1
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Kurtova AI, Finoshin AD, Aparina MS, Gazizova GR, Kozlova OS, Voronova SN, Shagimardanova EI, Ivashkin EG, Voronezhskaya EE. Expanded expression of pro-neurogenic factor SoxB1 during larval development of gastropod Lymnaea stagnalis suggests preadaptation to prolonged neurogenesis in Mollusca. Front Neurosci 2024; 18:1346610. [PMID: 38638695 PMCID: PMC11024475 DOI: 10.3389/fnins.2024.1346610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction The remarkable diversity observed in the structure and development of the molluscan nervous system raises intriguing questions regarding the molecular mechanisms underlying neurogenesis in Mollusca. The expression of SoxB family transcription factors plays a pivotal role in neuronal development, thereby offering valuable insights into the strategies of neurogenesis. Methods In this study, we conducted gene expression analysis focusing on SoxB-family transcription factors during early neurogenesis in the gastropod Lymnaea stagnalis. We employed a combination of hybridization chain reaction in situ hybridization (HCR-ISH), immunocytochemistry, confocal microscopy, and cell proliferation assays to investigate the spatial and temporal expression patterns of LsSoxB1 and LsSoxB2 from the gastrula stage to hatching, with particular attention to the formation of central ring ganglia. Results Our investigation reveals that LsSoxB1 demonstrates expanded ectodermal expression from the gastrula to the hatching stage, whereas expression of LsSoxB2 in the ectoderm ceases by the veliger stage. LsSoxB1 is expressed in the ectoderm of the head, foot, and visceral complex, as well as in forming ganglia and sensory cells. Conversely, LsSoxB2 is mostly restricted to the subepithelial layer and forming ganglia cells during metamorphosis. Proliferation assays indicate a uniform distribution of dividing cells in the ectoderm across all developmental stages, suggesting the absence of distinct neurogenic zones with increased proliferation in gastropods. Discussion Our findings reveal a spatially and temporally extended pattern of SoxB1 expression in a gastropod representative compared to other lophotrochozoan species. This prolonged and widespread expression of SoxB genes may be interpreted as a form of transcriptional neoteny, representing a preadaptation to prolonged neurogenesis. Consequently, it could contribute to the diversification of nervous systems in gastropods and lead to an increase in the complexity of the central nervous system in Mollusca.
Collapse
Affiliation(s)
- Anastasia I. Kurtova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander D. Finoshin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Margarita S. Aparina
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Guzel R. Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Olga S. Kozlova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana N. Voronova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies Center “LIFT”, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny G. Ivashkin
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
3
|
Imperadore P, Cagnin S, Allegretti V, Millino C, Raffini F, Fiorito G, Ponte G. Transcriptome-wide selection and validation of a solid set of reference genes for gene expression studies in the cephalopod mollusk Octopus vulgaris. Front Mol Neurosci 2023; 16:1091305. [PMID: 37266373 PMCID: PMC10230085 DOI: 10.3389/fnmol.2023.1091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 06/03/2023] Open
Abstract
Octopus vulgaris is a cephalopod mollusk and an active marine predator that has been at the center of a number of studies focused on the understanding of neural and biological plasticity. Studies on the machinery involved in e.g., learning and memory, regeneration, and neuromodulation are required to shed light on the conserved and/or unique mechanisms that these animals have evolved. Analysis of gene expression is one of the most essential means to expand our understanding of biological machinery, and the selection of an appropriate set of reference genes is the prerequisite for the quantitative real-time polymerase chain reaction (qRT-PCR). Here we selected 77 candidate reference genes (RGs) from a pool of stable and relatively high-expressed transcripts identified from the full-length transcriptome of O. vulgaris, and we evaluated their expression stabilities in different tissues through geNorm, NormFinder, Bestkeeper, Delta-CT method, and RefFinder. Although various algorithms provided different assemblages of the most stable reference genes for the different kinds of tissues tested here, a comprehensive ranking revealed RGs specific to the nervous system (Ov-RNF7 and Ov-RIOK2) and Ov-EIF2A and Ov-CUL1 across all considered tissues. Furthermore, we validated RGs by assessing the expression profiles of nine target genes (Ov-Naa15, Ov-Ltv1, Ov-CG9286, Ov-EIF3M, Ov-NOB1, Ov-CSDE1, Ov-Abi2, Ov-Homer2, and Ov-Snx20) in different areas of the octopus nervous system (gastric ganglion, as control). Our study allowed us to identify the most extensive set of stable reference genes currently available for the nervous system and appendages of adult O. vulgaris.
Collapse
Affiliation(s)
- Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy
- CIR-Myo Myology Center, University of Padova, Padova, Italy
| | - Vittoria Allegretti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | - Francesca Raffini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
4
|
Duruz J, Sprecher M, Kaldun JC, Al-Soudy AS, Lischer HEL, van Geest G, Nicholson P, Bruggmann R, Sprecher SG. Molecular characterization of cell types in the squid Loligo vulgaris. eLife 2023; 12:80670. [PMID: 36594460 PMCID: PMC9839350 DOI: 10.7554/elife.80670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Cephalopods are set apart from other mollusks by their advanced behavioral abilities and the complexity of their nervous systems. Because of the great evolutionary distance that separates vertebrates from cephalopods, it is evident that higher cognitive features have evolved separately in these clades despite the similarities that they share. Alongside their complex behavioral abilities, cephalopods have evolved specialized cells and tissues, such as the chromatophores for camouflage or suckers to grasp prey. Despite significant progress in genome and transcriptome sequencing, the molecular identities of cell types in cephalopods remain largely unknown. We here combine single-cell transcriptomics with in situ gene expression analysis to uncover cell type diversity in the European squid Loligo vulgaris. We describe cell types that are conserved with other phyla such as neurons, muscles, or connective tissues but also cephalopod-specific cells, such as chromatophores or sucker cells. Moreover, we investigate major components of the squid nervous system including progenitor and developing cells, differentiated cells of the brain and optic lobes, as well as sensory systems of the head. Our study provides a molecular assessment for conserved and novel cell types in cephalopods and a framework for mapping the nervous system of L. vulgaris.
Collapse
Affiliation(s)
- Jules Duruz
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| | - Marta Sprecher
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| | - Jenifer C Kaldun
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| | - Al-Sayed Al-Soudy
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| | - Heidi EL Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of BernBernSwitzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of BernBernSwitzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of BernBernSwitzerland
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of FribourgFribourgSwitzerland
| |
Collapse
|
5
|
Styfhals R, Zolotarov G, Hulselmans G, Spanier KI, Poovathingal S, Elagoz AM, De Winter S, Deryckere A, Rajewsky N, Ponte G, Fiorito G, Aerts S, Seuntjens E. Cell type diversity in a developing octopus brain. Nat Commun 2022; 13:7392. [PMID: 36450803 PMCID: PMC9712504 DOI: 10.1038/s41467-022-35198-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Octopuses are mollusks that have evolved intricate neural systems comparable with vertebrates in terms of cell number, complexity and size. The brain cell types that control their sophisticated behavioral repertoire are still unknown. Here, we profile the cell diversity of the paralarval Octopus vulgaris brain to build a cell type atlas that comprises mostly neural cells, but also multiple glial subtypes, endothelial cells and fibroblasts. We spatially map cell types to the vertical, subesophageal and optic lobes. Investigation of cell type conservation reveals a shared gene signature between glial cells of mouse, fly and octopus. Genes related to learning and memory are enriched in vertical lobe cells, which show molecular similarities with Kenyon cells in Drosophila. We construct a cell type taxonomy revealing transcriptionally related cell types, which tend to appear in the same brain region. Together, our data sheds light on cell type diversity and evolution in the octopus brain.
Collapse
Affiliation(s)
- Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Grygoriy Zolotarov
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Gert Hulselmans
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Katina I Spanier
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | | | - Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Seppe De Winter
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biological Sciences, Columbia University, New York, US
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stein Aerts
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Lukeneder P, Lukeneder A. Mineralized belemnoid cephalic cartilage from the late Triassic Polzberg Konservat-Lagerstätte (Austria). PLoS One 2022; 17:e0264595. [PMID: 35442996 PMCID: PMC9020720 DOI: 10.1371/journal.pone.0264595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Although hyaline cartilage is widely distributed in various invertebrate groups such as sabellid polychaetes, molluscs (cephalopods, gastropods) and a chelicerate arthropod group (horseshoe crabs), the enigmatic relationship and distribution of cartilage in taxonomic groups remains to be explained. It can be interpreted as a convergent trait in animal evolution and thus does not seem to be a vertebrate invention. Due to the poor fossil record of cartilaginous structures, occurrences of mineralized fossil cartilages are important for evolutionary biology and paleontology. Although the biochemical composition of recent cephalopod cartilage differs from vertebrate cartilage, histologically the cartilages of these animal groups resemble one another remarkably. In this study we present fossil material from the late Triassic Polzberg Konservat-Lagerstätte near Lunz am See (Lower Austria, Northern Calcareous Alps). A rich Carnian fauna is preserved here, whereby a morphogroup (often associated with belemnoid remains) of black, amorphous appearing fossils still remained undetermined. These multi-elemental, symmetrical fossils show remarkable similarities to recent cartilage. We examined the conspicuous micro- and ultrastructure of these enigmatic fossils by thin-sectioning and Scanning Electron Microscopy (SEM). The geochemical composition analyzed by Microprobe and Energy Dispersive X-ray Spectroscopy (SEM-EDX) revealed carbonization as the taphonomic pathway for this fossil group. Mineralization of soft tissues permits the 3D preservation of otherwise degraded soft tissues such as cartilage. We examined eighty-one specimens from the Polzberg locality and seven specimens from Cave del Predil (formerly Raibl, Julian Alps, Italy). The study included morphological examinations of these multi-elemental fossils and a focus on noticeable structures like grooves and ridges. The detected grooves are interpreted to be muscular attachment areas, and the preserved branched system of canaliculi is comparable to a channel system that is also present in recent coleoid cartilage. The new findings on these long-known enigmatic structures strongly point to the preservation of cephalic cartilage belonging to the belemnoid Phragmoteuthis bisinuata and its homologization to the cephalic cartilage of modern coleoids.
Collapse
Affiliation(s)
- Petra Lukeneder
- University of Vienna, Doctoral School of Ecology and Evolution, Vienna, Austria
| | | |
Collapse
|
7
|
Pu Q, Ma Y, Zhong Y, Guo J, Gui L, Li M. Characterization and expression analysis of sox3 in medaka gonads. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Furukawa F, Doshimo Y, Sodeyama G, Adachi K, Mori K, Mori Y, Inadama R, Koyama M, Funayama S, Oda T, Furukawa S, Moriyama S, Kimura S, Kaneko T, Okumura SI. Hemocyte migration and expression of four Sox genes during wound healing in Pacific abalone, Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2021; 117:24-35. [PMID: 34274420 DOI: 10.1016/j.fsi.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In molluscs, migration of hemocytes and epithelial cells is believed to play central roles in wound healing. Here, we assessed cellular and molecular mechanisms of wound healing in Pacific abalone, a marine gastropod. Light and electron microscopy in the wounds showed early accumulation of putative hemocytes, collagen deposition by fibroblasts, and further coverage of this tissue by migration of adjacent epithelial cells. Cell labelling technique allowed us to track hemocytes, which migrated to wound surface within 24 h. The migrated cells first expressed PCNA and SoxF weakly, and then the epithelial cells expressed abundant PCNA and SoxB1, SoxB2, and SoxC. These findings imply that abalone SoxF is involved in hemocyte migration or their differentiation into fibroblasts, and suggest that the migrated epithelia acquire stem cell-like property and undergo active proliferation. This study is the first to show direct evidence of hemocyte migration to wounds and expression of Sox genes in molluscan wound healing.
Collapse
Affiliation(s)
- Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | - Yumi Doshimo
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Gin Sodeyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Kenta Adachi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; Takehara Station, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Takehara, Hiroshima 725-0024, Japan
| | - Kazuma Mori
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Yuichi Mori
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Ryota Inadama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Mugen Koyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Shohei Funayama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takuji Oda
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | | | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Satoshi Kimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Toyoji Kaneko
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Sei-Ichi Okumura
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
9
|
Deryckere A, Styfhals R, Elagoz AM, Maes GE, Seuntjens E. Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain. eLife 2021; 10:e69161. [PMID: 34425939 PMCID: PMC8384421 DOI: 10.7554/elife.69161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cephalopods have evolved nervous systems that parallel the complexity of mammalian brains in terms of neuronal numbers and richness in behavioral output. How the cephalopod brain develops has only been described at the morphological level, and it remains unclear where the progenitor cells are located and what molecular factors drive neurogenesis. Using histological techniques, we located dividing cells, neural progenitors and postmitotic neurons in Octopus vulgaris embryos. Our results indicate that an important pool of progenitors, expressing the conserved bHLH transcription factors achaete-scute or neurogenin, is located outside the central brain cords in the lateral lips adjacent to the eyes, suggesting that newly formed neurons migrate into the cords. Lineage-tracing experiments then showed that progenitors, depending on their location in the lateral lips, generate neurons for the different lobes, similar to the squid Doryteuthis pealeii. The finding that octopus newborn neurons migrate over long distances is reminiscent of vertebrate neurogenesis and suggests it might be a fundamental strategy for large brain development.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaplesItaly
| | - Ali Murat Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Gregory E Maes
- Center for Human Genetics, Genomics Core, UZ-KU LeuvenLeuvenBelgium
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook UniversityTownsvilleAustralia
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU LeuvenLeuvenBelgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| |
Collapse
|
10
|
Li J, Zhou Y, Zhou Z, Lin C, Wei J, Qin Y, Xiang Z, Ma H, Zhang Y, Zhang Y, Yu Z. Comparative transcriptome analysis of three gonadal development stages reveals potential genes involved in gametogenesis of the fluted giant clam (Tridacna squamosa). BMC Genomics 2020; 21:872. [PMID: 33287701 PMCID: PMC7720611 DOI: 10.1186/s12864-020-07276-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gonad development and differentiation is an essential function for all sexually reproducing species, and many aspects of these developmental processes are highly conserved among the metazoa. However, the mechanisms underlying gonad development and gametogenesis remain unclear in Tridacna squamosa, a large-size bivalve of great ecological value. They are protandrous simultaneous hermaphrodites, with the male gonad maturing first, eventually followed by the female gonads. In this study, nine gonad libraries representing resting, male and hermaphrodite stages in T. squamosa were performed to identify the molecular mechanisms. RESULTS Sixteen thousand four hundred ninety-one unigenes were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 5091 and 7328 unigenes were assigned to Gene Ontology categories and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database, respectively. A total of 4763 differentially expressed genes (DEGs) were identified by comparing male to resting gonads, consisting of 3499 which were comparatively upregulated in males and 1264 which were downregulated in males. Six hundred-ninteen DEGs between male and hermaphroditic gonads were identified, with 518 DEGs more strongly expressed in hermaphrodites and 101 more strongly expressed in males. GO (Gene Ontology) and KEGG pathway analyses revealed that various biological functions and processes, including functions related to the endocrine system, oocyte meiosis, carbon metabolism, and the cell cycle, were involved in regulating gonadal development and gametogenesis in T. squamosa. Testis-specific serine/threonine kinases 1 (TSSK1), TSSK4, TSSK5, Doublesex- and mab-3-related transcription factor 1 (DMRT1), SOX, Sperm surface protein 17 (SP17) and other genes were involved in male gonadal development in Tridacna squamosal. Both spermatogenesis- (TSSK4, spermatogenesis-associated protein 17, spermatogenesis-associated protein 8, sperm motility kinase X, SP17) and oogenesis-related genes (zona pellucida protein, Forkhead Box L2, Vitellogenin, Vitellogenin receptor, 5-hydroxytryptamine, 5-hydroxytryptamine receptor) were simultaneously highly expressed in the hermaphroditic gonad to maintain the hermaphroditism of T. squamosa. CONCLUSION All these results from our study will facilitate better understanding of the molecular mechanisms underlying giant clam gonad development and gametogenesis, which can provided a base on obtaining excellent gametes during the seed production process for giant clams.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yinyin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihua Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanxu Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jinkuan Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yanpin Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Abstract
For centuries, the eye has fascinated scientists and philosophers alike, and as a result the visual system has always been at the forefront of integrating cutting-edge technology in research. We are again at a turning point at which technical advances have expanded the range of organisms we can study developmentally and deepened what we can learn. In this new era, we are finally able to understand eye development in animals across the phylogenetic tree. In this Review, we highlight six areas in comparative visual system development that address questions that are important for understanding the developmental basis of evolutionary change. We focus on the opportunities now available to biologists to study the developmental genetics, cell biology and morphogenesis that underlie the incredible variation of visual organs found across the Metazoa. Although decades of important work focused on gene expression has suggested homologies and potential evolutionary relationships between the eyes of diverse animals, it is time for developmental biologists to move away from this reductive approach. We now have the opportunity to celebrate the differences and diversity in visual organs found across animal development, and to learn what it can teach us about the fundamental principles of biological systems and how they are built.
Collapse
Affiliation(s)
- Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Kumar S, Tumu SC, Helm C, Hausen H. The development of early pioneer neurons in the annelid Malacoceros fuliginosus. BMC Evol Biol 2020; 20:117. [PMID: 32928118 PMCID: PMC7489019 DOI: 10.1186/s12862-020-01680-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nervous system development is an interplay of many processes: the formation of individual neurons, which depends on whole-body and local patterning processes, and the coordinated growth of neurites and synapse formation. While knowledge of neural patterning in several animal groups is increasing, data on pioneer neurons that create the early axonal scaffold are scarce. Here we studied the first steps of nervous system development in the annelid Malacoceros fuliginosus. RESULTS We performed a dense expression profiling of a broad set of neural genes. We found that SoxB expression begins at 4 h postfertilization, and shortly later, the neuronal progenitors can be identified at the anterior and the posterior pole by the transient and dynamic expression of proneural genes. At 9 hpf, the first neuronal cells start differentiating, and we provide a detailed description of axonal outgrowth of the pioneer neurons that create the primary neuronal scaffold. Tracing back the clonal origin of the ventral nerve cord pioneer neuron revealed that it is a descendant of the blastomere 2d (2d221), which after 7 cleavages starts expressing Neurogenin, Acheate-Scute and NeuroD. CONCLUSIONS We propose that an anterior and posterior origin of the nervous system is ancestral in annelids. We suggest that closer examination of the first pioneer neurons will be valuable in better understanding of nervous system development in spirally cleaving animals, to determine the potential role of cell-intrinsic properties in neuronal specification and to resolve the evolution of nervous systems.
Collapse
Affiliation(s)
- Suman Kumar
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sharat Chandra Tumu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Conrad Helm
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.,Present Address: Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Xia X, Guan C, Chen J, Qiu M, Qi J, Wei M, Wang X, Zhang K, Lu S, Zhang L, Hua C, Xue S, Yao L. Molecular characterization of AwSox2 from bivalve Anodonta woodiana: Elucidating its player in the immune response. Innate Immun 2020; 26:381-397. [PMID: 31889462 PMCID: PMC7903536 DOI: 10.1177/1753425919897823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Sox2 is an embryonal stem cell Ag essential for early embryonic development, tissue homeostasis and immune regulation. In the current study, one complete Sox2 cDNA sequence was cloned from freshwater bivalve Anodonta woodiana and named AwSox2. Histological changes of testis derived from Bisphenol A (BPA) treatment were analyzed by hematoxylin and eosin staining. Expressions of AwSox2 derived from BPA, LPS and polyinosinic:polycytidylic (Poly I:C) challenge were measured by quantitative real-time PCR. The full-length cDNA of AwSox2 contained an open reading frame of 927 nucleotides bearing the typical structural features of Sox2 family. Obvious degeneration, irregular arrangement of spermatids, and clotted dead and intertwined spermatids were observed in BPA-treated groups. Administration of BPA could result in a dose-dependent up-regulation of AwSox2 expression in the male gonadal tissue of A. woodiana. In addition, expression of AwSox2 was significantly induced by LPS and Poly I:C treatment in the hepatopancreas, gill and hemocytes, compared with that of control group. These results indicated that up-regulations of AwSOx2 are closely related to apoptosis of spermatogonial stem cells derived from BPA treatment as well as enhancement of immune defense against LPS and Poly I:C challenge in A. woodiana.
Collapse
Affiliation(s)
- Xichao Xia
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| | - Cuiui Guan
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| | - Jiawei Chen
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Maolin Qiu
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Jinxu Qi
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Mengwei Wei
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Xiaowei Wang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Ke Zhang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Suxiang Lu
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Linguo Zhang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Chunxiu Hua
- Basic Medicine College of Nanyang Medical University, Nanyang,
Henan Province, China
| | - Shipeng Xue
- Basic Medicine College of Nanyang Medical University, Nanyang,
Henan Province, China
| | - Lunguang Yao
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| |
Collapse
|
14
|
Hu Y, Jin S, Fu H, Qiao H, Zhang W, Jiang S, Gong Y, Xiong Y, Wu Y. Functional analysis of a SoxE gene in the oriental freshwater prawn, Macrobrachium nipponense by molecular cloning, expression pattern analysis, and in situ hybridization (de Haan, 1849). 3 Biotech 2020; 10:10. [PMID: 31857938 PMCID: PMC6892990 DOI: 10.1007/s13205-019-1996-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/24/2019] [Indexed: 10/25/2022] Open
Abstract
In this study, a full-length cDNA sequence of SoxE (subgroup E within the Sox family of transcription factors) was cloned from Macrobrachium nipponense and named MnSoxE1. The full-length cDNA of MnSoxE1 is 1748 bp, consisting of a 110 bp 5' UTR, a 105 bp 3' UTR, and a 1533 bp ORF that encodes 510 amino acids. Conserved domains showed that MnSoxE1 has a high similarity to the SoxE gene of Penaeus vannamei. Phylogenetic tree analysis classified that MnSoxE1 with the SoxE gene of other arthropods into one clade. These results suggested that MnSoxE1 belongs to the SoxE subgroup. During embryonic development, MnSoxE1 was mainly expressed in the gastrula stage, implicating its involvement in tissue cell differentiation and formation. In the post-larval stages, the expression of MnSoxE1 continued to increase on days 1-10. The expression level in males was significantly higher than that in females. Males are clearly distinguishable from females on post-larval day 25, showing that MnSoxE1 may play a role in promoting early development and germ cell and gonadal differentiation, especially for males. qPCR analysis showed that MnSoxE1 may also be involved in oogonium proliferation during ovary development. Further in situ hybridization analysis revealed that MnSoxE1 was mainly located in oocytes and spermatocytes, especially in sertoli cells, and implies that it may be involved in the development of oocytes and spermatocytes, as well as the maintenance of testes in mature prawns. These results indicate that MnSoxE1 is involved in gonadal differentiation and development in M. nipponense, especially testis development.
Collapse
Affiliation(s)
- Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 People’s Republic of China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 People’s Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| |
Collapse
|
15
|
Zhu C, Zhang L, Ding H, Pan Z. Transcriptome-wide identification and characterization of the Sox gene family and microsatellites for Corbicula fluminea. PeerJ 2019; 7:e7770. [PMID: 31660260 PMCID: PMC6814067 DOI: 10.7717/peerj.7770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
The Asian clam, Corbicula fluminea, is a commonly consumed small freshwater bivalve in East Asia. However, available genetic information of this clam is still limited. In this study, the transcriptome of female C. fluminea was sequenced using the Illumina HiSeq 2500 platform. A total of 89,563 unigenes were assembled with an average length of 859 bp, and 36.7% of them were successfully annotated. Six members of Sox gene family namely SoxB1, SoxB2, SoxC, SoxD, SoxE and SoxF were identified. Based on these genes, the divergence time of C. fluminea was estimated to be around 476 million years ago. Furthermore, a total of 3,117 microsatellites were detected with a distribution density of 1:12,960 bp. Fifty of these microsatellites were randomly selected for validation, and 45 of them were successfully amplified with 31 polymorphic ones. The data obtained in this study will provide useful information for future genetic and genomic studies in C. fluminea.
Collapse
Affiliation(s)
- Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Lei Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.,Key Laboratory of Fishery Sustainable Development and Water Environment Protection of Huai'an City, Huai'an Sub Center of the Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China
| | - Huaiyu Ding
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Zhengjun Pan
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| |
Collapse
|
16
|
Callaghan NI, Capaz JC, Lamarre SG, Bourloutski É, Oliveira AR, MacCormack TJ, Driedzic WR, Sykes AV. Reversion to developmental pathways underlies rapid arm regeneration in juvenile European cuttlefish, Sepia officinalis (Linnaeus 1758). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:113-120. [PMID: 30888729 DOI: 10.1002/jez.b.22849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/18/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023]
Abstract
Coleoid cephalopods, including the European cuttlefish (Sepia officinalis), possess the remarkable ability to fully regenerate an amputated arm with no apparent fibrosis or loss of function. In model organisms, regeneration usually occurs as the induction of proliferation in differentiated cells. In rare circumstances, regeneration can be the product of naïve progenitor cells proliferating and differentiating de novo . In any instance, the immune system is an important factor in the induction of the regenerative response. Although the wound response is well-characterized, little is known about the physiological pathways utilized by cuttlefish to reconstruct a lost arm. In this study, the regenerating arms of juvenile cuttlefish, with or without exposure at the time of injury to sterile bacterial lipopolysaccharide extract to provoke an antipathogenic immune response, were assessed for the transcription of early tissue lineage developmental genes, as well as histological and protein turnover analyses of the resulting regenerative process. The transient upregulation of tissue-specific developmental genes and histological characterization indicated that coleoid arm regeneration is a stepwise process with staged specification of tissues formed de novo, with immune activation potentially affecting the timing but not the result of this process. Together, the data suggest that rather than inducing proliferation of mature cells, developmental pathways are reinstated, and that a pool of naïve progenitors at the blastema site forms the basis for this regeneration.
Collapse
Affiliation(s)
- Neal I Callaghan
- Institute of Biomaterials and Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Juan C Capaz
- CCMAR - Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Simon G Lamarre
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | | | - Ana R Oliveira
- CCMAR - Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - William R Driedzic
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Antonio V Sykes
- CCMAR - Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
17
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of Sox4 in Misgurnus anguillicaudatus. J Genet 2018; 97:869-877. [PMID: 30262698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sox4, a member of the SoxC subfamily which of the Sox family, plays important roles in the development of the vertebrate gonad and nervous system. We have cloned a Sox4 homologue fromthe brain of Misgurnus anguillicaudatus using homologous cloning and rapid amplification of cDNA ends. We named the cloned gene as MaSox4. The full-length cDNA was 2122 bp, containing a 718 bp 5'-untranslated region and a 267 bp 3'-untranslated region. The open-reading frame of the cloned gene encoded 378 amino acids and contained a characteristic HMG-box DNA-binding domain with the specific motif (RPMNAFMVW). Phylogenetic analysis indicated that MaSox4 is highly homologous to Sox4 in different species. Protein sequence analysis showed that MaSox4 is a nonsecretory hydrophilic protein. Quantitative real-time reverse transcription polymerase chain reaction and in situ hybridization assay revealed that MaSox4 was ubiquitously expressed during embryogenesis and is present in various adult tissues, especially in the central nervous system. Our study suggests that MaSox4 is highly conserved among vertebrates' evolution and might be involved in developmental processes such as embryogenesis, neurogenesis and gonad development.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
18
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of
$$\varvec{Sox}$$
Sox
4 in Misgurnus anguillicaudatus. J Genet 2018. [DOI: 10.1007/s12041-018-0972-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Shigeno S, Andrews PLR, Ponte G, Fiorito G. Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison With Vertebrates. Front Physiol 2018; 9:952. [PMID: 30079030 PMCID: PMC6062618 DOI: 10.3389/fphys.2018.00952] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Cephalopod and vertebrate neural-systems are often highlighted as a traditional example of convergent evolution. Their large brains, relative to body size, and complexity of sensory-motor systems and behavioral repertoires offer opportunities for comparative analysis. Despite various attempts, questions on how cephalopod 'brains' evolved and to what extent it is possible to identify a vertebrate-equivalence, assuming it exists, remain unanswered. Here, we summarize recent molecular, anatomical and developmental data to explore certain features in the neural organization of cephalopods and vertebrates to investigate to what extent an evolutionary convergence is likely. Furthermore, and based on whole body and brain axes as defined in early-stage embryos using the expression patterns of homeodomain-containing transcription factors and axonal tractography, we describe a critical analysis of cephalopod neural systems showing similarities to the cerebral cortex, thalamus, basal ganglia, midbrain, cerebellum, hypothalamus, brain stem, and spinal cord of vertebrates. Our overall aim is to promote and facilitate further, hypothesis-driven, studies of cephalopod neural systems evolution.
Collapse
Affiliation(s)
- Shuichi Shigeno
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- Division of Biomedical Sciences, St. George’s University of London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
20
|
Janssen R, Andersson E, Betnér E, Bijl S, Fowler W, Höök L, Leyhr J, Mannelqvist A, Panara V, Smith K, Tiemann S. Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into nervous system development, segmentation and gonadogenesis. BMC Evol Biol 2018; 18:88. [PMID: 29884143 PMCID: PMC5994082 DOI: 10.1186/s12862-018-1196-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/18/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sox (Sry-related high-mobility-group box) genes represent important factors in animal development. Relatively little, however, is known about the embryonic expression patterns and thus possible function(s) of Sox genes during ontogenesis in panarthropods (Arthropoda+Tardigrada+Onychophora). To date, studies have been restricted exclusively to higher insects, including the model system Drosophila melanogaster, with no comprehensive data available for any other arthropod group, or any tardigrade or onychophoran. RESULTS This study provides a phylogenetic analysis of panarthropod Sox genes and presents the first comprehensive analysis of embryonic expression patterns in the flour beetle Tribolium castaneum (Hexapoda), the pill millipede Glomeris marginata (Myriapoda), and the velvet worm, Euperipatoides kanangrensis (Onychophora). 24 Sox genes were identified and investigated: 7 in Euperipatoides, 8 in Glomeris, and 9 in Tribolium. Each species possesses at least one ortholog of each of the five expected Sox gene families, B, C, D, E, and F, many of which are differentially expressed during ontogenesis. CONCLUSION Sox gene expression (and potentially function) is highly conserved in arthropods and their closest relatives, the onychophorans. Sox B, C and D class genes appear to be crucial for nervous system development, while the Sox B genes Dichaete (D) and Sox21b likely play an additional conserved role in panarthropod segmentation. The Sox B gene Sox21a likely has a conserved function in foregut and Malpighian tubule development, at least in Hexapoda. The data further suggest that Sox D and E genes are involved in mesoderm differentiation, and that Sox E genes are involved in gonadal development. The new data expand our knowledge about the expression and implied function of Sox genes to Mandibulata (Myriapoda+Pancrustacea) and Panarthropoda (Arthropoda+Onychophora).
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Emil Andersson
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Ellinor Betnér
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sifra Bijl
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Will Fowler
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Lars Höök
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Jake Leyhr
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Alexander Mannelqvist
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Virginia Panara
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Kate Smith
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sydney Tiemann
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
21
|
Xia X, Huo W, Wan R, Wang P, Zhang L, Chang Z. Molecular cloning, characterization, and expression profiles of the
Sox3
gene in Chinese loach
Paramisgurnus dabryanus. Evol Dev 2018; 20:108-118. [DOI: 10.1111/ede.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohua Xia
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Weiran Huo
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Ruyan Wan
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Peijin Wang
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Linxia Zhang
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Zhongjie Chang
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| |
Collapse
|
22
|
Yu J, Zhang L, Li Y, Li R, Zhang M, Li W, Xie X, Wang S, Hu X, Bao Z. Genome-wide identification and expression profiling of the SOX gene family in a bivalve mollusc Patinopecten yessoensis. Gene 2017; 627:530-537. [PMID: 28694209 DOI: 10.1016/j.gene.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/13/2017] [Accepted: 07/06/2017] [Indexed: 11/19/2022]
Abstract
SOX family is composed of transcription factors that play vital roles in various developmental processes. Comprehensive understanding on evolution of the SOX family requires full characterization of SOX genes in different phyla. Mollusca is the second largest metazoan phylum, but till now, systematic investigation on the SOX family is still lacking in this phylum. In this study, we conducted genome-wide identification of the SOX family in Yesso scallop Patinopecten yessoensis and profiled their tissue distribution and temporal expression patterns in the ovaries and testes during gametogenesis. Seven SOX genes were identified, including SOXB1, B2, C, D, E, F and H, representing the first record in protostomes with SOX members identical to that proposed to exist in the last common ancestor of chordates. Genomic structure analysis identified relatively conserved exon-intron structures, accompanied by intron insertion. Quantitative real-time PCR analysis revealed possible involvement of scallop SOX in various functions, including neuro-sensory cell differentiation, hematopoiesis, myogenesis and gametogenesis. This study represents the first systematic characterization of SOX gene family in Mollusca. It will assist in a better understanding of the evolution and function of SOX family in metazoans.
Collapse
Affiliation(s)
- Jiachen Yu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Yangping Li
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Ruojiao Li
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Meiwei Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Wanru Li
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Xinran Xie
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
23
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of Sox4 in Paramisgurnus dabryanus. Gene Expr Patterns 2017. [PMID: 28629960 DOI: 10.1016/j.gep.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sox4 belonged to the SoxC subfamily of the Sox family, which play important roles in the development of the vertebrate gonad and nervous system. A Sox4 homologue was cloned from brain of Paramisgurnus dabryanus by using homologous cloning and rapid amplification of cDNA ends (RACE), designated as PdSox4. The full-length cDNA was 2163bp, containing the 759bp 5'-untranslated region, 267bp 3'-untranslated region and encoding a putative protein of 378 amino acids with a characteristic high mobility group box (HMG-box) DNA-binding domain of 79 amino acids with the specific motif (RPMNAFMVW). Alignment and phylogenetic analyses indicated that PdSox4 shares highly identical sequence with Sox4 homologues from different species. The signal peptide analysis predicted that PdSox4 is a non-secretory protein. The hydropathy profile of PdSox4 protein revealed that this protein is hydrophilic in nature. The expression profiles of PdSox4 in different developmental stages and various adult tissues of sexs were analyzed by quantitative real-time RT-PCR (qRT-PCR) and In situ hybridization (ISH). The results showed that PdSox4 was ubiquitously expressed during embryogenesis and various adult tissues, especially in central nervous system. Tissue distribution analyses revealed that PdSox4 was expression in developing germ cells. Taken together, these preliminary findings suggested that PdSox4 is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis, neurogenesis and gonad development.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Linxia Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Xiaopei Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|