1
|
Li Z, Wang H, Yin Y. Peripheral inflammation is a potential etiological factor in Alzheimer's disease. Rev Neurosci 2024; 35:99-120. [PMID: 37602685 DOI: 10.1515/revneuro-2023-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| |
Collapse
|
2
|
Xu P, Yu Y, Wu P. Role of microglia in brain development after viral infection. Front Cell Dev Biol 2024; 12:1340308. [PMID: 38298216 PMCID: PMC10825034 DOI: 10.3389/fcell.2024.1340308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Microglia are immune cells in the brain that originate from the yolk sac and enter the developing brain before birth. They play critical roles in brain development by supporting neural precursor proliferation, synaptic pruning, and circuit formation. However, microglia are also vulnerable to environmental factors, such as infection and stress that may alter their phenotype and function. Viral infection activates microglia to produce inflammatory cytokines and anti-viral responses that protect the brain from damage. However, excessive or prolonged microglial activation impairs brain development and leads to long-term consequences such as autism spectrum disorder and schizophrenia spectrum disorder. Moreover, certain viruses may attack microglia and deploy them as "Trojan horses" to infiltrate the brain. In this brief review, we describe the function of microglia during brain development and examine their roles after infection through microglia-neural crosstalk. We also identify limitations for current studies and highlight future investigated questions.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Duy PQ, Mehta NH, Kahle KT. The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology. Cereb Cortex 2024; 34:bhad432. [PMID: 37991277 PMCID: PMC10793578 DOI: 10.1093/cercor/bhad432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
4
|
Mohebalizadeh M, Babapour G, Maleki Aghdam M, Mohammadi T, Jafari R, Shafiei-Irannejad V. Role of Maternal Immune Factors in Neuroimmunology of Brain Development. Mol Neurobiol 2023:10.1007/s12035-023-03749-2. [PMID: 38057641 DOI: 10.1007/s12035-023-03749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Inflammation during pregnancy may occur due to various factors. This condition, in which maternal immune system activation occurs, can affect fetal brain development and be related to neurodevelopmental diseases. MIA interacts with the fetus's brain development through maternal antibodies, cytokines, chemokines, and microglial cells. Antibodies are associated with the development of the nervous system by two mechanisms: direct binding to brain inflammatory factors and binding to brain antigens. Cytokines and chemokines have an active presence in inflammatory processes. Additionally, glial cells, defenders of the nervous system, play an essential role in synaptic modulation and neurogenesis. Maternal infections during pregnancy are the most critical factors related to MIA; however, several studies show the relation between these infections and neurodevelopmental diseases. Infection with specific viruses, such as Zika, cytomegalovirus, influenza A, and SARS-CoV-2, has revealed effects on neurodevelopment and the onset of diseases such as schizophrenia and autism. We review the relationship between maternal infections during pregnancy and their impact on neurodevelopmental processes.
Collapse
Affiliation(s)
- Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Golsa Babapour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Maleki Aghdam
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Tooba Mohammadi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Zheng H, Webster MJ, Weickert CS, Beasley CL, Paulus MP, Yolken RH, Savitz J. Cytomegalovirus antibodies are associated with mood disorders, suicide, markers of neuroinflammation, and microglia activation in postmortem brain samples. Mol Psychiatry 2023; 28:5282-5292. [PMID: 37391529 PMCID: PMC10756933 DOI: 10.1038/s41380-023-02162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Cytomegalovirus (CMV) is a common, neurotrophic herpesvirus that can be reactivated by inflammation and cause central nervous system disease. We hypothesize that CMV may contribute to the neuroinflammation that underlies some psychiatric disorders by (1) exacerbating inflammation through the induction of anti-viral immune responses, and (2) translating peripheral inflammation into neuroinflammation. We investigated whether the presence of anti-CMV antibodies in blood were associated with mental illness, suicide, neuroinflammation, and microglial density in the dorsolateral prefrontal cortex (DLPFC) in postmortem samples. Data (n = 114 with schizophrenia; n = 78 with bipolar disorder; n = 87 with depression; n = 85 controls) were obtained from the Stanley Medical Research Institute. DLPFC gene expression data from a subset of 82 samples were categorized into "high" (n = 30), and "low" (n = 52) inflammation groups based on a recursive two-step cluster analysis using expression data for four inflammation-related genes. Measurements of the ratio of non-ramified to ramified microglia, a proxy of microglial activation, were available for a subset of 49 samples. All analyses controlled for age, sex, and ethnicity, as well as postmortem interval, and pH for gene expression and microglial outcomes. CMV seropositivity significantly increased the odds of a mood disorder diagnosis (bipolar disorder: OR = 2.45; major depression: OR = 3.70) and among the psychiatric samples, of suicide (OR = 2.09). Samples in the upper tercile of anti-CMV antibody titers were more likely to be members of the "high" inflammation group (OR = 4.41, an effect driven by schizophrenia and bipolar disorder samples). CMV positive samples also showed an increased ratio of non-ramified to ramified microglia in layer I of the DLPFC (Cohen's d = 0.81) as well as a non-significant increase in this ratio for the DLPFC as a whole (d = 0.56). The results raise the possibility that the reactivation of CMV contributes to the neuroinflammation that underlies some cases of psychiatric disorders.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
6
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
7
|
Elgueta D, Murgas P, Riquelme E, Yang G, Cancino GI. Consequences of Viral Infection and Cytokine Production During Pregnancy on Brain Development in Offspring. Front Immunol 2022; 13:816619. [PMID: 35464419 PMCID: PMC9021386 DOI: 10.3389/fimmu.2022.816619] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Infections during pregnancy can seriously damage fetal neurodevelopment by aberrantly activating the maternal immune system, directly impacting fetal neural cells. Increasing evidence suggests that these adverse impacts involve alterations in neural stem cell biology with long-term consequences for offspring, including neurodevelopmental disorders such as autism spectrum disorder, schizophrenia, and cognitive impairment. Here we review how maternal infection with viruses such as Influenza A, Cytomegalovirus, and Zika during pregnancy can affect the brain development of offspring by promoting the release of maternal pro-inflammatory cytokines, triggering neuroinflammation of the fetal brain, and/or directly infecting fetal neural cells. In addition, we review insights into how these infections impact human brain development from studies with animal models and brain organoids. Finally, we discuss how maternal infection with SARS-CoV-2 may have consequences for neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Daniela Elgueta
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Murgas
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Erick Riquelme
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Guang Yang
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
8
|
Krstanović F, Britt WJ, Jonjić S, Brizić I. Cytomegalovirus Infection and Inflammation in Developing Brain. Viruses 2021; 13:1078. [PMID: 34200083 PMCID: PMC8227981 DOI: 10.3390/v13061078] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that can cause severe disease in immunocompromised individuals and immunologically immature fetuses and newborns. Most infected newborns are able to resolve the infection without developing sequelae. However, in severe cases, congenital HCMV infection can result in life-threatening pathologies and permanent damage of organ systems that possess a low regenerative capacity. Despite the severity of the problem, HCMV infection of the central nervous system (CNS) remains inadequately characterized to date. Cytomegaloviruses (CMVs) show strict species specificity, limiting the use of HCMV in experimental animals. Infection following intraperitoneal administration of mouse cytomegalovirus (MCMV) into newborn mice efficiently recapitulates many aspects of congenital HCMV infection in CNS. Upon entering the CNS, CMV targets all resident brain cells, consequently leading to the development of widespread histopathology and inflammation. Effector functions from both resident cells and infiltrating immune cells efficiently resolve acute MCMV infection in the CNS. However, host-mediated inflammatory factors can also mediate the development of immunopathologies during CMV infection of the brain. Here, we provide an overview of the cytomegalovirus infection in the brain, local immune response to infection, and mechanisms leading to CNS sequelae.
Collapse
Affiliation(s)
- Fran Krstanović
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| | - William J. Britt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stipan Jonjić
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| | - Ilija Brizić
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| |
Collapse
|
9
|
Rodent Models of Congenital Cytomegalovirus Infection. Methods Mol Biol 2021. [PMID: 33555596 DOI: 10.1007/978-1-0716-1111-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Human cytomegalovirus (HCMV) is a leading viral cause of congenital infections in the central nervous system (CNS) and may result in severe long-term sequelae. High rates of sequelae following congenital HCMV infection and insufficient antiviral therapy in the perinatal period makes the development of an HCMV-specific vaccine a high priority of modern medicine. Due to the species specificity of HCMV, animal models are frequently used to study CMV pathogenesis. Studies of murine cytomegalovirus (MCMV) infections of adult mice have played a significant role as a model of CMV biology and pathogenesis, while MCMV infection of newborn mice has been successfully used as a model of perinatal CMV infection. Newborn mice infected with MCMV have high levels of viremia during which the virus establishes a productive infection in most organs, coupled with a robust inflammatory response. Productive infection in the brain parenchyma during early postnatal period leads to an extensive nonnecrotizing multifocal widespread encephalitis characterized by infiltration of components of both innate and adaptive immunity. As a result, impairment in postnatal development of mouse cerebellum leads to long-term motor and sensor disabilities. This chapter summarizes current findings of rodent models of perinatal CMV infection and describes methods for analysis of perinatal MCMV infection in newborn mice.
Collapse
|
10
|
Embryonic Microglia Interact with Hypothalamic Radial Glia during Development and Upregulate the TAM Receptors MERTK and AXL following an Insult. Cell Rep 2021; 34:108587. [PMID: 33406432 DOI: 10.1016/j.celrep.2020.108587] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections. However, following an insult (i.e., IUE or AAV transduction), this seemingly passive touching became more intimate and long lasting, ultimately resulting in the retraction of radial glial projections and degeneration into small pieces. Mechanistically, the TAM receptors MERTK and AXL were upregulated in microglia following the insult, and Annexin V treatment inhibited radial glia breakage and engulfment by microglia. These data demonstrate a remarkable responsiveness of embryonic microglia to insults during gestation, a critical window for neurodevelopment.
Collapse
|
11
|
Zhang XY, Fang F. Congenital human cytomegalovirus infection and neurologic diseases in newborns. Chin Med J (Engl) 2020; 132:2109-2118. [PMID: 31433331 PMCID: PMC6793797 DOI: 10.1097/cm9.0000000000000404] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: This review aimed to summarize research progress regarding congenital cytomegalovirus (cCMV) infection-related nervous system diseases and their mechanisms. Data sources: All literature quoted in this review was retrieved from PubMed and Web of Science using the keywords “Cytomegalovirus” and “Neurologic disease” in English. To identify more important information, we did not set time limits. Study selection: Relevant articles were selected by carefully reading the titles and abstracts. Then, different diagnosis and clinical treatment methods for human CMV infection-related neurologic diseases were compared, and the main mechanism and pathogenesis of neurologic damage caused by CMV were summarized from the selected published articles. Results: cCMV infection is a major cause of neonatal malformation. cCMV can infect the fetal encephalon during early gestation and compromise neurodevelopment, resulting in varying degrees of neurologic damage, mainly including hearing impairment, central nervous system (CNS) infection, neurodevelopmental disorders, ophthalmic complications, cerebral neoplasms, infantile autism, epilepsy, and other neurologic abnormalities. Conclusions: cCMV infection-induced neurodevelopmental abnormalities, which were directly caused by fetal encephalon infection, thus inducing neuroimmune responses to damage nerve cells. Such abnormalities were also caused by suppression of the proliferation and differentiation of neural progenitor cells by CMV's gene products. cCMV infection in the fetal encephalon can also inhibit neuronal migration and synapse formation and indirectly trigger placental inflammation and thus disrupt the oxygen supply to the fetus.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | |
Collapse
|
12
|
Kučić N, Rački V, Jurdana K, Marcelić M, Grabušić K. Immunometabolic phenotype of BV-2 microglia cells upon murine cytomegalovirus infection. J Neurovirol 2019; 25:496-507. [PMID: 31025265 DOI: 10.1007/s13365-019-00750-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Microglia are resident brain macrophages with key roles in development and brain homeostasis. Cytomegalovirus (CMV) readily infects microglia cells, even as a possible primary target of infection in development. Effects of CMV infection on a cellular level in microglia are still unclear; therefore, the aim of this research was to assess the immunometabolic changes of BV-2 microglia cells following the murine cytomegalovirus (MCMV) infection. In light of that aim, we established an in vitro model of ramified BV-2 microglia (BV-2∅FCS, inducible nitric oxide synthase (iNOSlow), arginase-1 (Arg-1high), mannose receptor CD206high, and hypoxia-inducible factor 1α (HIF-1αlow)) to better replicate the in vivo conditions by removing FCS from the cultivation media, while the cells cultivated in 10% FCS DMEM displayed an ameboid morphology (BV-2FCS high, iNOShigh, Arg-1low, CD206low, and HIF-1αhigh). Experiments were performed using both ramified and ameboid microglia, and both of them were permissive to productive viral infection. Our results indicate that MCMV significantly alters the immunometabolic phenotypic properties of BV-2 microglia cells through the manipulation of iNOS and Arg-1 expression patterns, along with an induction of a glycolytic shift in the infected cell cultures.
Collapse
MESH Headings
- Animals
- Arginase/genetics
- Arginase/immunology
- Cell Line
- Culture Media, Serum-Free/pharmacology
- Embryo, Mammalian
- Fibroblasts/immunology
- Fibroblasts/virology
- Gene Expression Regulation
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/immunology
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Mannose Receptor
- Mannose-Binding Lectins/deficiency
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Mice
- Mice, Inbred BALB C
- Microglia/immunology
- Microglia/virology
- Models, Biological
- Muromegalovirus/genetics
- Muromegalovirus/growth & development
- Muromegalovirus/metabolism
- Nitric Oxide Synthase Type II/deficiency
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/immunology
- Primary Cell Culture
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Natalia Kučić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia.
| | - Valentino Rački
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Kristina Jurdana
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Kristina Grabušić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, Rijeka, Croatia
| |
Collapse
|
13
|
Congenital Cytomegalovirus Infection Alters Olfaction Before Hearing Deterioration In Mice. J Neurosci 2018; 38:10424-10437. [PMID: 30341181 DOI: 10.1523/jneurosci.0740-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
In developed countries, cytomegalovirus (CMV)-infected newborns are at high risk of developing sensorineural handicaps such as hearing loss, requiring extensive follow-up. However, early prognostic tools for auditory damage in children are not yet available. In the fetus, CMV infection leads to early olfactory bulb (OB) damage, suggesting that olfaction might represent a valuable prognosis for neurological outcome of this viral infection. Here, we demonstrate that in utero CMV inoculation causes fetal infection and growth retardation in mice of both sexes. It disrupts OB normal development, leading to disproportionate OB cell layers and rapid major olfactory deficits. Olfaction is impaired as early as day 6 after birth in both sexes, long before the emergence of auditory deficits. Olfactometry in males reveals a long-lasting alteration in olfactory perception and discrimination, particularly in binary mixtures of monomolecular odorants. Although sensory inputs to the OB remain unchanged, hallmarks of autophagy are increased in the OB of 3-postnatal week-old mice, leading to local neuroinflammation and loss of neurons expressing tyrosine hydroxylase and calbindin. At the cellular level, we found CMV-infected cells and an increased number of apoptotic cells scattered throughout the OB layers, whereas cell proliferation in the neurogenic subventricular zone was decreased. These cellular observations were long-lasting, persisting up to 16 weeks after birth in both males and females and thus providing a mechanism supporting olfactory loss. Despite obvious differences in neurogenesis between human and mouse, these findings offer new strategies aimed at early detection of neurological dysfunctions caused by congenital infections.SIGNIFICANCE STATEMENT In developed countries, congenital cytomegalovirus (CMV)-infected newborns are at high risk of developing sensory handicaps such as hearing loss, thus requiring prolonged follow-up. In this study, we describe for the first time the functional impact of congenital CMV infection on the olfactory system and its associated sense of smell. We demonstrate that a mouse model of congenital CMV infection shows defects in olfactory bulb (OB) normal development and pronounced olfactory deficits affecting acuity and discrimination of odorants. These major olfactory deficits occur long before the emergence of auditory deficits through the upregulation of OB autophagy inducing local neuroinflammation and altered neuron content. Our findings provide new opportunities for designing olfactory means to monitor the possible neurological outcome during congenital CMV infection.
Collapse
|
14
|
Cloarec R, Bauer S, Teissier N, Schaller F, Luche H, Courtens S, Salmi M, Pauly V, Bois E, Pallesi-Pocachard E, Buhler E, Michel FJ, Gressens P, Malissen M, Stamminger T, Streblow DN, Bruneau N, Szepetowski P. In Utero Administration of Drugs Targeting Microglia Improves the Neurodevelopmental Outcome Following Cytomegalovirus Infection of the Rat Fetal Brain. Front Cell Neurosci 2018; 12:55. [PMID: 29559892 PMCID: PMC5845535 DOI: 10.3389/fncel.2018.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
Congenital cytomegalovirus (CMV) infections represent one leading cause of neurodevelopmental disorders. Recently, we reported on a rat model of CMV infection of the developing brain in utero, characterized by early and prominent infection and alteration of microglia-the brain-resident mononuclear phagocytes. Besides their canonical function against pathogens, microglia are also pivotal to brain development. Here we show that CMV infection of the rat fetal brain recapitulated key postnatal phenotypes of human congenital CMV including increased mortality, sensorimotor impairment reminiscent of cerebral palsy, hearing defects, and epileptic seizures. The possible influence of early microglia alteration on those phenotypes was then questioned by pharmacological targeting of microglia during pregnancy. One single administration of clodronate liposomes in the embryonic brains at the time of CMV injection to deplete microglia, and maternal feeding with doxycyxline throughout pregnancy to modify microglia in the litters' brains, were both associated with dramatic improvements of survival, body weight gain, sensorimotor development and with decreased risk of epileptic seizures. Improvement of microglia activation status did not persist postnatally after doxycycline discontinuation; also, active brain infection remained unchanged by doxycycline. Altogether our data indicate that early microglia alteration, rather than brain CMV load per se, is instrumental in influencing survival and the neurological outcomes of CMV-infected rats, and suggest that microglia might participate in the neurological outcome of congenital CMV in humans. Furthermore this study represents a first proof-of-principle for the design of microglia-targeted preventive strategies in the context of congenital CMV infection of the brain.
Collapse
Affiliation(s)
- Robin Cloarec
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France.,Neurochlore, Marseille, France
| | - Sylvian Bauer
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France
| | - Natacha Teissier
- French National Institute of Health and Medical Research INSERM U1141, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,PremUP, Paris, France
| | - Fabienne Schaller
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France.,PPGI Platform, INMED, Marseille, France
| | - Hervé Luche
- Centre National de la Recherche Scientifique CNRS UMS3367, CIPHE (Centre D'Immunophénomique), French National Institute of Health and Medical Research INSERM US012, PHENOMIN, Aix-Marseille University, Marseille, France
| | - Sandra Courtens
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France
| | - Manal Salmi
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France
| | - Vanessa Pauly
- Laboratoire de Santé Publique EA 3279, Faculté de Médecine Centre d'Evaluation de la Pharmacodépendance-Addictovigilance de Marseille (PACA-Corse) Associé, Aix-Marseille University, Marseille, France
| | - Emilie Bois
- French National Institute of Health and Medical Research INSERM U1141, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,PremUP, Paris, France
| | - Emilie Pallesi-Pocachard
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France.,PBMC platform, INMED, Marseille, France
| | - Emmanuelle Buhler
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France.,PPGI Platform, INMED, Marseille, France
| | - François J Michel
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France.,InMAGIC platform, INMED, Marseille, France
| | - Pierre Gressens
- French National Institute of Health and Medical Research INSERM U1141, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,PremUP, Paris, France
| | - Marie Malissen
- Centre National de la Recherche Scientifique CNRS UMS3367, CIPHE (Centre D'Immunophénomique), French National Institute of Health and Medical Research INSERM US012, PHENOMIN, Aix-Marseille University, Marseille, France
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Nadine Bruneau
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France
| | - Pierre Szepetowski
- INMED, French National Institute of Health and Medical Research INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
15
|
Abstract
BACKGROUND Human cytomegalovirus (HCMV) infection is very common and latency can be reactivated in the future. And it can alter the intracellular environment, similar to other herpesviruses, for viral replication and survival. The aim of this study was to investigate the influence of HCMV infection on autophagy in human acute monocytic leukemia cell line (THP-1 cells). METHODS Reverse transcription polymerase chain reaction (RT-PCR), western blot, and transmission electron microscope (TEM) were used to examine autophagy level. The concentrations of autophagy-related proteins Beclin 1, Atg5, and the light chain three (LC3) were counted when compared with actin level. RESULTS The expression levels of Beclin1, Atg5, and LC3II mRNAs increased gradually between 1 and 5 days(d) postinfection (p.i.) and subsequently decreased little by little when compared with the control THP-1 cells. However, results of western blot analysis displayed that the level of LC3II increased gradually after 1 day p.i. and decreased at 7 days after infection. But the levels of Atg5 and Beclin1 increased gradually after 2 days p.i. and began to decrease at 5 days after infection, respectively. CONCLUSION These results suggested that HCMV infection can facilitate the autophagy and autophagy level may decrease in latent phase. More studies on the relationship between HCMV latency and autophagy are needed to determine the role of autophagy in HCMV latent infection that may help find out a therapeutic approach for clinical treatment.
Collapse
|
16
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
17
|
Brument S, Cheneau C, Brissonnet Y, Deniaud D, Halary F, Gouin SG. Polymeric mannosides prevent DC-SIGN-mediated cell-infection by cytomegalovirus. Org Biomol Chem 2017; 15:7660-7671. [DOI: 10.1039/c7ob01569k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dextrans coated with triazolylheptylmannoside ligands block human cytomegalovirus trans-infection at picomolar polymer concentrations.
Collapse
Affiliation(s)
- S. Brument
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - C. Cheneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064
- INSERM
- Université de Nantes
- Nantes
- France
| | - Y. Brissonnet
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - D. Deniaud
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - F. Halary
- Centre de Recherche en Transplantation et Immunologie UMR 1064
- INSERM
- Université de Nantes
- Nantes
- France
| | - S. G. Gouin
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| |
Collapse
|