1
|
Yan L, Jiao B, Duan P, Guo G, Zhang B, Jiao W, Zhang H, Wu H, Zhang L, Liang H, Xu J, Huang X, Wang Y, Zhou Y, Li Y. Control of grain size and weight by the RNA-binding protein EOG1 in rice and wheat. Cell Rep 2024; 43:114856. [PMID: 39427319 DOI: 10.1016/j.celrep.2024.114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/24/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Grain size is one of the important yield traits in crops. Understanding the molecular and genetic mechanisms of grain-size control is important for yield improvement. Here, we report that the enhancer of GS2AA (EOG1) encodes an RNA-binding protein, which can bind mRNAs of several grain-size genes and influence their abundance. The eog1-1 mutant produces large and heavy grains by promoting cell proliferation in the spikelet hull. OsGSK3 physically interacts with and phosphorylates EOG1, thereby influencing the stability of EOG1. Genetic analyses support that EOG1 and OsGSK3 share overlapped function in grain size and weight control but does so independently of GS2. Notably, genome editing of wheat homologs TaEOG1A/B/D causes large and heavy grains. Thus, our findings identify a genetic and molecular mechanism whereby the OsGSK3-EOG1 module regulates grain size and weight in rice, suggesting that this pathway has the potential for grain-size improvement in key crops.
Collapse
Affiliation(s)
- Li Yan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bingyang Jiao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Penggen Duan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Baolan Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjie Jiao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huilan Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Jinsong Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
2
|
Tang L, Li G, Wang H, Zhao J, Li Z, Liu X, Shu Y, Liu W, Wang S, Huang J, Ying J, Tong X, Yuan W, Wei X, Tang S, Wang Y, Bu Q, Zhang J. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. J Adv Res 2024; 59:35-47. [PMID: 37399924 PMCID: PMC11081964 DOI: 10.1016/j.jare.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.
Collapse
Affiliation(s)
- Liqun Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangjin Wei
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shaoqing Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin 150081, China; The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Zhang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
3
|
Yang J, Wang Y, Sun J, Li Y, Zhu R, Yin Y, Wang C, Yin X, Qin L. Metabolome and Transcriptome Association Analysis Reveals Mechanism of Synthesis of Nutrient Composition in Quinoa ( Chenopodium quinoa Willd.) Seeds. Foods 2024; 13:1325. [PMID: 38731698 PMCID: PMC11082971 DOI: 10.3390/foods13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain the nutritional constituents of white, yellow, red, and black quinoa seeds and to employ a multi-omics approach to analyze the synthesis mechanisms of these nutrients. The findings are intended to furnish a theoretical foundation and technical support for the biological breeding of quinoa in China. In this study, the nutritional analysis of white, yellow, red, and black quinoa seeds from the same area showed that the nutritional contents of the quinoa seeds were significantly different, and the protein content increased with the deepening of color. The protein content of black quinoa was the highest (16.1 g/100 g) and the lipid content was the lowest (2.7 g/100 g), among which, linoleic acid was the main fatty acid. A combined transcriptome and metabolome analysis exhibited that differentially expressed genes were enriched in "linoleic acid metabolism", "unsaturated fatty acid biosynthesis", and "amino acid biosynthesis". We mainly identified seven genes involved in starch synthesis (LOC110716805, LOC110722789, LOC110738785, LOC110720405, LOC110730081, LOC110692055, and LOC110732328); five genes involved in lipid synthesis (LOC110701563, LOC110699636, LOC110709273, LOC110715590, and LOC110728838); and nine genes involved in protein synthesis (LOC110710842, LOC110720003, LOC110687170, LOC110716004, LOC110702086, LOC110724454 LOC110724577, LOC110704171, and LOC110686607). The data presented in this study based on nutrient, transcriptome, and metabolome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa, and provide candidate genes for further genetic improvements to improve the nutritional value of quinoa seeds.
Collapse
Affiliation(s)
- Jindan Yang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yiyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Jiayi Sun
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yuzhe Li
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Renbin Zhu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
| | - Yongjie Yin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Chuangyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Xuebin Yin
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Lixia Qin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
| |
Collapse
|
4
|
Gao Y, Qiao L, Mei C, Nong L, Li Q, Zhang X, Li R, Gao W, Chen F, Chang L, Zhang S, Guo H, Cheng T, Wen H, Chang Z, Li X. Mapping of a Major-Effect Quantitative Trait Locus for Seed Dormancy in Wheat. Int J Mol Sci 2024; 25:3681. [PMID: 38612492 PMCID: PMC11011268 DOI: 10.3390/ijms25073681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xin Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (Y.G.)
| |
Collapse
|
5
|
Chapagain S, Pruthi R, Singh L, Subudhi PK. Comparison of the genetic basis of salt tolerance at germination, seedling, and reproductive stages in an introgression line population of rice. Mol Biol Rep 2024; 51:252. [PMID: 38302786 DOI: 10.1007/s11033-023-09049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/02/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Salinity is a major limitation for rice farming due to climate change. Since salt stress adversely impact rice plants at germination, seedling, and reproductive stages resulting in poor crop establishment and reduced grain yield, enhancing salt tolerance at these vulnerable growth stages will enhance rice productivity in salinity prone areas. METHODS AND RESULTS An introgression line (ILs) population from a cross between a high yielding cultivar 'Cheniere' and a salt tolerant donor 'TCCP' was evaluated to map quantitative trait loci (QTLs) for traits associated with salt tolerance at germination, seedling, and reproductive stages. Using a genotyping-by-sequencing based high density SNP linkage map, a total of 7, 16, and 30 QTLs were identified for five germination traits, seven seedling traits, and ten reproductive traits, respectively. There was overlapping of QTLs for some traits at different stages indicating the pleiotropic effects of these QTLs or clustering of linked genes. Candidate genes identified for salt tolerance were OsSDIR1 and SERF for the seedling stage, WRKY55 and OsUBC for the reproductive stage, and MYB family transcription factors for all three stages. Gene ontology analysis revealed significant GO terms related to nucleotide binding, protein binding, protein kinase activity, antiporter activity, active transmembrane transporter activity, calcium-binding protein, and F- box protein interaction domain containing protein. CONCLUSIONS The colocalized QTLs for traits at different growth stages would be helpful to improve multiple traits simultaneously using marker-assisted selection. The salt tolerant ILs have the potential to be released as varieties or as pre-breeding lines for developing salt tolerant rice varieties.
Collapse
Affiliation(s)
- Sandeep Chapagain
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Rajat Pruthi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Lovepreet Singh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Prasant K Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Shrestha AMS, Gonzales MEM, Ong PCL, Larmande P, Lee HS, Jeung JU, Kohli A, Chebotarov D, Mauleon RP, Lee JS, McNally KL. RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci. Gigascience 2024; 13:giae013. [PMID: 38832465 PMCID: PMC11148593 DOI: 10.1093/gigascience/giae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. RESULTS We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. CONCLUSIONS RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.
Collapse
Affiliation(s)
- Anish M S Shrestha
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Mark Edward M Gonzales
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
| | - Phoebe Clare L Ong
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
| | - Pierre Larmande
- DIADE, Univ Montpellier, Cirad, IRD, 34394 Montpellier, France
| | - Hyun-Sook Lee
- National Institute of Crop Science, Wanju-gun 55365, Republic of Korea
| | - Ji-Ung Jeung
- National Institute of Crop Science, Wanju-gun 55365, Republic of Korea
| | - Ajay Kohli
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Dmytro Chebotarov
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Ramil P Mauleon
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Jae-Sung Lee
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Kenneth L McNally
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| |
Collapse
|
7
|
Wang W, Chen W, Wang J. FRIZZLE PANICLE (FZP) regulates rice spikelets development through modulating cytokinin metabolism. BMC PLANT BIOLOGY 2023; 23:650. [PMID: 38102566 PMCID: PMC10724965 DOI: 10.1186/s12870-023-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The number of grains per panicle is an important factor in determining rice yield. The DST-OsCKX2 module has been demonstrated to regulate panicle development in rice by controlling cytokinin content. However, to date, how the function of DST-OsCKX2 module is regulated during panicle development remains obscure. RESULT In this study, the ABNORMAL PANICLE 1 (ABP1), a severely allele of FRIZZY PANICLE (FZP), exhibits abnormal spikelets morphology. We show that FZP can repress the expression of DST via directly binding to its promotor. Consistently, the expression level of OsCKX2 increased and the cytokinin content decreased in the fzp mutant, suggesting that the FZP acts upstream of the DST-OsCKX2 to maintain cytokinin homeostasis in the inflorescence meristem. CONCLUSIONS Our results indicate that FZP plays an important role in regulating spikelet development and grain number through mediating cytokinin metabolism.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenqiang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junmin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
8
|
Eragam A, Mohapatra A, Shukla V, Kadumuri RV, George AP, Putta L, Akkareddy S, Chavali S, Vemireddy LR, Ramireddy E. Panicle transcriptome of high-yield mutant indica rice reveals physiological mechanisms and novel candidate regulatory genes for yield under reproductive stage drought stress. BMC PLANT BIOLOGY 2023; 23:493. [PMID: 37833626 PMCID: PMC10571340 DOI: 10.1186/s12870-023-04507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Reproductive stage drought stress (RDS) is a major global threat to rice production. Due to climate change, water scarcity is becoming an increasingly common phenomenon in major rice-growing areas worldwide. Understanding RDS mechanisms will allow candidate gene identification to generate novel rice genotypes tolerant to RDS. RESULTS To generate novel rice genotypes that can sustain yield under RDS, we performed gamma-irradiation mediated mutation breeding in the drought stress susceptible mega rice variety, MTU1010. One of the mutant MM11 (MTU1010 derived mutant11) shows consistently increased performance in yield-related traits under field conditions consecutively for four generations. In addition, compared to MTU1010, the yield of MM11 is sustained in prolonged drought imposed during the reproductive stage under field and in pot culture conditions. A comparative emerged panicle transcriptome analysis of the MTU1010 and MM11 suggested metabolic adjustment, enhanced photosynthetic ability, and hormone interplay in regulating yield under drought responses during emerged panicle development. Regulatory network analysis revealed few putative significant transcription factor (TF)-target interactions involved in integrated signalling between panicle development, yield and drought stress. CONCLUSIONS A gamma-irradiate rice mutant MM11 was identified by mutation breeding, and it showed higher potential to sustain yield under reproductive stage drought stress in field and pot culture conditions. Further, a comparative panicle transcriptome revealed significant biological processes and molecular regulators involved in emerged panicle development, yield and drought stress integration. The study extends our understanding of the physiological mechanisms and candidate genes involved in sustaining yield under drought stress.
Collapse
Affiliation(s)
- Aparna Eragam
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
- Department of Molecular Biology and Biotechnology, S.V. Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India
| | - Ankita Mohapatra
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Vishnu Shukla
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Abin Panackal George
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Latha Putta
- Regional Agricultural Research Station (RARS), ANGRAU, Tirupati, India
| | | | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Lakshminarayana R Vemireddy
- Department of Molecular Biology and Biotechnology, S.V. Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India.
| | - Eswarayya Ramireddy
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India.
| |
Collapse
|
9
|
Vorster J, van der Westhuizen W, du Plessis G, Marais D, Sparvoli F, Cominelli E, Camilli E, Ferrari M, Le Donne C, Marconi S, Lisciani S, Losa A, Sala T, Kunert K. In order to lower the antinutritional activity of serine protease inhibitors, we need to understand their role in seed development. FRONTIERS IN PLANT SCIENCE 2023; 14:1252223. [PMID: 37860251 PMCID: PMC10582697 DOI: 10.3389/fpls.2023.1252223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Proteases, including serine proteases, are involved in the entire life cycle of plants. Proteases are controlled by protease inhibitors (PI) to limit any uncontrolled or harmful protease activity. The role of PIs in biotic and abiotic stress tolerance is well documented, however their role in various other plant processes has not been fully elucidated. Seed development is one such area that lack detailed work on the function of PIs despite the fact that this is a key process in the life cycle of the plant. Serine protease inhibitors (SPI) such as the Bowman-Birk inhibitors and Kunitz-type inhibitors, are abundant in legume seeds and act as antinutrients in humans and animals. Their role in seed development is not fully understood and present an interesting research target. Whether lowering the levels and activity of PIs, in order to lower the anti-nutrient levels in seed will affect the development of viable seed, remains an important question. Studies on the function of SPI in seed development are therefore required. In this Perspective paper, we provide an overview on the current knowledge of seed storage proteins, their degradation as well as on the serine protease-SPI system in seeds and what is known about the consequences when this system is modified. We discuss areas that require investigation. This includes the identification of seed specific SPIs; screening of germplasms, to identify plants with low seed inhibitor content, establishing serine protease-SPI ratios and lastly a focus on molecular techniques that can be used to modify seed SPI activity.
Collapse
Affiliation(s)
- Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Willem van der Westhuizen
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Gedion du Plessis
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Diana Marais
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Cinzia Le Donne
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Silvia Lisciani
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Alessia Losa
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Zhao L, Li Y, Li Y, Chen W, Yao J, Fang S, Lv Y, Zhang Y, Zhu S. Systematical Characterization of the Cotton Di19 Gene Family and the Role of GhDi19-3 and GhDi19-4 as Two Negative Regulators in Response to Salt Stress. Antioxidants (Basel) 2022; 11:2225. [PMID: 36421411 PMCID: PMC9686973 DOI: 10.3390/antiox11112225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
Drought-induced 19 (Di19) protein is a Cys2/His2 (C2H2) type zinc-finger protein, which plays a crucial role in plant development and in response to abiotic stress. This study systematically investigated the characteristics of the GhDi19 gene family, including the member number, gene structure, chromosomal distribution, promoter cis-elements, and expression profiles. Transcriptomic analysis indicated that some GhDi19s were up-regulated under heat and salt stress. Particularly, two nuclear localized proteins, GhDi19-3 and GhDi19-4, were identified as being in potential salt stress responsive roles. GhDi19-3 and GhDi19-4 decreased sensitivity under salt stress through virus-induced gene silencing (VIGS), and showed significantly lower levels of H2O2, malondialdehyde (MDA), and peroxidase (POD) as well as significantly increased superoxide dismutase (SOD) activity. This suggested that their abilities were improved to effectively reduce the reactive oxygen species (ROS) damage. Furthermore, certain calcium signaling and abscisic acid (ABA)-responsive gene expression levels showed up- and down-regulation changes in target gene-silenced plants, suggesting that GhDi19-3 and GhDi19-4 were involved in calcium signaling and ABA signaling pathways in response to salt stress. In conclusion, GhDi19-3 and GhDi19-4, two negative transcription factors, were found to be responsive to salt stress through calcium signaling and ABA signaling pathways.
Collapse
Affiliation(s)
- Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youzhong Li
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youjun Lv
- Anyang Institute of Technology, Anyang 455000, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
11
|
Yu S, Zhang Z, Li J, Zhu Y, Yin Y, Zhang X, Dai Y, Zhang A, Li C, Zhu Y, Fan J, Ruan Y, Dong X. Genome-wide identification and characterization of lncRNAs in sunflower endosperm. BMC PLANT BIOLOGY 2022; 22:494. [PMID: 36271333 PMCID: PMC9587605 DOI: 10.1186/s12870-022-03882-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), as important regulators, play important roles in plant growth and development. The expression and epigenetic regulation of lncRNAs remain uncharacterized generally in plant seeds, especially in the transient endosperm of the dicotyledons. RESULTS In this study, we identified 11,840 candidate lncRNAs in 12 day-after-pollination sunflower endosperm by analyzing RNA-seq data. These lncRNAs were evenly distributed in all chromosomes and had specific features that were distinct from mRNAs including tissue-specificity expression, shorter and fewer exons. By GO analysis of protein coding genes showing strong correlation with the lncRNAs, we revealed that these lncRNAs potential function in many biological processes of seed development. Additionally, genome-wide DNA methylation analyses revealed that the level of DNA methylation at the transcription start sites was negatively correlated with gene expression levels in lncRNAs. Finally, 36 imprinted lncRNAs were identified including 32 maternally expressed lncRNAs and four paternally expressed lncRNAs. In CG and CHG context, DNA methylation levels of imprinted lncRNAs in the upstream and gene body regions were slightly lower in the endosperm than that in embryo tissues, which indicated that the maternal demethylation potentially induce the paternally bias expression of imprinted lncRNAs in sunflower endosperm. CONCLUSION Our findings not only identified and characterized lncRNAs on a genome-wide scale in the development of sunflower endosperm, but also provide novel insights into the parental effects and epigenetic regulation of lncRNAs in dicotyledonous seeds.
Collapse
Affiliation(s)
- Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Yanzhe Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China.
| |
Collapse
|
12
|
Dong G, Xiong H, Zeng W, Li J, Du D. Ectopic Expression of the Rice Grain-Size-Affecting Gene GS5 in Maize Affects Kernel Size by Regulating Endosperm Starch Synthesis. Genes (Basel) 2022; 13:1542. [PMID: 36140710 PMCID: PMC9498353 DOI: 10.3390/genes13091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important food crops, and maize kernel is one of the important components of maize yield. Studies have shown that the rice grain-size affecting gene GS5 increases the thousand-kernel weight by positively regulating the rice grain width and grain grouting rate. In this study, based on the GS5 transgenic maize obtained through transgenic technology with specific expression in the endosperm, molecular assays were performed on the transformed plants. Southern blotting results showed that the GS5 gene was integrated into the maize genome in a low copy number, and RT-PCR analysis showed that the exogenous GS5 gene was normally and highly expressed in maize. The agronomic traits of two successive generations showed that certain lines were significantly improved in yield-related traits, and the most significant changes were observed in the OE-34 line, where the kernel width increased significantly by 8.99% and 10.96%, the 100-kernel weight increased by 14.10% and 10.82%, and the ear weight increased by 13.96% and 15.71%, respectively; however, no significant differences were observed in the plant height, ear height, kernel length, kernel row number, or kernel number. In addition, the overexpression of the GS5 gene increased the grain grouting rate and affected starch synthesis in the rice grains. The kernels' starch content in OE-25, OE-34, and OE-57 increased by 10.30%, 7.39%, and 6.39%, respectively. Scanning electron microscopy was performed to observe changes in the starch granule size, and the starch granule diameter of the transgenic line(s) was significantly reduced. RT-PCR was performed to detect the expression levels of related genes in starch synthesis, and the expression of these genes was generally upregulated. It was speculated that the exogenous GS5 gene changed the size of the starch granules by regulating the expression of related genes in the starch synthesis pathway, thus increasing the starch content. The trans-GS5 gene was able to be stably expressed in the hybrids with the genetic backgrounds of the four materials, with significant increases in the kernel width, 100-kernel weight, and ear weight. In this study, the maize kernel size was significantly increased through the endosperm-specific expression of the rice GS5 gene, and good material for the functional analysis of the GS5 gene was created, which was of great importance in theory and application.
Collapse
Affiliation(s)
- Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Liu C, Ma T, Yuan D, Zhou Y, Long Y, Li Z, Dong Z, Duan M, Yu D, Jing Y, Bai X, Wang Y, Hou Q, Liu S, Zhang J, Chen S, Li D, Liu X, Li Z, Wang W, Li J, Wei X, Ma B, Wan X. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1470-1486. [PMID: 35403801 PMCID: PMC9342608 DOI: 10.1111/pbi.13825] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Grain size is one of the essential determinants of rice yield. Our previous studies revealed that ethylene plays an important role in grain-size control; however, the precise mechanism remains to be determined. Here, we report that the ethylene response factor OsERF115 functions as a key downstream regulator for ethylene-mediated grain development. OsERF115 encodes an AP2/ERF-type transcriptional factor that is specifically expressed in young spikelets and developing caryopses. Overexpression of OsERF115 significantly increases grain length, width, thickness and weight by promoting longitudinal elongation and transverse division of spikelet hull cells, as well as enhancing grain-filling activity, whereas its knockout mutations lead to the opposite effects, suggesting that OsERF115 positively regulates grain size and weight. OsERF115 transcription is strongly induced by ethylene, and OsEIL1 directly binds to the promoter to activate its expression. OsERF115 acts as a transcriptional repressor to directly or indirectly modulate a set of grain-size genes during spikelet growth and endosperm development. Importantly, haplotype analysis reveals that the SNP variations in the EIN3-binding sites of OsERF115 promoter are significantly associated with the OsERF115 expression levels and grain weight, suggesting that natural variations in the OsERF115 promoter contribute to grain-size diversity. In addition, the OsERF115 orthologues are identified only in grass species, implying a conserved and unique role in the grain development of cereal crops. Our results provide insights into the molecular mechanism of ethylene-mediated grain-size control and a potential strategy based on the OsEIL1-OsERF115-target gene regulatory module for genetic improvement of rice yield.
Collapse
Affiliation(s)
- Chang Liu
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Tian Ma
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Dingyang Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CentreChangshaChina
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Yang Zhou
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yan Long
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Ziwen Li
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Zhenying Dong
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Meijuan Duan
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Dong Yu
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Yizhi Jing
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
| | - Xiaoyue Bai
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
| | - Yanbo Wang
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
| | - Quancan Hou
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Shuangshuang Liu
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Jin‐Song Zhang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Shou‐Yi Chen
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Dayong Li
- National Engineering Research Center for VegetablesBeijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry ScienceBeijingChina
| | - Xue Liu
- National Engineering Research Center for VegetablesBeijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry ScienceBeijingChina
| | - Zhikang Li
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Wang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Xun Wei
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiangyuan Wan
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| |
Collapse
|
14
|
Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Y, Li G, Wang Y, Ying J, Jiao G, Hu H, Hu P, Zhang J. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. MOLECULAR PLANT 2022; 15:706-722. [PMID: 35093592 DOI: 10.1016/j.molp.2022.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Tre6P (trehalose-6-phosphate) mediates sensing of carbon availability to maintain sugar homeostasis in plants, which underpins crop yield and resilience. However, how Tre6P responds to fluctuations in sugar levels and regulates the utilization of sugars for growth remains to be addressed. Here, we report that the sugar-inducible rice NAC transcription factor OsNAC23 directly represses the transcription of the Tre6P phosphatase gene TPP1 to simultaneously elevate Tre6P and repress trehalose levels, thus facilitating carbon partitioning from source to sink organs. Meanwhile, OsNAC23 and Tre6P suppress the transcription and enzyme activity of SnRK1a, a low-carbon sensor and antagonist of OsNAC23, to prevent the SnRK1a-mediated phosphorylation and degradation of OsNAC23. Thus, OsNAC23, Tre6P, and SnRK1a form a feed-forward loop to sense sugar and maintain sugar homeostasis by transporting sugars to sink organs. Importantly, plants over-expressing OsNAC23 exhibited an elevated photosynthetic rate, sugar transport, and sink organ size, which consistently increased rice yields by 13%-17% in three elite-variety backgrounds and two locations, suggesting that manipulation of OsNAC23 expression has great potential for rice improvement. Collectively, these findings enhance our understanding of Tre6P-mediated sugar signaling and homeostasis, and provide a new strategy for genetic improvement of rice and possibly also other crops.
Collapse
Affiliation(s)
- Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjin Wei
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guiai Jiao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peisong Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
15
|
Wang H, Tong X, Tang L, Wang Y, Zhao J, Li Z, Liu X, Shu Y, Yin M, Adegoke TV, Liu W, Wang S, Xu H, Ying J, Yuan W, Yao J, Zhang J. RLB (RICE LATERAL BRANCH) recruits PRC2-mediated H3K27 tri-methylation on OsCKX4 to regulate lateral branching. PLANT PHYSIOLOGY 2022; 188:460-476. [PMID: 34730827 PMCID: PMC8774727 DOI: 10.1093/plphys/kiab494] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 09/24/2021] [Indexed: 05/26/2023]
Abstract
Lateral branches such as shoot and panicle are determining factors and target traits for rice (Oryza sativa L.) yield improvement. Cytokinin promotes rice lateral branching; however, the mechanism underlying the fine-tuning of cytokinin homeostasis in rice branching remains largely unknown. Here, we report the map-based cloning of RICE LATERAL BRANCH (RLB) encoding a nuclear-localized, KNOX-type homeobox protein from a rice cytokinin-deficient mutant showing more tillers, sparser panicles, defected floret morphology as well as attenuated shoot regeneration from callus. RLB directly binds to the promoter and represses the transcription of OsCKX4, a cytokinin oxidase gene with high abundance in panicle branch meristem. OsCKX4 over-expression lines phenocopied rlb, which showed upregulated OsCKX4 levels. Meanwhile, RLB physically binds to Polycomb repressive complex 2 (PRC2) components OsEMF2b and co-localized with H3K27me3, a suppressing histone modification mediated by PRC2, in the OsCKX4 promoter. We proposed that RLB recruits PRC2 to the OsCKX4 promoter to epigenetically repress its transcription, which suppresses the catabolism of cytokinin, thereby promoting rice lateral branching. Moreover, antisense inhibition of OsCKX4 under the LOG promoter successfully increased panicle size and spikelet number per plant without affecting other major agronomic traits. This study provides insight into cytokinin homeostasis, lateral branching in plants, and also promising target genes for rice genetic improvement.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Man Yin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Tosin Victor Adegoke
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huayu Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
16
|
Identification and Allele Combination Analysis of Rice Grain Shape-Related Genes by Genome-Wide Association Study. Int J Mol Sci 2022; 23:ijms23031065. [PMID: 35162989 PMCID: PMC8835367 DOI: 10.3390/ijms23031065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Grain shape is an important agronomic character of rice, which affects the appearance, processing, and the edible quality. Screening and identifying more new genes associated with grain shape is beneficial to further understanding the genetic basis of grain shape and provides more gene resources for genetic breeding. This study has a natural population containing 623 indica rice cultivars. Genome-wide association studies/GWAS of several traits related to grain shape (grain length/GL, grain width/GW, grain length to width ratio/GLWR, grain circumferences/GC, and grain size/grain area/GS) were conducted by combining phenotypic data from four environments and the second-generation resequencing data, which have identified 39 important Quantitative trait locus/QTLs. We analyzed the 39 QTLs using three methods: gene-based association analysis, haplotype analysis, and functional annotation and identified three cloned genes (GS3, GW5, OsDER1) and seven new candidate genes in the candidate interval. At the same time, to effectively utilize the genes in the grain shape-related gene bank, we have also analyzed the allelic combinations of the three cloned genes. Finally, the extreme allele combination corresponding to each trait was found through statistical analysis. This study’s novel candidate genes and allele combinations will provide a valuable reference for future breeding work.
Collapse
|
17
|
Sekhar S, Kumar J, Mohanty S, Mohanty N, Panda RS, Das S, Shaw BP, Behera L. Identification of novel QTLs for grain fertility and associated traits to decipher poor grain filling of basal spikelets in dense panicle rice. Sci Rep 2021; 11:13617. [PMID: 34193914 PMCID: PMC8245594 DOI: 10.1038/s41598-021-93134-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
High grain number is positively correlated with grain yield in rice, but it is compromised because of poor filling of basal spikelets in dense panicle bearing numerous spikelets. The phenomenon that turns the basal spikelets of compact panicle sterile in rice is largely unknown. In order to understand the factor(s) that possibly determines such spikelet sterility in compact panicle cultivars, QTLs and candidate genes were identified for spikelet fertility and associated traits like panicle compactness, and ethylene production that significantly influences the grain filling using recombinant inbred lines developed from a cross between indica rice cultivars, PDK Shriram (compact, high spikelet number) and Heera (lax, low spikelet number). Novel QTLs, qSFP1.1, qSFP3.1, and qSFP6.1 for spikelet fertility percentage; qIGS3.2 and qIGS4.1 for panicle compactness; and qETH1.2, qETH3.1, and qETH4.1 for ethylene production were consistently identified in both kharif seasons of 2017 and 2018. The comparative expression analysis of candidate genes like ERF3, AP2-like ethylene-responsive transcription factor, EREBP, GBSS1, E3 ubiquitin-protein ligase GW2, and LRR receptor-like serine/threonine-protein kinase ERL1 associated with identified QTLs revealed their role in poor grain filling of basal spikelets in a dense panicle. These candidate genes thus could be important for improving grain filling in compact-panicle rice cultivars through biotechnological interventions.
Collapse
Affiliation(s)
- Sudhanshu Sekhar
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India.
| | - Jitendra Kumar
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | - Soumya Mohanty
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | - Niharika Mohanty
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | - Rudraksh Shovan Panda
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | - Swagatika Das
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | | | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India.
| |
Collapse
|
18
|
Jing P, Kong D, Ji L, Kong L, Wang Y, Peng L, Xie G. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:800-815. [PMID: 33179343 DOI: 10.1111/tpj.15074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Caleosins constitute a small protein family with one calcium-binding EF-hand motif. They are involved in the regulation of development and response to abiotic stress in plants. Nevertheless, how they impact salt stress tolerance in rice is largely unknown. Thereby, biochemical and molecular genetic experiments were carried out, and the results revealed that OsClo5 was able to bind calcium and phospholipids in vitro and localized in the nucleus and endoplasmic reticulum in rice protoplasts. At the germination and early seedlings stages, overexpression transgenic lines and T-DNA mutant lines exhibited reduced and increased tolerance to salt stress, respectively, compared with the wild-type. Yeast two-hybrid, bimolecular fluorescence complementation and in vitro pull-down assays demonstrated that the EF-hand motif of OsClo5 was essential for the interactions with itself and OsDi19-5. Yeast one-hybrid, electrophoretic migration shift and dual-luciferase reporter assays identified OsDi19-5 as a transcriptional repressor via the TACART cis-element in the promoters of two salt stress-related target genes, OsUSP and OsMST. In addition, OsClo5 enhanced the inhibitory effect of OsDi19-5 in the tobacco transient system, which was confirmed by qRT-PCR analysis in rice seedlings under salt stress. The collective results deepen the understanding of the molecular mechanism underlying the roles of caleosin in the salt stress response. These findings will also inform efforts to improve salt tolerance of rice.
Collapse
Affiliation(s)
- Pei Jing
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongyan Kong
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingxiao Ji
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Kong
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Dolui AK, Vijayaraj P. Functional Omics Identifies Serine Hydrolases That Mobilize Storage Lipids during Rice Seed Germination. PLANT PHYSIOLOGY 2020; 184:693-708. [PMID: 32817194 PMCID: PMC7536657 DOI: 10.1104/pp.20.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/04/2020] [Indexed: 05/10/2023]
Abstract
Elucidating proteolipidome dynamics is crucial for understanding the roles of these molecules in plant physiology and disease. Sequence-based functional annotation of the protein is inadequate, since protein activities depend on posttranslational modification. In this study, we applied a gel-free activity-based protein profiling approach to unravel the active lipases, including other Serine hydrolases (SHs), expressed during seed germination in rice (Oryza sativa). We successfully mapped the active sites of 43 active SHs encompassing lipases/esterases, GDSL lipases, proteases, Ser carboxypeptidases, ABHD protein, pectin acetylesterase, and other SHs. The mRNA expression levels of those genes encoding the identified SHs were monitored using microarray analysis. The lipidome analysis revealed distinct patterns of molecular species distribution in individual lipid classes and displayed the metabolic connections between lipid mobilization and rice seedling growth. Changes in the mobilization of storage lipids and their molecular species remodeling were correlated with the expression of the identified lipases and their lipase activity in a time-dependent manner. The physiological significance of the identified SHs was explored during biotic stress with Fusarium verticillioides infection. The fungal infection significantly reduced lipase activity and lipid mobilization, thus impairing the rice seedling. Collectively, our data demonstrate application of the functional proteome strategy along with the shotgun lipidome approach for the identification of active SHs, and thus for deciphering the role of lipid homeostasis during rice seed germination.
Collapse
Affiliation(s)
- Achintya Kumar Dolui
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Panneerselvam Vijayaraj
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
20
|
Lu LM, Yang SY, Liu L, Lu YF, Yang SM, Liu F, Ni S, Zeng FC, Ren B, Wang XY, Li LQ. Physiological and quantitative proteomic analysis of NtPRX63-overexpressing tobacco plants revealed that NtPRX63 functions in plant salt resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:30-42. [PMID: 32521442 DOI: 10.1016/j.plaphy.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
High salinity is harmful to crop yield and productivity. Peroxidases (PRXs) play crucial roles in H2O2 scavenging. In our previous study, PRX63 significantly upregulated in tobacco plants under salt stress. Thus, in order to understand the function of PRX63 in tobacco salt response, we overexpressed this gene in tobacco (Nicotiana tabacum L.), investigated the morphological, physiological and proteomic profiles of NtPRX63-overexpressing tobacco transgenic lines and wild type. The results showed that, compared with the wild type, the transgenic tobacco plants presented enhanced salt tolerance and displayed lower ROS (reactive oxygen species), malondialdehyde (MDA) and Na+ contents; higher biomass, potassium content, soluble sugar content, and peroxidase activity; and higher expression levels of NtSOD, NtPOD and NtCAT. Protein abundance analysis revealed 123 differentially expressed proteins between the transgenic and wild-type plants. These proteins were functionally classified into 18 categories and are involved in 41 metabolic pathways. Furthermore, among the 123 proteins, eight proteins involved in the ROS-scavenging system, 12 involved in photosynthesis and energy metabolism processes, two stress response proteins, one signal transduction protein and one disulfide isomerase were significantly upregulated. Furthermore, three novel proteins that may be involved in the plant salt response were also identified. The results of our study indicate that an enhanced ROS-scavenging ability, together with the expression of proteins related to energy mobilization and the stress response, functions in the confirmed salt resistance of transgenic tobacco plants. Our data provide valuable information for research on the function of NtPRX63 in tobacco in response to abiotic stress.
Collapse
Affiliation(s)
- Li-Ming Lu
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Shang-Yu Yang
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Lun Liu
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Yi-Fei Lu
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Shi-Min Yang
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Fan Liu
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Su Ni
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Fu-Chun Zeng
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Bi Ren
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Xi-Yao Wang
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China
| | - Li-Qin Li
- Agriculture College, Sichuan Agriculture University, Chengdu, 611130, PR China.
| |
Collapse
|
21
|
The Serine Carboxypeptidase-Like Gene SCPL41 Negatively Regulates Membrane Lipid Metabolism in Arabidopsis thaliana. PLANTS 2020; 9:plants9060696. [PMID: 32486049 PMCID: PMC7355682 DOI: 10.3390/plants9060696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022]
Abstract
The Arabidopsis has 51 proteins annotated as serine carboxypeptidase-like (SCPL) enzymes. Although biochemical and cellular characterization indicates SCPLs involved in protein turnover or processing, little is known about their roles in plant metabolism. In this study, we identified an Arabidopsis mutant, bis4 (1-butanol insensitive 4), that was insensitive to the inhibitory effect of 1-butanol on seed germination. We cloned the gene that was defective in bis4 and found that it encoded an SCPL41 protein. Transgenic Arabidopsis plants constitutively expressing SCPL41 were generated, oil body staining and lipidomic assays indicated that SCPL41-overexpressing plants showed a decrease in membrane lipid content, especially digalactosyl diglyceride (DGDG) and monogalactosyl diglyceride (MGDG) contents, while the loss of SCPL41 increased the membrane lipid levels compared with those in wild-type plants. These findings suggested that SCPL41 had acquired novel functions in membrane lipid metabolism.
Collapse
|
22
|
Insights on the Proteases Involved in Barley and Wheat Grain Germination. Int J Mol Sci 2019; 20:ijms20092087. [PMID: 31035313 PMCID: PMC6539298 DOI: 10.3390/ijms20092087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/11/2023] Open
Abstract
Seed storage proteins must be hydrolyzed by proteases to deliver the amino acids essential for embryo growth and development. Several groups of proteases involved in this process have been identified in both the monocot and the dicot species. This review focuses on the implication of proteases during germination in two cereal species, barley and wheat, where proteolytic control during the germination process has considerable economic importance. Formerly, the participation of proteases during grain germination was inferred from reports of proteolytic activities, the expression of individual genes, or the presence of individual proteins and showed a prominent role for papain-like and legumain-like cysteine proteases and for serine carboxypeptidases. Nowadays, the development of new technologies and the release of the genomic sequences of wheat and barley have permitted the application of genome-scale approaches, such as those used in functional genomics and proteomics. Using these approaches, the repertoire of proteases known to be involved in germination has increased and includes members of distinct protease families. The development of novel techniques based on shotgun proteomics, activity-based protein profiling, and comparative and structural genomics will help to achieve a general view of the proteolytic process during germination.
Collapse
|
23
|
Daba S, Horsley R, Schwarz P, Chao S, Capettini F, Mohammadi M. Association and genome analyses to propose putative candidate genes for malt quality traits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2775-2785. [PMID: 30430569 DOI: 10.1002/jsfa.9485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We studied the genetics of nine malt quality traits using association genetics in a panel of North Dakota, ICARDA, and Ethiopian barley lines. Grain samples harvested from Bekoji in 2011 and 2012 were used. RESULTS The mapping panel revealed strong population structure explained by inflorescence-type, geographic origin, and breeding history. North Dakota germplasm were superior in malt quality traits and they can be donors to improve malt quality properties. We identified 106 marker-trait associations (MTAs) for the nine traits, representing 81 genomic regions across all barley chromosomes. Chromosomes 3H, 5H, and 7H contained most of the MTAs (58.5%). Nearly 18.5% of these genomic regions contained two to three malt quality traits. Within ±250 kb of 81 genomic regions, we recovered 348 barley genes, with some potential impacting malt quality. These include invertase, β-fructofuranosidase, α-glucosidase, serine carboxypeptidase, and bidirectional sugar transporter SWEET14-like protein. Eighteen of these genes were also previously reported in the Hordeum Toolbox, and 17 of them highly expressed during the germination process. CONCLUSION The results from this study invite further follow-up functional characterization experiments to relate the genes with individual malt quality traits with higher confidence. It also provides germplasm resources for malt barley improvement. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sintayehu Daba
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Richard Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Shaoman Chao
- USDA-ARS, Cereal Crop Research Unit, Fargo, ND, USA
| | - Flavio Capettini
- Alberta Agriculture and Forestry, Field Crop Development Center, Lacombe, AB, Canada
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
24
|
Martinez M, Gómez-Cabellos S, Giménez MJ, Barro F, Diaz I, Diaz-Mendoza M. Plant Proteases: From Key Enzymes in Germination to Allies for Fighting Human Gluten-Related Disorders. FRONTIERS IN PLANT SCIENCE 2019; 10:721. [PMID: 31191594 PMCID: PMC6548828 DOI: 10.3389/fpls.2019.00721] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/16/2019] [Indexed: 05/15/2023]
Abstract
Plant proteases play a crucial role in many different biological processes along the plant life cycle. One of the most determinant stages in which proteases are key protagonists is the plant germination through the hydrolysis and mobilization of other proteins accumulated in seeds and cereal grains. The most represented proteases in charge of this are the cysteine proteases group, including the C1A family known as papain-like and the C13 family also called legumains. In cereal species such as wheat, oat or rye, gluten is a very complex mixture of grain storage proteins, which may affect the health of sensitive consumers like celiac patients. Since gluten proteins are suitable targets for plant proteases, the knowledge of the proteases involved in storage protein mobilization could be employed to manipulate the amount of gluten in the grain. Some proteases have been previously found to exhibit promising properties for their application in the degradation of known toxic peptides from gluten. To explore the variability in gluten-degrading capacities, we have now analyzed the degradation of gluten from different wheat cultivars using several cysteine proteases from barley. The wide variability showed highlights the possibility to select the protease with the highest potential to alter grain composition reducing the gluten content. Consequently, new avenues could be explored combining genetic manipulation of proteolytic processes with silencing techniques to be used as biotechnological tools against gluten-related disorders.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo UPM, Madrid, Spain
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sara Gómez-Cabellos
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo UPM, Madrid, Spain
| | - María José Giménez
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (IAS-CSIC), Córdoba, Spain
| | - Francisco Barro
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (IAS-CSIC), Córdoba, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo UPM, Madrid, Spain
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo UPM, Madrid, Spain
- *Correspondence: Mercedes Diaz-Mendoza,
| |
Collapse
|
25
|
Sehgal D, Mondal S, Guzman C, Garcia Barrios G, Franco C, Singh R, Dreisigacker S. Validation of Candidate Gene-Based Markers and Identification of Novel Loci for Thousand-Grain Weight in Spring Bread Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1189. [PMID: 31616457 PMCID: PMC6775465 DOI: 10.3389/fpls.2019.01189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/29/2019] [Indexed: 05/14/2023]
Abstract
Increased thousand-grain weight (TGW) is an important breeding target for indirectly improving grain yield (GY). Fourteen reported candidate genes known to enhance TGW were evaluated in two independent and existing datasets of wheat at CIMMYT, the Elite Yield Trial (EYT) from 2015 to 2016 (EYT2015-16) and the Wheat Association Mapping Initiative (WAMI) panel, to study their allele effects on TGW and to verify their suitability for marker-assisted selection. Of these, significant associations were detected for only one gene (TaGs3-D1) in the EYT2015-16 and two genes (TaTGW6 and TaSus1) in WAMI. The reported favorable alleles of TaGs3-D1 and TaTGW6 genes decreased TGW in the datasets. A haplotype-based genome wide association study was implemented to identify the genetic determinants of TGW on a large set of CIMMYT germplasm (4,302 lines comprising five EYTs), which identified 15 haplotype blocks to be significantly associated with TGW. Four of them, identified on chromosomes 4A, 6A, and 7A, were associated with TGW in at least three EYTs. The locus on chromosome 6A (Hap-6A-13) had the largest effect on TGW and additionally GY with increases of up to 2.60 g and 258 kg/ha, respectively. Discovery of novel TGW loci described in our study expands the opportunities for developing diagnostic markers and for multi-gene pyramiding to derive new allele combinations for enhanced TGW and GY in CIMMYT wheat.
Collapse
Affiliation(s)
| | | | - Carlos Guzman
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | | | | | - Ravi Singh
- Department of Bioscience, CIMMYT, Texcoco, Mexico
| | - Susanne Dreisigacker
- Department of Bioscience, CIMMYT, Texcoco, Mexico
- *Correspondence: Susanne Dreisigacker,
| |
Collapse
|
26
|
Jiang P, Zhang K, Ding Z, He Q, Li W, Zhu S, Cheng W, Zhang K, Li K. Characterization of a strong and constitutive promoter from the Arabidopsis serine carboxypeptidase-like gene AtSCPL30 as a potential tool for crop transgenic breeding. BMC Biotechnol 2018; 18:59. [PMID: 30241468 PMCID: PMC6151023 DOI: 10.1186/s12896-018-0470-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Transgenic technology has become an important technique for crop genetic improvement. The application of well-characterized promoters is essential for developing a vector system for efficient genetic transformation. Therefore, isolation and functional validation of more alternative constitutive promoters to the CaMV35S promoter is highly desirable. RESULTS In this study, a 2093-bp sequence upstream of the translation initiation codon ATG of AtSCPL30 was isolated as the full-length promoter (PD1). To characterize the AtSCPL30 promoter (PD1) and eight 5' deleted fragments (PD2-PD9) of different lengths were fused with GUS to produce the promoter::GUS plasmids and were translocated into Nicotiana benthamiana. PD1-PD9 could confer strong and constitutive expression of transgenes in almost all tissues and development stages in Nicotiana benthamiana transgenic plants. Additionally, PD2-PD7 drove transgene expression consistently over twofold higher than the well-used CaMV35S promoter under normal and stress conditions. Among them, PD7 was only 456 bp in length, and its transcriptional activity was comparable to that of PD2-PD6. Moreover, GUS transient assay in the leaves of Nicotiana benthamiana revealed that the 162-bp (- 456~ - 295 bp) and 111-bp (- 294~ - 184 bp) fragments from the AtSCPL30 promoter could increase the transcriptional activity of mini35S up to 16- and 18-fold, respectively. CONCLUSIONS As a small constitutive strong promoter of plant origin, PD7 has the advantage of biosafety and reduces the probability of transgene silencing compared to the virus-derived CaMV35S promoter. PD7 would also be an alternative constitutive promoter to the CaMV35S promoter when multigene transformation was performed in the same vector, thereby avoiding the overuse of the CaMV35S promoter and allowing for the successful application of transgenic technology. And, the 162- and 111-bp fragments will also be very useful for synthetic promoter design based on their high enhancer activities.
Collapse
Affiliation(s)
- Pingping Jiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Ke Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong China
| | - Qiuxia He
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong China
| | - Wendi Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Shuangfeng Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong China
| | - Kewei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Kunpeng Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| |
Collapse
|
27
|
Gautier F, Eliášová K, Leplé JC, Vondráková Z, Lomenech AM, Le Metté C, Label P, Costa G, Trontin JF, Teyssier C, Lelu-Walter MA. Repetitive somatic embryogenesis induced cytological and proteomic changes in embryogenic lines of Pseudotsuga menziesii [Mirb.]. BMC PLANT BIOLOGY 2018; 18:164. [PMID: 30097018 PMCID: PMC6086078 DOI: 10.1186/s12870-018-1337-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND To explore poorly understood differences between primary and subsequent somatic embryogenic lines of plants, we induced secondary (2ry) and tertiary (3ry) lines from cotyledonary somatic embryos (SEs) of two Douglas-fir genotypes: SD4 and TD17. The 2ry lines exhibited significantly higher embryogenic potential (SE yields) than the 1ry lines initiated from zygotic embryos (SD4, 2155 vs 477; TD17, 240 vs 29 g- 1 f.w.). Moreover, we observed similar differences in yield between 2ry and 3ry lines of SD4 (2400 vs 3921 g- 1 f.w.). To elucidate reasons for differences in embryogenic potential induced by repetitive somatic embryogenesis we then compared 2ry vs 1ry and 2ry vs 3ry lines at histo-cytological (using LC-MS/MS) and proteomic levels. RESULTS Repetitive somatic embryogenesis dramatically improved the proliferating lines' cellular organization (genotype SD4's most strongly). Frequencies of singulated, bipolar SEs and compact polyembryogenic centers with elongated suspensors and apparently cleavable embryonal heads increased in 2ry and (even more) 3ry lines. Among 2300-2500 identified proteins, 162 and 228 were classified significantly differentially expressed between 2ry vs 1ry and 3ry vs 2ry lines, respectively, with special emphasis on "Proteolysis" and "Catabolic process" Gene Ontology categories. Strikingly, most of the significant proteins (> 70%) were down-regulated in 2ry relative to 1ry lines, but up-regulated in 3ry relative to 2ry lines, revealing a down-up pattern of expression. GO category enrichment analyses highlighted the opposite adjustments of global protein patterns, particularly for processes involved in chitin catabolism, lignin and L-phenylalanine metabolism, phenylpropanoid biosynthesis, oxidation-reduction, and response to karrikin. Sub-Network Enrichment Analyses highlighted interactions between significant proteins and both plant growth regulators and secondary metabolites after first (especially jasmonic acid, flavonoids) and second (especially salicylic acid, abscisic acid, lignin) embryogenesis cycles. Protein networks established after each induction affected the same "Plant development" and "Defense response" biological processes, but most strongly after the third cycle, which could explain the top embryogenic performance of 3ry lines. CONCLUSIONS This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the lines' embryogenic status.
Collapse
Affiliation(s)
- Florian Gautier
- BioForA, INRA, ONF, F-45075 Orléans, France
- SylvaLIM, University Limoges, F-78060 Limoges, France
| | - Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha, 6-Lysolaje Czech Republic
| | - Jean-Charles Leplé
- BioForA, INRA, ONF, F-45075 Orléans, France
- BIOGECO, INRA, University Bordeaux, F-33610 Cestas, France
| | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha, 6-Lysolaje Czech Republic
| | - Anne-Marie Lomenech
- Plateforme Protéome, Centre de Génomique Fonctionnelle, University Bordeaux, F-33000 Bordeaux, France
| | | | - Philippe Label
- University Clermont Auvergne, INRA, PIAF, F-63000 Clermont–Ferrand, France
| | - Guy Costa
- SylvaLIM, University Limoges, F-78060 Limoges, France
| | - Jean-François Trontin
- Pôle Biotechnologie et Sylviculture Avancée, FCBA, Campus Forêt-Bois de Pierroton, F-33610 Cestas, France
| | | | | |
Collapse
|
28
|
Zhu D, Chu W, Wang Y, Yan H, Chen Z, Xiang Y. Genome-wide identification, classification and expression analysis of the serine carboxypeptidase-like protein family in poplar. PHYSIOLOGIA PLANTARUM 2018; 162:333-352. [PMID: 28902414 DOI: 10.1111/ppl.12642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/03/2017] [Accepted: 08/31/2017] [Indexed: 05/22/2023]
Abstract
Previous studies have shown that the serine carboxypeptidase-like (SCPL) proteins in several plants play a key part in plant growth, development and stress responses. However, little is known about the functions of the SCPL genes in poplar. We identified 57 SCPL genes and divided into 3 subfamilies, which were unevenly distributed on 19 poplar chromosomes. Gene structure indicated that SCPL genes contain more introns, and motifs of each subfamily were relatively conserved. There were a total of 14 pairs of paralogs, with 6 pairs of these paralogs generated by segmental duplication and 1 generated by tandem duplication. In microsynteny analysis, large-scale duplication events played a key part in the expansion of Carboxypeptidase III genes. Expression of these genes was higher in mature leaf. Quantitative real-time PCR showed that majority of the SCPL genes were induced by methyl jasmonate (MeJA) treatment. PtSCPL27 and PtSCPL40 were located on the cytomembrane by conducting subcellular localization analysis. Our paper provides a theoretical basis for further functional research of PtSCPL genes and will benefit the molecular breeding for resistance to disease in poplar.
Collapse
Affiliation(s)
- Dongyue Zhu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Wenyuan Chu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yujiao Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhu Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
29
|
Wang J, Islam F, Li L, Long M, Yang C, Jin X, Ali B, Mao B, Zhou W. Complementary RNA-Sequencing Based Transcriptomics and iTRAQ Proteomics Reveal the Mechanism of the Alleviation of Quinclorac Stress by Salicylic Acid in Oryza sativa ssp. japonica. Int J Mol Sci 2017; 18:ijms18091975. [PMID: 28906478 PMCID: PMC5618624 DOI: 10.3390/ijms18091975] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
To uncover the alleviation mechanism of quinclorac stress by salicylic acid (SA), leaf samples of Oryza sativa ssp. Japonica under quinclorac stress with and without SA pre-treatment were analyzed for transcriptional and proteomic profiling to determine the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Results showed that quinclorac stress altered the expression of 2207 DEGs (1427 up-regulated, 780 down-regulated) and 147 DEPs (98 down-regulated, 49 up-regulated). These genes and proteins were enriched in glutathione (GSH) metabolism, porphyrin and chlorophyll metabolism, the biosynthesis of secondary metabolites, glyoxylate and dicarboxylate metabolism, and so on. It also influenced apetala2- ethylene-responsive element binding protein (AP2-EREBP) family, myeloblastosis (MYB) family and WRKY family transcription factors. After SA pre-treatment, 697 genes and 124 proteins were differentially expressed. Pathway analysis showed similar enrichments in GSH, glyoxylate and dicarboxylate metabolism. Transcription factors were distributed in basic helix-loop-helix (bHLH), MYB, Tify and WRKY families. Quantitative real-time PCR results revealed that quinclorac stress induced the expression of glutathion reductase (GR) genes (OsGR2, OsGR3), which was further pronounced by SA pre-treatment. Quinclorac stress further mediated the accumulation of acetaldehyde in rice, while SA enhanced the expression of OsALDH2B5 and OsALDH7 to accelerate the metabolism of herbicide quinclorac for the protection of rice. Correlation analysis between transcriptome and proteomics demonstrated that, under quinclorac stress, correlated proteins/genes were mainly involved in the inhibition of intermediate steps in the biosynthesis of chlorophyll. Other interesting proteins/genes and pathways regulated by herbicide quinclorac and modulated by SA pre-treatment were also discussed, based on the transcriptome and proteomics results.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Lan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Meijuan Long
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Chong Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Jin
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
- Institute of Crop Science and Resource Conservation (INRES), Abiotic Stress Tolerance in Crops, University of Bonn, 53115 Bonn, Germany.
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Deng Q, Wang X, Zhang D, Wang X, Feng C, Xu S. BRS1 Function in Facilitating Lateral Root Emergence in Arabidopsis. Int J Mol Sci 2017; 18:ijms18071549. [PMID: 28718794 PMCID: PMC5536037 DOI: 10.3390/ijms18071549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022] Open
Abstract
The BRS1 (BRI1 Suppressor 1) gene encodes a serine carboxypeptidase that plays a critical role in the brassinosteroid signaling pathway. However, its specific biological function remains unclear. In this study, the developmental role of BRS1 was investigated in Arabidopsis thaliana. We found that overexpressing BRS1 resulted in significantly more lateral roots in different Arabidopsis ecotypes (WS2 and Col-0) and in brassinosteroid mutants (bri1-5 and det2-28). Further research showed that BRS1 facilitates the process whereby lateral root primordia break through the endodermis, cortex, and epidermis. Consistent with this, BRS1 was found to be highly expressed in the root endodermis and accumulated in the extracellular space around the dome of the lateral root primordia. Taken together, these results highlight the role of BRS1 in the process of lateral root emergence and provide new insight into the role of serine carboxypeptidases in plant root development.
Collapse
Affiliation(s)
- Qian Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Xue Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Dongzhi Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Cuizhu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|