1
|
Tsoy A, Umbayev B, Kassenova A, Kaupbayeva B, Askarova S. Pathology of Amyloid-β (Aβ) Peptide Peripheral Clearance in Alzheimer's Disease. Int J Mol Sci 2024; 25:10964. [PMID: 39456746 PMCID: PMC11507512 DOI: 10.3390/ijms252010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although Alzheimer's disease (AD) is traditionally viewed as a central nervous system disorder driven by the cerebral accumulation of toxic beta-amyloid (Aβ) peptide, new interpretations of the amyloid cascade hypothesis have led to the recognition of the dynamic equilibrium in which Aβ resides and the importance of peripheral Aβ production and degradation in maintaining healthy Aβ levels. Our review sheds light on the critical role of peripheral organs, particularly the liver, in the metabolism and clearance of circulating Aβ. We explore the mechanisms of Aβ transport across the blood-brain barrier (BBB) via transport proteins such as LRP1 and P-glycoprotein. We also examine how peripheral clearance mechanisms, including enzymatic degradation and phagocytic activity, impact Aβ homeostasis. Our review also discusses potential therapeutic strategies targeting peripheral Aβ clearance pathways. By enhancing these pathways, we propose a novel approach to reducing cerebral Aβ burden, potentially slowing AD progression.
Collapse
Affiliation(s)
- Andrey Tsoy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Aliya Kassenova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
- Faculty of Natural Sciences, Eurasian National University, Astana 010000, Kazakhstan
| | - Bibifatima Kaupbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| |
Collapse
|
2
|
Dyba M, Berezenko V, Zabara D, Bezpala A, Donskoi B. Monocyte subpopulations in children with autoimmune liver disease. Pathol Res Pract 2024; 263:155622. [PMID: 39357182 DOI: 10.1016/j.prp.2024.155622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Patients with autoimmune liver diseases require individualized long-term immunosuppressive therapy, whose discontinuation is possible after complete histological remission and that requires repeated liver biopsy. In view of this, the search for non-invasive markers is essential for patients with autoimmune liver disease. PURPOSE The purpose of this research is to assess the possibility of predicting the recurrence of autoimmune liver disease in children. METHOD The biological material used in the study was blood serum from 80 children diagnosed with autoimmune hepatitis and autoimmune sclerosing cholangitis. Patients were divided into four groups according to disease activity and therapeutic approach. RESULTS The percentage of monocyte subpopulations was determined by flow cytometry, and disease activity, inflammation, and fibrosis markers were analyzed to study the relationship and diagnostic value of the parameters studied in detail. The results of the study indicate a significant relationship between disease activity and changes in the distribution of the percentage of monocyte subpopulations in the blood. The percentage of intermediate CD14++/CD16+ monocytes was found to correlate with disease activity, and non-classical CD14lowCD16+ monocytes were found to be of high diagnostic value in the diagnosis of disease relapse. CONCLUSIONS These findings not only expand the understanding of the pathogenesis of autoimmune liver disease but also point to the prospects of using monocyte subpopulations as potential biomarkers for predicting relapse, contributing to the development of more effective clinical management strategies.
Collapse
Affiliation(s)
- Maryna Dyba
- Department of Hepatology and Comorbidities in Children, Institute of Pediatrics, Obstetrics and Gynecology of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine.
| | - Valentyna Berezenko
- Department of Hepatology and Comorbidities in Children, Institute of Pediatrics, Obstetrics and Gynecology of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Dariia Zabara
- Laboratory of Immunology, Institute of Pediatrics, Obstetrics and Gynecology of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Anna Bezpala
- Department of Hepatology and Comorbidities in Children, Institute of Pediatrics, Obstetrics and Gynecology of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Boris Donskoi
- Laboratory of Immunology, Institute of Pediatrics, Obstetrics and Gynecology of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| |
Collapse
|
3
|
Niedecker RW, Delaney JA, Doyle MF, Sparks AD, Sitlani CM, Buzkova P, Zeb I, Tracy RP, Psaty BM, Budoff MJ, Olson NC. Investigating peripheral blood monocyte and T-cell subsets as non-invasive biomarkers for asymptomatic hepatic steatosis: results from the Multi-Ethnic Study of Atherosclerosis. Front Immunol 2024; 15:1243526. [PMID: 38596669 PMCID: PMC11002077 DOI: 10.3389/fimmu.2024.1243526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Background Circulating immune cells have gained interest as biomarkers of hepatic steatosis. Data on the relationships between immune cell subsets and early-stage steatosis in population-based cohorts are limited. Methods This study included 1,944 asymptomatic participants of the Multi-Ethnic Study of Atherosclerosis (MESA) with immune cell phenotyping and computed tomography measures of liver fat. Participants with heavy alcohol use were excluded. A liver-to-spleen ratio Hounsfield units (HU) <1.0 and liver attenuation <40 HU were used to diagnose liver fat presence and >30% liver fat content, respectively. Logistic regression estimated cross-sectional associations of immune cell subsets with liver fat parameters adjusted for risk factors. We hypothesized that higher proportions of non-classical monocytes, Th1, Th17, and memory CD4+ T cells, and lower proportions of classical monocytes and naive CD4+ T cells, were associated with liver fat. Exploratory analyses evaluated additional immune cell phenotypes (n = 19). Results None of the hypothesized cells were associated with presence of liver fat. Higher memory CD4+ T cells were associated with >30% liver fat content, but this was not significant after correction for multiple hypothesis testing (odds ratio (OR): 1.31, 95% confidence interval (CI): 1.03, 1.66). In exploratory analyses unadjusted for multiple testing, higher proportions of CD8+CD57+ T cells were associated with liver fat presence (OR: 1.21, 95% CI: 1.02, 1.44) and >30% liver fat content (OR: 1.34, 95% CI: 1.07, 1.69). Conclusions Higher circulating memory CD4+ T cells may reflect liver fat severity. CD8+CD57+ cells were associated with liver fat presence and severity, but replication of findings is required.
Collapse
Affiliation(s)
- Rhys W. Niedecker
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Joseph A. Delaney
- General Internal Medicine, University of Washington, Seattle, WA, United States
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Andrew D. Sparks
- Department of Medical Biostatistics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Petra Buzkova
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, United States
| | - Irfan Zeb
- Department of Medicine, West Virginia University Heart and Vascular Institute, Morgantown, WV, United States
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, United States
| | - Matthew J. Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nels C. Olson
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
4
|
Kronborg TM, Schierwagen R, Trošt K, Gao Q, Moritz T, Bendtsen F, Gantzel RH, Andersen ML, Teisner AS, Grønbæk H, Hobolth L, Møller S, Trebicka J, Kimer N. Atorvastatin for patients with cirrhosis. A randomized, placebo-controlled trial. Hepatol Commun 2023; 7:e0332. [PMID: 38051553 PMCID: PMC10697620 DOI: 10.1097/hc9.0000000000000332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Patients with cirrhosis and portal hypertension face a high risk of complications. Besides their anti-inflammatory and antifibrotic effects, statins may reduce portal pressure and thus the risk of complications and mortality. We aimed to investigate the effects of atorvastatin on hospital admissions, mortality, inflammation, and lipidomics in cirrhosis with portal hypertension. METHODS We performed a double-blinded, randomized, placebo-controlled clinical trial among patients with cirrhosis and portal hypertension. Atorvastatin (10-20 mg/d) was administered for 6 months. We measured splanchnic hemodynamics, analyzed inflammatory markers, and performed lipidomics at baseline and after 6 months. RESULTS Seventy-eight patients were randomized, with 38 patients allocated to atorvastatin and 40 patients to placebo. Fifty-nine patients completed 6 months of intervention. Comparisons between changes in each group were calculated. Liver-related complications and mortality were similar between the groups. The HVPG and Model for End-stage Liver Disease score did not change between groups (p=0.95 and 0.87, respectively). Atorvastatin decreased 3 of 42 inflammatory markers, CD62-L-selectin, matrix metalloproteinases-2, and TNF-α (p-values: 0.005, 0.011, and 0.023, respectively), while lipidomics was not significantly changed. CONCLUSIONS In patients with cirrhosis, atorvastatin was safe to use, but did not reduce mortality, the risk of liver-related complications, or the HVPG. Atorvastatin induced minor anti-inflammatory effects and minor effects on lipids during a 6-month treatment period.
Collapse
Affiliation(s)
- Thit M. Kronborg
- Gastro Unit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Kajetan Trošt
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qian Gao
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus H. Gantzel
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Mette L. Andersen
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Herlev, Denmark
| | - Ane S. Teisner
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Herlev, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Lise Hobolth
- Gastro Unit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Centre of Functional Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Nina Kimer
- Gastro Unit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
5
|
Hammad R, Eldosoky MA, Elmadbouly AA, Aglan RB, AbdelHamid SG, Zaky S, Ali E, Abd El Hakam FEZ, Mosaad AM, Abdelmageed NA, Kotb FM, Kotb HG, Hady AA, Abo-Elkheir OI, Kujumdshiev S, Sack U, Lambert C, Hamdy NM. Monocytes subsets altered distribution and dysregulated plasma hsa-miR-21-5p and hsa-miR-155-5p in HCV-linked liver cirrhosis progression to hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:15349-15364. [PMID: 37639012 PMCID: PMC10620275 DOI: 10.1007/s00432-023-05313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE The authors aim to investigate the altered monocytes subsets distribution in liver cirrhosis (LC) and subsequent hepatocellular carcinoma (HCC) in association with the expression level of plasma Homo sapiens (has)-miR-21-5p and hsa-miR-155-5p. A step toward non-protein coding (nc) RNA precision medicine based on the immune perturbation manifested as altered monocytes distribution, on top of LC and HCC. METHODS Seventy-nine patients diagnosed with chronic hepatitis C virus (CHCV) infection with LC were enrolled in the current study. Patients were sub-classified into LC group without HCC (n = 40), LC with HCC (n = 39), and 15 apparently healthy controls. Monocyte subsets frequencies were assessed by flow cytometry. Real-time quantitative PCR was used to measure plasma hsa-miR-21-5p and hsa-miR-155-5p expression. RESULTS Hsa-miR-21-5p correlated with intermediate monocytes (r = 0.30, p = 0.007), while hsa-miR-155-5p negatively correlated with non-classical monocytes (r = - 0.316, p = 0.005). ROC curve analysis revealed that combining intermediate monocytes frequency and hsa-miR-21 yielded sensitivity = 79.5%, specificity = 75%, and AUC = 0.84. In comparison, AFP yielded a lower sensitivity = 69% and 100% specificity with AUC = 0.85. Logistic regression analysis proved that up-regulation of intermediate monocytes frequency and hsa-miR-21-5p were independent risk factors for LC progression to HCC, after adjustment for co-founders. CONCLUSION Monocyte subsets differentiation in HCC was linked to hsa-miR-21-5p and hsa-miR-155-5p. Combined up-regulation of intermediate monocytes frequency and hsa-miR-21-5p expression could be considered a sensitive indicator of LC progression to HCC. Circulating intermediate monocytes and hsa-miR-21-5p were independent risk factors for HCC evolution, clinically and in silico proved.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Reda Badr Aglan
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shibîn el Kôm, 35211, Menoufia, Egypt
| | - Sherihan G AbdelHamid
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Samy Zaky
- Hepatology, Gastroenterology and Infectious Diseases Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Elham Ali
- Molecular Biology, Zoology and Entomology Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | | | - Alshaimaa M Mosaad
- Hepatology, Gastroenterology and Infectious Diseases Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Neamat A Abdelmageed
- Hepatology, Gastroenterology and Infectious Diseases Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Fatma M Kotb
- Internal Medicine Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hend G Kotb
- Internal Medicine Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed A Hady
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Omaima I Abo-Elkheir
- Community Medicine and Public Health Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Sandy Kujumdshiev
- Institute of Clinical Immunology, University Medical Center Leipzig, Johannisallee 30, 04103, Leipzig, Germany
- DHGS German University of Health and Sport, Berlin, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, University Medical Center Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Claude Lambert
- Cytometry Unit, Immunology Laboratory, Saint-Etienne University Hospital, Saint-Étienne, Lyon, France
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Joshi SS, Sadler M, Patel NH, Osiowy C, Fonseca K, Coffin CS. Systemic cytokine and viral antigen-specific responses in hepatitis D virus RNA positive versus HDV RNA negative patients. Front Med (Lausanne) 2023; 10:1125139. [PMID: 37877022 PMCID: PMC10591067 DOI: 10.3389/fmed.2023.1125139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background Hepatitis B virus (HBV)/Hepatitis D Virus (HDV) co-infection increases the risk of severe liver disease compared to HBV mono-infection. Adaptive immune responses to HDV are weakly detectable, and the involvement of innate immunity in the progression of HDV-related liver fibrosis is suggested. We hypothesize that an overall innate immune activation in HBV/HDV co-infection plays a role in liver disease progression and also impacts virus specific T cell response. Methods Sixteen HBV/HDV-co-infected-patients (median age 42y/7F/6 Asian/4 White/6 Black/15 HBeAg-) and 8 HBV monoinfected-patients (median age 39y/4F/4 Asian/3 Black/1 White/HBeAg-) with median follow-up of 5 years were enrolled. Liver fibrosis was assessed by liver stiffness measurement (LSM, FibroScan®). Proliferation of CD3 + CD4+ T cells in response to viral antigens using CFSE assays and cytokine secreting monocytes was analyzed by flow cytometry. Results Of 16 HBV/HDV, 11 were HDV-RNA+ (HBV-DNA 0-1,040 IU/mL), 5/11 Interferon (IFN) + Nucleos/tide Analog (NA), 3/11 NA monotherapy, median ALT 77 U/L at the time of sample collection, median LSM of 9.8. In 5 HDV RNA-, median HBV DNA 65 IU/mL, 4/5 prior IFN and/or NA, ALT 31 U/L, and median LSM 8.5 kPa. In 8 HBV controls, median HBV-DNA, ALT, LSM was 69 IU/mL, 33 U/L,5 kPa, respectively. PBMC stimulation with HBV core antigen (HBcAg) and HDV antigen (HDAg) showed weaker CD3 + CD4 + T-cell proliferation in HDV-RNA+ vs. HDV RNA- and HBV-mono-infected patients (p < 0.05). In HDV-RNA+ patients, a correlation between ALT and TNF-α (r = 0.76, p = 0.008), higher IL-10 levels and increased proportion of CD14 + TNF-α+ cells were found. Conclusion In summary, during HBV/HDV coinfection, HDV RNA+ patients had weaker HBV and HDV specific responses, associated with increased TNF-α + monocytes irrespective of IFN treatment.
Collapse
Affiliation(s)
- Shivali S. Joshi
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew Sadler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nishi H. Patel
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kevin Fonseca
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla S. Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Overview of Cellular and Soluble Mediators in Systemic Inflammation Associated with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032313. [PMID: 36768637 PMCID: PMC9916753 DOI: 10.3390/ijms24032313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent chronic liver disease in Western countries, affecting approximately 25% of the adult population. This condition encompasses a spectrum of liver diseases characterized by abnormal accumulation of fat in liver tissue (non-alcoholic fatty liver, NAFL) that can progress to non-alcoholic steatohepatitis (NASH), characterized by the presence of liver inflammation and damage. The latter form often coexists with liver fibrosis which, in turn, may progress to a state of cirrhosis and, potentially, hepatocarcinoma, both irreversible processes that often lead to the patient's death and/or the need for liver transplantation. Along with the high associated economic burden, the high mortality rate among NAFLD patients raises interest, not only in the search for novel therapeutic approaches, but also in early diagnosis and prevention to reduce the incidence of NAFLD-related complications. In this line, an exhaustive characterization of the immune status of patients with NAFLD is mandatory. Herein, we attempted to gather and compare the current and relevant scientific evidence on this matter, mainly on human reports. We addressed the current knowledge related to circulating cellular and soluble mediators, particularly platelets, different leukocyte subsets and relevant inflammatory soluble mediators.
Collapse
|
8
|
Zhu S, Lalani AI, Jin J, Sant’Angelo D, Covey LR, Liu K, Young HA, Ostrand-Rosenberg S, Xie P. The adaptor protein TRAF3 is an immune checkpoint that inhibits myeloid-derived suppressor cell expansion. Front Immunol 2023; 14:1167924. [PMID: 37207205 PMCID: PMC10189059 DOI: 10.3389/fimmu.2023.1167924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are aberrantly expanded in cancer patients and under other pathological conditions. These cells orchestrate the immunosuppressive and inflammatory network to facilitate cancer metastasis and mediate patient resistance to therapies, and thus are recognized as a prime therapeutic target of human cancers. Here we report the identification of the adaptor protein TRAF3 as a novel immune checkpoint that critically restrains MDSC expansion. We found that myeloid cell-specific Traf3-deficient (M-Traf3 -/-) mice exhibited MDSC hyperexpansion during chronic inflammation. Interestingly, MDSC hyperexpansion in M-Traf3 -/- mice led to accelerated growth and metastasis of transplanted tumors associated with an altered phenotype of T cells and NK cells. Using mixed bone marrow chimeras, we demonstrated that TRAF3 inhibited MDSC expansion via both cell-intrinsic and cell-extrinsic mechanisms. Furthermore, we elucidated a GM-CSF-STAT3-TRAF3-PTP1B signaling axis in MDSCs and a novel TLR4-TRAF3-CCL22-CCR4-G-CSF axis acting in inflammatory macrophages and monocytes that coordinately control MDSC expansion during chronic inflammation. Taken together, our findings provide novel insights into the complex regulatory mechanisms of MDSC expansion and open up unique perspectives for the design of new therapeutic strategies that aim to target MDSCs in cancer patients.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Almin I. Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Derek Sant’Angelo
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, United States
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, The University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Ping Xie,
| |
Collapse
|
9
|
Waller KJ, Saihi H, Li W, Brindley JH, De Jong A, Syn WK, Bessant C, Alazawi W. Single-cell phenotypes of peripheral blood immune cells in early and late stages of non-alcoholic fatty liver disease. Clin Mol Hepatol 2022; 29:417-432. [PMID: 36727210 PMCID: PMC10121278 DOI: 10.3350/cmh.2022.0205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 02/03/2023] Open
Abstract
Background Immune and inflammatory cells respond to multiple pathological hits in the development of non-alcoholic steatohepatitis (NASH) and fibrosis. Relatively little is known about how their type and function change through the non-alcoholic fatty liver disease (NAFLD) spectrum. We used multi-dimensional mass cytometry and a tailored bioinformatic approach to study circulating immune cells sampled from healthy individuals and people with NAFLD. Methods Cytometry by time of flight (CyTOF) using 36 metal-conjugated antibodies was applied to peripheral blood mononuclear cells (PBMCs) from biopsy-proven NASH fibrosis (late disease), steatosis (early disease) and healthy patients. Supervised and unsupervised analyses were used, findings confirmed and mechanisms assessed using independent healthy and disease PBMC samples. Results Of 36 PBMC clusters, 21 changed between controls and disease samples. Significant differences between diseases stages with changes in T cells and myeloid cells throughout disease and B cell changes in late stages. Semi-supervised gating and re-clustering showed that disease stages were associated with fewer monocytes with active signalling and more inactive NK cells, while B and T cells bearing activation markers reduced in late stages, B cells bearing co-stimulatory molecules increased. Functionally, disease states were associated with fewer activated MAIT cells and reduced TLR-mediated cytokine production in late disease. Conclusions A range of innate and adaptive immune changes begin early in NAFLD and disease stages are associated with a functionally less active phenotype compared to controls. Further study of the immune response in NAFLD spectrum may give insight into mechanisms of disease with potential clinical application.
Collapse
Affiliation(s)
- Kathryn Jane Waller
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - Hajar Saihi
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - Wenhao Li
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | | | - Anja De Jong
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC, USA.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del Pa S Vasco/Euskal Herriko Univertsitatea (UPV/EHU), Leioa, Spain.,Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Missouri, USA
| | - Conrad Bessant
- Centre for Computational Biology, Life Sciences Initiative, Queen Mary University of London, London, UK.,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - William Alazawi
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Song XJ, Wang SY, Jia SY, Wang GJ, Zhang WB. Effects of electroacupuncture on liver function in mice with chronic alcoholic liver injury: visual display by in vivo fluorescence imaging. Acupunct Med 2022:9645284221125248. [PMID: 36263700 DOI: 10.1177/09645284221125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Acupuncture can improve the symptoms of alcohol-induced bodily injury and has been accepted by the World Health Organization. In this study, in vivo fluorescence imaging (IVFI) was applied to display and evaluate the effect of electroacupuncture (EA) on liver function (LF) in mice with chronic alcoholic liver injury (cALI). METHODS IVFI of the Cy5.5-galactosylated polylysine (Cy5.5-GP) probe targeting the liver asialoglycoprotein receptor (ASGPR) and liver indocyanine green (ICG) clearance was performed to visually evaluate the effect of EA at ST36 and BL18 on liver reserve function and hepatic metabolism in mice with cALI. In addition, changes in ASGPR expression, serum indexes of LF, and hepatic morphology were observed. RESULTS After EA at ST36 and BL18, the ASGPR-targeted fluorescence signals (FS) in the liver increased significantly in cALI mice (p < 0.05) and exhibited relationships with liver ASGPR expression, liver ICG clearance, liver histology, and serum marker levels of LF in cALI mice undergoing EA intervention. CONCLUSIONS As displayed by IVFI, EA at ST36 and BL18 appears to improve liver reserve function and inhibit the development of liver injury in mice with cALI. EA may have potential as a treatment strategy to protect against ALI.
Collapse
Affiliation(s)
- Xiao-Jing Song
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu-You Wang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu-Yong Jia
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang-Jun Wang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei-Bo Zhang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
12
|
Núñez KG, Sandow T, Lakey MA, Fort D, Cohen AJ, Thevenot PT. Distinct Gene Expression Profiles in Viable Hepatocellular Carcinoma Treated With Liver-Directed Therapy. Front Oncol 2022; 12:809860. [PMID: 35785174 PMCID: PMC9248864 DOI: 10.3389/fonc.2022.809860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHepatocellular carcinoma is a heterogeneous tumor that accumulates a mutational burden and dysregulated signaling pathways that differ from early to advanced stages. Liver transplant candidates with early-stage hepatocellular carcinoma (HCC) undergo liver-directed therapy (LDT) to delay disease progression and serve as a bridge to liver transplantation (LT). Unfortunately, >80% of LDT-treated patients have viable HCC in the explant liver, dramatically increasing recurrence risk. Understanding the effect of LDT on early-stage HCC could help identify therapeutic targets to promote complete pathologic necrosis and improve recurrence-free survival. In this study, transcriptomic data from viable HCC in LDT-treated bridged to transplant patients were investigated to understand how treatment may affect tumor signaling pathways.MethodsMultiplex transcriptomic gene analysis was performed with mRNA extracted from viable tumors of HCC patients bridged to transplant using LDT. The NanoString nCounter® Tumor Signaling 360 panel was used that contained 780 genes from 48 pathways involved in tumor biology within the microenvironment as well as antitumoral immune responses.ResultsHierarchical clustering separated tumors into three subtypes (HCC-1, HCC-2, and HCC-3) each with distinct differences in anti-tumoral signaling and immune infiltration within the tumor microenvironment. Immune infiltration (neutrophils, T cells, and macrophages) were all lowest in subtype HCC-3. The tumor inflammatory signature consisting of 18 genes associated with PD-1/PD-L1 inhibition, antigen presentation, chemokine secretion, and adaptive immune responses was highest in subtype HCC-1 and lowest in HCC-3. History of decompensation and etiology were associated with HCC subtype favoring downregulations in inflammation and immune infiltration with upregulation of lipid metabolism. Gene expression among intrahepatic lesions was remarkably similar with >85% of genes expressed in both lesions. Genes differentially expressed (<8 genes per patient) in multifocal disease were all upregulated in LDT-treated tumors from pathways involving epithelial mesenchymal transition, extracellular matrix remodeling, and/or inflammation potentially implicating intrahepatic metastases.ConclusionIncomplete response to LDT may drive expression patterns that inhibit an effective anti-tumoral response through immune exclusion and induce intrahepatic spread.
Collapse
Affiliation(s)
- Kelley G. Núñez
- Institute of Translational Research, Ochsner Health System, New Orleans, LA, United States
| | - Tyler Sandow
- Interventional Radiology, Ochsner Health System, New Orleans, LA, United States
| | - Meredith A. Lakey
- Ochsner Biorepository, Ochsner Health System, New Orleans, LA, United States
| | - Daniel Fort
- Centers for Outcomes and Health Services Research, Ochsner Health System, New Orleans, LA, United States
| | - Ari J. Cohen
- Multi-Organ Transplant Institute, Ochsner Health System, New Orleans, LA, United States
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Paul T. Thevenot
- Institute of Translational Research, Ochsner Health System, New Orleans, LA, United States
- *Correspondence: Paul T. Thevenot,
| |
Collapse
|
13
|
Kronsten VT, Woodhouse CA, Zamalloa A, Lim TY, Edwards LA, Martinez-Llordella M, Sanchez-Fueyo A, Shawcross DL. Exaggerated inflammatory response to bacterial products in decompensated cirrhotic patients is orchestrated by interferons IL-6 and IL-8. Am J Physiol Gastrointest Liver Physiol 2022; 322:G489-G499. [PMID: 35195033 PMCID: PMC8993594 DOI: 10.1152/ajpgi.00012.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cirrhosis-associated immune dysfunction (CAID) contributes to disease progression and organ failure development. We interrogated immune system function in nonseptic compensated and decompensated cirrhotic patients using the TruCulture whole blood stimulation system, a novel technique that allows a more accurate representation than traditional methods, such as peripheral blood mononuclear cell culture, of the immune response in vivo. Thirty cirrhotics (21 decompensated and 9 compensated) and seven healthy controls (HCs) were recruited. Whole blood was drawn directly into three TruCulture tubes [unstimulated to preloaded with heat-killed Escherichia coli 0111:B4 (HKEB) or lipopolysaccharide (LPS)] and incubated in dry heat blocks at 37°C for 24 h. Cytokine analysis of the supernatant was performed by multiplex assay. Cirrhotic patients exhibited a robust proinflammatory response to HKEB compared with HCs, with increased production of interferon-γ-induced protein 10 (IP-10) and IFN-λ1, and to LPS, with increased production of IFN-λ1. Decompensated patients demonstrated an augmented immune response compared with compensated patients, orchestrated by an increase in type I, II, and III interferons, and higher levels of IL-1β, IL-6, and IL-8 post-LPS stimulation. IL-1β, TNF-α, and IP-10 post-HKEB stimulation and IP-10 post-LPS stimulation negatively correlated with biochemical markers of liver disease severity and liver disease severity scores. Cirrhotic patients exposed to bacterial products exhibit an exaggerated inflammatory response orchestrated by IFNs, IL-6, and IL-8. Poststimulation levels of a number of proinflammatory cytokines negatively correlate with markers of liver disease severity raising the possibility that the switch to an immunodeficient phenotype in CAID may commence earlier in the course of advanced liver disease. NEW & NOTEWORTHY Decompensated cirrhotic patients, compared with compensated patients, exhibit a greater exaggerated inflammatory response to bacterial products orchestrated by interferons, IL-6, and IL-8. Postbacterial product stimulation levels of a number of pro-inflammatory cytokines negatively correlate with liver disease severity biomarkers and liver disease severity scores raising the possibility that the switch to an immunodeficient phenotype in cirrhosis-associated immune dysfunction may commence earlier in the course of advanced liver disease.
Collapse
Affiliation(s)
- Victoria T. Kronsten
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Charlotte A. Woodhouse
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Tiong Yeng Lim
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Lindsey A. Edwards
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Marc Martinez-Llordella
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Debbie L. Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Walter LO, Cardoso CC, Santos‐Pirath ÍM, Costa HZ, Gartner R, Werle I, Mohr ETB, da Rosa JS, Felisberto M, Kretzer IF, Masukawa II, Vanny PDA, Luiz MC, de Moraes ACR, Dalmarco EM, Santos‐Silva MC. The relationship between peripheral immune response and disease severity in SARS-CoV-2-infected subjects: A cross-sectional study. Immunology 2022; 165:481-496. [PMID: 35146763 PMCID: PMC9111570 DOI: 10.1111/imm.13457] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and marked by an intense inflammatory response and immune dysregulation in the most severe cases. In order to better clarify the relationship between peripheral immune system changes and the severity of COVID-19, this study aimed to evaluate the frequencies and absolute numbers of peripheral subsets of neutrophils, monocytes, and dendritic cells (DCs), in addition to quantifying the levels of inflammatory mediators. One hundred fifty-seven COVID-19 patients were stratified into mild, moderate, severe, and critical disease categories. The cellular components and circulating cytokines were assessed by flow cytometry. Nitric oxide (NOx) and myeloperoxidase (MPO) levels were measured by colourimetric tests. COVID-19 patients presented neutrophilia, with signs of emergency myelopoiesis. Alterations in the monocytic component were observed in patients with moderate to critical illness, with an increase in classical monocytes and a reduction in nonclassical monocytes, in addition to a reduction in the expression of HLA-DR in all subtypes of monocytes, indicating immunosuppression. DCs, especially plasmacytoid DCs, also showed a large reduction in moderate to critical patients. COVID-19 patients showed an increase in MPO, interleukin (IL)-12, IL-6, IL-10, and IL-8, accompanied by a reduction in IL-17A and NOx. IL-10 levels ≥14 pg/ml were strongly related to the worst outcome, with a sensitivity of 78·3% and a specificity of 79·1%. The results of this study indicate the presence of systemic effects induced by COVID-19, which appear to be related to the pathophysiology of the disease, highlighting the potential of IL-10 as a possible prognostic biomarker for COVID-19.
Collapse
Affiliation(s)
- Laura Otto Walter
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Chandra Chiappin Cardoso
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Íris Mattos Santos‐Pirath
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Heloisa Zorzi Costa
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Rafaela Gartner
- Clinical Analysis DepartmentHealth Sciences Center, Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Isabel Werle
- Clinical Analysis DepartmentHealth Sciences Center, Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | | | - Julia Salvan da Rosa
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Mariano Felisberto
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Iara Fabricia Kretzer
- Clinical Analysis DepartmentHealth Sciences Center, Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Ivete Ioshiko Masukawa
- Infectious Disease ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Infectious Disease ServiceNereu Ramos Hospital. State Health DepartmentFlorianópolisSanta CatarinaBrazil
| | - Patrícia de Almeida Vanny
- Infectious Disease ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Magali Chaves Luiz
- Infectious Disease ServiceNereu Ramos Hospital. State Health DepartmentFlorianópolisSanta CatarinaBrazil
| | - Ana Carolina Rabello de Moraes
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Eduardo Monguilhott Dalmarco
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Maria Cláudia Santos‐Silva
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Clinical Analysis DepartmentHealth Sciences Center, Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| |
Collapse
|
15
|
Lin SZ, Fan JG. Peripheral immune cells in NAFLD patients: A spyhole to disease progression. EBioMedicine 2021; 75:103768. [PMID: 34929490 PMCID: PMC8693289 DOI: 10.1016/j.ebiom.2021.103768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide leading cause of chronic liver disease, but we still lack ideal non-invasive tools for diagnosis and evaluation of nonalcoholic steatohepatitis (NASH) and related liver fibrosis in NAFLD population. Systemic immune dysregulations such as metabolic inflammation are believed to play central role in the development of NAFLD, signifying the hope of utilizing quantitative and phenotypic changes in peripheral immune cells among NAFLD patients as a diagnostic tool of NASH and fibrosis. In this review, we summarize the known changes in peripheral immune cells from NAFLD/NASH patients and their potential relationship with NAFLD and NASH progression. Potential challenges and possible solutions for further clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang-Zhe Lin
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
16
|
Predictive Biomarkers of Age-Related Macular Degeneration Response to Anti-VEGF Treatment. J Pers Med 2021; 11:jpm11121329. [PMID: 34945801 PMCID: PMC8706948 DOI: 10.3390/jpm11121329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is an incurable disease associated with aging that destroys sharp and central vision. Increasing evidence implicates both systemic and local inflammation in the pathogenesis of AMD. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is currently the first-line therapy for choroidal neovascularization in AMD patients. However, a high number of patients do not show satisfactory responses to anti-VEGF treatment after three injections. Predictive treatment response models are one of the most powerful tools for personalized medicine. Therefore, the application of these models is very helpful to predict the optimal treatment for an early application on each patient. We analyzed the transcriptome of peripheral blood mononuclear cells (PBMCs) from AMD patients before treatment to identify biomarkers of response to ranibizumab. A classification model comprised of four mRNAs and one miRNA isolated from PBMCs was able to predict the response to ranibizumab with high accuracy (Area Under the Curve of the Receiver Operating Characteristic curve = 0.968), before treatment. We consider that our classification model, based on mRNA and miRNA from PBMCs allows a robust prediction of patients with insufficient response to anti-VEGF treatment. In addition, it could be used in combination with other methods, such as specific baseline characteristics, to identify patients with poor response to anti-VEGF treatment to establish patient-specific treatment plans at the first visit.
Collapse
|
17
|
Maini AA, Becares N, China L, Tittanegro TH, Patel A, De Maeyer RPH, Zakeri N, Long TV, Ly L, Gilroy DW, O'Brien A. Monocyte dysfunction in decompensated cirrhosis is mediated by the prostaglandin E2-EP4 pathway. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 3:100332. [PMID: 34825153 PMCID: PMC8603213 DOI: 10.1016/j.jhepr.2021.100332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Infection is a major problem in advanced liver disease secondary to monocyte dysfunction. Elevated prostaglandin (PG)E2 is a mediator of monocyte dysfunction in cirrhosis; thus, we examined PGE2 signalling in outpatients with ascites and in patients hospitalised with acute decompensation to identify potential therapeutic targets aimed at improving monocyte dysfunction. METHODS Using samples from 11 outpatients with ascites and 28 patients hospitalised with decompensated cirrhosis, we assayed plasma levels of PGE2 and lipopolysaccharide (LPS); performed quantitative real-time PCR on monocytes; and examined peripheral blood monocyte function. We performed western blotting and immunohistochemistry for PG biosynthetic machinery expression in liver tissue. Finally, we investigated the effect of PGE2 antagonists in whole blood using polychromatic flow cytometry and cytokine production. RESULTS We show that hepatic production of PGE2 via the cyclo-oxygenase 1-microsomal PGE synthase 1 pathway, and circulating monocytes contributes to increased plasma PGE2 in decompensated cirrhosis. Transjugular intrahepatic sampling did not reveal whether hepatic or monocytic production was larger. Blood monocyte numbers increased, whereas individual monocyte function decreased as patients progressed from outpatients with ascites to patients hospitalised with acute decompensation, as assessed by Human Leukocyte Antigen (HLA)-DR isotype expression and tumour necrosis factor alpha and IL6 production. PGE2 mediated this dysfunction via its EP4 receptor. CONCLUSIONS PGE2 mediates monocyte dysfunction in decompensated cirrhosis via its EP4 receptor and dysfunction was worse in hospitalised patients compared with outpatients with ascites. Our study identifies a potential drug target and therapeutic opportunity in these outpatients with ascites to reverse this process to prevent infection and hospital admission. LAY SUMMARY Patients with decompensated cirrhosis (jaundice, fluid build-up, confusion, and vomiting blood) have high infection rates that lead to high mortality rates. A white blood cell subset, monocytes, function poorly in these patients, which is a key factor underlying their sensitivity to infection. We show that monocyte dysfunction in decompensated cirrhosis is mediated by a lipid hormone in the blood, prostaglandin E2, which is present at elevated levels, via its EP4 pathway. This dysfunction worsens when patients are hospitalised with complications of cirrhosis compared with those in the outpatients setting, which supports the EP4 pathway as a potential therapeutic target for patients to prevent infection and hospitalisation.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- CAID, cirrhosis-associated immune dysfunction
- CM, classical monocytes
- COX, cyclooxygenase
- CRP, C-reactive protein
- Cyclo-oxygenase 1
- DSS, downstream synthases
- Decompensated cirrhosis
- EIA, enzyme immune assay
- FACS, polychromatic flow cytometric analysis
- HLA DR, human leukocyte antigen – DR isotype
- HLA-DR
- HPGD, 15-hydroxyprostaglandin dehydrogenase
- HVs, healthy volunteers
- IL6
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- LPS
- LPS, lipopolysaccharide
- MDMs, monocyte-derived macrophages
- MFI, mean fluorescence intensity
- Microsomal PGE synthase 1
- NASH, non-alcoholic steatohepatitis
- OPD, patients with refractory ascites attending hospital outpatient department for day case paracentesis
- PGE2, prostaglandin E2
- TIPS, transjugular intrahepatic portosystemic shunt insertion
- TNF
- TNFα, tumour necrosis factor alpha
- cPGES, cytosolic PGE synthase
- mPGES1, microsomal PGE synthase 1
- qPCR, quantitative PCR
- sCD14, soluble CD14
Collapse
Affiliation(s)
- Alexander A Maini
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Natalia Becares
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Louise China
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Thais H Tittanegro
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Amit Patel
- Division of Medicine, University College London, London, UK
| | | | - Nekisa Zakeri
- Institute of Liver and Digestive Health, University College London, London, UK
| | | | - Lucy Ly
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Alastair O'Brien
- Institute of Liver and Digestive Health, University College London, London, UK
| |
Collapse
|
18
|
Wang S, Gao S, Li Y, Qian X, Luan J, Lv X. Emerging Importance of Chemokine Receptor CXCR4 and Its Ligand in Liver Disease. Front Cell Dev Biol 2021; 9:716842. [PMID: 34386499 PMCID: PMC8353181 DOI: 10.3389/fcell.2021.716842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily, which together with chemokine ligands form chemokine networks to regulate various cellular functions, immune and physiological processes. These receptors are closely related to cell movement and thus play a vital role in several physiological and pathological processes that require regulation of cell migration. CXCR4, one of the most intensively studied chemokine receptors, is involved in many functions in addition to immune cells recruitment and plays a pivotal role in the pathogenesis of liver disease. Aberrant CXCR4 expression pattern is related to the migration and movement of liver specific cells in liver disease through its cross-talk with a variety of significant cell signaling pathways. An in-depth understanding of CXCR4-mediated signaling pathway and its role in liver disease is critical to identifying potential therapeutic strategies. Current therapeutic strategies for liver disease mainly focus on regulating the key functions of specific cells in the liver, in which the CXCR4 pathway plays a crucial role. Multiple challenges remain to be overcome in order to more effectively target CXCR4 pathway and identify novel combination therapies with existing strategies. This review emphasizes the role of CXCR4 and its important cell signaling pathways in the pathogenesis of liver disease and summarizes the targeted therapeutic studies conducted to date.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Sharma S, Baweja S, Maras JS, Shasthry SM, Moreau R, Sarin SK. Differential blood transcriptome modules predict response to corticosteroid therapy in alcoholic hepatitis. JHEP Rep 2021; 3:100283. [PMID: 34095796 PMCID: PMC8165449 DOI: 10.1016/j.jhepr.2021.100283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND & AIMS In patients with severe alcoholic hepatitis (SAH), little is known about the profile of peripheral blood mononuclear cells (PBMCs) at baseline and during corticosteroid therapy, among those who can be treated successfully with steroids (steroid-responders [R] and those who cannot (steroid-non-responders [NR]); 2 groups with different outcomes. METHODS We performed RNA-seq analysis in PBMCs from 32 patients with definite SAH, at baseline and after 7 days of corticosteroids. The data were sorted into R and NR (n = 16, each group) using the Lille model and 346 blood transcription modules (BTMs) were identified. BTMs are predefined modules of highly co-expressed PBMC genes, which can determine specific immune cell types and cellular functions. The activity of each BTM was taken as the mean value of its member genes. RESULTS At baseline, 345 BTMs had higher activity (i.e. were upregulated) in NR relative to R. The 100 most upregulated BTMs in NR, included several modules related to lymphoid lineage (T, B, and natural killer [NK] cells), modules for cell division and mitochondrial respiratory electron transport chain (ETC, relating to energy production), but only a few modules of myeloid cells. Correlation studies of BTM activities found features of significantly greater activation/proliferation and differentiation for T and B cells in NR relative to R. After 7 days of corticosteroids, NR had no significant changes in BTM activities relative to baseline, whereas R had downregulation of BTMs related to innate and adaptive immunity. CONCLUSIONS At baseline and during corticosteroid therapy, increased activity in the PBMCs of gene modules related to activation/proliferation and differentiation of T and B cells, NK cells, and mitochondrial ETC, is a hallmark of SAH patients who are steroid-non-responders. LAY SUMMARY Patients with severe alcoholic hepatitis receive steroid therapy as the main line of treatment; however, this treatment is ineffective in some patients. This only becomes apparent after 7 days of steroid therapy. We have developed an approach where it can be estimated if a patient is going to respond or not to steroid therapy using the gene expression information of blood cells. This method will allow clinicians to assess the response of patients to steroids earlier, and will help them in adopting alternate strategies if the treatment is found to be ineffective in a particular patient.
Collapse
Key Words
- Alcoholic liver disease
- BTM, blood transcription module
- CTP score, Child-Turcott-Pugh score
- DEGs, differentially expressed genes
- ETC, electron transport chain
- Glucocorticoid receptor
- MDF, Maddrey’s discriminant function
- MELD, model for end-stage liver disease
- NK cells, natural killer cells
- NR, non-responders
- NR3C1
- NR3C1, nuclear receptor subfamily 3 group c gene member 1
- OxPhos, oxidative phosphorylation
- PBMCs, peripheral blood mononuclear cells
- R, responders
- RNA-seq, RNA sequencing
- SAH, severe alcoholic hepatitis
- Steroid
- Transcriptome
Collapse
Affiliation(s)
- Shvetank Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaswinder S. Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Saggere M. Shasthry
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Richard Moreau
- Centre de Recherche sur l’Inflammation (CRI), INSERM, Université de Paris, Paris, France
- Service d’Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Shiv K. Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
20
|
Cardoso CC, Matiollo C, Pereira CHJ, Fonseca JS, Alves HEL, da Silva OM, de Souza Menegassi V, Dos Santos CR, de Moraes ACR, de Lucca Schiavon L, Santos-Silva MC. Patterns of dendritic cell and monocyte subsets are associated with disease severity and mortality in liver cirrhosis patients. Sci Rep 2021; 11:5923. [PMID: 33723292 PMCID: PMC7960697 DOI: 10.1038/s41598-021-85148-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is often complicated by an immunological imbalance known as cirrhosis-associated immune dysfunction. This study aimed to investigate disturbances in circulating monocytes and dendritic cells in patients with acute decompensation (AD) of cirrhosis. The sample included 39 adult cirrhotic patients hospitalized for AD, 29 patients with stable cirrhosis (SC), and 30 healthy controls (CTR). Flow cytometry was used to analyze monocyte and dendritic cell subsets in whole blood and quantify cytokines in plasma samples. Cirrhotic groups showed higher frequencies of intermediate monocytes (iMo) than CTR. AD patients had lower percentages of nonclassical monocytes than CTR and SC. Cirrhotic patients had a profound reduction in absolute and relative dendritic cell numbers compared with CTR and showed higher plasmacytoid/classical dendritic cell ratios. Increased plasma levels of IL-6, IL-10, and IL-17A, elevated percentages of CD62L+ monocytes, and reduced HLA-DR expression on classical monocytes (cMo) were also observed in cirrhotic patients. Patients with more advanced liver disease showed increased cMo and reduced tissue macrophages (TiMas) frequencies. It was found that cMo percentages greater than 90.0% within the monocyte compartment and iMo and TiMas percentages lower than 5.7% and 8.6%, respectively, were associated with increased 90-day mortality. Monocytes and dendritic cells are deeply altered in cirrhotic patients, and subset profiles differ between stable and advanced liver disease. High cMo and low TiMas frequencies may be useful biomarkers of disease severity and mortality in liver cirrhosis.
Collapse
Affiliation(s)
- Chandra Chiappin Cardoso
- Division of Clinical Analysis, Flow Cytometry Service, Health Sciences Center, University Hospital of the Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil. .,Postgraduate Program in Pharmacy of the Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Camila Matiollo
- Postgraduate Program in Medical Sciences of the Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Janaina Santana Fonseca
- Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Otavio Marcos da Silva
- Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Claudia Regina Dos Santos
- Postgraduate Program in Pharmacy of the Federal University of Santa Catarina, Florianópolis, SC, Brazil.,Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Carolina Rabello de Moraes
- Postgraduate Program in Pharmacy of the Federal University of Santa Catarina, Florianópolis, SC, Brazil.,Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Leonardo de Lucca Schiavon
- Postgraduate Program in Medical Sciences of the Federal University of Santa Catarina, Florianópolis, SC, Brazil.,Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Maria Claudia Santos-Silva
- Division of Clinical Analysis, Flow Cytometry Service, Health Sciences Center, University Hospital of the Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil. .,Postgraduate Program in Pharmacy of the Federal University of Santa Catarina, Florianópolis, SC, Brazil. .,Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
21
|
Lambrecht J, Tacke F. Controversies and Opportunities in the Use of Inflammatory Markers for Diagnosis or Risk Prediction in Fatty Liver Disease. Front Immunol 2021; 11:634409. [PMID: 33633748 PMCID: PMC7900147 DOI: 10.3389/fimmu.2020.634409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
In the Western society, non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of fat in the liver, represents the most common cause of chronic liver disease. If left untreated, approximately 15%-20% of patients with NAFLD will progress to non-alcoholic steatohepatitis (NASH), in which lobular inflammation, hepatocyte ballooning and fibrogenesis further contribute to a distorted liver architecture and function. NASH initiation has significant effects on liver-related mortality, as even the presence of early stage fibrosis increases the chances of adverse patient outcome. Therefore, adequate diagnostic tools for NASH are needed, to ensure that relevant therapeutic actions can be taken as soon as necessary. To date, the diagnostic gold standard remains the invasive liver biopsy, which is associated with several drawbacks such as high financial costs, procedural risks, and inter/intra-observer variability in histology analysis. As liver inflammation is a major hallmark of disease progression, inflammation-related circulating markers may represent an interesting source of non-invasive biomarkers for NAFLD/NASH. Examples for such markers include cytokines, chemokines or shed receptors from immune cells, circulating exosomes related to inflammation, and changing proportions of peripheral blood mononuclear cell (PBMC) subtypes. This review aims at documenting and critically discussing the utility of such novel inflammatory markers for NAFLD/NASH-diagnosis, patient stratification and risk prediction.
Collapse
Affiliation(s)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
22
|
Ishikawa M, Brooks AJ, Fernández-Rojo MA, Medina J, Chhabra Y, Minami S, Tunny KA, Parton RG, Vivian JP, Rossjohn J, Chikani V, Ramm GA, Ho KKY, Waters MJ. Growth Hormone Stops Excessive Inflammation After Partial Hepatectomy, Allowing Liver Regeneration and Survival Through Induction of H2-Bl/HLA-G. Hepatology 2021; 73:759-775. [PMID: 32342533 PMCID: PMC7894545 DOI: 10.1002/hep.31297] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Growth hormone (GH) is important for liver regeneration after partial hepatectomy (PHx). We investigated this process in C57BL/6 mice that express different forms of the GH receptor (GHR) with deletions in key signaling domains. APPROACH AND RESULTS PHx was performed on C57BL/6 mice lacking GHR (Ghr-/- ), disabled for all GH-dependent Janus kinase 2 signaling (Box1-/- ), or lacking only GH-dependent signal transducer and activator of transcription 5 (STAT5) signaling (Ghr391-/- ), and wild-type littermates. C57BL/6 Ghr-/- mice showed striking mortality within 48 hours after PHx, whereas Box1-/- or Ghr391-/- mice survived with normal liver regeneration. Ghr-/- mortality was associated with increased apoptosis and elevated natural killer/natural killer T cell and macrophage cell markers. We identified H2-Bl, a key immunotolerance protein, which is up-regulated by PHx through a GH-mediated, Janus kinase 2-independent, SRC family kinase-dependent pathway. GH treatment was confirmed to up-regulate expression of the human homolog of H2-Bl (human leukocyte antigen G [HLA-G]) in primary human hepatocytes and in the serum of GH-deficient patients. We find that injury-associated innate immune attack by natural killer/natural killer T cell and macrophage cells are instrumental in the failure of liver regeneration, and this can be overcome in Ghr-/- mice by adenoviral delivery of H2-Bl or by infusion of HLA-G protein. Further, H2-Bl knockdown in wild-type C57BL/6 mice showed elevated markers of inflammation after PHx, whereas Ghr-/- backcrossed on a strain with high endogenous H2-Bl expression showed a high rate of survival following PHx. CONCLUSIONS GH induction of H2-Bl expression is crucial for reducing innate immune-mediated apoptosis and promoting survival after PHx in C57BL/6 mice. Treatment with HLA-G may lead to improved clinical outcomes following liver surgery or transplantation.
Collapse
Affiliation(s)
- Mayumi Ishikawa
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,Center for Endocrinology, Diabetes and ArteriosclerosisNippon Medical School Musashikosugi HospitalKawasakiJapan
| | - Andrew J Brooks
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Manuel A Fernández-Rojo
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia.,Hepatic Fibrosis GroupQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia.,School of MedicineThe University of QueenslandBrisbaneQLDAustralia.,Hepatic Regenerative Medicine LaboratoryMadrid Institute for Advanced Studies in FoodCEI UAM+CSICMadridSpain
| | - Johan Medina
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Yash Chhabra
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Shiro Minami
- Center for Endocrinology, Diabetes and ArteriosclerosisNippon Medical School Musashikosugi HospitalKawasakiJapan
| | - Kathryn A Tunny
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Julian P Vivian
- Department of Biochemistry and Molecular Biology School of Biomedical SciencesMonash UniversityClaytonVICAustralia.,Australian Research Council Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonVICAustralia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology School of Biomedical SciencesMonash UniversityClaytonVICAustralia.,Australian Research Council Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonVICAustralia.,Institute of Infection and ImmunityCardiff University School of MedicineHeath ParkCardiffUnited Kingdom
| | - Viral Chikani
- Princess Alexandra Hospital and Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Grant A Ramm
- Hepatic Fibrosis GroupQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia.,School of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ken K Y Ho
- Princess Alexandra Hospital and Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Michael J Waters
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| |
Collapse
|
23
|
Khanam A, Kottilil S. Abnormal Innate Immunity in Acute-on-Chronic Liver Failure: Immunotargets for Therapeutics. Front Immunol 2020; 11:2013. [PMID: 33117329 PMCID: PMC7578249 DOI: 10.3389/fimmu.2020.02013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a severe life-threatening condition with high risk of multiorgan failure, sepsis, and mortality. ACLF activates a multifaceted interplay of both innate and adaptive immune response in the host which governs the overall outcome. Innate immune cells recognize the conserved elements of microbial and viral origin, both to extort instant defense by transforming into diverse modules of effector responses and to generate long-lasting immunity but can also trigger a massive intrahepatic immune inflammatory response. Acute insult results in the activation of innate immune cells which provokes cytokine and chemokine cascade and subsequently initiates aggressive systemic inflammatory response syndrome, hepatic damage, and high mortality in ACLF. Dysregulated innate immune response not only plays a critical role in disease progression but also potentially correlates with clinical disease severity indices including Child-Turcotte-Pugh, a model for end-stage liver disease, and sequential organ failure assessment score. A better understanding of the pathophysiological basis of the disease and precise immune mechanisms associated with liver injury offers a novel approach for the development of new and efficient therapies to treat this severely ill entity. Immunotherapies could be helpful in targeting immune-mediated organ damage which may constrain progression toward liver failure and eventually reduce the requirement for liver transplantation. Here, in this review we discuss the defects of different innate immune cells in ACLF which updates the current knowledge of innate immune response and provide potential targets for new therapeutic interventions.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Successful DAA therapy for chronic hepatitis C reduces HLA-DR on monocytes and circulating immune mediators: A long-term follow-up study. Immunol Lett 2020; 228:15-23. [PMID: 32946919 DOI: 10.1016/j.imlet.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION After DAA treatment for chronic hepatitis C infection, peripheral monocyte subsets from patients who achieved sustained virological response (SVR) reduced compared to healthy control. Improvement in inflammatory parameters and liver stiffness has been observed. However, little is known about the long-term impact of DAA treatment on peripheral monocyte subsets and immune mediators levels. OBJECTIVES We aimed to examine peripheral monocyte subsets and immune mediators levels in Brazilian chronic HCV patients after long-term successful IFN-free SOF-based treatment. MATERIAL AND METHODS We analyzed CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocytes and 27 immune mediators by flow cytometry and analysis of multiple secreted proteins assay, respectively, in monoinfected chronic HCV patients receiving IFN-free sofosbuvir-based regimens followed before treatment, at SVR and one year after the end of treatment (1y). RESULTS Twenty-one biomarkers decreased significantly at 1y and 55-80 % of patients this reduction at 1y. Experimented patients presented a greater modulation of immune mediators at 1y. HLA-DR expression significantly decreased on CD14++CD16- and CD14++CD16+ monocytes at 1y when compared to SVR. CONCLUSIONS Successful DAA therapy did not modify monocyte subsets frequency but reduced monocyte activation at 1y and sustained the downregulation and restoration of circulating immune mediators, indicating that long-term reversal of inflammation status could occur after HCV eradication.
Collapse
|
25
|
Abstract
Cirrhosis is a multisystemic disease wherein inflammatory responses originating from advanced liver disease and its sequelae affect distant compartments. Patients with cirrhosis are susceptible to bacterial infections, which may precipitate acute decompensation and acute-on-chronic liver failure, both of which are associated with high short-term mortality. Innate immune cells are an essential first line of defence against pathogens. Activation of liver macrophages (Kupffer cells) and resident mastocytes generate proinflammatory and vaso-permeating mediators that induce accumulation of neutrophils, lymphocytes, eosinophils and monocytes in the liver, and promote tissue damage. During cirrhosis progression, damage- and pathogen-associated molecular patterns activate immune cells and promote development of systemic inflammatory responses which may involve different tissues and compartments. The antibacterial function of circulating neutrophils and monocytes is gradually and severely impaired as cirrhosis worsens, contributing to disease progression. The mechanisms underlying impaired antimicrobial responses are complex and incompletely understood. This review focuses on the continuous and distinct perturbations arising in innate immune cells during cirrhosis, including their impact on disease progression, as well as reviewing potential therapeutic targets.
Collapse
|
26
|
High CD163 Expression on Classical Monocytes Is Associated with Immune Control of HBV Infection in Noncirrhotic Patients. Mediators Inflamm 2020. [DOI: 10.1155/2020/6364258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background and Aims. The functional impairment of monocytes may contribute to the persistence of HBV infection. This study aims to assess monocyte subpopulations, monocyte expression of CD163, plasma sCD163, and sTWEAK in patients with chronic HBeAg-negative HBV infection at different phases of disease. Methods. Fifty-nine patients with CHB, 9 with a history of HBsAg/anti-HBs seroconversion, were enrolled. The control group consisted of 15 healthy volunteers. Subpopulations of peripheral blood monocytes were distinguished by CD14 and CD16. Membrane expression of CD163 was assessed by flow cytometry, plasma sCD163 concentration by ELISA, and sTWEAK by bead-based multiplexed immunoassay system. Results. CD163 expression was increased in classical and intermediate monocytes in CHB patients and those with HBsAg/anti-HBs seroconversion. CD163 expression on classical monocytes was associated with status of immune control and thus significant in HBV infection as compared to active hepatitis. Plasma sCD163 concentration was increased in CHB patients and those with HBsAg/anti-HBs seroconversion vs. the control group. Positive correlations between plasma sCD163 and ALT, as well as APRI, were observed. Plasma sTWEAK concentration was lower in CHB patients in comparison to patients with HBsAg/anti-HBs seroconversion. Conclusions. Exposure to HBV antigens alters monocyte subsets’ frequencies and activation. The expression of CD163 on classical monocytes increased in parallel with improved immune control of the HBV infection. Patients who seroconverted HBsAg had the highest expression of CD163 on monocytes, which suggests involvement of monocytes in immune control of HBV infection. Persistent inflammation is accompanied by higher CD163 expression and sCD163 level and lower sTWEAK level.
Collapse
|
27
|
Horst AK, Tiegs G, Diehl L. Contribution of Macrophage Efferocytosis to Liver Homeostasis and Disease. Front Immunol 2019; 10:2670. [PMID: 31798592 PMCID: PMC6868070 DOI: 10.3389/fimmu.2019.02670] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
The clearance of apoptotic cells is pivotal for both maintaining tissue homeostasis and returning to homeostasis after tissue injury as part of the regenerative resolution response. The liver is known for its capacity to remove aged and damaged cells from the circulation and can serve as a graveyard for effector T cells. In particular Kupffer cells are active phagocytic cells, but during hepatic inflammatory responses incoming neutrophils and monocytes may contribute to pro-inflammatory damage. To stimulate resolution of such inflammation, myeloid cell function can change, via sensing of environmental changes in the inflammatory milieu. Also, the removal of apoptotic cells via efferocytosis and the signaling pathways that are activated in macrophages/phagocytes upon their engulfment of apoptotic cells are important for a return to tissue homeostasis. Here, we will discuss, how efferocytosis mechanisms in hepatic macrophages/phagocytes may regulate tissue homeostasis and be involved in tissue regeneration in liver disease.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Diehl
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Irvine KM, Ratnasekera I, Powell EE, Hume DA. Causes and Consequences of Innate Immune Dysfunction in Cirrhosis. Front Immunol 2019; 10:293. [PMID: 30873165 PMCID: PMC6401613 DOI: 10.3389/fimmu.2019.00293] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Liver cirrhosis is an increasing health burden and public health concern. Regardless of etiology, patients with cirrhosis are at risk of a range of life-threatening complications, including the development of infections, which are associated with high morbidity and mortality and frequent hospital admissions. The term Cirrhosis-Associated Immune Dysfunction (CAID) refers to a dynamic spectrum of immunological perturbations that develop in patients with cirrhosis, which are intimately linked to the underlying liver disease, and negatively correlated with prognosis. At the two extremes of the CAID spectrum are systemic inflammation, which can exacerbate clinical manifestations of cirrhosis such as hemodynamic derangement and kidney injury; and immunodeficiency, which contributes to the high rate of infection in patients with decompensated cirrhosis. Innate immune cells, in particular monocytes/macrophages and neutrophils, are pivotal effector and target cells in CAID. This review focuses on the pathophysiological mechanisms leading to impaired innate immune function in cirrhosis. Knowledge of the phenotypic manifestation and pathophysiological mechanisms of cirrhosis associated immunosuppression may lead to immune targeted therapies to reduce susceptibility to infection in patients with cirrhosis, and better biomarkers for risk stratification, and assessment of efficacy of novel immunotherapies.
Collapse
Affiliation(s)
- Katharine Margaret Irvine
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Isanka Ratnasekera
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth E. Powell
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David Arthur Hume
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Wang X, Ribeiro M, Iracheta-Vellve A, Lowe P, Ambade A, Satishchandran A, Bukong T, Catalano D, Kodys K, Szabo G. Macrophage-Specific Hypoxia-Inducible Factor-1α Contributes to Impaired Autophagic Flux in Nonalcoholic Steatohepatitis. Hepatology 2019; 69:545-563. [PMID: 30102772 PMCID: PMC6351177 DOI: 10.1002/hep.30215] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
Inflammatory cell activation drives diverse cellular programming during hepatic diseases. Hypoxia-inducible factors (HIFs) have recently been identified as important regulators of immunity and inflammation. In nonalcoholic steatohepatitis (NASH), HIF-1α is upregulated in hepatocytes, where it induces steatosis; however, the role of HIF-1α in macrophages under metabolic stress has not been explored. In this study, we found increased HIF-1α levels in hepatic macrophages in methionine-choline-deficient (MCD) diet-fed mice and in macrophages of patients with NASH compared with controls. The HIF-1α increase was concomitant with elevated levels of autophagy markers BNIP3, Beclin-1, LC3-II, and p62 in both mouse and human macrophages. LysMCre HIFdPA fl/fl mice, which have HIF-1α levels stabilized in macrophages, showed higher steatosis and liver inflammation compared with HIFdPA fl/fl mice on MCD diet. In vitro and ex vivo experiments reveal that saturated fatty acid, palmitic acid (PA), both induces HIF-1α and impairs autophagic flux in macrophages. Using small interfering RNA-mediated knock-down and overexpression of HIF-1α in macrophages, we demonstrated that PA impairs autophagy via HIF-1α. We found that HIF-1α mediates NF-κB activation and MCP-1 production and that HIF-1α-mediated impairment of macrophage autophagy increases IL-1β production, contributing to MCD diet-induced NASH. Conclusion: Palmitic acid impairs autophagy via HIF-1α activation in macrophages. HIF-1α and impaired autophagy are present in NASH in vivo in mouse macrophages and in human blood monocytes. We identified that HIF-1α activation and decreased autophagic flux stimulate inflammation in macrophages through upregulation of NF-κB activation. These results suggest that macrophage activation in NASH involves a complex interplay between HIF-1α and autophagy as these pathways promote proinflammatory overactivation in MCD diet-induced NASH.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marcelle Ribeiro
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Terence Bukong
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
30
|
Xu L, Hu C, Hu H, Dai X, Gao H, Guo Y, Huang Y, Yang Z, Tao R, Zhu B, Xu Y. Importance of fibrosis 4 index score and mode of anti-fungal treatment to the outcome of Cryptococcal meningitis in hepatitis B virus-infected patients. Infect Dis (Lond) 2019; 51:113-121. [PMID: 30676149 DOI: 10.1080/23744235.2018.1523553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) and the associated cirrhosis are risk factors for cryptococcal meningitis (CM). However, the clinical features of co-infection with HBV and CM are unclear. METHODS Seventy-nine HBV-infected CM patients and 79 HBV-uninfected CM patients were enrolled in a case-control matching study from 476 CM patients. Fibrosis 4 index (FIB4) was used for assessment of HBV-related fibrosis/cirrhosis. Demographic characteristics, symptoms, routine blood tests, liver function and cerebrospinal fluid (CSF) profiles were compared between the two groups. Kaplan-Meier analysis and Cox proportional hazards model were used to assess factors associated with 10-week mortality. RESULTS Male gender was associated with HBV-infected CM patients (p = .006). CM patients with HBV experienced similar frequencies of symptoms but had lower white blood cell (WBC) (p < .001), platelet (p < .001) and albumin (p = .012), and increased aspartate amino transaminase (AST) (p = .009) and total bilirubin (TBIL) levels (p < .001). Patients with and without HBV infection had similar 10-week cumulative survival rates (85.9 ± 4.2% vs. 78.6 ± 5.4%, p = .569). The hazard ratio was 3.7 times higher for those with FIB4 ≥ 3.25 (p = .020) and 4.5 times higher for those with HBV infection not treated with Amphotericin B + flucytosine ± fluconazole (p = .023). CONCLUSION HBV-infected CM population experience lower WBC, platelet and albumin, and higher AST and TBIL. Ten-week survival rate was similar between HBV-infected and HBV-uninfected CM patients. CM patients with high FIB4 or not treated with Amphotericin B + flucytosine ± fluconazole are at a higher risk of death.
Collapse
Affiliation(s)
- Lijun Xu
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Caiqin Hu
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Hangbin Hu
- c Burn unit , Jinhua municipal Central hospital , Jinhua , China
| | - Xiahong Dai
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,d Department of infectious diseases , Shulan hospital , Hangzhou , China
| | - Hainv Gao
- d Department of infectious diseases , Shulan hospital , Hangzhou , China
| | - Yongzheng Guo
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Ying Huang
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Zongxing Yang
- e Department of HIV/AIDS , Xixi Hospital of Hangzhou , Hangzhou , China
| | - Ran Tao
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Biao Zhu
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Yan Xu
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
31
|
Connolly JJ, Ooka K, Lim JK. Future Pharmacotherapy for Non-alcoholic Steatohepatitis (NASH): Review of Phase 2 and 3 Trials. J Clin Transl Hepatol 2018; 6:264-275. [PMID: 30271738 PMCID: PMC6160309 DOI: 10.14218/jcth.2017.00056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/16/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) results from inflammation and hepatocyte injury in the setting of hepatic steatosis. Non-alcoholic steatohepatitis increases the risk of progression to liver fibrosis and cirrhosis, and is the most rapidly growing etiology for liver failure and indication for liver transplantation in the USA. Weight loss and lifestyle modification remain the standard first-line treatment, as no USA Food and Drug Administration-approved pharmacotherapy currently exists. The past decade has seen an explosion of interest in drug development targeting pathologic pathways in non-alcoholic steatohepatitis, with numerous phase 2 and 3 trials currently in progress. Here, we concisely review the major targets and mechanisms of action by class, summarize results from completed pivotal phase 2 studies, and provide a detailed outline of key active studies with trial data for drugs in development, including obeticholic acid, elafibranor, cenicriviroc and selonsertib.
Collapse
Affiliation(s)
- James J. Connolly
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kohtaro Ooka
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joseph K. Lim
- Yale Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence to: Joseph K. Lim, Yale Liver Center, Section of Digestive Diseases, Yale University School of Medicine, 333 Cedar Street, LMP 1080, New Haven, CT 06520-8019, USA. Tel: +1-203-737-6063, Fax: +1-203-785-7273, E-mail:
| |
Collapse
|
32
|
Shirk EN, Kral BG, Gama L. Toll-like receptor 2 bright cells identify circulating monocytes in human and non-human primates. Cytometry A 2017; 91:364-371. [PMID: 28323396 PMCID: PMC5516202 DOI: 10.1002/cyto.a.23098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polychromatic flow cytometry is a useful tool for monitoring circulating whole blood monocytes, although gating strategies often vary depending on the study. Increased analyses of the myeloid system have revealed monocytes to be more plastic than previously understood and uncovered changes among surface markers previously considered to be stable. The myeloid system has also been found to have disparate surface markers between mouse, human, and non‐human primate studies, which further complicates examination between species. This study has found bright Toll‐like receptor 2 (TLR2) expression to be a consistent surface marker of circulating whole blood monocytes in humans and two species of macaques. Furthermore, within our pigtailed macaque model of HIV‐associated CNS disease, where monocyte surface markers have previously been shown to reorganize during acute infection, TLR2 remains stably expressed on the surface of classical, intermediate, and non‐classical monocytes. Our findings demonstrate that TLR2 is a useful surface marker for including all monocytes during other phenotypic changes that may alter the expression of common surface receptors. These results provide a practical tool for studying all types of monocytes during inflammation and infection within humans and macaques. © 2017 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Brian G Kral
- Division of General Internal Medicine, Department of Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore, Maryland.,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Shigefuku R, Takahashi H, Nakano H, Watanabe T, Matsunaga K, Matsumoto N, Kato M, Morita R, Michikawa Y, Tamura T, Hiraishi T, Hattori N, Noguchi Y, Nakahara K, Ikeda H, Ishii T, Okuse C, Sase S, Itoh F, Suzuki M. Correlations of Hepatic Hemodynamics, Liver Function, and Fibrosis Markers in Nonalcoholic Fatty Liver Disease: Comparison with Chronic Hepatitis Related to Hepatitis C Virus. Int J Mol Sci 2016; 17:E1545. [PMID: 27649152 PMCID: PMC5037819 DOI: 10.3390/ijms17091545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
Abstract
The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully.
Collapse
Affiliation(s)
- Ryuta Shigefuku
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Hideaki Takahashi
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
- Division of Gastroenterology, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Kanagawa, Yokohama 241-0811, Japan.
| | - Hiroyasu Nakano
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Tsunamasa Watanabe
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Kotaro Matsunaga
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Nobuyuki Matsumoto
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Masaki Kato
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Ryo Morita
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Yousuke Michikawa
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Tomohiro Tamura
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
- Division of Gastroenterology, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Kanagawa, Yokohama 241-0811, Japan.
| | - Tetsuya Hiraishi
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kawasaki Municipal Tama Hospital, Kanagawa, Kawasaki 214-8525, Japan.
| | - Nobuhiro Hattori
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Yohei Noguchi
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
- Division of Gastroenterology, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Kanagawa, Yokohama 241-0811, Japan.
| | - Kazunari Nakahara
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Hiroki Ikeda
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Toshiya Ishii
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kawasaki Municipal Tama Hospital, Kanagawa, Kawasaki 214-8525, Japan.
| | - Chiaki Okuse
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kawasaki Municipal Tama Hospital, Kanagawa, Kawasaki 214-8525, Japan.
| | - Shigeru Sase
- Anzai Medical Company, Ltd., Tokyo 141-0033, Japan.
| | - Fumio Itoh
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
| | - Michihiro Suzuki
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kanagawa, Kawasaki 216-8511, Japan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kawasaki Municipal Tama Hospital, Kanagawa, Kawasaki 214-8525, Japan.
| |
Collapse
|