1
|
Demir MF, Lin YH, Costa Cruz PH, Tajima M, Honjo T, Müller E. Blocking S100A9-signaling is detrimental to the initiation of anti-tumor immunity. Front Immunol 2024; 15:1479502. [PMID: 39497822 PMCID: PMC11532050 DOI: 10.3389/fimmu.2024.1479502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
S100A9, a multifunctional protein mainly expressed by neutrophils and monocytes, poses an immunological paradox. In virus infections or sterile inflammation, it functions as an alarmin attracting innate immune cells, as well as mediating proinflammatory effects through TLR4 signaling. However, in cancer, S100A9 levels have been shown to associate with poor prognosis and lack of response to immunotherapy. Its expression by myeloid cells has been related to an immune suppressive phenotype, the so-called myeloid derived suppressor cells (MDSCs). Targeting S100A9 in cancer has therefore been proposed as a potential way to relieve myeloid-mediated immune suppression. Surprisingly, we found that blocking the extracellular TLR4 signaling from S100A9 using the inhibitor Paquinimod, resulted in increased tumor growth and a detrimental effect on anti-PD-L1 efficacy in the CT26 tumor model. This effect was caused by a reduction in the tumor immune infiltration to about half of untreated controls, and the reduction was made up of a 5-fold decrease in Ly6Chigh monocytic cells. The suppressive Ly6G+ myeloid cells compartment was not reduced by Paquinimod treatment, suggesting alternative mechanisms by which S100A9 contributes to myeloid-mediated suppression. Intratumoral injection of recombinant S100A9 early after mice inoculation with CT26 cells had an anti-tumor effect. These findings indicate an important yet understudied role of S100A9 as an alarmin and immune stimulatory signal in cancer settings, and highlight the potential to exploit such signals to promote beneficial anti-tumor responses.
Collapse
Affiliation(s)
- Melike Fusun Demir
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Yu-Hsien Lin
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Pedro Henrique Costa Cruz
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
| | - Elisabeth Müller
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
- Tumor Immunology Group, Institute of Pathology, Oslo University Hospital, Oslo, Norway
- Therapy Prediction In Lung Cancer, Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Chisholm LO, Jeon CK, Prell JS, Harms MJ. Changing expression system alters oligomerization and proinflammatory activity of recombinant human S100A9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.608001. [PMID: 39185185 PMCID: PMC11343194 DOI: 10.1101/2024.08.14.608001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
S100A9 is a Damage Associated Molecular Pattern (DAMP) that activates the innate immune system via Toll-like receptor 4 (TLR4). Despite many years of study, the mechanism of activation remains unknown. To date, much of the biochemical characterization of S100A9 has been performed using recombinant S100A9 expressed in E. coli (S100A9ec). TLR4 is the canonical receptor for LPS, a molecule found in the outer membrane of E. coli, raising the possibility of artifacts due to LPS contamination. Here we report characterization of LPS-free recombinant S100A9 expressed in insect cells (S100A9in). We show that S100A9in does not activate TLR4. This difference does not appear to be due to LPS contamination, protein misfolding, purification artifacts, or differences in phosphorylation. We show instead that S100A9in adopts an altered oligomeric state compared to S100A9ec. Disrupting oligomer formation with the E. coli disaggregase SlyD restores activity to S100A9in. Our results also indicate that the oligomeric state of S100A9 is a major factor in its ability to activate TLR4 and that this can be altered in unexpected ways by the recombinant expression system used to produce the protein.
Collapse
Affiliation(s)
- Lauren O. Chisholm
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Chae Kyung Jeon
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Materials Science Institute, University of Oregon, Eugene, OR 97403
| | - James S. Prell
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Materials Science Institute, University of Oregon, Eugene, OR 97403
| | - Michael J. Harms
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
3
|
Gardner RS, Kyle M, Hughes K, Zhao LR. Single-Cell RNA Sequencing Reveals Immunomodulatory Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor Treatment in the Brains of Aged APP/PS1 Mice. Biomolecules 2024; 14:827. [PMID: 39062541 PMCID: PMC11275138 DOI: 10.3390/biom14070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) leads to progressive neurodegeneration and dementia. AD primarily affects older adults with neuropathological changes including amyloid-beta (Aβ) deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) reduces the Aβ load, increases Aβ uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APPswe/PS1dE9 (APP/PS1) mice. However, the mechanisms underlying SCF+G-CSF-enhanced brain repair in aged APP/PS1 mice remain unclear. This study used a transcriptomic approach to identify the potential mechanisms by which SCF+G-CSF treatment modulates microglia and peripheral myeloid cells to mitigate AD pathology in the aged brain. After injections of SCF+G-CSF for 5 consecutive days, single-cell RNA sequencing was performed on CD11b+ cells isolated from the brains of 28-month-old APP/PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF+G-CSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF+G-CSF-induced increase of cerebral CD45high/CD11b+ active phagocytes. SCF+G-CSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. The expression of S100a8 and S100a9 was robustly enhanced following SCF+G-CSF treatment in all CD11b+ cell clusters. Moreover, the topmost genes differentially expressed with SCF+G-CSF treatment were largely upregulated in S100a8/9-positive cells, suggesting a well-conserved transcriptional profile related to SCF+G-CSF treatment in resident and peripherally derived CD11b+ immune cells. This S100a8/9-associated transcriptional profile contained notable genes related to pro-inflammatory and anti-inflammatory responses, neuroprotection, and Aβ plaque inhibition or clearance. Altogether, this study reveals the immunomodulatory effects of SCF+G-CSF treatment in the aged brain with AD pathology, which will guide future studies to further uncover the therapeutic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Gardner R, Kyle M, Hughes K, Zhao LR. Single cell RNA sequencing reveals immunomodulatory effects of stem cell factor and granulocyte colony-stimulating factor treatment in the brains of aged APP/PS1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593359. [PMID: 38766064 PMCID: PMC11100789 DOI: 10.1101/2024.05.09.593359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alzheimers disease leads to progressive neurodegeneration and dementia. Alzheimers disease primarily affects older adults with neuropathological changes including amyloid beta deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor, SCF, and granulocyte colony stimulating factor, GCSF, reduces amyloid beta load, increases amyloid beta uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APP-PS1 mice. However, the mechanisms underlying SCF-GCSF-enhanced brain repair in aged APP-PS1 mice remain unclear. This study used a transcriptomic approach to identify potential mechanisms by which SCF-GCSF treatment modulates microglia and peripheral myeloid cells to mitigate Alzheimers disease pathology in the aged brain. After injections of SCF-GCSF for 5 consecutive days, single cell RNA sequencing was performed on CD11b positive cells isolated from the brains of 28-month-old APP-PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF-GCSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF-GCSF-induced increase of cerebral CD45high-CD11b positive active phagocytes. SCF-GCSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. Expression of S100a8 and S100a9 were robustly enhanced following SCF-GCSF treatment in all CD11b positive cell clusters. Moreover, the topmost genes differentially expressed with SCF-GCSF treatment were largely upregulated in S100a8-S100a9 positive cells, suggesting a well-conserved transcriptional profile related to SCF-GCSF treatment in resident and peripherally derived CD11b positive immune cells. This S100a8-S100a9-associated transcriptional profile contained notable genes related to proinflammatory and antiinflammatory responses, neuroprotection, and amyloid beta plaque inhibition or clearance. Altogether, this study reveals immunomodulatory effects of SCF-GCSF treatment in the aged brain with Alzheimers disease pathology, which will guide future studies to further uncover the therapeutic mechanisms.
Collapse
|
5
|
Chisholm LO, Jaeger NM, Murawsky HE, Harms MJ. S100A9 interacts with a dynamic region on CD14 to activate Toll-like receptor 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594416. [PMID: 38798518 PMCID: PMC11118535 DOI: 10.1101/2024.05.15.594416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
S100A9 is a Damage Associated Molecular Pattern (DAMP) that activates inflammatory pathways via Toll-like receptor 4 (TLR4). This activity plays important homeostatic roles in tissue repair, but can also contribute to inflammatory diseases. The mechanism of activation is unknown. Here, we follow up on a previous observation that the protein CD14 is an important co-receptor that enables S100A9 to activate TLR4. Using cell-based functional assays and a combination of mutations and pharmocological perturbations, we found that CD14 must be membrane bound to potentiate TLR4 activation by S100A9. Additionally, S100A9 is sensitive to inhibitors of pathways downstream of TLR4 internalization. Together, this suggests that S100A9 induces activity via CD14-dependent internalization of TLR4. We then used mutagenesis, structural modeling, and in vitro binding experiments to establish that S100A9 binds to CD14's N-terminus in a region that overlaps with, but is not identical to, the region where CD14 binds its canonical ligand, lipopolysaccharide (LPS). In molecular dynamics simulations, this region of the protein is dynamic, allowing it to reorganize to recognize both S100A9 (a soluble protein) and LPS (a small hydrophobic molecule). Our work is the first attempt at a molecular characterization of the S100A9/CD14 interaction, bringing us one step closer to unraveling the full mechanism by which S100A9 activates TLR4/MD-2.
Collapse
|
6
|
Khayer N, Jalessi M, Farhadi M, Azad Z. S100a9 might act as a modulator of the Toll-like receptor 4 transduction pathway in chronic rhinosinusitis with nasal polyps. Sci Rep 2024; 14:9722. [PMID: 38678138 PMCID: PMC11055867 DOI: 10.1038/s41598-024-60205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Chronic rhinosinusitis with nasal polyp (CRSwNP) is a highly prevalent disorder characterized by persistent nasal and sinus mucosa inflammation. Despite significant morbidity and decreased quality of life, there are limited effective treatment options for such a disease. Therefore, identifying causal genes and dysregulated pathways paves the way for novel therapeutic interventions. In the current study, a three-way interaction approach was used to detect dynamic co-expression interactions involved in CRSwNP. In this approach, the internal evolution of the co-expression relation between a pair of genes (X, Y) was captured under a change in the expression profile of a third gene (Z), named the switch gene. Subsequently, the biological relevancy of the statistically significant triplets was confirmed using both gene set enrichment analysis and gene regulatory network reconstruction. Finally, the importance of identified switch genes was confirmed using a random forest model. The results suggested four dysregulated pathways in CRSwNP, including "positive regulation of intracellular signal transduction", "arachidonic acid metabolic process", "spermatogenesis" and "negative regulation of cellular protein metabolic process". Additionally, the S100a9 as a switch gene together with the gene pair {Cd14, Tpd52l1} form a biologically relevant triplet. More specifically, we suggested that S100a9 might act as a potential upstream modulator in toll-like receptor 4 transduction pathway in the major CRSwNP pathologies.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Azad
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Roos J, Zinngrebe J, Huber-Lang M, Lupu L, Schmidt MA, Strobel H, Westhoff MA, Stifel U, Gebhard F, Wabitsch M, Mollnes TE, Debatin KM, Halbgebauer R, Fischer-Posovszky P. Trauma-associated extracellular histones mediate inflammation via a MYD88-IRAK1-ERK signaling axis and induce lytic cell death in human adipocytes. Cell Death Dis 2024; 15:285. [PMID: 38653969 PMCID: PMC11039744 DOI: 10.1038/s41419-024-06676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.
Collapse
Affiliation(s)
- Julian Roos
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | - Miriam A Schmidt
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Ulrich Stifel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Florian Gebhard
- Department of Orthopedic Trauma, Hand, and Reconstructive Surgery, University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital Trust, Bodo, Norway
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | | |
Collapse
|
8
|
Paramasivam S, Perumal SS, Ekambaram SP. Computational Deciphering of the Role of S100A8 and S100A9 Proteins and Their Changes in the Structure Assembly Influences Their Interaction with TLR4, RAGE, and CD36. Protein J 2024; 43:243-258. [PMID: 38431537 DOI: 10.1007/s10930-024-10186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.
Collapse
Affiliation(s)
- Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
9
|
Bartels YL, van Lent PLEM, van der Kraan PM, Blom AB, Bonger KM, van den Bosch MHJ. Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis. Rheumatology (Oxford) 2024; 63:608-618. [PMID: 37788083 PMCID: PMC10907820 DOI: 10.1093/rheumatology/kead493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.
Collapse
Affiliation(s)
- Yvonne L Bartels
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
11
|
Sharygin D, Koniaris LG, Wells C, Zimmers TA, Hamidi T. Role of CD14 in human disease. Immunology 2023; 169:260-270. [PMID: 36840585 PMCID: PMC10591340 DOI: 10.1111/imm.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
The cell surface antigen CD14 is primarily understood to act as a co-receptor for toll-like receptors (TLRs) to activate innate immunity responses to pathogens and tissue injury in macrophages and monocytes. However, roles for CD14 are increasingly being uncovered in disease responses in epithelial and endothelial cells. Consistent with these broader functions, CD14 expression is altered in a variety of non-immune cell types in response to a several of disease states. Moreover, soluble CD14 activated by factors from both pathogens and tissue damage may initiate signalling in a variety of non-immune cells. This review examined the current understanding CD14 in innate immunity as well as its potential functions in nonimmune cells and associated human diseases.
Collapse
Affiliation(s)
- Daniel Sharygin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Chemistry, Massachusetts institute of technology, Cambridge, MA, USA
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clark Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Tewfik Hamidi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Wen S, Li X, Lv X, Liu K, Ren J, Zhai J, Song Y. Current progress on innate immune evasion mediated by Npro protein of pestiviruses. Front Immunol 2023; 14:1136051. [PMID: 37090696 PMCID: PMC10115221 DOI: 10.3389/fimmu.2023.1136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Interferon (IFN), the most effective antiviral cytokine, is involved in innate and adaptive immune responses and is essential to the host defense against virus invasion. Once the host was infected by pathogens, the pathogen-associated molecular patterns (PAMPs) were recognized by the host pattern recognition receptors (PRRs), which activates interferon regulatory transcription factors (IRFs) and nuclear factor-kappa B (NF-κB) signal transduction pathway to induce IFN expression. Pathogens have acquired many strategies to escape the IFN-mediated antiviral immune response. Pestiviruses cause massive economic losses in the livestock industry worldwide every year. The immune escape strategies acquired by pestiviruses during evolution are among the major difficulties in its control. Previous experiments indicated that Erns, as an envelope glycoprotein unique to pestiviruses with RNase activity, could cleave viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to confront the IFN response. This review mainly summarized the current progress on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Xintong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Lv
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Kai Liu
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Zhejiang, Wenzhou, China
- *Correspondence: Jingqiang Ren, ; Jingbo Zhai, ; Yang Song,
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- *Correspondence: Jingqiang Ren, ; Jingbo Zhai, ; Yang Song,
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- *Correspondence: Jingqiang Ren, ; Jingbo Zhai, ; Yang Song,
| |
Collapse
|
13
|
Kim D, Rai NK, Burrows A, Kim S, Tripathi A, Weinberg SE, Dutta R, Sen GC, Min B. IFN-Induced Protein with Tetratricopeptide Repeats 2 Limits Autoimmune Inflammation by Regulating Myeloid Cell Activation and Metabolic Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:721-731. [PMID: 36695771 PMCID: PMC9998371 DOI: 10.4049/jimmunol.2200746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Besides antiviral functions, type I IFN expresses potent anti-inflammatory properties and is being widely used to treat certain autoimmune conditions, such as multiple sclerosis. In a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, administration of IFN-β effectively attenuates the disease development. However, the precise mechanisms underlying IFN-β-mediated treatment remain elusive. In this study, we report that IFN-induced protein with tetratricopeptide repeats 2 (Ifit2), a type I and type III IFN-stimulated gene, plays a previously unrecognized immune-regulatory role during autoimmune neuroinflammation. Mice deficient in Ifit2 displayed greater susceptibility to experimental autoimmune encephalomyelitis and escalated immune cell infiltration in the CNS. Ifit2 deficiency was also associated with microglial activation and increased myeloid cell infiltration. We also observed that myelin debris clearance and the subsequent remyelination were substantially impaired in Ifit2-/- CNS tissues. Clearing myelin debris is an important function of the reparative-type myeloid cell subset to promote remyelination. Indeed, we observed that bone marrow-derived macrophages, CNS-infiltrating myeloid cells, and microglia from Ifit2-/- mice express cytokine and metabolic genes associated with proinflammatory-type myeloid cell subsets. Taken together, our findings uncover a novel regulatory function of Ifit2 in autoimmune inflammation in part by modulating myeloid cell function and metabolic activity.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Nagendra Kumar Rai
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Amy Burrows
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Ajai Tripathi
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Samuel E. Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Ranjan Dutta
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
14
|
Zhang Y, Cheng L, Liu Y, Zhan S, Wu Z, Luo S, Zhang X. Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:488-495. [PMID: 35892267 DOI: 10.1002/jsfa.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The chances of people suffering from cognitive impairments increase gradually with age. Diet and lifestyle are closely related to the occurrence and development of cognitive function. Dietary flavonoid supplementation has been shown to be one of the protective factors against cognitive decline. Flavonoids belong to a class of polyphenols that have been proposed for the treatment of cognitive decline. Recent evidence has shown that intestinal flora in the human body can interact with flavonoids. Intestinal microbiota can modify the chemical structure of flavonoids, producing new metabolites, the pharmacological activities of which may be different from those of the parent; meanwhile, flavonoids and their metabolites can, in turn, regulate the composition and structure of intestinal flora. Notably, intestinal flora affect host nervous system activity through the gut-brain axis, ultimately causing changes in cognitive function. This review therefore summarizes the interaction of dietary flavonoids and intestinal flora, and their protective effect against cognitive decline through the gut-brain axis, indicating that dietary flavonoids may ameliorate cognitive impairment through their interaction with intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
15
|
Evolutionary entrenchment in immune proteins selects against stabilizing mutations. Proc Natl Acad Sci U S A 2022; 119:e2216087119. [PMID: 36449544 PMCID: PMC9894131 DOI: 10.1073/pnas.2216087119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
16
|
Harman JL, Reardon PN, Costello SM, Warren GD, Phillips SR, Connor PJ, Marqusee S, Harms MJ. Evolution avoids a pathological stabilizing interaction in the immune protein S100A9. Proc Natl Acad Sci U S A 2022; 119:e2208029119. [PMID: 36194634 PMCID: PMC9565474 DOI: 10.1073/pnas.2208029119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 01/03/2023] Open
Abstract
Stability constrains evolution. While much is known about constraints on destabilizing mutations, less is known about the constraints on stabilizing mutations. We recently identified a mutation in the innate immune protein S100A9 that provides insight into such constraints. When introduced into human S100A9, M63F simultaneously increases the stability of the protein and disrupts its natural ability to activate Toll-like receptor 4. Using chemical denaturation, we found that M63F stabilizes a calcium-bound conformation of hS100A9. We then used NMR to solve the structure of the mutant protein, revealing that the mutation distorts the hydrophobic binding surface of hS100A9, explaining its deleterious effect on function. Hydrogen-deuterium exchange (HDX) experiments revealed stabilization of the region around M63F in the structure, notably Phe37. In the structure of the M63F mutant, the Phe37 and Phe63 sidechains are in contact, plausibly forming an edge-face π-stack. Mutating Phe37 to Leu abolished the stabilizing effect of M63F as probed by both chemical denaturation and HDX. It also restored the biological activity of S100A9 disrupted by M63F. These findings reveal that Phe63 creates a molecular staple with Phe37 that stabilizes a nonfunctional conformation of the protein, thus disrupting function. Using a bioinformatic analysis, we found that S100A9 proteins from different organisms rarely have Phe at both positions 37 and 63, suggesting that avoiding a pathological stabilizing interaction indeed constrains S100A9 evolution. This work highlights an important evolutionary constraint on stabilizing mutations, namely, that they must avoid inappropriately stabilizing nonfunctional protein conformations.
Collapse
Affiliation(s)
- Joseph L. Harman
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Patrick N. Reardon
- College of Science, NMR Facility, Oregon State University, Corvallis, OR 97331
| | - Shawn M. Costello
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720
| | - Gus D. Warren
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Sophia R. Phillips
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Patrick J. Connor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
| | - Michael J. Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
17
|
Xiao F, Wang HW, Hu JJ, Tao R, Weng XX, Wang P, Wu D, Wang XJ, Yan WM, Xi D, Luo XP, Wan XY, Ning Q. Fibrinogen-like protein 2 deficiency inhibits virus-induced fulminant hepatitis through abrogating inflammatory macrophage activation. World J Gastroenterol 2022; 28:479-496. [PMID: 35125831 PMCID: PMC8790557 DOI: 10.3748/wjg.v28.i4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/08/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heterogeneous macrophages play an important role in multiple liver diseases, including viral fulminant hepatitis (VFH). Fibrinogen-like protein 2 (FGL2) is expressed on macrophages and regulates VFH pathogenesis; however, the underlying mechanism remains unclear.
AIM To explore how FGL2 regulates macrophage function and subsequent liver injury during VFH.
METHODS Murine hepatitis virus strain 3 (MHV-3) was used to induce VFH in FGL2-deficient (Fgl2-/-) and wild-type (WT) mice. The dynamic constitution of hepatic macrophages was examined. Adoptive transfer of Fgl2-/- or WT bone marrow-derived macrophages (BMDMs) into WT recipients with macrophages depleted prior to infection was carried out and the consequent degree of liver damage was compared. The signaling cascades that may be regulated by FGL2 were detected in macrophages.
RESULTS Following MHV-3 infection, hepatic macrophages were largely replenished by proinflammatory monocyte-derived macrophages (MoMFs), which expressed high levels of FGL2. In Fgl2-/- mice, the number of infiltrating inflammatory MoMFs was reduced compared with that in WT mice after viral infection. Macrophage depletion ameliorated liver damage in WT mice and further alleviated liver damage in Fgl2-/- mice. Adoptive transfer of Fgl2-/- BMDMs into macrophage-removed recipients significantly reduced the degree of liver damage. Inhibition of monocyte infiltration also significantly ameliorated liver damage. Functionally, Fgl2 deletion impaired macrophage phagocytosis and the antigen presentation potential and attenuated the proinflammatory phenotype. At the molecular level, FGL2 deficiency impaired IRF3, IRF7, and p38 phosphorylation, along with NF-κB activation in BMDMs in response to viral infection.
CONCLUSION Infiltrated MoMFs represent a major source of hepatic inflammation during VFH progression, and FGL2 expression on MoMFs maintains the proinflammatory phenotype via p38-dependent positive feedback, contributing to VFH pathogenesis.
Collapse
Affiliation(s)
- Fang Xiao
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Province, China
| | - Hong-Wu Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jun-Jian Hu
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ran Tao
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xin-Xin Weng
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Peng Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Di Wu
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Jing Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei-Ming Yan
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dong Xi
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Wuhan 430030, Hubei Province, China
| | - Xiao-Yang Wan
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
18
|
Kim BY, Son Y, Cho HR, Lee D, Eo SK, Kim K. Miconazole Suppresses 27-Hydroxycholesterol-induced Inflammation by Regulating Activation of Monocytic Cells to a Proinflammatory Phenotype. Front Pharmacol 2021; 12:691019. [PMID: 34744703 PMCID: PMC8570190 DOI: 10.3389/fphar.2021.691019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Miconazole is effective in treating inflammatory skin conditions and has well-established antifungal effects. To elucidate the underlying mechanisms mediating its additional beneficial effects, we assessed whether miconazole influences the inflammation induced by 27-hydroxycholesterol (27OHChol), an oxygenated cholesterol derivative with high proinflammatory activity, using THP-1 monocytic cells. Miconazole dose-dependently inhibited the expression of proinflammatory markers, including CCL2 and CCR5 ligands such as CCL3 and CCL4, and impaired the migration of monocytic cells and CCR5-positive T cells. In the presence of 27OHChol, miconazole decreased CD14 surface levels and considerably weakened the lipopolysaccharide response. Furthermore, miconazole blocked the release of soluble CD14 and impaired the transcription of the matrix metalloproteinase-9 gene and secretion of its active gene product. Additionally, it downregulated the expression of ORP3 and restored the endocytic function of THP-1 cells. Collectively, these findings indicate that miconazole regulates the 27OHChol-induced expression of proinflammatory molecules in monocytic cells, thereby suppressing inflammation in an oxysterol-rich milieu.
Collapse
Affiliation(s)
- Bo-Young Kim
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| | - Yonghae Son
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| | - Hyok-Rae Cho
- Department of Neurosurgery, College of Medicine, Kosin University, Busan, Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University-School of Medicine, Yangsan, Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| |
Collapse
|
19
|
Zhao Y, Wang J, Liu WN, Fong SY, Shuen TWH, Liu M, Harden S, Tan SY, Cheng JY, Tan WWS, Chan JKY, Chee CE, Lee GH, Toh HC, Lim SG, Wan Y, Chen Q. Analysis and Validation of Human Targets and Treatments Using a Hepatocellular Carcinoma-Immune Humanized Mouse Model. Hepatology 2021; 74:1395-1410. [PMID: 33738839 PMCID: PMC9540409 DOI: 10.1002/hep.31812] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Recent development of multiple treatments for human hepatocellular carcinoma (HCC) has allowed for the selection of combination therapy to enhance the effectiveness of monotherapy. Optimal selection of therapies is based on both HCC and its microenvironment. Therefore, it is critical to develop and validate preclinical animal models for testing clinical therapeutic solutions. APPROACH AND RESULTS We established cell line-based or patient-derived xenograft-based humanized-immune-system mouse models with subcutaneous and orthotopic HCC. Mice were injected with human-specific antibodies (Abs) to deplete human immune cells. We analyzed the transcription profiles of HCC cells and human immune cells by using real-time PCR and RNA sequencing. The protein level of HCC tumor cells/tissues or human immune cells was determined by using flow cytometry, western blotting, and immunohistochemistry. The HCC tumor size was measured after single, dual-combination, and triple-combination treatment using N-(1',2-Dihydroxy-1,2'-binaphthalen-4'-yl)-4-methoxybenzenesulfonamide (C188-9), bevacizumab, and pembrolizumab. In this study, human immune cells in the tumor microenvironment were strongly selected and modulated by HCC, which promoted the activation of the IL-6/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in tumor cells and led to augmented HCC proliferation and angiogenesis by releasing angiogenic cytokines in humanized-immune-system mice with HCC. In particular, intratumor human cluster of differentiation-positive (hCD14+ ) cells could produce IL-33 through damage-associated molecular pattern/Toll-like receptor 4/activator protein 1, which up-regulated IL-6 in other intratumor immune cells and activated the JAK2/STAT3 pathway in HCC. Specific knockdown of the CD14 gene in human monocytes could impair IL-33 production induced by cell lysates. Subsequently, we evaluated the in vivo anti-HCC effect of C188-9, bevacizumab, and pembrolizumab. The results showed that the anti-HCC effect of triple-combination therapy was superior to that of single or dual treatments. CONCLUSIONS Humanized-immune-system HCC mouse models are suitable for identifying targets from cancer and immune components and for testing combinational therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jiaxu Wang
- Genome Institute of SingaporeAgency for Science, Technology and ResearchSingapore
| | - Wai Nam Liu
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Shin Yie Fong
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | | | - Min Liu
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Sarah Harden
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Sue Yee Tan
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jia Ying Cheng
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jerry Kok Yen Chan
- Department of Reproductive MedicineKandang Kerbau Women’s and Children's HospitalSingapore,Experimental Fetal Medicine GroupYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Cheng Ean Chee
- Department of Hematology‐OncologyNational University Cancer InstituteSingapore
| | - Guan Huei Lee
- Division of Gastroenterology and HepatologyNational University Health SystemSingapore
| | - Han Chong Toh
- Division of Medical OncologyNational Cancer Centre SingaporeSingapore
| | - Seng Gee Lim
- Division of Gastroenterology and HepatologyNational University Health SystemSingapore
| | - Yue Wan
- Genome Institute of SingaporeAgency for Science, Technology and ResearchSingapore
| | - Qingfeng Chen
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore,Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
20
|
Leptin Induced TLR4 Expression via the JAK2-STAT3 Pathway in Obesity-Related Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7385160. [PMID: 34457118 PMCID: PMC8387187 DOI: 10.1155/2021/7385160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 02/03/2023]
Abstract
Obesity is considered as a risk factor of osteoarthritis (OA), but the precise relationship is still poorly understood. Leptin, one of the most relevant factors secreted by adipose tissues, plays an important role in the pathogenesis of OA. Our aim was to investigate the regulation and molecular mechanism of the leptin signaling pathway in obesity-related OA. SD rats were fed with a high-fat diet (HFD) for 5, 15, and 27 weeks. The levels of leptin in serum increased from W5, while in the synovial fluid increased from W15. The histological evaluation showed that the pathological changes of OA occurred at 27 weeks rather than 5 or 15 weeks. We also found that leptin induced CD14/TLR4 activation by the JAK2-STAT3 signaling pathway to promote OA. Moreover, silencing SOCS3 enhanced leptin-induced JAK2-STAT3-CD14/TLR4 activation in rat primary chondrocytes. Our findings indicated that leptin may be one of the initiating factors of obesity-related OA. TLR4 is at least partially regulated by leptin through the JAK2-STAT3-CD14 pathway. Meanwhile, SOCS3 acting as a negative feedback inhibitor of leptin signaling presented a potential therapeutic prospect for obesity-related OA. Our study provided new evidence suggesting the key role of leptin in mediating obesity-related OA process and its underlying mechanisms.
Collapse
|
21
|
S100A9/CD163 expression profiles in classical monocytes as biomarkers to discriminate idiopathic pulmonary fibrosis from idiopathic nonspecific interstitial pneumonia. Sci Rep 2021; 11:12135. [PMID: 34108546 PMCID: PMC8190107 DOI: 10.1038/s41598-021-91407-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Circulating monocytes have pathogenic relevance in idiopathic pulmonary fibrosis (IPF). Here, we determined whether the cell surface levels of two markers, pro-inflammatory-related S100A9 and anti-inflammatory-related CD163, expressed on CD14strongCD16− classical monocytes by flow cytometry could discriminate IPF from idiopathic nonspecific interstitial pneumonia (iNSIP). Twenty-five patients with IPF, 25 with iNSIP, and 20 healthy volunteers were prospectively enrolled in this study. The S100A9+CD163− cell percentages in classical monocytes showed a pronounced decrease on monocytes in iNSIP compared to that in IPF. In contrast, the percentages of S100A9−CD163+ cells were significantly higher in iNSIP patients than in IPF patients and healthy volunteers. In IPF patients, there was a trend toward a correlation between the percentage of S100A9+CD163− monocytes and the surfactant protein-D (SP-D) serum levels (r = 0.4158, [95% confidence interval (CI) − 0.02042–0.7191], p = 0.051). The individual percentages of S100A9+CD163− and S100A9−CD163+ cells were also independently associated with IPF through multivariate regression analysis. The unadjusted area under the receiver operating characteristic curve (ROC-AUC) to discriminate IPF from iNSIP was (ROC-AUC 0.802, 95% CI [0.687–0.928]), suggesting that these are better biomarkers than serum SP-D (p < 0.05). This preliminary study reports the first comparative characterization of monocyte phenotypes between IPF and iNSIP.
Collapse
|
22
|
Li X, Liu X, Horvatovich P, Hu Y, Zhang J. Proteomics Landscape of Host-Pathogen Interaction in Acinetobacter baumannii Infected Mouse Lung. Front Genet 2021; 12:563516. [PMID: 34025711 PMCID: PMC8138179 DOI: 10.3389/fgene.2021.563516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii is an important pathogen of nosocomial infection worldwide, which can primarily cause pneumonia, bloodstream infection, and urinary tract infection. The increasing drug resistance rate of A. baumannii and the slow development of new antibacterial drugs brought great challenges for clinical treatment. Host immunity is crucial to the defense of A. baumannii infection, and understanding the mechanisms of immune response can facilitate the development of new therapeutic strategies. To characterize the system-level changes of host proteome in immune response, we used tandem mass tag (TMT) labeling quantitative proteomics to compare the proteome changes of lungs from A. baumannii infected mice with control mice 6 h after infection. A total of 6,218 proteins were identified in which 6,172 could be quantified. With threshold p < 0.05 and relative expression fold change > 1.2 or < 0.83, we found 120 differentially expressed proteins. Bioinformatics analysis showed that differentially expressed proteins after infection were associated with receptor recognition, NADPH oxidase (NOX) activation and antimicrobial peptides. These differentially expressed proteins were involved in the pathways including leukocyte transendothelial migration, phagocyte, neutrophil degranulation, and antimicrobial peptides. In conclusion, our study showed proteome changes in mouse lung tissue due to A. baumannii infection and suggested the important roles of NOX, neutrophils, and antimicrobial peptides in host response. Our results provide a potential list of protein candidates for the further study of host-bacteria interaction in A. baumannii infection. Data are available via ProteomeXchange with identifier PXD020640.
Collapse
Affiliation(s)
- Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
da Silva Antunes R, Soldevila F, Pomaznoy M, Babor M, Bennett J, Tian Y, Khalil N, Qian Y, Mandava A, Scheuermann RH, Cortese M, Pulendran B, Petro CD, Gilkes AP, Purcell LA, Sette A, Peters B. A system-view of Bordetella pertussis booster vaccine responses in adults primed with whole-cell versus acellular vaccine in infancy. JCI Insight 2021; 6:141023. [PMID: 33690224 PMCID: PMC8119213 DOI: 10.1172/jci.insight.141023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/03/2021] [Indexed: 01/26/2023] Open
Abstract
The increased incidence of whooping cough worldwide suggests that current vaccination against Bordetella pertussis infection has limitations in quality and duration of protection. The resurgence of infection has been linked to the introduction of acellular vaccines (aP), which have an improved safety profile compared with the previously used whole-cell (wP) vaccines. To determine immunological differences between aP and wP priming in infancy, we performed a systems approach of the immune response to booster vaccination. Transcriptomic, proteomic, cytometric, and serologic profiling revealed multiple shared immune responses with different kinetics across cohorts, including an increase of blood monocyte frequencies and strong antigen-specific IgG responses. Additionally, we found a prominent subset of aP-primed individuals (30%) with a strong differential signature, including higher levels of expression for CCL3, NFKBIA, and ICAM1. Contrary to the wP individuals, this subset displayed increased PT-specific IgE responses after boost and higher antigen-specific IgG4 and IgG3 antibodies against FHA and FIM2/3 at baseline and after boost. Overall, the results show that, while broad immune response patterns to Tdap boost overlap between aP- and wP-primed individuals, a subset of aP-primed individuals present a divergent response. These findings provide candidate targets to study the causes and correlates of waning immunity after aP vaccination.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Ferran Soldevila
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mikhail Pomaznoy
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mariana Babor
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jason Bennett
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Natalie Khalil
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yu Qian
- J. Craig Venter Institute, La Jolla, California, USA
| | | | - Richard H. Scheuermann
- J. Craig Venter Institute, La Jolla, California, USA
- University of California San Diego School of Medicine, La Jolla, California, USA
| | - Mario Cortese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
24
|
Wu M, Ding Y, Wu N, Jiang J, Huang Y, Zhang F, Wang H, Zhou Q, Yang Y, Zhuo W, Teng L. FSTL1 promotes growth and metastasis in gastric cancer by activating AKT related pathway and predicts poor survival. Am J Cancer Res 2021; 11:712-728. [PMID: 33791149 PMCID: PMC7994156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023] Open
Abstract
Accumulating evidence on the role of Follistatin-like protein 1 (FSTL1) in tumorigenesis and cancer progression is conflicting. Nevertheless, the underlying mechanisms by which FSTL1 contributes to gastric cancer (GC) remain unknown. This study shows that FSTL1 was frequently upregulated in primary GC tissues and significantly correlated with infiltrating depth, lymph node metastasis, unfavorable tumor stage and poor prognosis of GC. Down or up-regulation of FSTL1 inhibited or increased, respectively, the proliferation by reducing apoptosis, clonogenicity, migration and invasion of GC cells in vitro. Moreover, the higher expression of FSTL1 promoted subcutaneous xenograft tumor growth and lung/liver tumor metastasis in vivo. Furthermore, we demonstrate that FSTL1 is involved in regulation of the AKT signaling through analyzing databases and experimental results. Mechanistic studies showed that FSTL1 promoted proliferation, migration and invasion in GC, at least partially, by activating AKT via regulating TLR4/CD14. In all, this study highlights the role of the FSTL1-TLR4/CD14-AKT axis, which provided novel insights into the mechanism of growth and metastasis in GC for the first time.
Collapse
Affiliation(s)
- Mengjie Wu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
- The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, P. R. China
| | - Yongfeng Ding
- The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, P. R. China
| | - Nan Wu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan, P. R. China
| | - Junjie Jiang
- The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, P. R. China
| | - Yingying Huang
- The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, P. R. China
| | - Fanyu Zhang
- College of Basic Medicine, Zhengzhou UniversityZhengzhou, Henan, P. R. China
| | - Haiyong Wang
- The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, P. R. China
| | - Quan Zhou
- The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, P. R. China
| | - Yan Yang
- The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, P. R. China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Lisong Teng
- The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, P. R. China
| |
Collapse
|
25
|
Veglia F, Hashimoto A, Dweep H, Sanseviero E, De Leo A, Tcyganov E, Kossenkov A, Mulligan C, Nam B, Masters G, Patel J, Bhargava V, Wilkinson P, Smirnov D, Sepulveda MA, Singhal S, Eruslanov EB, Cristescu R, Loboda A, Nefedova Y, Gabrilovich DI. Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J Exp Med 2021; 218:211778. [PMID: 33566112 PMCID: PMC7879582 DOI: 10.1084/jem.20201803] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/08/2023] Open
Abstract
In this study, using single-cell RNA-seq, cell mass spectrometry, flow cytometry, and functional analysis, we characterized the heterogeneity of polymorphonuclear neutrophils (PMNs) in cancer. We describe three populations of PMNs in tumor-bearing mice: classical PMNs, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and activated PMN-MDSCs with potent immune suppressive activity. In spleens of mice, PMN-MDSCs gradually replaced PMNs during tumor progression. Activated PMN-MDSCs were found only in tumors, where they were present at the very early stages of the disease. These populations of PMNs in mice could be separated based on the expression of CD14. In peripheral blood of cancer patients, we identified two distinct populations of PMNs with characteristics of classical PMNs and PMN-MDSCs. The gene signature of tumor PMN-MDSCs was similar to that in mouse activated PMN-MDSCs and was closely associated with negative clinical outcome in cancer patients. Thus, we provide evidence that PMN-MDSCs are a distinct population of PMNs with unique features and potential for selective targeting opportunities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Charles Mulligan
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE
| | - Brian Nam
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE
| | - Gregory Masters
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE
| | - Jaymala Patel
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA
| | - Vipul Bhargava
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA
| | - Patrick Wilkinson
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA
| | - Denis Smirnov
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA
| | - Manuel A Sepulveda
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Razvan Cristescu
- Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., Boston, MA
| | - Andrey Loboda
- Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., Boston, MA
| | | | | |
Collapse
|
26
|
Host cell glutamine metabolism as a potential antiviral target. Clin Sci (Lond) 2021; 135:305-325. [PMID: 33480424 DOI: 10.1042/cs20201042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.
Collapse
|
27
|
Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sci 2020; 264:118627. [PMID: 33169684 DOI: 10.1016/j.lfs.2020.118627] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota represents a diverse and dynamic population of microorganisms harboring the gastrointestinal tract, which influences the host health and disease. Gut microbiota communicates with the brain and vice versa through complex bidirectional communication systems - the gut-brain axis, which integrates the peripheral intestinal function with emotional and cognitive brain centers via neuro-immuno-endocrine mediators. Aging alters the gut microbial population, which not only leads to gastrointestinal disturbances but also causes central nervous system (CNS) disorders such as dementia. Alzheimer's disease (AD) is the most common form of dementia affecting the older person, characterized by beta-amyloid (Aβ) plaques and neurofibrillary tangles leading to the cognitive deficit and memory impairment. Multiple experimental and clinical studies revealed the role of gut microbiota in host cognition, and its dysbiosis associated with aging leads to neurodegeneration. Gut microbial dysbiosis leads to the secretion of amyloid and lipopolysaccharides (LPS), which disturbs the gastrointestinal permeability and blood-brain barrier. Thereby modulates the inflammatory signaling pathway promoting neuroinflammation, neuronal injury, and ultimately leading to neuronal death in AD. A recent study revealed the antimicrobial property of Aβ peptide as an innate immune response against pathogenic microbes. Another study showed that bacterial amyloid shares molecular mimicry with Aβ peptide, which elicits misfolding and aggregation of Aβ peptide, it's seeding, and propagation through the gut-brain axis followed by microglial cell activation. As aging together with poor diet and gut-derived inflammatory response due to dysbiosis contributes to the pathogenesis of AD, modification of gut microbial composition by uptake of probiotic-rich food can act as a preventive/therapeutic option for AD. The objective of the present review is to summarize the recent findings on the role of gut microbiota in the development of AD. Understanding the relationship between gut microbiota and CNS will help identify novel therapeutic strategies, especially probiotic-based supplementation, for the treatment of AD.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
28
|
Anti-leukemia effect associated with down-regulated CD47 and up-regulated calreticulin by stimulated macrophages in co-culture. Cancer Immunol Immunother 2020; 70:787-801. [PMID: 32995942 DOI: 10.1007/s00262-020-02728-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/15/2020] [Indexed: 02/03/2023]
Abstract
CD47 is over-expressed in Acute Myeloid Leukemia (AML) and functions as an inhibitory signal, suppressing phagocytosis by binding to signal regulatory protein α (SIRPα) on the surface of macrophages. Inhibition of CD47 restores the immune surveillance of AML cells. However, the inhibition of CD47 in AML by activated macrophages and the subsequent effects on different immune response parameters are not fully understood. Here, we demonstrate the use of a distinct co-culture method to inhibit CD47 and therefore eliminate AML cells by macrophages in vitro. Human chemically induced THP-1 macrophages were activated using different concentrations of lipopolysaccharide (LPS) and co-culturing with three AML cancer cell lines (HL-60, NB4, and THP-1), respectively, as well as normal human peripheral blood mononuclear cells (PBMC). CD47 inhibition was observed in and selective to AML but not observed in normal PBMC. Additionally, calreticulin (CRT) levels were elevated in the same cell lines simultaneously, after co-culturing with activated human macrophages, but not elevated in normal cells. We also show that the activated macrophages secreted high levels of cytokines, including IL-12p70, IL-6, and TNF-α, consistent with the elimination of AML by macrophages. Our study reveals the potential of this model for screening new drugs against AML and the possibility of using human macrophages in AML treatment in the future.
Collapse
|
29
|
Yamashita M, Utsumi Y, Yamauchi K. S100A9/CD163 Expression in Circulating Classical Monocytes in Chronic Obstructive Pulmonary Disease. COPD 2020; 17:587-594. [PMID: 32962431 DOI: 10.1080/15412555.2020.1793925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although many studies have characterized polarity of macrophages in chronic obstructive pulmonary disease (COPD), limited information is available regarding cellular phenotypes of circulating monocytes in this condition. This study aimed to determine the influence of cigarette smoking and COPD on the cellular phenotype of circulating monocytes. Thirty-two patients with COPD and 36 healthy volunteers (n = 17 and 19 in nonsmokers and smokers with normal lung functions, respectively) were enrolled in this study. The expression of two cell surface markers, pro-inflammatory-related S100A9 and anti-inflammatory-related CD163, on classical monocytes was analyzed by flow cytometry. The percentage of CD14strongCD16- classical monocytes in circulating monocytes showed no difference among the three groups. The percentage of S100A9+, S100A9+CD163-, and S100A9+CD163+ cells in classical monocytes was significantly increased in COPD patients relative to nonsmoker controls. In contrast, the levels of S100A9-CD163+ cells were significantly decreased in smokers with normal lung functions and in COPD patients relative to that in nonsmokers. Multivariate analyses revealed an independent association between S100A9+ cell rates and COPD (exponent 1.0336, 95% confidence interval [CI] 1.0063-1.0617, p value < 0.05). In Receiver operating characteristic (ROC) analyses, the ratio of S100A9+CD163-/S100A9-CD163+ cells yielded a receiver operating characteristic-area under the curve of 0.719 (95% CI = 0.567-0.871) for discrimination between smokers with normal lung functions and COPD patients. In conclusion, our results demonstrated increased pro-inflammatory phenotypes in circulating classical monocytes in COPD, providing novel insights to elucidate their roles in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Yu Utsumi
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Kohei Yamauchi
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan.,Department of Internal Medicine, Takisawa Chuo Hospital, Takisawa, Japan
| |
Collapse
|
30
|
Choudhary V, Griffith S, Chen X, Bollag WB. Pathogen-Associated Molecular Pattern-Induced TLR2 and TLR4 Activation Increases Keratinocyte Production of Inflammatory Mediators and is Inhibited by Phosphatidylglycerol. Mol Pharmacol 2020; 97:324-335. [PMID: 32173651 PMCID: PMC7174787 DOI: 10.1124/mol.119.118166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Skin serves not only as a protective barrier to microbial entry into the body but also as an immune organ. The outer layer, the epidermis, is composed predominantly of keratinocytes, which can be stimulated to produce proinflammatory mediators. Although some inflammation is useful to defend against infection, excessive or persistent inflammation can lead to the development of inflammatory skin diseases, such as psoriasis, a common skin disorder affecting approximately 2% of the US population. We have previously found that phosphatidylglycerol (PG) derived from soy can inhibit inflammation in a contact irritant ear edema mouse model. Here, we investigated the ability of soy PG to inhibit inflammatory mediator expression in response to activators of the pattern recognition receptors, toll-like receptor-2 (TLR2) and -4 (TLR4). We found that in epidermal keratinocytes, soy PG inhibited TLR2 and TLR4 activation and inflammatory mediator expression in response to a synthetic triacylated lipopeptide and lipopolysaccharide, respectively, as well as an endogenous danger-associated molecular pattern. However, at higher concentrations, soy PG alone enhanced the expression of some proinflammatory cytokines, suggesting a narrow therapeutic window for this lipid. Dioleoylphosphatidylglycerol (DOPG), but not dioleoylphosphatidylcholine, exerted a similar inhibitory effect, completely blocking keratinocyte inflammatory mediator expression induced by TLR2 and TLR4 activators as well as NFκB activation in a macrophage cell line (RAW264.7); however, DOPG was not itself proinflammatory even at high concentrations. Furthermore, DOPG had no effect on NFκB activation in response to a TLR7/8 agonist. Our results suggest that DOPG could be used to inhibit excessive skin inflammation. SIGNIFICANCE STATEMENT: Although inflammation is beneficial for clearing an infection, in some cases, the infection can be excessive and/or become chronic, thereby resulting in considerable tissue damage and pathological conditions. We show here that the phospholipid phosphatidylglycerol can inhibit the activation of toll-like receptors 2 and 4 of the innate immune system as well as the downstream inflammatory mediator expression in response to microbial component-mimicking agents in epidermal keratinocytes that form the physical barrier of the skin.
Collapse
Affiliation(s)
- Vivek Choudhary
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Shantelle Griffith
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Xunsheng Chen
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
31
|
Wang Z, Zheng Y, Wang F, Zhong J, Zhao T, Xie Q, Zhu T, Ma F, Tang Q, Zhou B, Zhu J. Mfsd2a and Spns2 are essential for sphingosine-1-phosphate transport in the formation and maintenance of the blood-brain barrier. SCIENCE ADVANCES 2020; 6:eaay8627. [PMID: 32523984 PMCID: PMC7259944 DOI: 10.1126/sciadv.aay8627] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/18/2020] [Indexed: 05/21/2023]
Abstract
To maintain brain homeostasis, a unique interface known as the blood-brain barrier (BBB) is formed between the blood circulation and the central nervous system (CNS). Major facilitator superfamily domain-containing 2a (Mfsd2a) is a specific marker of the BBB. However, the mechanism by which Mfsd2a influences the BBB is poorly understood. In this study, we demonstrated that Mfsd2a is essential for sphingosine-1-phosphate (S1P) export from endothelial cells in the brain. We found that Mfsd2a and Spinster homolog 2 (Spns2) form a protein complex to ensure the efficient transport of S1P. Furthermore, the S1P-rich microenvironment in the extracellular matrix (ECM) in the vascular endothelium dominates the formation and maintenance of the BBB. We demonstrated that different concentrations of S1P have different effects on BBB integrity. These findings help to unravel the mechanism by which S1P regulates BBB and also provide previously unidentified insights into the delivery of neurological drugs in the CNS.
Collapse
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Fan Wang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Tong Zhao
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Qiang Xie
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Tongming Zhu
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Fukai Ma
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| |
Collapse
|
32
|
Harman JL, Loes AN, Warren GD, Heaphy MC, Lampi KJ, Harms MJ. Evolution of multifunctionality through a pleiotropic substitution in the innate immune protein S100A9. eLife 2020; 9:e54100. [PMID: 32255429 PMCID: PMC7213983 DOI: 10.7554/elife.54100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Multifunctional proteins are evolutionary puzzles: how do proteins evolve to satisfy multiple functional constraints? S100A9 is one such multifunctional protein. It potently amplifies inflammation via Toll-like receptor four and is antimicrobial as part of a heterocomplex with S100A8. These two functions are seemingly regulated by proteolysis: S100A9 is readily degraded, while S100A8/S100A9 is resistant. We take an evolutionary biochemical approach to show that S100A9 evolved both functions and lost proteolytic resistance from a weakly proinflammatory, proteolytically resistant amniote ancestor. We identify a historical substitution that has pleiotropic effects on S100A9 proinflammatory activity and proteolytic resistance but has little effect on S100A8/S100A9 antimicrobial activity. We thus propose that mammals evolved S100A8/S100A9 antimicrobial and S100A9 proinflammatory activities concomitantly with a proteolytic 'timer' to selectively regulate S100A9. This highlights how the same mutation can have pleiotropic effects on one functional state of a protein but not another, thus facilitating the evolution of multifunctionality.
Collapse
Affiliation(s)
- Joseph L Harman
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Andrea N Loes
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Gus D Warren
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Maureen C Heaphy
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | | | - Michael J Harms
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| |
Collapse
|
33
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Guan Y, Huang XF, Li PJ, Cao W, Gao XH, Guan X. Association of CD14 gene -260C>T and -561C>T polymorphisms with cancer susceptibility: A meta-analysis. J Gene Med 2020; 22:e3151. [PMID: 31826310 DOI: 10.1002/jgm.3151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Two polymorphisms, -260C>T (rs2569190) and -561C>T (rs5744455), in the CD14 gene have been implicated in susceptibility to cancer. However, the results remain inconclusive. The current meta-analysis was carried out aiming to confirm the function of these two polymorphisms on the susceptibility of cancer. METHODS We collected eligible studies from databases, including PubMed, EMBASE, CNKI, Wanfang, and VIP (Weipu). We used logistic regression calculation to compute odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS After strict selection, 24 studies with 5854 cases and 10339 controls for -260C>T and seven studies with 1809 cases and 7289 controls for -561C>T were finally enlisted into our analysis reference material. Pool results revealed that neither -260C>T, nor -561C>T was found to have any association with overall cancer susceptibility. Nevertheless, when stratified by cancer type, we detected a decreased risk associated with other cancers in a heterozygous model (OR = 0.69, 95% CI = 0.51-0.93, p = 0.014) and a dominant model (OR = 0.70, 95% CI = 0.53-0.93, p = 0.012) for -561C>T. An increased risk was found in other cancers under an allele model (OR = 1.29, 95% CI = 1.03-1.62, p = 0.026), in laryngeal cancer under a dominant model (OR = 1.38, 95% CI = 1.11-1.71, p = 0.003) and for a score ≤ 9 under a recessive model (OR = 1.45, 95% CI = 1.09-1.91, p = 0.009) for -561C>T. CONCLUSIONS In the present study, we conclude that the CD14 -260C>T and -561C>T polymorphisms might not be associated with overall cancer risk. Further studies are encouraged to confirm this conclusion.
Collapse
Affiliation(s)
- Yin Guan
- Intensive Critical Care Unit, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiao-Feng Huang
- Intensive Critical Care Unit, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Pei-Jie Li
- Intensive Critical Care Unit, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wen Cao
- Intensive Critical Care Unit, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xue-Hua Gao
- Department of Anethesiology, Gansu Provincial Cancer Hospital, Lanzhou, Gansu, China
| | - Xia Guan
- Digestive Endoscopy Center, The Second Peoples Hospital of Lanzhou, Lanzhou, Gansu, China
| |
Collapse
|
35
|
Suk Lee Y, Davila E, Zhang T, Milmoe HP, Vogel SN, Bromberg JS, Scalea JR. Myeloid-derived suppressor cells are bound and inhibited by anti-thymocyte globulin. Innate Immun 2019; 25:46-59. [PMID: 30782043 PMCID: PMC6830891 DOI: 10.1177/1753425918820427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) inhibit T cell responses and are
relevant to cancer, autoimmunity and transplant biology. Anti-thymocyte globulin
(ATG) is a commonly used T cell depletion agent, yet the effect of ATG on MDSCs
has not been investigated. MDSCs were generated in Lewis Lung Carcinoma 1
tumor-bearing mice. MDSC development and function were assessed in
vivo and in vitro with and without ATG
administration. T cell suppression assays, RT-PCR, flow cytometry and arginase
activity assays were used to assess MDSC phenotype and function. MDSCs increased
dramatically in tumor-bearing mice and the majority of splenic MDSCs were of the
polymorphonuclear subset. MDSCs potently suppressed T cell proliferation.
ATG-treated mice developed 50% fewer MDSCs and these MDSCs were significantly
less suppressive of T cell proliferation. In vitro, ATG
directly bound 99.6% of MDSCs. CCR7, L-selectin and LFA-1 were expressed by both
T cells and MDSCs, and binding of LFA-1 was inhibited by ATG pre-treatment.
Arg-1 and PD-L1 transcript expression were reduced 30–40% and arginase activity
decreased in ATG-pretreated MDSCs. MDSCs were bound and functionally inhibited
by ATG. T cells and MDSCs expressed common Ags which were also targets of ATG.
ATG may be helpful in tumor models seeking to suppress MDSCs. Alternatively, ATG
may inadvertently inhibit important T cell regulatory events in autoimmunity and
transplantation.
Collapse
Affiliation(s)
- Young Suk Lee
- 1 Department of Surgery, University of Maryland, Baltimore, USA
| | - Eduardo Davila
- 2 Department of Microbiology and Immunology, University of Maryland, Baltimore, USA
| | - Tianshu Zhang
- 1 Department of Surgery, University of Maryland, Baltimore, USA
| | - Hugh P Milmoe
- 1 Department of Surgery, University of Maryland, Baltimore, USA
| | - Stefanie N Vogel
- 2 Department of Microbiology and Immunology, University of Maryland, Baltimore, USA
| | - Jonathan S Bromberg
- 1 Department of Surgery, University of Maryland, Baltimore, USA.,2 Department of Microbiology and Immunology, University of Maryland, Baltimore, USA
| | - Joseph R Scalea
- 1 Department of Surgery, University of Maryland, Baltimore, USA.,2 Department of Microbiology and Immunology, University of Maryland, Baltimore, USA
| |
Collapse
|
36
|
Dorand RD, Benson BL, Huang LF, Petrosiute A, Huang AY. Insights From Dynamic Neuro-Immune Imaging on Murine Immune Responses to CNS Damage. Front Neurosci 2019; 13:737. [PMID: 31379488 PMCID: PMC6650615 DOI: 10.3389/fnins.2019.00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
Evolving technologies and increasing understanding of human physiology over the past century have afforded our ability to intervene on human diseases using implantable bio-materials. These bio-electronic devices present a unique challenge through the creation of an interface between the native tissue and implantable bio-materials: the generation of host immune response surrounding such devices. While recent developments in cancer immunology seek to stimulate the immune system against cancer, successful long-term application of implantable bio-material devices need to durably minimize reactive immune processes at involved anatomical sites. Peripheral immune system response has been studied extensively for implanted bio-materials at various body sites. Examples include tooth composites (Gitalis et al., 2019), inguinal hernia repair (Heymann et al., 2019), and cardiac stents and pacemaker leads (Slee et al., 2016). Studies have also been extended to less well-studied immune reactivity in response to CNS neural-electronic implant devices. Recent technological advances in 2-Photon Laser Scanning Microscopy (2P-LSM) have allowed novel insights into in vivo immune response in a variety of tissue microenvironments. While imaging of peripheral tissues has provided an abundance of data with regards to immune cell dynamics, central nervous system (CNS) imaging is comparatively complicated by tissue accessibility and manipulation. Despite these challenges, the results of dynamic intravital neuro-immune imaging thus far have provided foundational insights into basic CNS biology. Utilizing a combination of intravital and ex vivo 2P-LSM, we have observed novel pathways allowing immune cells, stromal cells, cancer cells and proteins to communicate between the CNS parenchyma and peripheral vasculature. Similar to what has been reported in the intestinal tract, we have visualized myeloid cells extend dendritic processes across the blood brain barrier (BBB) into pial blood vessels. Furthermore, transient vessel leaks seen during systemic inflammation provide opportunities for cellular protein to be exchanged between the periphery and CNS. These insights provide new, visual information regarding immune surveillance and antigen presentation within the CNS. Furthermore, when combining intravital 2P-LSM and microfluidic devices complexed with mathematical modeling, we are gaining new insights into the intravascular behavior of circulating immune cells. This new knowledge into the basic mechanisms by which cells migrate to and interact with the CNS provide important considerations for the design of neuro-electronic biomaterials that have the potential to connect the peripheral-neural microenvironments into a unique, artificial interface.
Collapse
Affiliation(s)
- R Dixon Dorand
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lauren F Huang
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Agne Petrosiute
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Angie Fowler Adolescent & Young Adult (AYA) Cancer Institute/University Hospitals (UH) Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Angie Fowler Adolescent & Young Adult (AYA) Cancer Institute/University Hospitals (UH) Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| |
Collapse
|
37
|
Cecchettini A, Finamore F, Ucciferri N, Donati V, Mattii L, Polizzi E, Ferro F, Sernissi F, Mosca M, Bombardieri S, Rocchiccioli S, Baldini C. Phenotyping multiple subsets in Sjögren's syndrome: a salivary proteomic SWATH-MS approach towards precision medicine. Clin Proteomics 2019; 16:26. [PMID: 31249499 PMCID: PMC6587286 DOI: 10.1186/s12014-019-9245-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background This proof of concept study was aimed at characterizing novel salivary biomarkers specific for different subsets in primary Sjögren's syndrome (pSS) in order to improve patients' profiling. Methods pSS patients were stratified in three subgroups according to both (a) focus score in the minor salivary gland biopsies (i.e. intensity of immune cell infiltration in the tissue) and (b) unstimulated salivary flow rate. Healthy volunteers were included as controls. A nano-HPLC-SWATH-MS approach was used for the analysis of saliva proteome of different subsets. Results We found 203 differentially expressed proteins in pSS patients with respect to controls with evident differences in the expression of normal constituents of the human salivary proteome (i.e. prolactin-inducible protein, proline-rich proteins, cystatins) and several mediators of inflammatory processes. The comparative analysis of the pSS phenotypes unrevealed 63 proteins that were shared and specifically modulated in the three subsets of pSS patients converging on several inflammatory pathways. Among them S100A protein appeared of particular interest merging on IL-12 signaling and being significantly influenced by either salivary flow impairment or intensity of immune cell infiltration in the tissue. Conclusions Constellations of proteins, including S100A proteins, characterize different pSS subsets reflecting either salivary gland dysfunction or inflammation. Salivary proteomics may foster future research projects ultimately aimed at developing personalized treatments for pSS patients.
Collapse
Affiliation(s)
- Antonella Cecchettini
- National Research Council - Clinical Institute of Physiology, Pisa, Italy.,4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Finamore
- National Research Council - Clinical Institute of Physiology, Pisa, Italy
| | - Nadia Ucciferri
- National Research Council - Clinical Institute of Physiology, Pisa, Italy
| | - Valentina Donati
- 2Unit of Anatomic Pathology II, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Letizia Mattii
- 3Section Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enza Polizzi
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Ferro
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Sernissi
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Mosca
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Bombardieri
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Chiara Baldini
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
38
|
Du J, Jiang S, Hu Z, Tang S, Sun Y, He J, Li Z, Yi B, Wang J, Zhang H, Li YC. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am J Physiol Renal Physiol 2019; 316:F1068-F1077. [PMID: 30864841 DOI: 10.1152/ajprenal.00332.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of sepsis characterized by a rapid degradation of renal function. The effect of vitamin D on AKI remains poorly understood. Here, we showed that vitamin D receptor (VDR) activation protects against lipopolysaccharide (LPS)-induced AKI by blocking renal tubular epithelial cell apoptosis. Mice lacking VDR developed more severe AKI than wild-type (WT) control mice after LPS treatment, which was manifested by marked increases in body weight loss and accumulation of serum blood urea nitrogen and creatinine as well as the magnitude of apoptosis of tubular epithelial cells. In the renal cortex, LPS treatment led to more dramatic downregulation of Bcl-2, more robust induction of p53-upregulated modulator of apoptosis (PUMA) and miR-155, and more severe caspase-3 activation in VDR knockout mice compared with WT control mice. Conversely, paricalcitol pretreatment markedly prevented LPS-induced AKI. Paricalcitol ameliorated body weight loss, attenuated serum blood urea nitrogen and creatinine accumulation, blocked tubular cell apoptosis, prevented the suppression of Bcl-2, and reversed PUMA and miR-155 induction and caspase-3 activation in LPS-treated WT mice. In HK2 cells, LPS induced PUMA and miR-155 by activating NF-κB, whereas 1,25(OH)2D3 blocked PUMA and miR-155 induction by repressing NF-κB activation. Both PUMA and miR-155 target Bcl-2 to promote apoptosis; namely, PUMA inhibits Bcl-2 activity, whereas miR-155 promotes Bcl-2 mRNA degradation and inhibits Bcl-2 protein translation. Collectively, these data provide strong evidence that LPS induces tubular cell apoptosis via upregulating PUMA and miR-155, whereas vitamin D/VDR signaling protects against AKI by blocking NF-κB-mediated PUMA and miR-155 upregulation.
Collapse
Affiliation(s)
- Jie Du
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China.,Division of Biological Sciences, Department of Medicine, University of Chicago , Chicago, Illinois
| | - Siqing Jiang
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Zhaoxin Hu
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Shiqi Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Yue Sun
- Institute of Health Sciences, China Medical University , Shenyang, Liaoning , China
| | - Jinrong He
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Zhi Li
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Bin Yi
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Jianwen Wang
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Hao Zhang
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Yan Chun Li
- Division of Biological Sciences, Department of Medicine, University of Chicago , Chicago, Illinois
| |
Collapse
|
39
|
Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer's Disease. J Neurogastroenterol Motil 2019; 25:48-60. [PMID: 30646475 PMCID: PMC6326209 DOI: 10.5056/jnm18087] [Citation(s) in RCA: 479] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022] Open
Abstract
Disturbances along the brain-gut-microbiota axis may significantly contribute to the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) is the most frequent cause of dementia characterized by a progressive decline in cognitive function associated with the formation of amyloid beta (Aβ) plaques and neurofibrillary tangles. Alterations in the gut microbiota composition induce increased permeability of the gut barrier and immune activation leading to systemic inflammation, which in turn may impair the blood-brain barrier and promote neuroinflammation, neural injury, and ultimately neurodegeneration. Recently, Aβ has also been recognized as an antimicrobial peptide participating in the innate immune response. However, in the dysregulated state, Aβ may reveal harmful properties. Importantly, bacterial amyloids through molecular mimicry may elicit cross-seeding of misfolding and induce microglial priming. The Aβ seeding and propagation may occur at different levels of the brain-gut-microbiota axis. The potential mechanisms of amyloid spreading include neuron-to-neuron or distal neuron spreading, direct blood-brain barrier crossing or via other cells as astrocytes, fibroblasts, microglia, and immune system cells. A growing body of experimental and clinical data confirms a key role of gut dysbiosis and gut microbiota-host interactions in neurodegeneration. The convergence of gut-derived inflammatory response together with aging and poor diet in the elderly contribute to the pathogenesis of AD. Modification of the gut microbiota composition by food-based therapy or by probiotic supplementation may create new preventive and therapeutic options in AD.
Collapse
Affiliation(s)
- Karol Kowalski
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Poland
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Poland
| |
Collapse
|
40
|
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive cells of the myeloid lineage upregulated by mediators of inflammation, such as IL-2, granulocyte colony-stimulating factor, and S100A8/A9. These cells have been studied extensively by tumor biologists. Because of their robust immunosuppressive potential, MDSCs have stirred recent interest among transplant immunologists as well. MDSCs inhibit T-cell responses through, among other mechanisms, the activity of arginase-1 and inducible nitric oxide synthase, and the expansion of T regulatory cells. In the context of transplantation, MDSCs have been studied in several animal models, and to a lesser degree in humans. Here, we will review the immunosuppressive qualities of this important cell type and discuss the relevant studies of MDSCs in transplantation. It may be possible to exploit the immunosuppressive capacity of MDSCs for the benefit of transplant patients.
Collapse
|
41
|
Choudhary V, Uaratanawong R, Patel RR, Patel H, Bao W, Hartney B, Cohen E, Chen X, Zhong Q, Isales CM, Bollag WB. Phosphatidylglycerol Inhibits Toll-Like Receptor-Mediated Inflammation by Danger-Associated Molecular Patterns. J Invest Dermatol 2018; 139:868-877. [PMID: 30391260 DOI: 10.1016/j.jid.2018.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Psoriasis is a common skin disorder characterized by hyperproliferation and aberrant differentiation of epidermal keratinocytes and inflammation. We previously showed that phosphatidylglycerol (PG) can regulate keratinocyte function and suppress skin inflammation. Based on data suggesting that PG can inhibit toll-like receptor (TLR) activation induced by microorganisms and their components, we determined whether PG can inhibit TLR activation in response to antimicrobial peptides. These peptides, which are up-regulated in psoriasis, are known to function as danger-associated molecular patterns (i.e., DAMPs) to activate TLRs and the innate immune system. Because S100A9 is elevated in psoriatic skin and in animal models of psoriasis, we selected S100A9 as a representative antimicrobial peptide DAMP. We showed that in primary keratinocytes and a macrophage cell line, PG suppressed inflammatory mediator production induced by recombinant S100A9 functioning through both TLR2 and TLR4. In addition, PG, but not phosphatidylcholine, inhibited downstream S100A9-elicited TLR2 and NF-κB activation. These results, to our knowledge previously unreported, show PG's ability to inhibit DAMP-induced TLR activation, thereby reducing inflammatory signals. In addition, topical PG ameliorated skin lesions and inflammation in a mouse model of psoriasis. Together, these results suggest the possibility of developing PG as a therapy for psoriasis.
Collapse
Affiliation(s)
- Vivek Choudhary
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Rawipan Uaratanawong
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA; Department of Medicine (Dermatology), Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Ravi R Patel
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Hirel Patel
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Wendi Bao
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Bernadette Hartney
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Elyssa Cohen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xunsheng Chen
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Qing Zhong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Wendy B Bollag
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
42
|
Bedell HW, Hermann JK, Ravikumar M, Lin S, Rein A, Li X, Molinich E, Smith PD, Selkirk SM, Miller RH, Sidik S, Taylor DM, Capadona JR. Targeting CD14 on blood derived cells improves intracortical microelectrode performance. Biomaterials 2018; 163:163-173. [PMID: 29471127 PMCID: PMC5841759 DOI: 10.1016/j.biomaterials.2018.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/02/2023]
Abstract
Intracortical microelectrodes afford researchers an effective tool to precisely monitor neural spiking activity. Additionally, intracortical microelectrodes have the ability to return function to individuals with paralysis as part of a brain computer interface. Unfortunately, the neural signals recorded by these electrodes degrade over time. Many strategies which target the biological and/or materials mediating failure modes of this decline of function are currently under investigation. The goal of this study is to identify a precise cellular target for future intervention to sustain chronic intracortical microelectrode performance. Previous work from our lab has indicated that the Cluster of Differentiation 14/Toll-like receptor pathway (CD14/TLR) is a viable target to improve chronic laminar, silicon intracortical microelectrode recordings. Here, we use a mouse bone marrow chimera model to selectively knockout CD14, an innate immune receptor, from either brain resident microglia or blood-derived macrophages, in order to understand the most effective targets for future therapeutic options. Using single-unit recordings we demonstrate that inhibiting CD14 from the blood-derived macrophages improves recording quality over the 16 week long study. We conclude that targeting CD14 in blood-derived cells should be part of the strategy to improve the performance of intracortical microelectrodes, and that the daunting task of delivering therapeutics across the blood-brain barrier may not be needed to increase intracortical microelectrode performance.
Collapse
Affiliation(s)
- Hillary W Bedell
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106, USA
| | - John K Hermann
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106, USA
| | - Madhumitha Ravikumar
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106, USA
| | - Shushen Lin
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA
| | - Ashley Rein
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA
| | - Xujia Li
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA
| | - Emily Molinich
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA
| | - Patrick D Smith
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA
| | - Stephen M Selkirk
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106, USA
| | - Robert H Miller
- Neurosciences, The George Washington University, The School of Medicine & Health Sciences, 2300 Eye Street, NW, Ross Hall, Washington DC 20037, USA
| | - Steven Sidik
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 2049 Martin Luther King Jr. Drive, Yost Hall, Cleveland, OH 44106, USA
| | - Dawn M Taylor
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Department of Neurosciences, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 MLK Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106, USA.
| |
Collapse
|
43
|
Loes AN, Bridgham JT, Harms MJ. Coevolution of the Toll-Like Receptor 4 Complex with Calgranulins and Lipopolysaccharide. Front Immunol 2018. [PMID: 29515592 PMCID: PMC5826337 DOI: 10.3389/fimmu.2018.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor 4 (TLR4) induces inflammation in response to both pathogen- and host-derived molecules. Lipopolysaccharide (LPS) recognition by TLR4 has been shown to occur across the amniotes, but endogenous signaling through TLR4 has not been validated outside of placental mammals. To determine whether endogenous danger signaling is also shared across amniotes, we studied the evolution of TLR4-activation by the calgranulin proteins (S100A8, S100A9, and S100A12), a clade of host molecules that potently activate TLR4 in placental mammals. We performed phylogenetic and syntenic analysis and found MRP-126—a gene in birds and reptiles—is likely orthologous to the mammalian calgranulins. We then used an ex vivo TLR4 activation assay to establish that calgranulin pro-inflammatory activity is not specific to placental mammals, but is also exhibited by representative marsupial and sauropsid species. This activity is strongly dependent on the cofactors CD14 and MD-2 for all species studied, suggesting a conserved mode of activation across the amniotes. Ortholog complementation experiments between the calgranulins, TLR4, CD14, and MD-2 revealed extensive lineage specific-coevolution and multi-way interactions between components that are necessary for the activation of NF-κB signaling by calgranulins and LPS. Our work demonstrates that calgranulin activation of TLR4 evolved at least ~320 million years ago and has been conserved in the amniote innate immune system.
Collapse
Affiliation(s)
- Andrea N Loes
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States.,Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
| | - Jamie T Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States.,Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
44
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
45
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|