1
|
Swan P, Johnson B, le Roux CW, Miras AD. Harnessing the melanocortin system in the control of food intake and glucose homeostasis. Peptides 2024; 179:171255. [PMID: 38834138 DOI: 10.1016/j.peptides.2024.171255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
The central and peripheral melanocortin system, comprising of five receptors and their endogenous ligands, is responsible for a wide array of physiological functions such as skin pigmentation, sexual function and development, and inflammation. A growing body of both clinical and pre-clinical research is demonstrating the relevance of this system in metabolic health. Disruption of hypothalamic melanocortin signalling is the most common cause of monogenic obesity in humans. Setmelanotide, an FDA-approved analogue of alpha-melanocyte stimulating hormone (α-MSH) that functions by restoring central melanocortin signalling, has proven to be a potent pharmacological tool in the treatment of syndromic obesity. As the first effective therapy targeting the melanocortin system to treat metabolic disorders, its approval has sparked research to further harness the links between these melanocortin receptors and metabolic processes. Here, we outline the structure of the central and peripheral melanocortin system, discuss its critical role in the regulation of food intake, and review promising targets that may hold potential to treat metabolic disorders in humans.
Collapse
Affiliation(s)
- Patrick Swan
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland.
| | - Brett Johnson
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, United Kingdom
| | - Carel W le Roux
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Alexander D Miras
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Division of Diabetes, Endocrinology and Metabolism, Imperial College London, United Kingdom
| |
Collapse
|
2
|
Thakkar P, Pauza AG, Murphy D, Paton JFR. Carotid body: an emerging target for cardiometabolic co-morbidities. Exp Physiol 2023; 108:661-671. [PMID: 36999224 PMCID: PMC10988524 DOI: 10.1113/ep090090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
NEW FINDINGS What is the topic of this review? Regarding the global metabolic syndrome crisis, this review focuses on common mechanisms for high blood sugar and high blood pressure. Connections are made between the homeostatic regulation of blood pressure and blood sugar and their dysregulation to reveal signalling mechanisms converging on the carotid body. What advances does it highlight? The carotid body plays a major part in the generation of excessive sympathetic activity in diabetes and also underpins diabetic hypertension. As treatment of diabetic hypertension is notoriously difficult, we propose that novel receptors within the carotid body may provide a novel treatment strategy. ABSTRACT The maintenance of glucose homeostasis is obligatory for health and survival. It relies on peripheral glucose sensing and signalling between the brain and peripheral organs via hormonal and neural responses that restore euglycaemia. Failure of these mechanisms causes hyperglycaemia or diabetes. Current anti-diabetic medications control blood glucose but many patients remain with hyperglycemic condition. Diabetes is often associated with hypertension; the latter is more difficult to control in hyperglycaemic conditions. We ask whether a better understanding of the regulatory mechanisms of glucose control could improve treatment of both diabetes and hypertension when they co-exist. With the involvement of the carotid body (CB) in glucose sensing, metabolic regulation and control of sympathetic nerve activity, we consider the CB as a potential treatment target for both diabetes and hypertension. We provide an update on the role of the CB in glucose sensing and glucose homeostasis. Physiologically, hypoglycaemia stimulates the release of hormones such as glucagon and adrenaline, which mobilize or synthesize glucose; however, these counter-regulatory responses were markedly attenuated after denervation of the CBs in animals. Also, CB denervation prevents and reverses insulin resistance and glucose intolerance. We discuss the CB as a metabolic regulator (not just a sensor of blood gases) and consider recent evidence of novel 'metabolic' receptors within the CB and putative signalling peptides that may control glucose homeostasis via modulation of the sympathetic nervous system. The evidence presented may inform future clinical strategies in the treatment of patients with both diabetes and hypertension, which may include the CB.
Collapse
Affiliation(s)
- Pratik Thakkar
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Audrys G. Pauza
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health SciencesUniversity of BristolBristolUK
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
3
|
Melanocortin-5 Receptor: Pharmacology and Its Regulation of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23158727. [PMID: 35955857 PMCID: PMC9369360 DOI: 10.3390/ijms23158727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
As the most recent melanocortin receptor (MCR) identified, melanocortin-5 receptor (MC5R) has unique tissue expression patterns, pharmacological properties, and physiological functions. Different from the other four MCR subtypes, MC5R is widely distributed in both the central nervous system and peripheral tissues and is associated with multiple functions. MC5R in sebaceous and preputial glands regulates lipid production and sexual behavior, respectively. MC5R expressed in immune cells is involved in immunomodulation. Among the five MCRs, MC5R is the predominant subtype expressed in skeletal muscle and white adipose tissue, tissues critical for energy metabolism. Activated MC5R triggers lipid mobilization in adipocytes and glucose uptake in skeletal muscle. Therefore, MC5R is a potential target for treating patients with obesity and diabetes mellitus. Melanocortin-2 receptor accessory proteins can modulate the cell surface expression, dimerization, and pharmacology of MC5R. This minireview summarizes the molecular and pharmacological properties of MC5R and highlights the progress made on MC5R in energy metabolism. We poInt. out knowledge gaps that need to be explored in the future.
Collapse
|
4
|
Seo SH, Jo JK, Kim EJ, Park SE, Shin SY, Park KM, Son HS. Metabolomics Reveals the Alteration of Metabolic Pathway by Alpha-Melanocyte-Stimulating Hormone in B16F10 Melanoma Cells. Molecules 2020; 25:molecules25153384. [PMID: 32722640 PMCID: PMC7436294 DOI: 10.3390/molecules25153384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to understand the changes of metabolic pathway induced by alpha-melanocyte-stimulating hormone (α-MSH) in B16F10 melanoma cells in an untargeted metabolomics approach. Cells were treated with 100 nM of α-MSH and then incubated for 48 h. α-MSH increased tyrosinase activity and melanin content by 56.5 and 61.7%, respectively, compared to untreated cells after 48 h of cultivation. The clear separation between groups was observed in the principal component analysis score plot, indicating that the levels of metabolites of melanoma cells were altered by treatment with α-MSH. Metabolic pathways affected by α-MSH were involved in some amino acid metabolisms. The increased levels of fumaric acid, malic acid, oxaloacetic acid and citric acid related to the citric acid cycle pathway after α-MSH treatment suggested enhanced energy metabolism. Metabolic pathways altered by α-MSH treatment can provide useful information to develop new skin pigmentation inhibitors or anti-obesity drugs.
Collapse
Affiliation(s)
- Seung-Ho Seo
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
| | - Jae Kwon Jo
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
| | - Eun-Ju Kim
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
| | - Seong-Eun Park
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
| | - Seo Yeon Shin
- Department of Pharmaceutical Engineering, Dongshin University, Naju, Jeonnam 58245, Korea;
| | - Kyung Mok Park
- Department of Pharmaceutical Engineering, Dongshin University, Naju, Jeonnam 58245, Korea;
- Correspondence: (K.M.P.); (H.-S.S.); Tel.: +82-32-551-3629 (K.M.P.); +82-61-330-3513 (H.-S.S.)
| | - Hong-Seok Son
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
- Correspondence: (K.M.P.); (H.-S.S.); Tel.: +82-32-551-3629 (K.M.P.); +82-61-330-3513 (H.-S.S.)
| |
Collapse
|
5
|
Nuutinen S, Ailanen L, Savontaus E, Rinne P. Melanocortin overexpression limits diet-induced inflammation and atherosclerosis in LDLR -/- mice. J Endocrinol 2018; 236:111-123. [PMID: 29317531 DOI: 10.1530/joe-17-0636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries. The disease is initiated by endothelial dysfunction that allows the transport of leukocytes and low-density lipoprotein into the vessel wall forming atherosclerotic plaques. The melanocortin system is an endogenous peptide system that regulates, for example, energy homeostasis and cardiovascular function. Melanocortin treatment with endogenous or synthetic melanocortin peptides reduces body weight, protects the endothelium and alleviates vascular inflammation, but the long-term effects of melanocortin system activation on atheroprogression remain largely unknown. In this study, we evaluated the effects of transgenic melanocortin overexpression in a mouse model of atherosclerosis. Low-density lipoprotein receptor-deficient mice overexpressing alpha- and gamma3-MSH (MSH-OE) and their wild-type littermates were fed either a regular chow or Western-style diet for 16 weeks. During this time, their metabolic parameters were monitored. The aortae were collected for functional analysis, and the plaques in the aortic root and arch were characterised by histological and immunohistochemical stainings. The aortic expression of inflammatory mediators was determined by quantitative PCR. We found that transgenic MSH-OE improved glucose tolerance and limited atherosclerotic plaque formation particularly in Western diet-fed mice. In terms of aortic vasoreactivity, MSH-OE blunted alpha1-adrenoceptor-mediated vasoconstriction and enhanced relaxation response to acetylcholine, indicating improved endothelial function. In addition, MSH-OE markedly attenuated Western diet-induced upregulation of proinflammatory cytokines (Ccl2, Ccl5 and Il6) that contribute to the pathogenesis of atherosclerosis. These results show that the activation of the melanocortin system improves glucose homeostasis and limits diet-induced vascular inflammation and atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Salla Nuutinen
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Liisa Ailanen
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Unit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - Petteri Rinne
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Aoyama K, Bhadhprasit W, Watabe M, Wang F, Matsumura N, Nakaki T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin. FASEB J 2017; 32:330-341. [PMID: 28904020 DOI: 10.1096/fj.201700421r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons provide α-melanocyte-stimulating hormone (α-MSH), which stimulates melanocortin 4 receptor to induce hypophagia by AMPK inhibition in the hypothalamus. α-MSH is produced by POMC cleavage in secretory granules and released. However, it is not known yet whether any posttranscriptional regulatory mechanism of POMC signaling exists upstream of the secretory granules in neurons. Here we show that glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein that retains interacting proteins in the endoplasmic reticulum, is a critical regulator of food intake and body weight by interacting with POMC. GTRAP3-18-deficient mice showed hypophagia, lean bodies, and lower blood glucose, insulin, and leptin levels with increased serum and brain α-MSH levels, leading to AMPK inhibition. Intraperitoneal glucose tolerance tests revealed significantly decreased blood glucose levels and areas under the curve in GTRAP3-18-deficient mice compared to wild-type mice. An intracerebroventricular infusion of a selective melanocortin 4 receptor antagonist to GTRAP3-18-deficient mice significantly increased their food intake and body weight. A fluorescence resonance energy transfer study showed an interaction between GTRAP3-18 and POMC in vitro These findings suggest that activation of the melanocortin pathway by modulating GTRAP3-18/POMC interaction could be an alternative strategy for obesity and/or type 2 diabetes.-Aoyama, K., Bhadhprasit, W., Watabe, M., Wang, F., Matsumura, N., Nakaki, T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Masahiko Watabe
- General Medical Education Center (G-MEC), Teikyo University School of Medicine, Tokyo, Japan
| | - Fan Wang
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Nobuko Matsumura
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan;
| |
Collapse
|
7
|
Correction: α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS One 2016; 11:e0161047. [PMID: 27500534 PMCID: PMC4976864 DOI: 10.1371/journal.pone.0161047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|