for non-distinct search, reflecting enhanced anticipatory control prior to VWM encoding. Directional connectivity analyses confirmed this effect to be in an anterior-to-posterior direction. Together, these results provide evidence for frontally mediated top-down control of VWM in preparation of visual search.
Collapse
Affiliation(s)
| | - Eren Gunseli
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn Meeter
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|