1
|
Sendra-Pérez C, Priego-Quesada JI, Murias JM, Carpes FP, Salvador-Palmer R, Encarnación-Martínez A. Evaluation of leg symmetry in muscle oxygen saturation during submaximal to maximal cycling exercise. Eur J Sport Sci 2025; 25:e12230. [PMID: 39632540 DOI: 10.1002/ejsc.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/08/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
It is unclear whether physiological responses, such as muscle oxygen saturation (SmO2), can be considered symmetrical during cycling. This knowledge has important practical implications for both training and performance assessment. The aim of this study was to determine whether oxygenation profiles in the three active muscles of both legs were symmetrical during cycling at different intensities. Twenty-six trained cyclists and triathletes completed a graded exercise test (GXT) and an 8-min functional threshold power estimation test (8MTT) on a cycle ergometer over two nonconsecutive days. SmO2 was bilaterally assessed using NIRS technology in the vastus lateralis, gastrocnemius medialis, and tibialis anterior. Symmetry was compared between legs in both tests, and reliability and agreement between the measurements were quantified. The main results were that SmO2 in the three muscles assessed did not differ between legs during the GXT and 8MTT (p > 0.05). Reliability of the measures was poor to good in the vastus lateralis (ICC = 0.83-0.37), moderate to excellent in the tibialis anterior (ICC = 0.92-0.73), and poor to good for the gastrocnemius medialis (ICC = 0.80-0.24). Overall, the group variability in SmO2 showed a narrower distribution at lower intensities, with data dispersion increasing at higher intensities. In conclusion, the SmO2 was similar and showed symmetrical responses in both the preferred and nonpreferred limb in different muscles assessed during cycling at different intensities within a range of 10%-20%. Although individual physiological differences that might be relevant in some clinical/performance settings should not be disregarded, these findings indicate that measuring a single lower limb provides an accurate approximation of the responses in both lower limbs.
Collapse
Affiliation(s)
- Carlos Sendra-Pérez
- Department of Physical Education and Sports, Research Group in Sports Biomechanics (GIBD), Universitat de València, Valencia, Spain
- Department of Education and Specific Didactics, Jaume I University, Castellon, Spain
| | - Jose I Priego-Quesada
- Department of Physical Education and Sports, Research Group in Sports Biomechanics (GIBD), Universitat de València, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
- Department of Physiology, Biophysics and Medical Physics Group, Universitat de València, Valencia, Spain
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Felipe P Carpes
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rosario Salvador-Palmer
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
- Department of Physiology, Biophysics and Medical Physics Group, Universitat de València, Valencia, Spain
| | - Alberto Encarnación-Martínez
- Department of Physical Education and Sports, Research Group in Sports Biomechanics (GIBD), Universitat de València, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
| |
Collapse
|
2
|
Sendra-Pérez C, Encarnacion-Martinez A, Salvador-Palmer R, Murias JM, Priego-Quesada JI. Profiles of muscle-specific oxygenation responses and thresholds during graded cycling incremental test. Eur J Appl Physiol 2024:10.1007/s00421-024-05593-1. [PMID: 39259396 DOI: 10.1007/s00421-024-05593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Compared to the determination of exercise thresholds based on systemic changes in blood lactate concentrations or gas exchange data, the determination of breakpoints based on muscle oxygen saturation offers a valid alternative to provide specific information on muscle-derived thresholds. Our study explored the profiles and timing of the second muscle oxygenation threshold (MOT2) in different muscles. Twenty-six cyclists and triathletes (15 male: age = 23 ± 7 years, height = 178 ± 5 cm, body mass = 70.2 ± 5.3 kg; 11 female: age = 22 ± 4 years, height = 164 ± 4 cm, body mass = 58.3 ± 8.1 kg) performed a graded exercise test (GXT), on a cycle ergometer. Power output, blood lactate concentration, heart rate, rating of perceived exertion, skinfolds and muscle oxygen saturation were registered in five muscles (vastus lateralis, biceps femoris, gastrocnemius medialis, tibialis anterior and triceps brachii) and percentage at which MOT2 occurred for each muscle was determinated using the Exponential Dmax. The results of Statistical Parametric Mapping and ANOVA showed that, although muscle oxygenation displayed different profiles in each muscle during a GXT, MOT2 occurred at a similar percentage of the GXT in each muscle (77% biceps femoris, 75% tibalis anterior, 76% gastrocnemius medialis and 72% vastus lateralis) and it was similar that systemic threshold (73% of the GXT). In conclusion, this study showed different profiles of muscle oxygen saturation in different muscles, but without notable differences in the timing for MOT2 and concordance with systemic threshold. Finally, we suggest the analysis of the whole signal and not to simplify it to a breakpoint.
Collapse
Affiliation(s)
- Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain
| | - Alberto Encarnacion-Martinez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain.
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain.
| | - Rosario Salvador-Palmer
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Jose I Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| |
Collapse
|
3
|
Hasegawa J, Azevedo R, Silveira A, Lima-Silva A, Bertuzzi R. Wearable near-infrared spectroscopy: reliability and sensitivity among different endurance cycling exercise intensities. Braz J Med Biol Res 2024; 57:e13102. [PMID: 38451607 PMCID: PMC10913389 DOI: 10.1590/1414-431x2024e13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The present study investigated the reliability and sensitivity of a wearable near-infrared spectroscopy (wNIRS) device in moderate and heavy exercise intensity domains. On three separate days, eleven males performed an incremental test to exhaustion, and in the following visits, four submaximal constant-load bouts (i.e., test and retest) were performed in the moderate-intensity domain (100 and 130 W) and heavy-intensity domain (160 and 190 W). The local tissue oxygen saturation index (SmO2) and pulmonary oxygen uptake (V̇O2) were measured continuously. The absolute SmO2 and V̇O2 values and the change (Δ) from the 3rd to 6th min of exercise were calculated. There was good reliability for SmO2 measurements, as indicated by the high intraclass correlation coefficient analysis (ICC ≥0.84 for all) and low coefficient of variation between the two trials (CV ≤4.1% for all). Steady-state responses were observed for SmO2 and V̇O2 from the 3rd to the 6th min in the two moderate-intensity bouts (P>0.05), whereas SmO2 decreased and V̇O2 increased from the 3rd to the 6th min in the two heavy-intensity bouts (P<0.05). Together, these findings suggested that the SmO2 measured with a wNIRS device is reliable and sensitive to track local metabolic changes provoked by slight increments in exercise intensity.
Collapse
Affiliation(s)
- J.S. Hasegawa
- Grupo de Estudos em Aptidão Aeróbia, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R.A. Azevedo
- Grupo de Estudos em Aptidão Aeróbia, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A.C. Silveira
- Grupo de Estudos em Aptidão Aeróbia, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A.E. Lima-Silva
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| | - R. Bertuzzi
- Grupo de Estudos em Aptidão Aeróbia, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Reinpõld K, Rannama I, Port K. Agreement between Ventilatory Thresholds and Bilaterally Measured Vastus Lateralis Muscle Oxygen Saturation Breakpoints in Trained Cyclists: Effects of Age and Performance. Sports (Basel) 2024; 12:40. [PMID: 38393260 PMCID: PMC10892087 DOI: 10.3390/sports12020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study focused on comparing metabolic thresholds derived from local muscle oxygen saturation (SmO2) signals, obtained using near-infrared spectroscopy (NIRS), with global pulmonary ventilation rates measured at the mouth. It was conducted among various Age Groups within a well-trained cyclist population. Additionally, the study examined how cycling performance characteristics impact the discrepancies between ventilatory thresholds (VTs) and SmO2 breakpoints (BPs). METHODS Junior (n = 18) and Senior (n = 15) cyclists underwent incremental cycling tests to assess their aerobic performance and to determine aerobic (AeT) and anaerobic (AnT) threshold characteristics through pulmonary gas exchange and changes in linearity of the vastus lateralis (VL) muscle SmO2 signals. We compared the relative power (Pkg) at ventilatory thresholds (VTs) and breakpoints (BPs) for the nondominant (ND), dominant (DO), and bilaterally averaged (Avr) SmO2 during the agreement analysis. Additionally, a 30 s sprint test was performed to estimate anaerobic performance capabilities and to assess the cyclists' phenotype, defined as the ratio of P@VT2 to the highest 5 s sprint power. RESULTS The Pkg@BP for Avr SmO2 had higher agreement with VT values than ND and DO. Avr SmO2 Pkg@BP1 was lower (p < 0.05) than Pkg@VT1 (mean bias: 0.12 ± 0.29 W/kg; Limits of Agreement (LOA): -0.45 to 0.68 W/kg; R2 = 0.72) and mainly among Seniors (0.21 ± 0.22 W/kg; LOA: -0.22 to 0.63 W/kg); there was no difference (p > 0.05) between Avr Pkg@BP2 and Pkg@VT2 (0.03 ± 0.22 W/kg; LOA: -0.40 to 0.45 W/kg; R2 = 0.86). The bias between two methods correlated significantly with the phenotype (r = -0.385 and r = -0.515 for AeT and AnT, respectively). CONCLUSIONS Two breakpoints can be defined in the NIRS-captured SmO2 signal of VL, but the agreement between the two methods at the individual level was too low for interchangeable usage of those methods in the practical training process. Older cyclists generally exhibited earlier thresholds in muscle oxygenation signals compared to systemic responses, unlike younger cyclists who showed greater variability and no significant differences in this regard in bias values between the two threshold evaluation methods with no significant difference between methods. More sprinter-type cyclists tended to have systemic VT thresholds earlier than local NIRS-derived thresholds than athletes with relatively higher aerobic abilities.
Collapse
Affiliation(s)
- Karmen Reinpõld
- School of Natural Sciences and Health, University of Tallinn, 10120 Tallinn, Estonia; (I.R.); (K.P.)
| | | | | |
Collapse
|
5
|
Maliszewski K, Feldmann A, McCully KK, Julian R. A systematic review of the relationship between muscle oxygen dynamics and energy rich phosphates. Can NIRS help? BMC Sports Sci Med Rehabil 2024; 16:25. [PMID: 38245757 PMCID: PMC10799478 DOI: 10.1186/s13102-024-00809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Phosphocreatine dynamics provide the gold standard evaluation of in-vivo mitochondrial function and is tightly coupled with oxygen availability. Low mitochondrial oxidative capacity has been associated with health issues and low exercise performance. METHODS To evaluate the relationship between near-infrared spectroscopy-based muscle oxygen dynamics and magnetic resonance spectroscopy-based energy-rich phosphates, a systematic review of the literature related to muscle oxygen dynamics and energy-rich phosphates was conducted. PRISMA guidelines were followed to perform a comprehensive and systematic search of four databases on 02-11-2021 (PubMed, MEDLINE, Scopus and Web of Science). Beforehand pre-registration with the Open Science Framework was performed. Studies had to include healthy humans aged 18-55, measures related to NIRS-based muscle oxygen measures in combination with energy-rich phosphates. Exclusion criteria were clinical populations, laboratory animals, acutely injured subjects, data that only assessed oxygen dynamics or energy-rich phosphates, or grey literature. The Effective Public Health Practice Project Quality Assessment Tool was used to assess methodological quality, and data extraction was presented in a table. RESULTS Out of 1483 records, 28 were eligible. All included studies were rated moderate. The studies suggest muscle oxygen dynamics could indicate energy-rich phosphates under appropriate protocol settings. CONCLUSION Arterial occlusion and exercise intensity might be important factors to control if NIRS application should be used to examine energetics. However, more research needs to be conducted without arterial occlusion and with high-intensity exercises to support the applicability of NIRS and provide an agreement level in the concurrent course of muscle oxygen kinetics and muscle energetics. TRIAL REGISTRATION https://osf.io/py32n/ . KEY POINTS 1. NIRS derived measures of muscle oxygenation agree with gold-standard measures of high energy phosphates when assessed in an appropriate protocol setting. 2. At rest when applying the AO protocol, in the absence of muscle activity, an initial disjunction between the NIRS signal and high energy phosphates can been seen, suggesting a cascading relationship. 3. During exercise and recovery a disruption of oxygen delivery is required to provide the appropriate setting for evaluation through either an AO protocol or high intensity contractions.
Collapse
Affiliation(s)
- Kevin Maliszewski
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, 48149, Germany
| | - Andri Feldmann
- Institute of Sport Science, University of Bern, Bern, Switzerland
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, USA
| | - Ross Julian
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, 48149, Germany.
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, England.
| |
Collapse
|
6
|
Sendra-Pérez C, Encarnación-Martínez A, Oficial-Casado F, Salvador-Palmer R, Priego-Quesada JI. A comparative analysis of mathematical methods for detecting lactate thresholds using muscle oxygenation data during a graded cycling test. Physiol Meas 2023; 44:125013. [PMID: 38081136 DOI: 10.1088/1361-6579/ad1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Objective. Threshold determination for improving training and sports performance is important for researchers and trainers, who currently use different methods for determining lactate, ventilatory or muscle oxygenation (SmO2) thresholds. Our study aimed to compare the identification of the intensity at the first and second thresholds using lactate and SmO2data by different mathematical methods in different muscles during a graded cycling test.Approach. Twenty-six cyclists (15 males and 11 females; 23 ±6 years, 1.71 ± 0.09 m, 64.3 ± 8.8 Kg and 12 ± 3 training hours per week) performed a graded test on the cycle ergometer. Power output and saturation of muscle oxygen in four muscles (vastus lateralis, biceps femoris, gastrocnemius and tibialis anterior) were measured, along with systemic lactate concentration.Main Results. Our results showed that any method was reliable for determining the first muscle oxygenation threshold (MOT1) when comparing the lactate threshold in any muscle. However, the best method for determining the second muscle oxygenation threshold (MOT2) was the Exp-Dmax (p< 0.01; ICC = 0.79-0.91) in all muscles. In particular, the vastus lateralis muscle showed the highest intraclass correlation coefficient (ICC = 0.91, CI95% [0.81, 0.96]). However, results varied per sex across all muscles analyzed.Significance. Although the first muscle oxygenation threshold could not be determined using mathematical methods in all the muscles analyzed, the Exp-Dmax method presented excellent results in detecting the second systemic threshold in the vastus lateralis.
Collapse
Affiliation(s)
- Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
| | - Alberto Encarnación-Martínez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Ontinyent (Valencia), Spain
| | - Fran Oficial-Casado
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
| | - Rosario Salvador-Palmer
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Ontinyent (Valencia), Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| | - Jose I Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Ontinyent (Valencia), Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| |
Collapse
|
7
|
Sendra-Pérez C, Priego-Quesada JI, Salvador-Palmer R, Murias JM, Encarnacion-Martinez A. Sex-related differences in profiles of muscle oxygen saturation of different muscles in trained cyclists during graded cycling exercise. J Appl Physiol (1985) 2023; 135:1092-1101. [PMID: 37732376 DOI: 10.1152/japplphysiol.00420.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/22/2023] Open
Abstract
Although in recent years near-infrared spectroscopy has been used in many sports to monitor muscle oxygen saturation (SmO2), there is a lack of knowledge about the sex differences in SmO2 during exercise in different muscles. Our study aimed to examine SmO2 differences in muscles between female and male cyclists, during a graded cycling test and at the first and second lactate thresholds. Twenty-five trained cyclists and triathletes (15 males: 23 ± 7 yr, 1.78 ± 0.05 m, 70.2 ± 5.3 kg, and 10 females: 22 ± 5 yr, 1.64 ± 0.06 m, 58 ± 8 kg) performed a graded cycling test on the cycle ergometer. Power output and SmO2 in five muscles (dominant vastus lateralis, tibialis anterior, gastrocnemius medial, biceps femoris, and triceps brachii) were measured. Our mixed regression models showed that the interaction between power output and sex was significant for all the muscles analyzed (P < 0.001), indicating a greater decrease in SmO2 for males as power output increased. Moreover, the statistical parametric mapping analyses showed for females higher SmO2 in the middle of the test in biceps femoris (P = 0.03), gastrocnemius medial (P = 0.02), and tibialis anterior (P = 0.04). Finally, the males presented a lower SmO2 in all muscles where the second lactate threshold occurred, with greater evidence than in the first lactate threshold. In conclusion, females have higher SmO2 in all muscles, and these differences are more noticeable during the graded cycling test, such that males seem to have a greater reliance on oxygen extraction than females for a given relative intensity of exercise.NEW & NOTEWORTHY This study investigated the profiles of muscle oxygen saturation (SmO2) during incremental exercise in females and males. Females presented higher overall SmO2 than males during moderate and heavy intensity domain exercise in all muscles including muscles that are not mainly involved in pedaling (triceps brachii), from those that are stabilizers (medial gastrocnemius, tibialis anterior, and biceps femoris), to those that are related to power output production (vastus lateralis).
Collapse
Affiliation(s)
- Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
| | - Jose I Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| | - Rosario Salvador-Palmer
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Alberto Encarnacion-Martinez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
| |
Collapse
|
8
|
Whyte E, Thomas S, Marzolini S. Muscle oxygenation of the paretic and nonparetic legs during and after exercise in chronic stroke: Implications for mobility. PM R 2023; 15:1239-1248. [PMID: 36459570 DOI: 10.1002/pmrj.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Oxygen delivery and demand are reduced in the paretic leg of individuals after stroke. However, it is unknown how muscle oxygenation, the balance between delivery and utilization of oxygen at the muscle, is altered post-stroke during aerobic exercise and how it relates to mobility. OBJECTIVE To monitor muscle oxygenation changes between the paretic and nonparetic legs of individuals after stroke during treadmill exercise and the 6-minute walk test and analyze the association with mobility. DESIGN Cross-sectional study. SETTING Cardiac rehabilitation program. PATIENTS Eleven male participants were enrolled in the study. Ten men (30.8 ± 4.1 months post-stroke; age 63.9 ± 13.9 years) with hemiparetic gait pattern finished the study. METHODS OR INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Muscle oxygenation was measured with near-infrared spectroscopy placed on the vastus lateralis of each leg during treadmill exercise at the first ventilatory threshold and during a 6-minute walk test. RESULTS The desaturation slope during treadmill exercise was significantly steeper (p = .047) in the paretic (-0.7 ± 0.6%/s) compared to the nonparetic leg (-0.3 ± 0.2%/s). There was no other significant difference between legs. The 6-minute walk test distance was not correlated with 6-minute walk test muscle oxygenation in either leg (paretic: r = 0.20, p = 0.590; nonparetic: r = 0.42, p = .232). CONCLUSIONS At the onset of treadmill exercise, the paretic leg was unable to effectively match the oxygen demand and extraction of the nonparetic leg, suggesting the need for an immediate cardiovascular warmup prior to initiating moderate intensity exercise in this population. Because the exercise desaturation rate is thought to indicate increased anaerobic metabolism and lactate production, efforts to delay rapid desaturation could improve the sustainability of activities of daily living and exercise.
Collapse
Affiliation(s)
- Elizabeth Whyte
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
| | - Scott Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Susan Marzolini
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Venkatraman A, Fujiki RB, Sivasankar MP. A Review of Factors Associated with Voice Problems in the Fitness Instructor Population. J Voice 2023; 37:805.e13-805.e17. [PMID: 34154914 DOI: 10.1016/j.jvoice.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
There is a high prevalence of reported dysphonia symptomology in the fitness instructor population. This is concerning as these reported symptoms of dysphonia, aphonia, and vocal fatigue can significantly compromise quality of life. The purpose of this review is to explore key factors that may contribute to voice problems in the fitness instructor population. Voicing with concurrent phonation and exercise may be influenced by (1) the increased cardiovascular requirement during exercise, (2) the increased cognitive load associated with dual tasking, (3) the altered hydration state associated with prolonged exercise, and (4) the phonatory dose associated with continued voicing with loud background music. This manuscript will explore the literature on these key factors (ie, phonatory dose, dehydration, metabolic bioenergetics, cognitive load, and psychosocial stress) as they pertain to fitness instructors.
Collapse
Affiliation(s)
- Anumitha Venkatraman
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA.
| | - Robert Brinton Fujiki
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - M Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Sendra-Pérez C, Sanchez-Jimenez JL, Marzano-Felisatti JM, Encarnación-Martínez A, Salvador-Palmer R, Priego-Quesada JI. Reliability of threshold determination using portable muscle oxygenation monitors during exercise testing: a systematic review and meta-analysis. Sci Rep 2023; 13:12649. [PMID: 37542055 PMCID: PMC10403529 DOI: 10.1038/s41598-023-39651-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Over the last few years, portable Near-Infrared Spectroscopy (NIRS) technology has been suggested for determining metabolic/ventilator thresholds. This systematic review and meta-analysis aimed to assess the reliability of a portable muscle oxygenation monitor for determining thresholds during exercise testing. The proposed PICO question was: Is the exercise intensity of muscle oxygenation thresholds, using portable NIRS, reliable compared with lactate and ventilatory thresholds for exercise intensity determined in athletes? A search of Pubmed, Scopus and Web of Science was undertaken and the review was conducted following PRISMA guidelines. Fifteen articles were included. The domains which presented the highest biases were confounders (93% with moderate or high risk) and participant selection (100% with moderate or high risk). The intra-class correlation coefficient between exercise intensity of the first ventilatory or lactate threshold and the first muscle oxygenation threshold was 0.53 (obtained with data from only 3 studies), whereas the second threshold was 0.80. The present work shows that although a portable muscle oxygenation monitor has moderate to good reliability for determining the second ventilatory and lactate thresholds, further research is necessary to investigate the mathematical methods of detection, the capacity to detect the first threshold, the detection in multiple regions, and the effect of sex, performance level and adipose tissue in determining thresholds.
Collapse
Affiliation(s)
- Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, C/Gascó Oliag, 3, 46010, Valencia, Spain
| | - Jose Luis Sanchez-Jimenez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, C/Gascó Oliag, 3, 46010, Valencia, Spain
| | - Joaquín Martín Marzano-Felisatti
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, C/Gascó Oliag, 3, 46010, Valencia, Spain
| | - Alberto Encarnación-Martínez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, C/Gascó Oliag, 3, 46010, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Facultad de Ciencias de la Actividad Física y del Deporte, Campus d'Ontinyent, Laboratorio Biomecánica, Avda. Conde de Torrefiel n° 22, 46870, Ontinyent, Spain
| | - Rosario Salvador-Palmer
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Facultad de Ciencias de la Actividad Física y del Deporte, Campus d'Ontinyent, Laboratorio Biomecánica, Avda. Conde de Torrefiel n° 22, 46870, Ontinyent, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Faculty of Medicine and Odontology, Avd. Blasco Ibañez 15, 46010, Valencia, Spain
| | - Jose I Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, C/Gascó Oliag, 3, 46010, Valencia, Spain.
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Facultad de Ciencias de la Actividad Física y del Deporte, Campus d'Ontinyent, Laboratorio Biomecánica, Avda. Conde de Torrefiel n° 22, 46870, Ontinyent, Spain.
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Faculty of Medicine and Odontology, Avd. Blasco Ibañez 15, 46010, Valencia, Spain.
| |
Collapse
|
11
|
Yogev A, Arnold J, Nelson H, Clarke DC, Guenette JA, Sporer BC, Koehle MS. Comparing the reliability of muscle oxygen saturation with common performance and physiological markers across cycling exercise intensity. Front Sports Act Living 2023; 5:1143393. [PMID: 37601168 PMCID: PMC10436610 DOI: 10.3389/fspor.2023.1143393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Wearable near-infrared spectroscopy (NIRS) measurements of muscle oxygen saturation (SmO2) demonstrated good test-retest reliability at rest. We hypothesized SmO2 measured with the Moxy monitor at the vastus lateralis (VL) would demonstrate good reliability across intensities. For relative reliability, SmO2 will be lower than volume of oxygen consumption (V̇O2) and heart rate (HR), higher than concentration of blood lactate accumulation ([BLa]) and rating of perceived exertion (RPE). We aimed to estimate the reliability of SmO2 and common physiological measures across exercise intensities, as well as to quantify within-participant agreement between sessions. Methods Twenty-one trained cyclists completed two trials of an incremental multi-stage cycling test with 5 min constant workload steps starting at 1.0 watt per kg bodyweight (W·kg-1) and increasing by 0.5 W kg-1 per step, separated by 1 min passive recovery intervals until maximal task tolerance. SmO2, HR, V̇O2, [BLa], and RPE were recorded for each stage. Continuous measures were averaged over the final 60 s of each stage. Relative reliability at the lowest, median, and highest work stages was quantified as intraclass correlation coefficient (ICC). Absolute reliability and within-subject agreement were quantified as standard error of the measurement (SEM) and minimum detectable change (MDC). Results Comparisons between trials showed no significant differences within each exercise intensity for all outcome variables. ICC for SmO2 was 0.81-0.90 across exercise intensity. ICC for HR, V̇O2, [BLa], and RPE were 0.87-0.92, 0.73-0.97, 0.44-0.74, 0.29-0.70, respectively. SEM (95% CI) for SmO2 was 5 (3-7), 6 (4-9), and 7 (5-10)%, and MDC was 12%, 16%, and 18%. Discussion Our results demonstrate good-to-excellent test-retest reliability for SmO2 across intensity during an incremental multi-stage cycling test. V̇O2 and HR had excellent reliability, higher than SmO2. [BLa] and RPE had lower reliability than SmO2. Muscle oxygen saturation measured by wearable NIRS was found to have similar reliability to V̇O2 and HR, and higher than [BLa] and RPE across exercise intensity, suggesting that it is appropriate for everyday use as a non-invasive method of monitoring internal load alongside other metrics.
Collapse
Affiliation(s)
- Assaf Yogev
- Environmental Physiology Laboratory, The University of British Columbia, School of Kinesiology, Vancouver, BC, Canada
| | - Jem Arnold
- Environmental Physiology Laboratory, The University of British Columbia, School of Kinesiology, Vancouver, BC, Canada
| | - Hannah Nelson
- Environmental Physiology Laboratory, The University of British Columbia, School of Kinesiology, Vancouver, BC, Canada
| | - David C. Clarke
- Department of Biomedical Physiology and Kinesiology and Sports Analytics Group, Simon Fraser University, Burnaby, BC, Canada
| | - Jordan A. Guenette
- Deptartment of Physical Therapy, The University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Research, The University of British Columbia and St. Paul’s Hospital, Vancouver, BC, Canada
| | - Ben C. Sporer
- Department of Family Practice, Vancouver Whitecaps FC, Vancouver, BC, Canada
- Division of Sport & Exercise Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Koehle
- Environmental Physiology Laboratory, The University of British Columbia, School of Kinesiology, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology and Sports Analytics Group, Simon Fraser University, Burnaby, BC, Canada
- Division of Sport & Exercise Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Zhao F, Tomita M, Dutta A. Operational Modal Analysis of Near-Infrared Spectroscopy Measure of 2-Month Exercise Intervention Effects in Sedentary Older Adults with Diabetes and Cognitive Impairment. Brain Sci 2023; 13:1099. [PMID: 37509027 PMCID: PMC10377417 DOI: 10.3390/brainsci13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Global Burden of Disease Study (GBD 2019 Diseases and Injuries Collaborators) found that diabetes significantly increases the overall burden of disease, leading to a 24.4% increase in disability-adjusted life years. Persistently high glucose levels in diabetes can cause structural and functional changes in proteins throughout the body, and the accumulation of protein aggregates in the brain that can be associated with the progression of Alzheimer's Disease (AD). To address this burden in type 2 diabetes mellitus (T2DM), a combined aerobic and resistance exercise program was developed based on the recommendations of the American College of Sports Medicine. The prospectively registered clinical trials (NCT04626453, NCT04812288) involved two groups: an Intervention group of older sedentary adults with T2DM and a Control group of healthy older adults who could be either active or sedentary. The completion rate for the 2-month exercise program was high, with participants completing on an average of 89.14% of the exercise sessions. This indicated that the program was practical, feasible, and well tolerated, even during the COVID-19 pandemic. It was also safe, requiring minimal equipment and no supervision. Our paper presents portable near-infrared spectroscopy (NIRS) based measures that showed muscle oxygen saturation (SmO2), i.e., the balance between oxygen delivery and oxygen consumption in muscle, drop during bilateral heel rise task (BHR) and the 6 min walk task (6MWT) significantly (p < 0.05) changed at the post-intervention follow-up from the pre-intervention baseline in the T2DM Intervention group participants. Moreover, post-intervention changes from pre-intervention baseline for the prefrontal activation (both oxyhemoglobin and deoxyhemoglobin) showed statistically significant (p < 0.05, q < 0.05) effect at the right superior frontal gyrus, dorsolateral, during the Mini-Cog task. Here, operational modal analysis provided further insights into the 2-month exercise intervention effects on the very-low-frequency oscillations (<0.05 Hz) during the Mini-Cog task that improved post-intervention in the sedentary T2DM Intervention group from their pre-intervention baseline when compared to active healthy Control group. Then, the 6MWT distance significantly (p < 0.01) improved in the T2DM Intervention group at post-intervention follow-up from pre-intervention baseline that showed improved aerobic capacity and endurance. Our portable NIRS based measures have practical implications at the point of care for the therapists as they can monitor muscle and brain oxygenation changes during physical and cognitive tests to prescribe personalized physical exercise doses without triggering individual stress response, thereby, enhancing vascular health in T2DM.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Machiko Tomita
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN67TS, UK
| |
Collapse
|
13
|
Osmani F, Lago-Fuentes C, Alemany-Iturriaga J, Barcala-Furelos M. The relationship of muscle oxygen saturation analyzer with other monitoring and quantification tools in a maximal incremental treadmill test. Front Physiol 2023; 14:1155037. [PMID: 37275231 PMCID: PMC10232742 DOI: 10.3389/fphys.2023.1155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction: The study aims to explore whether NIRS derived data can be used to identify the second ventilatory threshold (VT2) during a maximal incremental treadmill test in non-professional runners and to determine if there is a correlation between SmO2 and other valid and reliable exercise performance assessment measures or parameters for maximal incremental test, such as lactate concentration (LT), RPE, HR, and running power (W). Methods: 24 participants were recruited for the study (5 women and 19 men). The devices used consisted of the following: i) a muscle oxygen saturation analyzer placed on the vastus lateralis of the right leg, ii) the Stryd power meter for running, iii) the Polar H7 heart rate band; and iv) the lactate analyzer. In addition, a subjective perceived exertion scale (RPE 1-10) was used. All of the previously mentioned devices were used in a maximal incremental treadmill test, which began at a speed of 8 km/h with a 1% slope and a speed increase of 1.2 km/h every 3 min. This was followed by a 30-s break to collect the lactate data between each 3-min stage. Spearman correlation was carried out and the level of significance was set at p < 0.05. Results: The VT2 was observed at 87,41 ± 6,47% of the maximal aerobic speed (MAS) of each participant. No relationship between lactate data and SmO2 values (p = 0.076; r = -0.156) at the VT2 were found. No significant correlations were found between the SmO2 variables and the other variables (p > 0.05), but a high level of significance and strong correlations were found between all the following variables: power data (W), heart rate (HR), lactate concentration (LT) and RPE (p < 0.05; r > 0.5). Discussion: SmO2 data alone were not enough to determine the VT2, and there were no significant correlations between SmO2 and the other studied variables during the maximal incremental treadmill test. Only 8 subjects had a breakpoint at the VT2 determined by lactate data. Conclusion: The NIRS tool, Humon Hex, does not seem to be useful in determining VT2 and it does not correlate with the other variables in a maximal incremental treadmill test.
Collapse
Affiliation(s)
- Florent Osmani
- Faculty of Health Sciences, Universidad Europea del Atlántico, Santander, Spain
| | - Carlos Lago-Fuentes
- Faculty of Health Sciences, Universidad Europea del Atlántico, Santander, Spain
| | - Josep Alemany-Iturriaga
- Faculty of Social Sciences and Humanities, Universidad Europea del Atlántico, Santander, Spain
| | - Martín Barcala-Furelos
- Faculty of Health Sciences, Universidad Europea del Atlántico, Santander, Spain
- Faculty of Social Sciences and Humanities, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
14
|
Ušaj A, Sotiridis A, Debevec T. Cardio-Respiratory and Muscle Oxygenation Responses to Submaximal and Maximal Exercise in Normobaric Hypoxia: Comparison between Children and Adults. BIOLOGY 2023; 12:biology12030457. [PMID: 36979149 PMCID: PMC10044758 DOI: 10.3390/biology12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
As differential physiological responses to hypoxic exercise between adults and children remain poorly understood, we aimed to comprehensively characterise cardiorespiratory and muscle oxygenation responses to submaximal and maximal exercise in normobaric hypoxia between the two groups. Following familiarisation, fifteen children (Age = 9 ± 1 years) and fifteen adults (Age = 22 ± 2 years) completed two graded cycling exercise sessions to exhaustion in a randomized and single-blind manner in normoxia (NOR; FiO2 = 20.9) and normobaric hypoxia (HYP; FiO2 = 13.0) exercises conditions. Age-specific workload increments were 25 W·3 min−1 for children and 40 W·3 min−1 for adults. Gas exchange and vastus lateralis oxygenation parameters were measured continuously via metabolic cart and near-infrared spectroscopy, respectively. Hypoxia provoked significant decreases in maximal power output PMAX (children = 29%; adults 16% (F = 39.3; p < 0.01)) and power output at the gas exchange threshold (children = 10%; adults:18% (F = 8.08; p = 0.01)) in both groups. Comparable changes were noted in most respiratory and gas exchange parameters at similar power outputs between groups. Children, however, demonstrated, lower PETCO2 throughout the test at similar power outputs and during the maintenance of V˙CO2 at the maximal power output. These data indicate that, while most cardiorespiratory responses to acute hypoxic exercise are comparable between children and adults, there exist age-related differential responses in select respiratory and muscle oxygenation parameters.
Collapse
Affiliation(s)
- Anton Ušaj
- Faculty of Sport, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alexandros Sotiridis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
15
|
Yogev A, Arnold J, Nelson H, Clarke DC, Guenette JA, Sporer BC, Koehle MS. The effect of severe intensity bouts on muscle oxygen saturation responses in trained cyclists. Front Sports Act Living 2023; 5:1086227. [PMID: 36909360 PMCID: PMC9995910 DOI: 10.3389/fspor.2023.1086227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) quantifies muscle oxygenation (SmO2) during exercise. Muscle oxygenation response to self-paced, severe-intensity cycling remains unclear. Observing SmO2 can provide cycling professionals with the ability to assess muscular response, helping optimize decision-making. We aimed to describe the effect of self-paced severe intensity bouts on SmO2, measured noninvasively by a wearable NIRS sensor on the vastus lateralis (VL) muscle, and examine its reliability. We hypothesized a greater desaturation response with each bout, whereas, between trials, good reliability would be observed. Fourteen recreationally trained, and trained cyclists completed a ramp test to determine the power output (PO) at the respiratory compensation point (RCP). Athletes completed two subsequent visits of 50-minute sessions that included four severe-intensity bouts done at 5% above RCP PO. Muscle oxygenation in the VL was monitored using a wearable NIRS device. Measures included mean PO, heart-rate (HR), cadence, and SmO2 at bout onset, during work (work SmO2), and ΔSmO2. The bouts were compared using a one-way repeated measures ANOVA. For significant differences, a Fisher's least square difference post-hoc analysis was used. A two-way repeated measures ANOVA was used using trial and bout as main factors. Intraclass correlations (ICC) were used to quantify relative reliability for mean work, and standard error of the measurement (SEM) was used to quantify absolute agreement of mean work SmO2. Both PO and cadence showed no effect of bout or trial. Heart-rate at bout 2 (168 ± 8 bpm) and 4 (170 ± 7 bpm) were higher than bout 1 (160 ± 6 bpm). Onset SmO2 (%) response significantly increased in the final two bouts of the session. Mean work SmO2 increased across bouts, with the highest value displayed in bout 4 (36 ± 22%). ΔSmO2 showed a smaller desaturation response during bout 4 (27 ± 10%) compared to bout 3 (31 ± 10%). Mean work SmO2 ICC showed good reliability (ICC = 0.87), and SEM was 12% (CI 9-15%). We concluded that a non-invasive, affordable, wearable NIRS sensor demonstrated the heterogeneous muscle oxygenation response during severe intensity cycling bouts with good reliability in trained cyclists.
Collapse
Affiliation(s)
- Assaf Yogev
- Environmental Physiology Laboratory, The University of British Columbia, School of Kinesiology, Vancouver, BC, Canada
| | - Jem Arnold
- Environmental Physiology Laboratory, The University of British Columbia, School of Kinesiology, Vancouver, BC, Canada
| | - Hannah Nelson
- Environmental Physiology Laboratory, The University of British Columbia, School of Kinesiology, Vancouver, BC, Canada
| | - David C Clarke
- Department of Biomedical Physiology and Kinesiology and Sports Analytics Group, Simon Fraser University, Burnaby, Canada
| | - Jordan A Guenette
- Deptartment of Physical Therapy, The University of British Columbia, Vancouver, BC, Canada.,Centre for Heart Lung Innovation, Providence Research, The University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | - Ben C Sporer
- Department of Family Practice, Vancouver Whitecaps FC, Vancouver, BC, Canada.,Division of Sports Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Michael S Koehle
- Environmental Physiology Laboratory, The University of British Columbia, School of Kinesiology, Vancouver, BC, Canada.,Department of Biomedical Physiology and Kinesiology and Sports Analytics Group, Simon Fraser University, Burnaby, Canada.,Division of Sports Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Abstract
Pulmonary gas exchange analysis was compared to changes in muscle oxygen saturation as measured by near-infrared spectroscopy. First, ventilatory thresholds determined by common gas exchange analysis and breakpoints in muscle oxygen saturation were assessed for agreement during exercise with increasing intensity. Secondly, the relationship between muscle oxygen saturation as a surrogate for local oxygen extraction and peak oxygen uptake was assessed. In order to lend robustness to future NIRS testing on a broader scale, considering its potential for simple and cost-effective application, the question of a running versus a cycling modality was integrated into the design. Ten participants, of whom five were recreationally trained cyclists and five recreationally trained runners, were tested; each during a cycling test and a running test with increasing intensity to voluntary exhaustion. Muscle oxygen saturation and pulmonary gas exchange measurements were conducted. Bland-Altman analysis showed a moderate degree of agreement between both muscle oxygen saturation breakpoint 1 and muscle oxygen saturation breakpoint 2 and corresponding ventilatory threshold 1 and ventilatory threshold 2, for both cycling and running disciplines; generally speaking, muscle oxygen saturation breakpoints underestimated ventilatory thresholds. Additionally, a strong relationship could be seen between peak oxygen uptake and the minimally attained muscle oxygen saturation during cycling exercise. Muscle oxygen saturation measured using NIRS was determined to be a suitable method to assess ventilatory thresholds by finding breakpoints in muscle oxygen saturation, and muscle oxygen saturation minimum was linked to peak oxygen uptake.
Collapse
|
17
|
Lehtonen E, Gagnon D, Eklund D, Kaseva K, Peltonen JE. Hierarchical framework to improve individualised exercise prescription in adults: a critical review. BMJ Open Sport Exerc Med 2022; 8:e001339. [PMID: 35722045 PMCID: PMC9185660 DOI: 10.1136/bmjsem-2022-001339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 11/04/2022] Open
Abstract
Physical activity (PA) guidelines for the general population are designed to mitigate the rise of chronic and debilitating diseases brought by inactivity and sedentariness. Although essential, they are insufficient as rates of cardiovascular, pulmonary, renal, metabolic and other devastating and life-long diseases remain on the rise. This systemic failure supports the need for an improved exercise prescription approach that targets the individual. Significant interindividual variability of cardiorespiratory fitness (CRF) responses to exercise are partly explained by biological and methodological factors, and the modulation of exercise volume and intensity seem to be key in improving prescription guidelines. The use of physiological thresholds, such as lactate, ventilation, as well as critical power, have demonstrated excellent results to improve CRF in those struggling to respond to the current homogenous prescription of exercise. However, assessing physiological thresholds requires laboratory resources and expertise and is incompatible for a general population approach. A case must be made that balances the effectiveness of an exercise programme to improve CRF and accessibility of resources. A population-wide approach of exercise prescription guidelines should include free and accessible self-assessed threshold tools, such as rate of perceived exertion, where the homeostatic perturbation induced by exercise reflects physiological thresholds. The present critical review outlines factors for individuals exercise prescription and proposes a new theoretical hierarchal framework to help shape PA guidelines based on accessibility and effectiveness as part of a personalised exercise prescription that targets the individual.
Collapse
Affiliation(s)
- Elias Lehtonen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Dominique Gagnon
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland.,School of Kinesiology, Laurentian University, Sudbury, Ontario, Canada.,Center for Research in Occupational Health and Safety, Laurentian University, Sudbury, Ontario, Canada
| | - Daniela Eklund
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Kaisa Kaseva
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Juha Evert Peltonen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| |
Collapse
|
18
|
Lu YJ, Chen SY, Lai YC, Chaiyawat P, Chao YH, Chuang LM, Shih TTF, Wang HK. Muscle Microcirculatory Responses to Incremental Exercises Are Correlated with Peak Oxygen Uptake in Individuals With and Without Type 2 Diabetes Mellitus. Metab Syndr Relat Disord 2022; 20:405-413. [PMID: 35594301 DOI: 10.1089/met.2021.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Background: The role of impaired oxygen extraction on peak oxygen uptake (V̇O2peak) has been extensively studied using noninvasive and indirect methods in both diabetic patients and healthy participants. Methods: A total of 22 participants with type 2 diabetes mellitus [T2DM; median (range) age: 60 (47-70) years] and 22 controls [58 (52-69) years] with no history of diabetes were recruited (reference no. 201812135RINB). Subjects performed an exhaustive incremental exercise and were evaluated using a gas analyzer and near-infrared spectroscopy (NIRS) to determine V̇O2peak and changes in muscle oxygenation (SmO2) in the vastus lateralis, respectively. Measurements were taken at rest, warm-up, a period during exercise when SmO2 reached a minimum saturation plateau, and recovery. The microcirculatory responses of the vastus lateralis muscle during incremental exercise in patients with T2DM were compared with those in control individuals, and the correlation between changes in SmO2 and V̇O2peak was estimated. Results: The diabetic group demonstrated lower V̇O2peak, peak workload, peak heart rate, peak minute ventilation (all P < 0.05), and lower SmO2 during the rest, warm-up, and recovery phases (all P < 0.05) compared with the control group. A correlation was observed between the change in SmO2 between the warm-up and plateau value and the V̇O2peak (r = 0.608, P = 0.006). Conclusions: The results obtained in this study using NIRS support the feasibility of directly measuring changes in muscle SmO2 magnitudes to estimate the contributions of peripheral active muscle to systemic O2 uptake (V̇O2) during incremental exercise.
Collapse
Affiliation(s)
- Yan-Jhen Lu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| | - Ssu-Yuan Chen
- Division of Physical Medicine and Rehabilitation, Fu Jen Catholic University Hospital, New Taipei City, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Chuen Lai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Yuan-Hung Chao
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Division of Metabolism and Endocrinology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Image and Radiology, Medical College and Hospital, National Taiwan University, Taipei, Taiwan
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Yogev A, Arnold J, Clarke D, Guenette JA, Sporer BC, Koehle MS. Comparing the Respiratory Compensation Point With Muscle Oxygen Saturation in Locomotor and Non-locomotor Muscles Using Wearable NIRS Spectroscopy During Whole-Body Exercise. Front Physiol 2022; 13:818733. [PMID: 35431982 PMCID: PMC9007235 DOI: 10.3389/fphys.2022.818733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between the muscle deoxygenation breakpoint (Deoxy-BP) measured with near-infrared spectroscopy (NIRS), and the respiratory compensation point (RCP) has been well established. This relationship has also been reported using wearable NIRS, however not in locomotor and non-locomotor muscles simultaneously during whole-body cycling exercise. Our aim was to measure muscle oxygen saturation (SmO2) using wearable NIRS sensors, and to compare the Deoxy-BPs at each muscle with RCP during a ramp cycling exercise test. Twenty-two trained female and male cyclists completed a ramp exercise test to task intolerance on a cycling ergometer, at a ramp rate of 1 W every 2 s (30 W/min). SmO2 was recorded at the subjects' right vastus lateralis (VL) and right lateral deltoid. SmO2 and the Deoxy-BPs were assessed using a piecewise double-linear regression model. Ventilation (V̇E) and gas exchange were recorded, and RCP was determined from V̇E and gas exchange using a V-slope method and confirmed by two physiologists. The SmO2 profiles of both muscles and gas exchange responses are reported as V̇O2, power output (W), and time of occurrence (TO). SmO2 profiles at both muscles displayed a near-plateau or breakpoint response near the RCP. No differences were detected between the mean RCP and mean Deoxy-BP from either the locomotor or non-locomotor muscles; however, a high degree of individual variability was observed in the timing and order of occurrence of the specific breakpoints. These findings add insight into the relationships between ventilatory, locomotor, and non-locomotor muscle physiological breakpoints. While identifying a similar relationship between these breakpoints, individual variability was high; hence, caution is advised when using wearable NIRS to estimate RCP in an incremental ramp test.
Collapse
Affiliation(s)
- Assaf Yogev
- Environmental Physiology Laboratory, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Jem Arnold
- Environmental Physiology Laboratory, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Dave Clarke
- Department of Biomedical Physiology and Kinesiology and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Jordan A Guenette
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.,Providence Health Care Research Institute, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Ben C Sporer
- Vancouver Whitecaps FC, Vancouver, BC, Canada.,Division of Sport Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Koehle
- Environmental Physiology Laboratory, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Division of Sport Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Salas-Montoro JA, Mateo March M, Sánchez-Muñoz C, Zabala M. Determination of second lactate threshold using near-infrared spectroscopy in elite cyclists. Int J Sports Med 2022; 43:721-728. [PMID: 35021246 DOI: 10.1055/a-1738-0252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The use of near-infrared spectroscopy could be an interesting alternative to other invasive or expensive methods to estimate the second lactate threshold. Our objective was to compare the intensities of the muscle oxygen saturation breakpoint obtained with the Humon Hex and the second lactate threshold in elite cyclists. Ninety cyclists performed a maximal graded exercise test. Blood capillary lactate was obtained at the end of steps and muscle oxygenation was continuously monitored. There were no differences (p>0.05) between muscle oxygen oxygenation breakpoint and second lactate threshold neither in power nor in heart rate, nor when these values were relativized as a percentage of maximal aerobic power or maximum heart rate. There were also no differences when men and women were studied separately. Both methods showed a highly correlation in power (r=0.914), percentage of maximal aerobic power (r=0.752), heart rate (r=0.955), and percentage of maximum heart rate (r=0.903). Bland-Altman resulted in a mean difference of 0.05±0.27 W·kg-1, 0.91±4.93%, 0.63±3.25 bpm, and 0.32±1.69% for power, percentage of maximal aerobic power, heart rate and percentage of maximum heart rate respectively. These findings suggest that Humon may be a non-invasive and low-cost alternative to estimate the second lactate threshold intensity in elite cyclists.
Collapse
Affiliation(s)
- José-Antonio Salas-Montoro
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Manuel Mateo March
- Health Psichology, Sport Research Centre, Miguel Hernandez University of Elche, Alicante, Spain.,BMX, Spanish Cycling Federation, Alicante, Spain
| | - Cristóbal Sánchez-Muñoz
- Department of Physical Activity and Sport, Faculty of Physical Activity and Sport Sciences (University of Granada), Granada, Spain
| | - Mikel Zabala
- Department of Physical Activity and Sport, Faculty of Physical Activity and Sport Sciences (University of Granada), Granada, Spain.,Department of Physical Education and Sport, Faculty of Physical Activity and Sport Sciences, Granada, Spain
| |
Collapse
|
21
|
Whyte E, Thomas S, Marzolini S. Muscle Oxygenation of the Paretic and Nonparetic Legs During and After Arterial Occlusion in Chronic Stroke. J Stroke Cerebrovasc Dis 2021; 31:106265. [PMID: 34954600 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oxygen delivery and demand are reduced in the paretic leg post-stroke, reflecting decreased vascular function and reduced muscle quantity and quality. However, it is unknown how muscle oxygenation, the balance between muscle oxygen delivery and utilization, is altered in chronic stroke during and after occlusion-induced ischemia. OBJECTIVES The objective was to determine muscle oxygen consumption rate, microvascular responsiveness and reactive hyperemia in the paretic and nonparetic legs during and after arterial occlusion post-stroke. MATERIALS AND METHODS Muscle oxygen saturation was measured with near-infrared spectroscopy on the vastus lateralis of each leg during 3-minute arterial occlusion and recovery (3 min). Muscle oxygen consumption was derived from the desaturation slope during ischemia, microvascular responsiveness was derived from the resaturation slope after ischemia and reactive hyperemia was derived from the area under the curve above baseline after ischemia. RESULTS Eleven subjects (91% male; 32.2±6.1 months post-stroke; age 62.9±13.6 years) with a hemiparetic gait pattern participated. There was no significant between-leg muscle oxygenation difference at rest (paretic: 64.9±16.6%; nonparetic: 70.6±15.6%, p = 0.13). Muscle oxygen consumption in the paretic leg (-0.53±0.24%/s) was significantly reduced compared to the nonparetic leg (-0.70±0.36%/s; p = 0.03). Microvascular responsiveness was significantly reduced in the paretic leg compared to the nonparetic leg (paretic: 4.6±1.8%/s; nonparetic: 5.7±1.6%/s, p = 0.04). Reactive hyperemia was not significantly different between legs (paretic:4384±2341%·s; nonparetic: 3040±2216%·s, p = 0.07). CONCLUSION Muscle oxygen consumption and microvascular responsiveness are impaired in the paretic compared to the nonparetic leg, suggesting both reduced skeletal muscle aerobic function and reduced ability to maximally perfuse muscle tissue.
Collapse
Affiliation(s)
- Elizabeth Whyte
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Scott Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Susan Marzolini
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada.
| |
Collapse
|
22
|
van der Zwaard S, Brocherie F, Jaspers RT. Under the Hood: Skeletal Muscle Determinants of Endurance Performance. Front Sports Act Living 2021; 3:719434. [PMID: 34423293 PMCID: PMC8371266 DOI: 10.3389/fspor.2021.719434] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
In the past decades, researchers have extensively studied (elite) athletes' physiological responses to understand how to maximize their endurance performance. In endurance sports, whole-body measurements such as the maximal oxygen consumption, lactate threshold, and efficiency/economy play a key role in performance. Although these determinants are known to interact, it has also been demonstrated that athletes rarely excel in all three. The leading question is how athletes reach exceptional values in one or all of these determinants to optimize their endurance performance, and how such performance can be explained by (combinations of) underlying physiological determinants. In this review, we advance on Joyner and Coyle's conceptual framework of endurance performance, by integrating a meta-analysis of the interrelationships, and corresponding effect sizes between endurance performance and its key physiological determinants at the macroscopic (whole-body) and the microscopic level (muscle tissue, i.e., muscle fiber oxidative capacity, oxygen supply, muscle fiber size, and fiber type). Moreover, we discuss how these physiological determinants can be improved by training and what potential physiological challenges endurance athletes may face when trying to maximize their performance. This review highlights that integrative assessment of skeletal muscle determinants points toward efficient type-I fibers with a high mitochondrial oxidative capacity and strongly encourages well-adjusted capillarization and myoglobin concentrations to accommodate the required oxygen flux during endurance performance, especially in large muscle fibers. Optimisation of endurance performance requires careful design of training interventions that fine tune modulation of exercise intensity, frequency and duration, and particularly periodisation with respect to the skeletal muscle determinants.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Richard T. Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
23
|
Borghi-Silva A, Goulart CDL, Carrascosa CR, Oliveira CC, Berton DC, de Almeida DR, Nery LE, Arena R, Neder JA. Proportional Assist Ventilation Improves Leg Muscle Reoxygenation After Exercise in Heart Failure With Reduced Ejection Fraction. Front Physiol 2021; 12:685274. [PMID: 34234692 PMCID: PMC8255967 DOI: 10.3389/fphys.2021.685274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022] Open
Abstract
Background Respiratory muscle unloading through proportional assist ventilation (PAV) may enhance leg oxygen delivery, thereby speeding off-exercise oxygen uptake ( V . O 2 ) kinetics in patients with heart failure with reduced left ventricular ejection fraction (HFrEF). Methods Ten male patients (HFrEF = 26 ± 9%, age 50 ± 13 years, and body mass index 25 ± 3 kg m2) underwent two constant work rate tests at 80% peak of maximal cardiopulmonary exercise test to tolerance under PAV and sham ventilation. Post-exercise kinetics of V . O 2 , vastus lateralis deoxyhemoglobin ([deoxy-Hb + Mb]) by near-infrared spectroscopy, and cardiac output (Q T ) by impedance cardiography were assessed. Results PAV prolonged exercise tolerance compared with sham (587 ± 390 s vs. 444 ± 296 s, respectively; p = 0.01). PAV significantly accelerated V . O 2 recovery (τ = 56 ± 22 s vs. 77 ± 42 s; p < 0.05), being associated with a faster decline in Δ[deoxy-Hb + Mb] and Q T compared with sham (τ = 31 ± 19 s vs. 42 ± 22 s and 39 ± 22 s vs. 78 ± 46 s, p < 0.05). Faster off-exercise decrease in Q T with PAV was related to longer exercise duration (r = -0.76; p < 0.05). Conclusion PAV accelerates the recovery of central hemodynamics and muscle oxygenation in HFrEF. These beneficial effects might prove useful to improve the tolerance to repeated exercise during cardiac rehabilitation.
Collapse
Affiliation(s)
- Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Federal University of São Carlos (UFSCar), São Paulo, Brazil.,Pulmonary Function and Clinical Exercise Physiology Unit, Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Cassia da Luz Goulart
- Cardiopulmonary Physiotherapy Laboratory, Federal University of São Carlos (UFSCar), São Paulo, Brazil
| | - Cláudia R Carrascosa
- Pulmonary Function and Clinical Exercise Physiology Unit, Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | | | - Danilo C Berton
- Pulmonary Physiology Unit, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Dirceu Rodrigues de Almeida
- Division of Cardiology, Department of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz Eduardo Nery
- Pulmonary Function and Clinical Exercise Physiology Unit, Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - J Alberto Neder
- Pulmonary Function and Clinical Exercise Physiology Unit, Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil.,Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Kingston Health Science Center and Queen's University, Kingston, ON, Canada
| |
Collapse
|
24
|
Changes in muscle activation, oxygenation, and morphology following a fatiguing repetitive forward reaching task in young adult males and females. J Electromyogr Kinesiol 2021; 59:102564. [PMID: 34102382 DOI: 10.1016/j.jelekin.2021.102564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
We sought to evaluate sex-specific 1) muscle activation patterns, hemodynamics, and swelling responses to short-cycle repetitive fatigue; 2) relationships between muscular responses and perceived fatigability. Asymptomatic participants (N = 26, 13 females) completed a repetitive pointing task until 8/10 on the Borg CR10 scale. Upper trapezius (UT), supraspinatus (SUPRA), and biceps brachii (BIC) muscle activation, activation variability (CV), median power frequency (MdPF) and thickness, and UT oxygenation were recorded. Males had higher BIC CV, UT and SUPRA MdPF, and UT and BIC thickness. Longer time to fatigue-terminal was correlated to greater SUPRA activation increase (ρ = 0.624) and BIC MdPF decrease (ρ = -0.674) in males, while in females it was correlated to greater (ρ = -0.657) and lower (ρ = 0.683) decrease of SUPRA and BIC CV, respectively. Male's greater increase in SUPRA thickness correlated to greater increase in UT thickness and tissue oxygenation index, and to lower increase of UT deoxyhemoglobin. Females' greater decrease of SUPRA MdPF correlated to greater decrease of UT MdPF, while greater UT activation increase was related to lower UT thickness increase. Results suggest that despite comparable time to fatigue-terminal, males have greater force-generating capacity and neuromuscular reliance on recruitment and excitation rates, while females have greater reliance on activation variability. Further, there are relationships between hemodynamic and swelling patterns in males, while there are relationships between activation and swelling patterns in females. Although there were no differences in experimental task-induced changes, there are sex-specific relationships between muscular patterns and perceived fatigability, which may help explain sex-specific mechanisms of musculoskeletal disorders.
Collapse
|
25
|
The Importance of 'Durability' in the Physiological Profiling of Endurance Athletes. Sports Med 2021; 51:1619-1628. [PMID: 33886100 DOI: 10.1007/s40279-021-01459-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
Profiling physiological attributes is an important role for applied exercise physiologists working with endurance athletes. These attributes are typically assessed in well-rested athletes. However, as has been demonstrated in the literature and supported by field data presented here, the attributes measured during routine physiological-profiling assessments are not static, but change over time during prolonged exercise. If not accounted for, shifts in these physiological attributes during prolonged exercise have implications for the accuracy of their use in intensity regulation during prolonged training sessions or competitions, quantifying training adaptations, training-load programming and monitoring, and the prediction of exercise performance. In this review, we argue that current models used in the routine physiological profiling of endurance athletes do not account for these shifts. Therefore, applied exercise physiologists working with endurance athletes would benefit from development of physiological-profiling models that account for shifts in physiological-profiling variables during prolonged exercise and quantify the 'durability' of individual athletes, here defined as the time of onset and magnitude of deterioration in physiological-profiling characteristics over time during prolonged exercise. We propose directions for future research and applied practice that may enable better understanding of athlete durability.
Collapse
|
26
|
A heat and moisture-exchanging mask impairs self-paced maximal running performance in a sub-zero environment. Eur J Appl Physiol 2021; 121:1979-1992. [PMID: 33782715 PMCID: PMC8192396 DOI: 10.1007/s00421-021-04666-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/16/2021] [Indexed: 12/05/2022]
Abstract
Purpose Heat-and-moisture-exchanging devices (HME) are commonly used by endurance athletes during training in sub-zero environments, but their effects on performance are unknown. We investigated the influence of HME usage on running performance at − 15 °C. Methods Twenty-three healthy adults (15 male, 8 female; age 18–53 years; \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text O}_{2peak}$$\end{document}V˙O2peak men 56 ± 7, women 50 ± 4 mL·kg−1·min−1) performed two treadmill exercise tests with and without a mask-style HME in a randomised, crossover design. Participants performed a 30-min submaximal warm-up (SUB), followed by a 4-min maximal, self-paced running time-trial (TT). Heart rate (HR), respiratory frequency (fR), and thoracic area skin temperature (Tsk) were monitored using a chest-strap device; muscle oxygenation (SmO2) and deoxyhaemoglobin concentration ([HHb]) were derived from near-infra-red-spectroscopy sensors on m. vastus lateralis; blood lactate was measured 2 min before and after the TT. Results HME usage reduced distance covered in the TT by 1.4%, despite similar perceived exertion, HR, fR, and lactate accumulation. The magnitude of the negative effect of the HME on performance was positively associated with body mass (r2 = 0.22). SmO2 and [HHb] were 3.1% lower and 0.35 arb. unit higher, respectively, during the TT with HME, and Tsk was 0.66 °C higher during the HME TT in men. HR (+ 2.7 beats·min−1) and Tsk (+ 0.34 °C) were higher during SUB with HME. In the male participants, SmO2 was 3.8% lower and [HHb] 0.42 arb. unit higher during SUB with HME. Conclusion Our findings suggest that HME usage impairs maximal running performance and increases the physiological demands of submaximal exercise.
Collapse
|
27
|
Baláš J, Gajdošík J, Giles D, Fryer S, Krupková D, Brtník T, Feldmann A. Isolated finger flexor vs. exhaustive whole-body climbing tests? How to assess endurance in sport climbers? Eur J Appl Physiol 2021; 121:1337-1348. [PMID: 33591426 DOI: 10.1007/s00421-021-04595-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/10/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Sport climbing requires high-intensity finger flexor contractions, along with a substantial whole-body systemic oxygen uptake ([Formula: see text]O2) contribution. Although fatigue is often localised to the finger flexors, the role of systemic ̇[Formula: see text]O2 and local aerobic mechanisms in climbing performance remains unclear. As such, the primary purpose of this study was to determine systemic and local muscle oxygen responses during both isolated finger flexion and incremental exhaustive whole-body climbing tests. The secondary aim was to determine the relationship of isolated and whole-body climbing endurance tests to climbing ability. METHODS Twenty-two male sport climbers completed a series of isometric sustained and intermittent forearm flexor contractions, and an exhaustive climbing test with progressive steepening of the wall angle on a motorised climbing ergometer. Systemic [Formula: see text]O2 and flexor digitorum profundus oxygen saturation (StO2) were recorded using portable metabolic analyser and near-infra red spectroscopy, respectively. RESULTS Muscle oxygenation breakpoint (MOB) was identifiable during an incremental exhaustive climbing test with progressive increases in angle (82 ± 8% and 88 ± 8% [Formula: see text]O2 and heart rate climbing peak). The peak angle from whole-body treadwall test and impulse from isolated hangboard endurance tests were interrelated (R2 = 0.58-0.64). Peak climbing angle together with mean [Formula: see text]O2 and StO2 from submaximal climbing explained 83% of variance in self-reported climbing ability. CONCLUSIONS Both systemic and muscle oxygen kinetics determine climbing-specific endurance. Exhaustive climbing and isolated finger flexion endurance tests are interrelated and suitable to assess climbing-specific endurance. An exhaustive climbing test with progressive wall angle allows determination of the MOB.
Collapse
Affiliation(s)
- Jiří Baláš
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic.
| | - Jan Gajdošík
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | | | - Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
| | - Dominika Krupková
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | - Tomáš Brtník
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | - Andri Feldmann
- Institute of Sport Science, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Liu X, Shan Y, Peng M, Chen H, Chen T. Human Stress and StO2: Database, Features, and Classification of Emotional and Physical Stress. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E962. [PMID: 33286731 PMCID: PMC7597254 DOI: 10.3390/e22090962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
Emotional and physical stress can cause various health problems. In this paper, we used tissue blood oxygen saturation (StO2), a newly proposed physiological signal, to classify the human stress. We firstly constructed a public StO2 database including 42 volunteers subjected to two types of stress. During the physical stress experiment, we observed that the facial StO2 right after the stress can be either increased or decreased comparing to the baseline. We investigated the StO2 feature combinations for the classification and found that the average StO2 values from left cheek, chin, and the middle of the eyebrow can provide the highest classification rate of 95.56%. Comparison with other stress classification method shows that StO2 based method can provide best classification performance with lowest feature dimension. These results suggest that facial StO2 can be used as a promising features to identify stress states, including emotional and physical stress.
Collapse
Affiliation(s)
- Xinyu Liu
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, Southwest University, Chongqing 400715, China; (X.L.); (Y.S.); (M.P.); (H.C.)
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Yuhao Shan
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, Southwest University, Chongqing 400715, China; (X.L.); (Y.S.); (M.P.); (H.C.)
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Min Peng
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, Southwest University, Chongqing 400715, China; (X.L.); (Y.S.); (M.P.); (H.C.)
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Huanyu Chen
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, Southwest University, Chongqing 400715, China; (X.L.); (Y.S.); (M.P.); (H.C.)
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Tong Chen
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, Southwest University, Chongqing 400715, China; (X.L.); (Y.S.); (M.P.); (H.C.)
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- Institute of Psychology, China Academy of Sciences, Beijing 100101, China
| |
Collapse
|
29
|
Miyamoto T, Watanabe K, Fukuda K, Moritani T. Near-infrared Spectroscopy of Vastus Lateralis Muscle during Incremental Cycling Exercise in patients with Type 2 Diabetes. Phys Ther Res 2020; 23:23-30. [PMID: 32850275 DOI: 10.1298/ptr.e9984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/21/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE It is clinically important to elucidate the precise mechanism of exercise intolerance in patients with type 2 diabetes (T2DM). The aim of this study was to examine whether there is a difference in the time course change of the oxygenation in the vastus lateralis (VL) muscle during submaximal incremental cycling exercise between patients with T2DM and age-matched healthy subjects. METHODS Nine elderly men with T2DM and 10 age-matched healthy men (CON) participated in this study. All participants performed an incremental cycling exercise.Total, deoxygenated and oxygenated hemoglobin/myoglobin in the VL muscle were assessed using near-infrared spectroscopy, and cardiorespiratory response was also evaluated during the exercise. RESULTS There were no significant differences in the time course changes of deoxygenated hemoglobin/myoglobin between groups ( p > 0.05). However, the oxygenated hemoglobin/myoglobin in T2DM was significantly higher than that in CON at an intensity above ventilatory threshold during the incremental cycling exercise ( p< 0.05). CONCLUSION This study suggests that patients with T2DM had early limitation of oxygen extraction and lower capacity of oxygenated myoglobin dissociation in the VL muscle. The fact that patients with T2DM showed different oxygen kinetics in a peripheral tissue from healthy subjects may partly explain the potential mechanisms of exercise intolerance in T2DM.
Collapse
Affiliation(s)
| | - Kohei Watanabe
- School of International Liberal Studies, Chukyo University
| | | | | |
Collapse
|
30
|
Brochhagen J, Coll Barroso MT, Baumgart C, Freiwald J, Hoppe MW. Non-invasively measured central and peripheral factors of oxygen uptake differ between patients with chronic heart failure and healthy controls. BMC Cardiovasc Disord 2020; 20:378. [PMID: 32811426 PMCID: PMC7437074 DOI: 10.1186/s12872-020-01661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Maximum oxygen uptake is an established measurement of diagnosing chronic heart failure and underlies various central and peripheral factors. However, central and peripheral factors are little investigated, because they are usually measured invasively. The aim of this study was to compare non-invasively measured central and peripheral factors of oxygen uptake between patients with chronic heart failure and healthy controls. Methods Ten male patients with heart failure with reduced ejection fraction (62 ± 4 years; body mass index: 27.7 ± 1.8 kg/m2; ejection fraction: 30 ± 4%) and ten male healthy controls (59 ± 3 years; body mass index: 27.7 ± 1.3 kg/m2) were tested for blood pressure, heart rate, stroke volume, cardiac output, and cardiac power output (central factors) as well as muscle oxygen saturation of the vastus lateralis and biceps brachii muscle (peripheral factors) during an incremental cycling test. Stroke volume and muscle oxygen saturation were non-invasively measured by a bioreactance analysis and near-infrared spectroscopy, respectively. Additionally, a maximum isometric strength test of the knee extensors was conducted. Magnitude-based inferences were computed for statistical analyses. Results Patients had a likely to most likely lower oxygen uptake, mean arterial pressure, and heart rate at maximum load as well as very likely lower isometric peak torque. Contrary, patients had a possibly to likely higher stroke volume and muscle oxygen saturation of the vastus lateralis muscle at maximum load. Differences in cardiac output, cardiac power output, and muscle oxygen saturation of the biceps brachii muscle at maximum load were unclear. Conclusions Non-invasively measured central and peripheral factors of oxygen uptake differ between patients with chronic heart failure and healthy controls. Therefore, it is promising to measure both types of factors in patients with chronic heart failure to optimize the diagnosis and therapy.
Collapse
Affiliation(s)
- Joana Brochhagen
- Institute of Movement and Training Science I, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany. .,Department of Movement and Training Science, University of Wuppertal, Fuhlrottstraße 10, 42119, Wuppertal, Germany.
| | | | - Christian Baumgart
- Department of Movement and Training Science, University of Wuppertal, Fuhlrottstraße 10, 42119, Wuppertal, Germany
| | - Jürgen Freiwald
- Department of Movement and Training Science, University of Wuppertal, Fuhlrottstraße 10, 42119, Wuppertal, Germany
| | - Matthias Wilhelm Hoppe
- Institute of Movement and Training Science I, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| |
Collapse
|
31
|
Detection of ventilatory thresholds using near-infrared spectroscopy with a polynomial regression model. Saudi J Biol Sci 2020; 27:1637-1642. [PMID: 32489305 PMCID: PMC7254025 DOI: 10.1016/j.sjbs.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 11/26/2022] Open
Abstract
Whether near-infrared spectroscopy (NIRS) is a convenient and accurate method of determining first and second ventilatory thresholds (VT1 and VT2) using raw data remains unknown. This study investigated the reliability and validity of VT1 and VT2 determined by NIRS skeletal muscle hemodynamic raw data via a polynomial regression model. A total of 100 male students were recruited and performed maximal cycling exercises while their cardiopulmonary and NIRS muscle hemodynamic data were measured. The criterion validity of VT1VET and VT2VET were determined using a traditional V-slope and ventilatory efficiency. Statistical significance was set at α = . 05. There was high reproducibility of VT1NIRS and VT2NIRS determined by a NIRS polynomial regression model during exercise (VT1NIRS, r = 0.94; VT2NIRS, r = 0.93). There were high correlations of VT1VET vs VT1NIRS (r = 0.93, p < .05) and VT2VET vs VT2NIRS (r = 0.94, p < .05). The oxygen consumption (VO2) between VT1VET and VT1NIRS or VT2VET and VT2NIRS was not significantly different. NIRS raw data are reliable and valid for determining VT1 and VT2 in healthy males using a polynomial regression model. Skeletal muscle raw oxygenation and deoxygenation status reflects more realistic causes and timing of VT1 and VT2.
Collapse
|
32
|
Near-Infrared Spectroscopy for Monitoring Sternocleidomastoid Muscular Oxygenation during Isometric Flexion for Patients with Mild Nonspecific Neck Pain: A Pilot Study. SENSORS 2020; 20:s20082197. [PMID: 32294993 PMCID: PMC7218888 DOI: 10.3390/s20082197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/03/2022]
Abstract
Since there is merit in noninvasive monitoring of muscular oxidative metabolism for near-infrared spectroscopy in a wide range of clinical scenarios, the present study attempted to evaluate the clinical usability for featuring the modulatory strategies of sternocleidomastoid muscular oxygenation using near-infrared spectroscopy in mild nonspecific neck pain patients. The muscular oxygenation variables of the dominant or affected sternocleidomastoid muscles of interest were extracted at 25% of the maximum voluntary isometric contraction from ten patients (5 males and 5 females, 23.6 ± 4.2 years) and asymptomatic individuals (6 males and 4 females, 24.0 ± 5.1 years) using near-infrared spectroscopy. Only a shorter half-deoxygenation time of oxygen saturation during a sternocleidomastoid isometric contraction was noted in patients compared to asymptomatic individuals (10.43 ± 1.79 s vs. 13.82 ± 1.42 s, p < 0.001). Even though the lack of statically significant differences in most of the muscular oxygenation variables failed to refine the definite pathogenic mechanisms underlying nonspecific neck pain, the findings of modulatory strategies of faster deoxygenation implied that near-infrared spectroscopy appears to have practical potential to provide relevant physiological information regarding muscular oxidative metabolism and constituted convincing preliminary evidences of the adaptive manipulations rather than pathological responses of oxidative metabolism capacity of sternocleidomastoid muscles in nonspecific neck patients with mild disability.
Collapse
|
33
|
Ušaj A, Mekjavic IB, Kapus J, McDonnell AC, Jaki Mekjavic P, Debevec T. Muscle Oxygenation During Hypoxic Exercise in Children and Adults. Front Physiol 2019; 10:1385. [PMID: 31787903 PMCID: PMC6854007 DOI: 10.3389/fphys.2019.01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION While hypoxia is known to decrease peak oxygen uptake ( V . o 2 max) and maximal power output in both adults and children its influence on submaximal exercise cardiorespiratory and, especially, muscle oxygenation responses remains unclear. METHODS Eight pre-pubertal boys (age = 8 ± 2 years.; body mass (BM) = 29 ± 7 kg) and seven adult males (age = 39 ± 4 years.; BM = 80 ± 8 kg) underwent graded exercise tests in both normoxic (PiO2 = 134 ± 0.4 mmHg) and hypoxic (PiO2 = 105 ± 0.6 mmHg) condition. Continuous breath-by-breath gas exchange and near infrared spectroscopy measurements, to assess the vastus lateralis oxygenation, were performed during both tests. The gas exchange threshold (GET) and muscle oxygenation thresholds were subsequently determined for both groups in both conditions. RESULTS In both groups, hypoxia did not significantly alter either GET or the corresponding V . o 2 at GET. In adults, higher V . E levels were observed in hypoxia (45 ± 6 l/min) compared to normoxia (36 ± 6 l/min, p < 0.05) at intensities above GET. In contrast, in children both the hypoxic V . E and V . o 2 responses were significantly greater than those observed in normoxia only at intensities below GET (p < 0.01 for V . E and p < 0.05 for V . o 2). Higher exercise-related heart rate (HR) levels in hypoxia, compared to normoxia, were only noted in adults (p < 0.01). Interestingly, hypoxia per se did not influence the muscle oxygenation thresholds during exercise in neither group. However, and in contrast to adults, the children exhibited significantly higher total hemoglobin concentration during hypoxic as compared to normoxic exercise (tHb) at lower exercise intensities (30 and 60 W, p = 0.01). CONCLUSION These results suggest that in adults, hypoxia augments exercise ventilation at intensities above GET and might also maintain muscle blood oxygenation via increased HR. On the other hand, children exhibit a greater change of muscle blood perfusion, oxygen uptake as well as ventilation at exercise intensities below GET.
Collapse
Affiliation(s)
- Anton Ušaj
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jernej Kapus
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.,Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
34
|
Farzam P, Starkweather Z, Franceschini MA. Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle. Physiol Rep 2019; 6:e13664. [PMID: 29611324 PMCID: PMC5880957 DOI: 10.14814/phy2.13664] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 01/28/2023] Open
Abstract
There is a growing interest in monitoring muscle oxygen saturation (SmO2), which is a localized measure of muscle oxidative metabolism and can be acquired continuously and noninvasively using near‐infrared spectroscopy (NIRS) methods. Most NIRS systems are cumbersome, expensive, fiber coupled devices, with use limited to lab settings. A novel, low cost, wireless, wearable has been developed for use in athletic training. In this study, we evaluate the advantages and limitations of this new simple continuous‐wave (CW) NIRS device with respect to a benchtop, frequency‐domain near‐infrared spectroscopy (FDNIRS) system. Oxygen saturation and hemoglobin/myoglobin concentration in the exercising muscles of 17 athletic individuals were measured simultaneously with the two systems, while subjects performed an incremental test on a stationary cycle ergometer. In addition, blood lactate concentration was measured at the end of each increment with a lactate analyzer. During exercise, the correlation coefficients of the SmO2 and hemoglobin/myoglobin concentrations between the two systems were over 0.70. We also found both systems were insensitive to the presence of thin layers of varying absorption, mimicking different skin colors. Neither system was able to predict the athletes’ lactate threshold power accurately by simply using SmO2 thresholds. Instead, the proprietary software of the wearable device was able to predict the athletes’ lactate threshold power within half of one power increment of the cycling test. These results indicate this novel wearable device may provide a physiological indicator of athlete's exertion.
Collapse
Affiliation(s)
- Parisa Farzam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zack Starkweather
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria A Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Romero-Moraleda B, González-García J, Cuéllar-Rayo Á, Balsalobre-Fernández C, Muñoz-García D, Morencos E. Effects of Vibration and Non-Vibration Foam Rolling on Recovery after Exercise with Induced Muscle Damage. J Sports Sci Med 2019; 18:172-180. [PMID: 30787665 PMCID: PMC6370959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
We aimed to compare the effects between non-vibration foam rolling (NVFR) and vibration foam rolling (VFR) on visual analogic scale (VAS), pressure pain threshold (PPT), oxygen saturation (SmO2), countermovement jump (CMJ) and hip and knee range of movement (ROM) after eliciting muscle damage through eccentric acute exercise using an inertial flywheel. Thirty-eight healthy volunteers (32 men, 6 women; aged 22.2±3.2 years) were randomly assigned in a counter-balanced fashion to either a VFR or NVFR protocol group. All participants performed a 10x10 (sets x repetitions) eccentric squat protocol to induce muscle damage. The protocols were administered 48-h post-exercise, measuring VAS, PPT, SmO2, CMJ and ROM, before and immediately post-treatment. The treatment technique was repeated on both legs for 1 minute for a total of five sets, with a 30-s rest between sets. The VFR group showed substantially greater improvements (likely to very likely) in the passive VAS (VFR -30.2%, 90% CI -66.2 to -12.8) with chances for lower, similar or greater VAS compared with the NVFR group of 82%, 14% and 4%, respectively and passive extension hip joint ROM (VFR 9.3%, 90% CI 0.2-19.2) with chances for lower, similar or greater ROM compared with the NVFR group of 78%, 21% and 1%, respectively. For intragroup changes, we observed substantial improvements in VAS (p=.05), lateral vastus, rectus femoris and medial vastus PPT. The results suggest that the VFR group achieved greater short-term benefits in pain perception and passive extension hip joint ROM. Both protocols were effective in improving PPT, SmO2, CMJ and knee joint ROM. The enhanced improvement in VAS and hip ROM measures could have significant implications for VFR treatment.
Collapse
Affiliation(s)
- Blanca Romero-Moraleda
- Faculty of Health. Camilo José Cela University
- Laboratory of Exercise Physiology Research Group, Department of Health and Human Performance, School of Physical Activity and Sport Sciences-INEF, Technical University of Madrid, Madrid, Spain
| | | | | | - Carlos Balsalobre-Fernández
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid, Spain
- Laboratory of Exercise Physiology Research Group, Department of Health and Human Performance, School of Physical Activity and Sport Sciences-INEF, Technical University of Madrid, Madrid, Spain
| | - Daniel Muñoz-García
- Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain
| | - Esther Morencos
- Exercise and Sport Sciences, Education and Humanities Faculty, Francisco de Vitoria University, Pozuelo de Alarcón, Madrid
| |
Collapse
|
36
|
Maturity-Related Differences in Systemic Pulmonary and Localized Fatigue Threshold Among Youth Male Athletes. Pediatr Exerc Sci 2019; 31:99-106. [PMID: 30251936 DOI: 10.1123/pes.2017-0250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To examine the reliability and the maturity-related differences of fatigue thresholds (FTs) among youth males. METHODS Twenty-nine youth males (11-17 y) completed 2 ramp exercise tests on a cycle ergometer. Systemic FTs were calculated from gas exchange and ventilation variables. Localized FTs were calculated from electromyography and near-infrared spectroscopy of the vastus lateralis. All FTs were determined using the maximal distance method and expressed relative to maximal oxygen consumption. All participants were grouped according to the number of years from peak height velocity into PRE- (< -1.5 y), PERI- (-1.5 to +1.5 y) and POST- (> +1.5 y) peak height velocity. Reliability was assessed with intraclass correlation coefficients, and differences between groups were assessed with analysis of variance and Cohen's d coefficients. RESULTS Analysis of variance revealed significant group differences with PRE having significantly greater systemic pulmonary FTs than POST, while localized muscular FTs were significantly greater in PRE when compared with PERI and POST. All FTs exhibited excellent reliability (intraclass correlation coefficient > .75) in all maturity groups. CONCLUSION Maturity status appears to influence the onset of FTs among youth male athletes, with FTs occurring later in younger athletes. Furthermore, all FTs were reliable measures regardless of maturity.
Collapse
|
37
|
Richard P, Billaut F. Time-Trial Performance in Elite Speed Skaters After Remote Ischemic Preconditioning. Int J Sports Physiol Perform 2018; 13:1308-1316. [PMID: 29745735 DOI: 10.1123/ijspp.2018-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/25/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE Speed skating leads to blood-flow restriction and deoxygenation in the lower limbs (especially the right leg) that may affect performance. Although the acute influence of such deoxygenation is not clearly understood, the authors tested whether remote ischemic preconditioning (RIPC) could modify muscular oxygenation and improve time-trial performance in that sport. METHODS Using a randomized, single-blind, placebo-controlled, crossover design, 9 elite speed skaters performed 1000-m on-ice time trials preceded by either RIPC of the upper limbs (3 × 5-min compression/5-min reperfusion cycles at 30 mm Hg >arterial systolic pressure) or placebo treatment (SHAM; 10 mm Hg). Changes in tissue saturation index, oxyhemoglobin-oxymyoglobin, deoxyhemoglobin-deoxymyoglobin, and total hemoglobin-myoglobin in the right vastus lateralis muscle were monitored using near-infrared spectroscopy (NIRS). Differences between RIPC and SHAM were analyzed using Cohen effect size (ES) ± 90% confidence limits and magnitude-based inferences. RESULTS Compared with SHAM, RIPC had a negligible effect on performance and NIRS variables. However, in a subgroup of sprinters (n = 5), RIPC likely lowered tissue saturation index at the beginning of the time trial (-6.1%; ES = -0.65) and likely increased deoxyhemoglobin-deoxymyoglobin at the beginning (3%; ES = 0.39), middle (2.9%; ES = 0.37), and end of the trial (-2.1%; ES = 0.27). In the middle section of the trial, these metabolic changes were concomitant with a possible increase in total hemoglobin-myoglobin. CONCLUSION RIPC has no practical ergogenic impact on 1000-m long-track speed-skating performance in elite athletes. The relevance of using RIPC during training to increase physiological stress in sprinters particularly deserves further investigation.
Collapse
|
38
|
Richard P, Billaut F. Combining Chronic Ischemic Preconditioning and Inspiratory Muscle Warm-Up to Enhance On-Ice Time-Trial Performance in Elite Speed Skaters. Front Physiol 2018; 9:1036. [PMID: 30108521 PMCID: PMC6079196 DOI: 10.3389/fphys.2018.01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023] Open
Abstract
Elite athletes in varied sports typically combine ergogenic strategies in the hope of enhancing physiological responses and competitive performance, but the scientific evidence for such practices is very scarce. The peculiar characteristics of speed skating contribute to impede blood flow and exacerbate deoxygenation in the lower limbs (especially the right leg). We investigated whether combining preconditioning strategies could modify muscular oxygenation and improve performance in that sport. Using a randomized, single-blind, placebo-controlled, crossover design, seven male elite long-track speed skaters performed on-ice 600-m time trials, preceded by either a combination of preconditioning strategies (COMBO) or a placebo condition (SHAM). COMBO involved performing remote ischemic preconditioning (RIPC) of the upper limbs (3 × 5-min compression at 180 mmHg and 5-min reperfusion) over 3 days (including an acute treatment before trials), with the addition of an inspiratory muscle warm-up [IMW: 2 × 30 inspirations at 40% maximal inspiratory pressure (MIP)] on the day of testing. SHAM followed the same protocol with lower intensities (10 mmHg for RIPC and 15% MIP). Changes in tissue saturation index (TSI), oxyhemoglobin–oxymyoglobin ([O2HbMb]), deoxyhemoglobin–deoxymyoglobin ([HHbMb]), and total hemoglobin–myoglobin ([THbMb]) in the right vastus lateralis muscle were monitored by near-infrared spectroscopy (NIRS). Differences between COMBO and SHAM were analyzed using Cohen’s effect size (ES) and magnitude-based inferences. Compared with SHAM, COMBO had no worthwhile effect on performance time while mean Δ[HHbMb] (2.7%, ES 0.48; -0.07, 1.03) and peak Δ[HHbMb] (1.8%, ES 0.23; -0.10, 0.57) were respectively likely and possibly higher in the last section of the race. These results indicate that combining ischemic preconditioning and IMW has no practical ergogenic impact on 600-m speed-skating performance in elite skaters. The low-sitting position in this sport might render difficult enhancing these physiological responses.
Collapse
Affiliation(s)
- Philippe Richard
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
| |
Collapse
|
39
|
Oxygen Uptake and Muscle Deoxygenation Kinetics During Skating: Comparison Between Slide-Board and Treadmill Skating. Int J Sports Physiol Perform 2018; 13:783-788. [PMID: 29140137 DOI: 10.1123/ijspp.2017-0440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the oxygen-uptake ([Formula: see text]) kinetics during skating on a treadmill and skating on a slide board and to discuss potential mechanisms that might control the [Formula: see text] kinetics responses during skating. METHODS Breath-by-breath pulmonary [Formula: see text] and near-infrared spectroscopy-derived muscle deoxygenated hemoglobin and myoglobin ([HHbMb]) were monitored continuously in 12 well-trained, young, long-track speed skaters. On-transient [Formula: see text] and [HHbMb] responses to skating on a treadmill and skating on a slide board at 80% of the estimated gas exchange threshold were fitted as monoexponential function. The signals were time-aligned, and the individual [HHbMb]-to-[Formula: see text] ratio was calculated as the average value from 20 to 120 s after exercise starts. RESULTS The time constants for the adjustment of phase II [Formula: see text] (τ [Formula: see text]) and [HHbMb] (τ [HHbMb]) were low and similar between slide board and treadmill skating (18.1 [3.4] vs 18.9 [3.6] for τ [Formula: see text] and 12.6 [4.0] vs 12.4 [4.0] s for τ [HHbMb]). The [Formula: see text] ratio was not different from 1.0 (P > .05) in both conditions. CONCLUSIONS The fast [Formula: see text] kinetics during skating suggest that chronic adaptation to skating might overcome any possible restriction in leg blood flow during low-intensity exercise. The [Formula: see text] ratio values also suggest a good matching of O2 delivery to O2 utilization in trained speed skaters. The similar τ [Formula: see text] and τ [HHbMb] values between slide board and treadmill further reinforce the validity of using a slide board for skating testing and training purposes.
Collapse
|
40
|
Baláš J, Kodejška J, Krupková D, Hannsmann J, Fryer S. Reliability of Near-Infrared Spectroscopy for Measuring Intermittent Handgrip Contractions in Sport Climbers. J Strength Cond Res 2018; 32:494-501. [DOI: 10.1519/jsc.0000000000002341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
41
|
van der Zwaard S, van der Laarse WJ, Weide G, Bloemers FW, Hofmijster MJ, Levels K, Noordhof DA, de Koning JJ, de Ruiter CJ, Jaspers RT. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body. FASEB J 2018; 32:2110-2123. [PMID: 29217665 DOI: 10.1096/fj.201700827r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Optimizing physical performance is a major goal in current physiology. However, basic understanding of combining high sprint and endurance performance is currently lacking. This study identifies critical determinants of combined sprint and endurance performance using multiple regression analyses of physiologic determinants at different biologic levels. Cyclists, including 6 international sprint, 8 team pursuit, and 14 road cyclists, completed a Wingate test and 15-km time trial to obtain sprint and endurance performance results, respectively. Performance was normalized to lean body mass2/3 to eliminate the influence of body size. Performance determinants were obtained from whole-body oxygen consumption, blood sampling, knee-extensor maximal force, muscle oxygenation, whole-muscle morphology, and muscle fiber histochemistry of musculus vastus lateralis. Normalized sprint performance was explained by percentage of fast-type fibers and muscle volume ( R2 = 0.65; P < 0.001) and normalized endurance performance by performance oxygen consumption ( V̇o2), mean corpuscular hemoglobin concentration, and muscle oxygenation ( R2 = 0.92; P < 0.001). Combined sprint and endurance performance was explained by gross efficiency, performance V̇o2, and likely by muscle volume and fascicle length ( P = 0.056; P = 0.059). High performance V̇o2 related to a high oxidative capacity, high capillarization × myoglobin, and small physiologic cross-sectional area ( R2 = 0.67; P < 0.001). Results suggest that fascicle length and capillarization are important targets for training to optimize sprint and endurance performance simultaneously.-Van der Zwaard, S., van der Laarse, W. J., Weide, G., Bloemers, F. W., Hofmijster, M. J., Levels, K., Noordhof, D. A., de Koning, J. J., de Ruiter, C. J., Jaspers, R. T. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.,Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Willem J van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, Vrije Universiteit, Amsterdam, The Netherlands; and VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Guido Weide
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.,Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department of Physiology, Institute for Cardiovascular Research, Vrije Universiteit, Amsterdam, The Netherlands; and
| | - Mathijs J Hofmijster
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Koen Levels
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Dionne A Noordhof
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jos J de Koning
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Cornelis J de Ruiter
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.,Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
42
|
RALEIGH CONOR, DONNE BERNARD, FLEMING NEIL. Association between different Non-Invasively Derived Thresholds with Lactate Threshold during graded incremental exercise. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2018. [PMID: 29541332 PMCID: PMC5841671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
We compared lactate threshold (TLac) with non-invasive markers of an aerobic-anaerobic transition; namely, ventilatory (VT) and tissue saturation index (TSIT) thresholds. While identification of a breakpoint in blood lactate concentration ([BLa]) is common for determination of an aerobic-anaerobic transition, non-invasive measures, VT and NIRS, have also received attention as a means of determining this critical exercise intensity. We hypothesised that one or other of these non-invasive measures would have a strong association with TLac. Thirty-one (n=31) competitive male athletes (mean ± SD, age 29±9 yr, height 1.81±0.1 m, body mass 77.7±10.0 kg) performed graded incremental cycling to volitional exhaustion. Heart rate, TSI and gas exchange data were measured throughout and [BLa] was determined at fixed intervals. Threshold detection involved a segmented linear regression analysis minimising the squared sum of the residuals to determine TLac, TSIT and VT. Workload and HR at TLac, VT and TSIT were analysed using repeated measures ANOVA and correlation assessed using Pearson's and interclass correlation coefficients. Thresholds at TSIT and TLac were not significantly different (255±35 vs. 249±30 W, P>0.05), suggesting that limitations in O2 delivery could be closely linked to an aerobic-anaerobic transition. However, poor correlation (r=0.55, ICC=0.54 and 95%LoA of +67 and -54 W) suggested other factors may exert an influence. Mean VT occurred at a significantly higher workload than TLac (271 ±35 vs 249±30 W, P<0.001). Consequently, VT proved less useful, giving an indication of when an aerobic-anaerobic transition had already occurred. In conclusion, non-invasive markers of the aerobic transition are not concurrent with TLac.
Collapse
|
43
|
Niemeijer VM, Jansen JP, van Dijk T, Spee RF, Meijer EJ, Kemps HMC, Wijn PFF. The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: the extent of the problem. Physiol Meas 2017; 38:539-554. [PMID: 28151429 DOI: 10.1088/1361-6579/aa5dd5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Near-infrared spectroscopy (NIRS) measurements of tissue oxygen saturation (StO2) are useful for the assessment of skeletal muscle perfusion and function during exercise, however, they are influenced by overlying skin and adipose tissue. This study explored the extent and nature of the influence of adipose tissue thickness (ATT) on StO2. APPROACH NIR spatially resolved spectroscopy (SRS) derived oxygenation was measured on vastus lateralis in 56 patients with chronic heart failure (CHF) and 20 healthy control (HC) subjects during rest and moderate intensity exercise with simultaneous assessment of oxygen uptake kinetics (τ [Formula: see text]). In vitro measurements were performed on a flow cell with a blood mixture with full oxygen saturation (100%), which was gradually decreased to 0% by adding sodium metabisulfite. Experiments were repeated with 2 mm increments of porcine fat layer between the NIRS device and flow cell up to 14 mm. MAIN RESULTS Lower ATT, higher τ [Formula: see text], and CHF were independently associated with lower in vivo StO2 in multiple regression analysis, whereas age and gender showed no independent relationship. With greater ATT, in vitro StO2 was reduced from 100% to 74% for fully oxygenated blood and increased from 0% to 68% for deoxygenated blood. SIGNIFICANCE This study shows that ATT independently confounds NIR-SRS derived StO2 by overestimating actual skeletal muscle oxygenation and by decreasing its sensitivity for deoxygenation. Because physiological properties (e.g. presence of disease and slowing of τ [Formula: see text]) also influence NIR-SRS, a correction based on optical properties is needed to interpret calculated values as absolute StO2.
Collapse
Affiliation(s)
- Victor M Niemeijer
- Department of Cardiology, Máxima Medical Centre, PO Box 7777, 5500 MB Veldhoven, Netherlands. Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
| | | | | | | | | | | | | |
Collapse
|