1
|
Shen J, He Y, Li S, Chen H. Crosstalk of methylation and tamoxifen in breast cancer (Review). Mol Med Rep 2024; 30:180. [PMID: 39129315 PMCID: PMC11338244 DOI: 10.3892/mmr.2024.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Tamoxifen is a widely used anti‑estrogen drug in the endocrine therapy of breast cancer (BC). It blocks estrogen signaling by competitively binding to estrogen receptor α (ERα), thereby inhibiting the growth of BC cells. However, with the long‑term application of tamoxifen, a subset of patients with BC have shown resistance to tamoxifen, which leads to low overall survival and progression‑free survival. The molecular mechanism of resistance is mainly due to downregulation of ERα expression and abnormal activation of the PI3K/AKT/mTOR signaling pathway. Moreover, the downregulation of targeted gene expression mediated by DNA methylation is an important regulatory mode to control protein expression. In the present review, methylation and tamoxifen are briefly introduced, followed by a focus on the effect of methylation on tamoxifen resistance and sensitivity. Finally, the clinical application of methylation for tamoxifen is described, including its use as a prognostic indicator. Finally, it is hypothesized that when methylation is used in combination with tamoxifen, it could recover the resistance of tamoxifen.
Collapse
Affiliation(s)
- Jin Shen
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Yan He
- Department of Neurology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Shengpeng Li
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Huimin Chen
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
2
|
Rotarescu RD, Mathur M, Bejoy AM, Anderson GH, Metherel AH. Serum measures of docosahexaenoic acid (DHA) synthesis underestimates whole body DHA synthesis in male and female mice. J Nutr Biochem 2024; 131:109689. [PMID: 38876393 DOI: 10.1016/j.jnutbio.2024.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Females have higher docosahexaenoic acid (DHA) levels than males, proposed to be a result of higher DHA synthesis rates from α-linolenic acid (ALA). However, DHA synthesis rates are reported to be low, and have not been directly compared between sexes. Here, we apply a new compound specific isotope analysis model to determine n-3 PUFA synthesis rates in male and female mice and assess its potential translation to human populations. Male and female C57BL/6N mice were allocated to one of three 12-week dietary interventions with added ALA, eicosapentaenoic acid (EPA) or DHA. The diets included low carbon-13 (δ13C)-n-3 PUFA for four weeks, followed by high δ13C-n-3 PUFA for eight weeks (n=4 per diet, time point, sex). Following the diet switch, blood and tissues were collected at multiple time points, and fatty acid levels and δ13C were determined and fit to one-phase exponential decay modeling. Hepatic DHA synthesis rates were not different (P>.05) between sexes. However, n-3 docosapentaenoic acid (DPAn-3) synthesis from dietary EPA was 66% higher (P<.05) in males compared to females, suggesting higher synthesis downstream of DPAn-3 in females. Estimates of percent conversion of dietary ALA to serum DHA was 0.2%, in line with previous rodent and human estimates, but severely underestimates percent dietary ALA conversion to whole body DHA of 9.5%. Taken together, our data indicates that reports of low human DHA synthesis rates may be inaccurate, with synthesis being much higher than previously believed. Future animal studies and translation of this model to humans are needed for greater understanding of n-3 PUFA synthesis and metabolism, and whether the higher-than-expected ALA-derived DHA can offset dietary DHA recommendations set by health agencies.
Collapse
Affiliation(s)
- Ruxandra D Rotarescu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mahima Mathur
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Ashley M Bejoy
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Loukil I, Mutch DM, Plourde M. Genetic association between FADS and ELOVL polymorphisms and the circulating levels of EPA/DHA in humans: a scoping review. GENES & NUTRITION 2024; 19:11. [PMID: 38844860 PMCID: PMC11157910 DOI: 10.1186/s12263-024-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two omega-3 fatty acids that can be synthesized out of their precursor alpha-linolenic acid (ALA). FADS and ELOVL genes encode the desaturase and elongase enzymes required for EPA and DHA synthesis from ALA; however, single nucleotide polymorphisms (SNPs) in FADS and ELOVL genes could modify the levels of EPA and DHA synthesized from ALA although there is no consensus in this area. This review aims to investigate EPA and DHA circulating levels in human blood and their association with FADS or ELOVL. METHODS PubMed, Cochrane, and Scopus databases were used to identify research articles. They were subsequently reviewed by two independent investigators. RESULTS Initially, 353 papers were identified. After removing duplicates and articles not meeting inclusion criteria, 98 full text papers were screened. Finally, this review included 40 studies investigating FADS and/or ELOVL polymorphisms. A total of 47 different SNPs in FADS genes were reported. FADS1 rs174537, rs174547, rs174556 and rs174561 were the most studied SNPs, with minor allele carriers having lower levels of EPA and DHA. SNPs in the FADS genes were in high linkage disequilibrium. SNPs in FADS were correlated with levels of EPA and DHA. No conclusion could be drawn with the ELOVL polymorphisms since the number of studies was too low. CONCLUSION Specific SNPs in FADS gene, such as rs174537, have strong associations with circulating levels of EPA and DHA. Continued investigation regarding the impact of genetic variants related to EPA and DHA synthesis is warranted.
Collapse
Affiliation(s)
- Insaf Loukil
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, Guelph, ON, N1G 2W1, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada.
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
4
|
Castellanos-Perilla N, Borda MG, Aarsland D, Barreto GE. An analysis of omega-3 clinical trials and a call for personalized supplementation for dementia prevention. Expert Rev Neurother 2024; 24:313-324. [PMID: 38379273 PMCID: PMC11090157 DOI: 10.1080/14737175.2024.2313547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Targeted interventions are needed to delay or prevent the onset of neurodegenerative diseases. Poor dietary habits are associated with cognitive decline, highlighting the benefits of a healthy diet with fish and polyunsaturated fatty acids (PUFAs). Intake of omega-3 PUFAs docosahexaenoic acid (DHA), α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) is linked with healthy aging, cardiovascular benefits, and reduced risk of Alzheimer's disease. Although omega-3 has health benefits, its intake is often inadequate and insufficient in modern diets. Although fish oil supplements offer an alternative source, inconsistent results from clinical trials raise questions about the factors determining their success. AREAS COVERED In this this review, the authors discuss the aforementioned determining factors and highlight strategies that could enhance the effectiveness of omega-3 PUFAs interventions for dementia and cognitive decline. Moreover, the authors provide suggestions for potential future research. EXPERT OPINION Factors such as diet, lifestyle, and genetic predisposition can all influence the effectiveness of omega-3 supplementation. When implementing clinical trials, it is crucial to consider these factors and recognize their potential impact on the interpretation of results. It is important to study each variable independently and the interactions between them.
Collapse
Affiliation(s)
- Nicolás Castellanos-Perilla
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Miguel Germán Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
5
|
Rezaei K, Bejoy AM, Rotarescu RD, Klievik BJ, Metherel AH. Sex-dependent differences in tissue and blood n-3 PUFA levels following ALA or ALA + DHA feeding of liver-specific Elovl2-KO and control mice. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102621. [PMID: 38763083 DOI: 10.1016/j.plefa.2024.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) must be consumed from the diet or synthesized from polyunsaturated fatty acid (PUFA) precursors, such as α-linolenic acid (ALA, 18:3n-3). Elongase 2 (encoded by Elovl2 gene) catalyzes two elongation reactions in the PUFA biosynthesis pathway and may be important in regulating the observed sex differences in n-3 PUFA levels. Our aim was to determine how targeted knockout of liver Elovl2 affects tissue and blood n-3 PUFA levels in male and female C57BL/6J mice. Twenty-eight-day old male and female liver Elovl2-KO and control mice were placed onto one of two dietary protocols for a total of 8 weeks (4-8 mice per genotype, per diet, per sex): 1) an 8-week 2 % ALA in total fat diet or 2) a 4-week 2 % ALA diet followed by a 4-week 2 % ALA + 2 % DHA diet. Following this 8-week feeding period, 12-week-old mice were sacrificed and serum, red blood cells (RBC), liver, heart and brain were collected and fatty acid levels measured. Significant interaction effects (p < 0.05, sex x genotype) for serum, RBC, liver and heart DHA levels were identified. In serum and liver, DHA levels were significantly different (p < 0.01) between all groups with male controls > female controls > female KO > male KO in serum and female controls > male controls > female KO > male KO in liver. In RBCs and the heart, female controls = male controls > female KO > male KO (p < 0.001). The addition of DHA to diet removed the interaction effects on DHA levels in the serum, liver and heart, yielding a significant sex effect in serum, liver (female > male, p < 0.01) and brain (male > female, p < 0.05) and genotype effect in serum and heart (control > KO, p < 0.05). Ablation of liver Elovl2 results in significantly lower blood and tissue DHA in a sex-dependent manner, suggesting a role for Elovl2 on sex differences in n-3 PUFA levels.
Collapse
Affiliation(s)
- Kuorosh Rezaei
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ashley M Bejoy
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ruxandra D Rotarescu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brinley J Klievik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Scott JS, Quek LE, Hoy AJ, Swinnen JV, Nassar ZD, Butler LM. Fatty acid elongation regulates mitochondrial β-oxidation and cell viability in prostate cancer by controlling malonyl-CoA levels. Biochem Biophys Res Commun 2024; 691:149273. [PMID: 38029544 DOI: 10.1016/j.bbrc.2023.149273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Recently, the fatty acid elongation enzyme ELOVL5 was identified as a critical pro-metastatic factor in prostate cancer, required for cell growth and mitochondrial homeostasis. The fatty acid elongation reaction catalyzed by ELOVL5 utilizes malonyl-CoA as the carbon donor. Here, we demonstrate that ELOVL5 knockdown causes malonyl-CoA accumulation. Malonyl-CoA is a cellular substrate that can inhibit fatty acid β-oxidation in the mitochondria through allosteric inhibition of carnitine palmitoyltransferase 1A (CPT1A), the enzyme that controls the rate-limiting step of the long chain fatty acid β-oxidation cycle. We hypothesized that changes in malonyl-CoA abundance following ELOVL5 knockdown could influence mitochondrial β-oxidation rates in prostate cancer cells, and regulate cell viability. Accordingly, we find that ELOVL5 knockdown is associated with decreased mitochondrial β-oxidation in prostate cancer cells. Combining ELOVL5 knockdown with FASN inhibition to increase malonyl-CoA abundance endogenously enhances the effect of ELOVL5 knockdown on prostate cancer cell viability, while preventing malonyl-CoA production rescues the cells from the effect of ELOVL5 knockdown. Our findings indicate an additional role for fatty acid elongation, in the control of malonyl-CoA homeostasis, alongside its established role in the production of long-chain fatty acid species, to explain the importance of fatty acid elongation for cell viability.
Collapse
Affiliation(s)
- Julia S Scott
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Johannes V Swinnen
- LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, B-3000, Belgium
| | - Zeyad D Nassar
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
7
|
Czumaj A, Kobiela J, Mika A, Pappou E, Śledziński T. The Effect of Silencing Fatty Acid Elongase 4 and 6 Genes on the Proliferation and Migration of Colorectal Cancer Cells. Int J Mol Sci 2023; 24:17615. [PMID: 38139442 PMCID: PMC10743756 DOI: 10.3390/ijms242417615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer (CRC) cells show some alterations in lipid metabolism, including an increased fatty acid elongation. This study was focused on investigating the effect of a small interfering RNA (siRNA)-mediated decrease in fatty acid elongation on CRC cells' survival and migration. In our study, the elongase 4 (ELOVL4) and elongase 6 (ELOVL6) genes were observed to be highly overexpressed in both the CRC tissue obtained from patients and the CRC cells cultured in vitro (HT-29 and WiDr cell lines). The use of the siRNAs for ELOVL4 and ELOVL6 reduced cancer cell proliferation and migration rates. These findings indicate that the altered elongation process decreased the survival of CRC cells, and in the future, fatty acid elongases can be potentially good targets in novel CRC therapy.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.M.); (T.Ś.)
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Department of Surgical Oncology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.M.); (T.Ś.)
| | - Emmanouil Pappou
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Tomasz Śledziński
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.M.); (T.Ś.)
| |
Collapse
|
8
|
Li Y, Xiong JB, Jie ZG, Xiong H. Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta gene as a tumour suppressor in stomach adenocarcinoma. Front Oncol 2022; 12:1069875. [PMID: 36518312 PMCID: PMC9743170 DOI: 10.3389/fonc.2022.1069875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is the most common type of gastric cancer. In this study, the functions and potential mechanisms of hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) in STAD were explored. METHODS Different bioinformatics analyses were performed to confirm HADHB expression in STAD. HADHB expression in STAD tissues and cells was also evaluated using western blot, qRT-PCR, and immunohistochemistry. Further, the viability, proliferation, colony formation, cell cycle determination, migration, and wound healing capacity were assessed, and the effects of HADHB on tumour growth, cell apoptosis, and proliferation in nude mice were determined. The upstream effector of HADHB was examined using bioinformatics analysis and dual luciferase reporter assay. GSEA was also employed for pathway enrichment analysis and the expression of Hippo-YAP pathway-related proteins was detected. RESULTS The expression of HADHB was found to be low in STAD tissues and cells. The upregulation of HADHB distinctly repressed the viability, proliferation, colony formation, cell cycle progression, migration, invasion, and wound healing of HGC27 cells, while knockdown of HADHB led to opposite effects. HADHB upregulation impeded tumour growth and cell proliferation, and enhanced apoptosis in nude mice. KLF4, whose expression was low in STAD, was identified as an upstream regulator of HADHB. KLF4 upregulation abolished the HADHB knockdown-induced tumour promoting effects in AGS cells. Further, HADHB regulates the Hippo-YAP pathway, which was validated using a pathway rescue assay. Low expression of KLF4 led to HADHB downregulation in STAD. CONCLUSION HADHB might function as a tumour suppressor gene in STAD by regulation the Hippo-YAP pathway.
Collapse
Affiliation(s)
- Yun Li
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Bo Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Gang Jie
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Hui Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Wang D, Li X, Zhang P, Cao Y, Zhang K, Qin P, Guo Y, Li Z, Tian Y, Kang X, Liu X, Li H. ELOVL gene family plays a virtual role in response to breeding selection and lipid deposition in different tissues in chicken (Gallus gallus). BMC Genomics 2022; 23:705. [PMID: 36253734 PMCID: PMC9575239 DOI: 10.1186/s12864-022-08932-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background Elongases of very long chain fatty acids (ELOVLs), a family of first rate-limiting enzymes in the synthesis of long-chain fatty acids, play an essential role in the biosynthesis of complex lipids. Disrupting any of ELOVLs affects normal growth and development in mammals. Genetic variations in ELOVLs are associated with backfat or intramuscular fatty acid composition in livestock. However, the effects of ELOVL gene family on breeding selection and lipid deposition in different tissues are still unknown in chickens. Results Genetic variation patterns and genetic associations analysis showed that the genetic variations of ELOVL genes were contributed to breeding selection of commercial varieties in chicken, and 14 SNPs in ELOVL2-6 were associated with body weight, carcass or fat deposition traits. Especially, one SNP rs17631638T > C in the promoter of ELOVL3 was associated with intramuscular fat content (IMF), and its allele frequency was significantly higher in native and layer breeds compared to that in commercial broiler breeds. Quantitative real-time PCR (qRT-PCR) determined that the ELOVL3 expressions in pectoralis were affected by the genotypes of rs17631638T > C. In addition, the transcription levels of ELOVL genes except ELOVL5 were regulated by estrogen in chicken liver and hypothalamus with different regulatory pathways. The expression levels of ELOVL1-6 in hypothalamus, liver, abdominal fat and pectoralis were correlated with abdominal fat weight, abdominal fat percentage, liver lipid content and IMF. Noteworthily, expression of ELOVL3 in pectoralis was highly positively correlated with IMF and glycerophospholipid molecules, including phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol and phospholipids inositol, rich in ω-3 and ω-6 long-chain unsaturated fatty acids, suggesting ELOVL3 could contribute to intramuscular fat deposition by increasing the proportion of long-chain unsaturated glycerophospholipid molecules in pectoralis. Conclusions In summary, we demonstrated the genetic contribution of ELOVL gene family to breeding selection for specialized varieties, and revealed the expression regulation of ELOVL genes and their potential roles in regulating lipid deposition in different tissues. This study provides new insights into understanding the functions of ELOVL family on avian growth and lipid deposition in different tissues and the genetic variation in ELOVL3 may aid the marker-assisted selection of meat quality in chicken. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08932-8.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinyan Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Zhang
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou, 450002, China
| | - Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China.
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China.
| |
Collapse
|
10
|
Naffaa V, Magny R, Regazzetti A, Van Steenwinckel J, Gressens P, Laprévote O, Auzeil N, Schang AL. Shift in phospholipid and fatty acid contents accompanies brain myelination. Biochimie 2022; 203:20-31. [DOI: 10.1016/j.biochi.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
|
11
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA. Associations Of Delta Fatty Acid Desaturase Gene Polymorphisms With Lipid Metabolism Disorders. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Overweight, obesity, type 2 diabetes mellitus, metabolic syndrome, cardiovascular diseases, and non-alcoholic fatty liver disease are common chronic ailments associated with lipid metabolism disorders. One of the mechanisms of these disorders is related to the deficiency and/or change in the balance of essential fatty acids (FAs). At the same time, the provision of ω3 and ω6 polyunsaturated fatty acids (PUFAs) depends, besides sufficient dietary intake, on efficiency of their endogenous biosynthesis by desaturation and elongation processes regulated by FA elongases and FA desaturases. Desaturases are encoded by PUFA desaturase genes (FADSs): FADS1 and FADS2. Alteration of FA desaturase activity and single nucleotide polymorphisms (SNPs) in the FADS1 and FADS2 gene cluster are associated with lipid metabolism dysfunction and may affect the pathogenesis of lipid-related diseases. People of different ages, from different ethnic backgrounds and countries may exhibit varying degrees of response to dietary supplements of ω3 and ω6 PUFAs. The study of the relationship between lipid metabolism disorders and genetic factors controlling FA metabolism is an important research area since the health effects of alimentary ω3 and ω6 PUFAs can depend on genetic variants of the FADS genes. This review summarizes the literature data on the association of FADS gene polymorphisms with lipid metabolism disorders and their role in the development of chronic non-communicable pathologies associated with changes in lipid metabolism.
Collapse
Affiliation(s)
- Oksana Yu. Kytikova
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | | | - Yulia K. Denisenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Marina V. Antonyuk
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
12
|
Thibaut R, Laubert M, Ejlalmanesh T, Alzaid F. [Elongase 2 and polyunsaturated fatty acids: Key players in inflammation and type 2 diabetes]. Med Sci (Paris) 2021; 37:987-992. [PMID: 34851274 DOI: 10.1051/medsci/2021146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ronan Thibaut
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Mathilde Laubert
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Tina Ejlalmanesh
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Fawaz Alzaid
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| |
Collapse
|
13
|
Yaeger MJ, Reece SW, Kilburg-Basnyat B, Hodge MX, Pal A, Dunigan-Russell K, Luo B, You DJ, Bonner JC, Spangenburg EE, Tokarz D, Hannan J, Armstrong M, Manke J, Reisdorph N, Tighe RM, Shaikh SR, Gowdy KM. Sex Differences in Pulmonary Eicosanoids and Specialized Pro-Resolving Mediators in Response to Ozone Exposure. Toxicol Sci 2021; 183:170-183. [PMID: 34175951 DOI: 10.1093/toxsci/kfab081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ozone (O3) is a criteria air pollutant known to increase the morbidity and mortality of cardiopulmonary diseases. This occurs through a pulmonary inflammatory response characterized by increased recruitment of immune cells into the airspace, pro-inflammatory cytokines, and pro-inflammatory lipid mediators. Recent evidence has demonstrated sex-dependent differences in the O3-induced pulmonary inflammatory response. However, it is unknown if this dimorphic response is evident in pulmonary lipid mediator metabolism. We hypothesized that there are sex-dependent differences in lipid mediator production following acute O3 exposure. Male and female C57BL/6J mice were exposed to 1 part per million O3 for 3 hours and were necropsied at 6 or 24 hours following exposure. Lung lavage was collected for cell differential and total protein analysis, and lung tissue was collected for mRNA analysis, metabololipidomics, and immunohistochemistry. Compared to males, O3-exposed female mice had increases in airspace neutrophilia, neutrophil chemokine mRNA, pro-inflammatory eicosanoids such as prostaglandin E2, and specialized pro-resolving mediators (SPMs) such as resolvin D5 in lung tissue. Likewise, precursor fatty acids (arachidonic and docosahexaenoic acid; DHA) were increased in female lung tissue following O3 exposure compared to males. Experiments with ovariectomized females revealed that loss of ovarian hormones exacerbates pulmonary inflammation and injury. However, eicosanoid and SPM production were not altered by ovariectomy despite depleted pulmonary DHA concentrations. Taken together, these data indicate that O3 drives an increased pulmonary inflammatory and bioactive lipid mediator response in females. Furthermore, ovariectomy increases susceptibility to O3-induced pulmonary inflammation and injury, as well as decreases pulmonary DHA concentrations.
Collapse
Affiliation(s)
- M J Yaeger
- Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210
| | - S W Reece
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858
| | - B Kilburg-Basnyat
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858
| | - M X Hodge
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858
| | - A Pal
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - K Dunigan-Russell
- Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210
| | - B Luo
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858
| | - D J You
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27107
| | - J C Bonner
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27107
| | - E E Spangenburg
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858
| | - D Tokarz
- Experimental Pathology Laboratories, Inc, Research Triangle Park, NC, 27709
| | - J Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858
| | - M Armstrong
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, 80045
| | - J Manke
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, 80045
| | - N Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, 80045
| | - R M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710
| | - S R Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - K M Gowdy
- Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210
| |
Collapse
|
14
|
Jeong D, Ham J, Kim HW, Kim H, Ji HW, Yun SH, Park JE, Lee KS, Jo H, Han JH, Jung SY, Lee S, Lee ES, Kang HS, Kim SJ. ELOVL2: a novel tumor suppressor attenuating tamoxifen resistance in breast cancer. Am J Cancer Res 2021; 11:2568-2589. [PMID: 34249416 PMCID: PMC8263635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023] Open
Abstract
Epigenetic events have successfully explained the cause of various cancer types, but little is known about tamoxifen resistance (TamR) that induces cancer recurrence. In this study, via genome-wide methylation analysis in MCF-7/TamR cells we show that elongation of very-long chain fatty acid protein 2 (ELOVL2) was hypermethylated and downregulated in the samples from TamR breast cancer patients (n = 28) compared with those from Tam-sensitive (TamS) patients (n = 33) (P < 0.001). Strikingly, in addition to having tumor suppressor activity, ELOVL2 was shown to recover Tam sensitivity up to 70% in the MCF-7/TamR cells and in a xenograft mouse model. A group of genes in the AKT and ERa signaling pathways, e.g., THEM4, which play crucial roles in drug resistance, were found to be regulated by ELOVL2. This study implies that the deregulation of a gene in fatty acid metabolism can lead to drug resistance, giving insight into the development of a new therapeutic strategy for drug-resistant breast cancer.
Collapse
Affiliation(s)
- Dawoon Jeong
- Department of Life Science, Dongguk University-SeoulGoyang, Republic of Korea
- Current address: AprogenSungnam 13215, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-SeoulGoyang, Republic of Korea
- Current address: Kogene BiotechSeoul 08507, Republic of Korea
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-SeoulGoyang, Republic of Korea
| | - Heejoo Kim
- Department of Life Science, Dongguk University-SeoulGoyang, Republic of Korea
| | - Hwee Won Ji
- Department of Life Science, Dongguk University-SeoulGoyang, Republic of Korea
| | - Sung Hwan Yun
- Department of Life Science, Dongguk University-SeoulGoyang, Republic of Korea
| | - Jae Eun Park
- Department of Life Science, Dongguk University-SeoulGoyang, Republic of Korea
| | - Keun Seok Lee
- Research Institute and Hospital, National Cancer CenterGoyang, Republic of Korea
| | - Heein Jo
- Research Institute and Hospital, National Cancer CenterGoyang, Republic of Korea
| | - Jai Hong Han
- Research Institute and Hospital, National Cancer CenterGoyang, Republic of Korea
| | - So-Youn Jung
- Research Institute and Hospital, National Cancer CenterGoyang, Republic of Korea
| | - Seeyoun Lee
- Research Institute and Hospital, National Cancer CenterGoyang, Republic of Korea
| | - Eun Sook Lee
- Research Institute and Hospital, National Cancer CenterGoyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer CenterGoyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-SeoulGoyang, Republic of Korea
| |
Collapse
|
15
|
Harris WS, Tintle NL, Manson JE, Metherel AH, Robinson JG. Effects of menopausal hormone therapy on erythrocyte n-3 and n-6 PUFA concentrations in the Women's Health Initiative randomized trial. Am J Clin Nutr 2021; 113:1700-1706. [PMID: 33710263 PMCID: PMC8168349 DOI: 10.1093/ajcn/nqaa443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The factors other than dietary intake that determine tissue concentrations of EPA and DHA remain obscure. Prior studies suggested that, in women, endogenous estrogen may accelerate synthesis of DHA from ɑ-linolenic acid (ALA), but the effects of exogenous estrogen on RBC n-3 (ɷ-3) PUFA concentrations are unknown. OBJECTIVE We tested the hypothesis that menopausal hormone therapy (HT) would increase RBC n-3 PUFA concentrations. METHODS Postmenopausal women (ages 50-79 y) were assigned to HT or placebo in the Women's Health Initiative (WHI) randomized trial. The present analyses included a subset of 1170 women (ages 65-79 y) who had RBC PUFA concentrations measured at baseline and at 1 y as participants in the WHI Memory Study. HT included conjugated equine estrogens (E) alone for women without a uterus (n = 560) and E plus medroxyprogesterone acetate (P) for those with an intact uterus (n = 610). RBC n-3 and n-6 (ɷ-6) PUFAs were quantified. RESULTS Effects of E alone and E+P on PUFA profiles were similar and were thus combined in the analyses. Relative to the changes in the placebo group after 1 y of HT, docosapentaenoic acid (DPA; n-3) concentrations decreased by 10% (95% CI: 7.3%, 12.5%), whereas DHA increased by 11% (95% CI: 7.4%, 13.9%) in the HT group. Like DHA, DPA n-6 increased by 13% from baseline (95% CI: 10.0%, 20.3%), whereas linoleic acid decreased by 2.0% (95% CI: 1.0%, 4.1%; P values at least <0.01 for all). EPA and arachidonic acid concentrations were unchanged. CONCLUSIONS HT increased RBC concentrations of the terminal n-3 and n-6 PUFAs (DHA and DPA n-6). These findings are consistent with an estrogen-induced increase in DHA and DPA n-6 synthesis, which is consistent with an upregulation of fatty acid elongases and/or desaturases in the PUFA synthetic pathway. The clinical implications of these changes require further study. The Women's Health Initiative Memory Study is registered at clinicaltrials.gov as NCT00685009. Note that the data presented here were not planned as part of the original trial, and therefore are to be considered exploratory.
Collapse
Affiliation(s)
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA,Department of Mathematics and Statistics, Dordt College, Sioux Center, IA, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jennifer G Robinson
- Department of Epidemiology, College of Public Health, Iowa City, IA, USA,Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Wu CC, Shields JN, Akemann C, Meyer DN, Connell M, Baker BB, Pitts DK, Baker TR. The phenotypic and transcriptomic effects of developmental exposure to nanomolar levels of estrone and bisphenol A in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143736. [PMID: 33243503 PMCID: PMC7790172 DOI: 10.1016/j.scitotenv.2020.143736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 04/14/2023]
Abstract
Estrone and BPA are two endocrine disrupting chemicals (EDCs) that are predicted to be less potent than estrogens such as 17β-estradiol and 17α-ethinylestradiol. Human exposure concentrations to estrone and BPA can be as low as nanomolar levels. However, very few toxicological studies have focused on the nanomolar-dose effects. Low level of EDCs can potentially cause non-monotonic responses. In addition, exposures at different developmental stages can lead to different health outcomes. To identify the nanomolar-dose effects of estrone and BPA, we used zebrafish modeling to study the phenotypic and transcriptomic responses after extended duration exposure from 0 to 5 days post-fertilization (dpf) and short-term exposure at days 4-5 post fertilization. We found that non-monotonic transcriptomic responses occurred after extended duration exposures at 1 nM of estrone or BPA. At this level, estrone also caused hypoactivity locomotive behavior in zebrafish. After both extended duration and short-term exposures, BPA led to more apparent phenotypic responses, i.e. skeletal abnormalities and locomotion changes, and more significant transcriptomic responses than estrone exposure. After short-term exposure, BPA at concentrations equal or above 100 nM affected locomotive behavior and changed the expression of both estrogenic and non-estrogenic genes that are linked to neurological diseases. These data provide gaps of mechanisms between neurological genes expression and associated phenotypic response due to estrone or BPA exposures. This study also provides insights for assessing the acceptable concentration of BPA and estrone in aquatic environments.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Mackenzie Connell
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA.
| |
Collapse
|
17
|
Chen CT, Haven S, Lecaj L, Borgstrom M, Torabi M, SanGiovanni JP, Hibbeln JR. Brain PUFA Concentrations Are Differentially Affected by Interactions of Diet, Sex, Brain Regions, and Phospholipid Pools in Mice. J Nutr 2020; 150:3123-3132. [PMID: 33188433 PMCID: PMC7726127 DOI: 10.1093/jn/nxaa307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND PUFAs play vital roles in the development, maintenance, and functioning of circuitries that regulate reward and social behaviors. Therefore, modulations in PUFA concentrations of these brain regions may disrupt reward and social circuitries contributing to mood disorders, developmental disabilities, and addictions. Though much is known about regional and phospholipid-pool-specific PUFA concentrations, less is known about the effects of dietary interventions that concurrently lowers n-6 PUFA and supplements n-3 PUFA, on brain PUFA concentrations. There is even less knowledge on the effects of sex on brain PUFA concentrations. OBJECTIVE This study aimed to comprehensively examine the interaction effects of diet (D), sex (S), brain regions (BR), and phospholipid pools (PL) on brain PUFA concentrations. METHODS Male and female C57BL/6J mice were fed 1 of 4 custom-designed diets varying in linoleic acid (LNA) (8 en% or 1 en%) and eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) (0.4 en% or 0 en%) concentrations from in utero to 15 weeks old. At 15 weeks old, the prefrontal cortex, dorsal striatum, and cerebellum were collected. Fatty acids of 5 major PL were quantified by GC-flame ionization detection. Repeated measures ANOVA was used to test for differences among the groups for D, S, BR, and PL. RESULTS No significant 4-way interactions on PUFA concentrations. DHA, predominant n-3 PUFA, concentrations were dependent on significant D × BR × PL interactions. DHA concentration was not affected by sex. Arachidonic acid (ARA; predominant n-6 PUFA) concentrations were not dependent on 3-way interactions. However, significant 2-way D × PL, BR × PL, and D × Sinteractions affected ARA concentrations. Brain fatty acid concentrations were differentially affected by various combinations of D, S, BR, and PL interactions. CONCLUSION Though DHA concentrations are not affected by sex, ARA concentrations are affected by interactions of the 4 variables examined. This study provides comprehensive references in the investigation of complex interactions between factors that affect brain PUFA concentrations in mice.
Collapse
Affiliation(s)
| | - Sophie Haven
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| | - Lea Lecaj
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| | - Mark Borgstrom
- University Information Technology Services, University of Arizona, Tucson, AZ, USA
| | - Mohammad Torabi
- University Information Technology Services, University of Arizona, Tucson, AZ, USA
| | | | - Joseph R Hibbeln
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| |
Collapse
|
18
|
Metherel AH, Irfan M, Klingel SL, Mutch DM, Bazinet RP. Higher Increase in Plasma DHA in Females Compared to Males Following EPA Supplementation May Be Influenced by a Polymorphism in ELOVL2: An Exploratory Study. Lipids 2020; 56:211-228. [PMID: 33174255 DOI: 10.1002/lipd.12291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Young adult females have higher blood docosahexaenoic acid (DHA), 22:6n-3 levels than males, and this is believed to be due to higher DHA synthesis rates, although DHA may also accumulate due to a longer half-life or a combination of both. However, sex differences in blood fatty acid responses to eicosapentaenoic acid (EPA), 20:5n-3 or DHA supplementation have not been fully investigated. In this exploratory analysis, females and males (n = 14-15 per group) were supplemented with 3 g/day EPA, 3 g/day DHA, or olive oil control for 12 weeks. Plasma was analyzed for sex effects at baseline and changes following 12 weeks' supplementation for fatty acid levels and carbon-13 signature (δ13 C). Following EPA supplementation, the increase in plasma DHA in females (+23.8 ± 11.8, nmol/mL ± SEM) was higher than males (-13.8 ± 9.2, p < 0.01). The increase in plasma δ13 C-DHA of females (+2.79 ± 0.31, milliUrey (mUr ± SEM) compared with males (+1.88 ± 0.44) did not reach statistical significance (p = 0.10). The sex effect appears driven largely by increased plasma DHA in the AA genotype of females (+58.8 ± 11.5, nmol/mL ± SEM, n = 5) compared to GA + GG in females (+4.34 ± 13.5, n = 9) and AA in males (-29.1 ± 17.2, n = 6) for rs953413 in the ELOVL2 gene (p < 0.001). In conclusion, EPA supplementation increases plasma DHA levels in females compared to males, which may be dependent on the AA genotype for rs953413 in ELOVL2.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maha Irfan
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shannon L Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
19
|
Tanideh R, Delavari S, Farshad O, Irajie C, Javad Yavari Barhaghtalab M, Koohpeyma F, Koohi-Hosseinabadi O, Jamshidzadeh A, Tanideh N, Iraji A. Effect of flaxseed oil on biochemical parameters, hormonal indexes and stereological changes in ovariectomized rats. Vet Med Sci 2020; 7:521-533. [PMID: 33103380 PMCID: PMC8025639 DOI: 10.1002/vms3.372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
The ovariectomized rat is a widely used preclinical model for studying postmenopausal and its complications. In this study, the therapeutic effect of flaxseed oil on the ovariectomized adult rats was investigated. Our results showed that biochemical parameters including calcium, oestrogen and progesterone levels increase 8 weeks after ovariectomy in rats. Also, the amount of alkaline phosphatase decreased significantly after 8 weeks compared with the OVX rat. The healing potential of flaxseed oil was proven by successfully recovering the affected tissue and preventing the unpleasant symptoms of ovariectomized rats. The biological effects of flaxseed oil may be due to high amounts of fatty acids, phytoestrogens and an array of antioxidants. The results suggest that flaxseed oil can mimic the action of oestrogen and can be a potential treatment for hormone replacement therapy (HRT).
Collapse
Affiliation(s)
- Romina Tanideh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Delavari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Ferreri C, Sansone A, Ferreri R, Amézaga J, Tueros I. Fatty Acids and Membrane Lipidomics in Oncology: A Cross-Road of Nutritional, Signaling and Metabolic Pathways. Metabolites 2020; 10:metabo10090345. [PMID: 32854444 PMCID: PMC7570129 DOI: 10.3390/metabo10090345] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty acids are closely involved in lipid synthesis and metabolism in cancer. Their amount and composition are dependent on dietary supply and tumor microenviroment. Research in this subject highlighted the crucial event of membrane formation, which is regulated by the fatty acids' molecular properties. The growing understanding of the pathways that create the fatty acid pool needed for cell replication is the result of lipidomics studies, also envisaging novel fatty acid biosynthesis and fatty acid-mediated signaling. Fatty acid-driven mechanisms and biological effects in cancer onset, growth and metastasis have been elucidated, recognizing the importance of polyunsaturated molecules and the balance between omega-6 and omega-3 families. Saturated and monounsaturated fatty acids are biomarkers in several types of cancer, and their characterization in cell membranes and exosomes is under development for diagnostic purposes. Desaturase enzymatic activity with unprecedented de novo polyunsaturated fatty acid (PUFA) synthesis is considered the recent breakthrough in this scenario. Together with the link between obesity and cancer, fatty acids open interesting perspectives for biomarker discovery and nutritional strategies to control cancer, also in combination with therapies. All these subjects are described using an integrated approach taking into account biochemical, biological and analytical aspects, delineating innovations in cancer prevention, diagnostics and treatments.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
- Correspondence:
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Rosaria Ferreri
- Department of Integrated Medicine, Tuscany Reference Centre for Integrated Medicine in the hospital pathway, Pitigliano Hospital, Via Nicola Ciacci, 340, 58017 Pitigliano, Italy;
| | - Javier Amézaga
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (I.T.)
| | - Itziar Tueros
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (I.T.)
| |
Collapse
|
21
|
Hou J, Reid NE, Tromberg BJ, Potma EO. Kinetic Analysis of Lipid Metabolism in Breast Cancer Cells via Nonlinear Optical Microscopy. Biophys J 2020; 119:258-264. [PMID: 32610090 DOI: 10.1016/j.bpj.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
Investigating the behavior of breast cancer cells via reaction kinetics may help unravel the mechanisms that underlie metabolic changes in tumors. However, obtaining human in vivo kinetic data is challenging because of difficulties associated with measuring these parameters. Nondestructive methods of measuring lipid content in live cells provide a novel approach to quantitatively model lipid synthesis and consumption. In this study, coherent Raman scattering microscopy was used to probe de novo intracellular lipid content. Combining nonlinear optical microscopy and Michaelis-Menten kinetics-based simulations, we isolated fatty acid synthesis/consumption rates and elucidated effects of altered lipid metabolism in T47D breast cancer cells. When treated with 17β-estradiol, the lipid utilization in cancer cells jumped by twofold. Meanwhile, the rate of de novo lipid synthesis in cancer cells treated with 17β-estradiol was increased by 42%. To test the model in extreme metabolic conditions, we treated T47D cells with etomoxir. Our kinetic analysis demonstrated that the rate of key enzymatic reactions dropped by 75%. These results underline the capability to probe lipid alterations in live cells with minimum interruption and to characterize lipid metabolism in breast cancer cells via quantitative kinetic models and parameters.
Collapse
Affiliation(s)
- Jue Hou
- Beckman Laser Institute and Medical Center, University of California, Irvine, Irvine, California
| | - Nellone E Reid
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Center, University of California, Irvine, Irvine, California
| | - Eric O Potma
- Beckman Laser Institute and Medical Center, University of California, Irvine, Irvine, California.
| |
Collapse
|
22
|
Chaurasiya S, Widmann S, Botero C, Lin CY, Gustafsson JÅ, Strom AM. Estrogen receptor β exerts tumor suppressive effects in prostate cancer through repression of androgen receptor activity. PLoS One 2020; 15:e0226057. [PMID: 32413024 PMCID: PMC7228066 DOI: 10.1371/journal.pone.0226057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor β (ERβ) was first identified in the rodent prostate and is abundantly expressed in human and rodent prostate epithelium, stroma, immune cells and endothelium of the blood vessels. In the prostates of mice with inactivated ERβ, mutant phenotypes include epithelial hyperplasia and increased expression of androgen receptor (AR)-regulated genes, most of which are also upregulated in prostate cancer (PCa). ERβ is expressed in both basal and luminal cells in the prostate while AR is expressed in luminal but not in the basal cell layer which harbors the prostate stem cells. To investigate the mechanisms of action of ERβ and its potential cross-talk with AR, we used RNA-seq to study the effects of estradiol or the synthetic ligand, LY3201, in AR-positive LNCaP PCa cells which had been engineered to express ERβ. Transcriptomic analysis indicated relatively few changes in gene expression with ERβ overexpression, but robust responses following ligand treatments. There is significant overlap of responsive genes between the two ligands, estradiol and LY3201 as well as ligand-specific alterations. Gene set analysis of down-regulated genes identified an enrichment of androgen-responsive genes, such as FKBP5, CAMKK2, and TBC1D4. Consistently, AR transcript, protein levels, and transcriptional activity were down-regulated following ERβ activation. In agreement with this, we find that the phosphorylation of the CAMKK2 target, AMPK, was repressed by ligand-activated ERβ. These findings suggest that ERβ-mediated signaling pathways are involved in the negative regulation of AR expression and activity, thus supporting a tumor suppressive role for ERβ in PCa.
Collapse
Affiliation(s)
- Surendra Chaurasiya
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Scott Widmann
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Cindy Botero
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Chin-Yo Lin
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
- Department of BioSciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Anders M. Strom
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Mbarik M, Biam RS, Robichaud PP, Surette ME. The impact of PUFA on cell responses: Caution should be exercised when selecting PUFA concentrations in cell culture. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102083. [PMID: 32126480 DOI: 10.1016/j.plefa.2020.102083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are important components of cellular membranes, serving both structural and signaling functions. Investigation of the functional responses of cells to various PUFA often involves cell culture experiments, which can then inform or guide subsequent in vivo and clinical investigations. In this study, human carcinoma and leukemia cell lines (MCF-7, HepG2, THP-1, Jurkat) were incubated for 3 days in the presence of up to 150 μM of exogenous arachidonic or eicosapentaenoic acids. At concentrations up to 20 μM these PUFA were enriched in cellular phospholipids, but at concentrations of 20 μM or higher cells accumulated large quantities of these PUFA and their elongation products into triglycerides. This coincided with decreased cell proliferation and enhanced apoptosis. Inhibition of DGAT1 but not DGAT2 enhanced the cytotoxic effect of exogenous PUFA suggesting a protective role of PUFA sequestration into TGs. Lower (10 μM) and higher (50 μM) exogenous PUFA concentrations also had different impacts on the expression of PUFA metabolizing enzymes. Overall, these results indicate that caution must be exercised when planning in vitro experiments since elevated concentrations of PUFA can lead to dysfunctional cellular responses that are not predictive of in vivo responses to dietary PUFA.
Collapse
Affiliation(s)
- Maroua Mbarik
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Roody S Biam
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | | | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
24
|
Qian JX, Yu M, Sun Z, Jiang AM, Long B. A 17-gene expression-based prognostic signature associated with the prognosis of patients with breast cancer: A STROBE-compliant study. Medicine (Baltimore) 2020; 99:e19255. [PMID: 32282693 PMCID: PMC7220332 DOI: 10.1097/md.0000000000019255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identification of reliable predictive biomarkers for patients with breast cancer (BC).Univariate Cox proportional hazards regression model was conducted to identify genes correlated with the overall survival (OS) of patients in the TCGA-BRCA cohort. Functional enrichment analysis was conducted to investigate the biological meaning of these survival related genes. Then, patients in TCGA-BCRA were randomly divided into training set and test. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression model was performed and the risk score of BC patients in this model was used to build a prognostic signature. The prognostic performance of the signature was evaluated in the training set, test set, and an independent validation set GSE7390.2519 genes were demonstrated to be significantly associated with the OS of BC patients. Functional annotation of the 2519 genes suggested that these genes were associated with immune response and protein synthesis related gene ontology terms and pathways. 17 genes were identified in the LASSO Cox regression model and used to construct a 17-gene signature. Patients in the 17-gene signature low risk group have better OS and event-free survival compared with those in the 17-gene signature high risk group in the TCGA-BRCA cohort. The prognostic role of the 17-gene signature has been confirmed in the validation cohort. Multivariable Cox proportional hazards regression model suggested the 17-gene signature was an independent prognostic factor in BC.The 17-gene signature we developed could successfully classify patients into high- and low-risk groups, indicating that it might serve as candidate biomarker in BC.
Collapse
Affiliation(s)
- Jin-Xian Qian
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Min Yu
- Yangtze University, Jingzhou Central Hospital, Galactophore Department, The Second Clinical Medical College, Jingzhou, People's Republic of China
| | - Zhe Sun
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Ai-Mei Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Bo Long
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
25
|
Ding Y, Yang J, Ma Y, Yao T, Chen X, Ge S, Wang L, Fan X. MYCN and PRC1 cooperatively repress docosahexaenoic acid synthesis in neuroblastoma via ELOVL2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:498. [PMID: 31856871 PMCID: PMC6923955 DOI: 10.1186/s13046-019-1492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Background The MYCN amplification is a defining hallmark of high-risk neuroblastoma. Due to irregular oncogenes orchestration, tumor cells exhibit distinct fatty acid metabolic features from non-tumor cells. However, the function of MYCN in neuroblastoma fatty acid metabolism reprogramming remains unknown. Methods Gas Chromatography-Mass Spectrometer (GC-MS) was used to find the potential target fatty acid metabolites of MYCN. Real-time PCR (RT-PCR) and clinical bioinformatics analysis was used to find the related target genes. The function of the identified target gene ELOVL2 on cell growth was detected through CCK-8 assay, Soft agar colony formation assay, flow Cytometry assay and mouse xenograft. Chromatin immunoprecipitation (ChIP) and Immunoprecipitation-Mass Spectrometer (IP-MS) further identified the target gene and the co-repressor of MYCN. Results The fatty acid profile of MYCN-depleted neuroblastoma cells identified docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid with anti-tumor activity, significantly increased after MYCN depletion. Compared with MYCN single-copy neuroblastoma cells, DHA level was significantly lower in MYCN-amplified neuroblastoma cells. RT-PCR and clinical bioinformatics analysis discovered that MYCN interfered DHA accumulation via ELOVL fatty acid elongase 2 (ELOVL2) which is a rate-limiting enzyme of cellular DHA synthesis. Enforced ELOVL2 expression in MYCN-amplified neuroblastoma cells led to decreased cell growth and counteracted the growth-promoting effect of MYCN overexpression both in vitro and vivo. ELOVL2 Knockdown showed the opposite effect in MYCN single-copy neuroblastoma cells. In primary neuroblastoma, high ELOVL2 transcription correlated with favorable clinical tumor biology and patient survival. The mechanism of MYCN-mediated ELOVL2 inhibition contributed to epigenetic regulation. MYCN recruited PRC1 (Polycomb repressive complex 1), catalysed H2AK119ub (histone 2A lysine 119 monoubiquitination) and inhibited subsequent ELOVL2 transcription. Conclusions The tumor suppressive properties of DHA and ELOVL2 are repressed by the MYCN and PRC1 jointly, which suggests a new epigenetic mechanism of MYCN-mediated fatty acid regulation and indicates PRC1 inhibition as a potential novel strategy to activate ELOVL2 suppressive functions.
Collapse
Affiliation(s)
- Yi Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Lihua Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
26
|
Dai W, Liu H, Xu X, Jie G, Luo S, Zhu D, Amos CI, Fang S, Lee JE, Li X, Nan H, Li C, Wei Q. Genetic variants in ELOVL2 and HSD17B12 predict melanoma-specific survival. Int J Cancer 2019; 145:2619-2628. [PMID: 30734280 PMCID: PMC6824721 DOI: 10.1002/ijc.32194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/11/2019] [Indexed: 11/06/2022]
Abstract
Fatty acids play a key role in cellular bioenergetics, membrane biosynthesis and intracellular signaling processes and thus may be involved in cancer development and progression. In the present study, we comprehensively assessed associations of 14,522 common single-nucleotide polymorphisms (SNPs) in 149 genes of the fatty-acid synthesis pathway with cutaneous melanoma disease-specific survival (CMSS). The dataset of 858 cutaneous melanoma (CM) patients from a published genome-wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used as the discovery dataset, and the identified significant SNPs were validated by a dataset of 409 CM patients from another GWAS from the Nurses' Health and Health Professionals Follow-up Studies. We found 40 noteworthy SNPs to be associated with CMSS in both discovery and validation datasets after multiple comparison correction by the false positive report probability method, because more than 85% of the SNPs were imputed. By performing functional prediction, linkage disequilibrium analysis, and stepwise Cox regression selection, we identified two independent SNPs of ELOVL2 rs3734398 T>C and HSD17B12 rs11037684 A>G that predicted CMSS, with an allelic hazards ratio of 0.66 (95% confidence interval = 0.51-0.84 and p = 8.34 × 10-4 ) and 2.29 (1.55-3.39 and p = 3.61 × 10-5 ), respectively. Finally, the ELOVL2 rs3734398 variant CC genotype was found to be associated with a significantly increased mRNA expression level. These SNPs may be potential markers for CM prognosis, if validated by additional larger and mechanistic studies.
Collapse
Affiliation(s)
- Wei Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- These authors contributed equally to this work
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- These authors contributed equally to this work
| | - Xinyuan Xu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ge Jie
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dakai Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Li
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hongmei Nan
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
27
|
Saurty-Seerunghen MS, Bellenger L, El-Habr EA, Delaunay V, Garnier D, Chneiweiss H, Antoniewski C, Morvan-Dubois G, Junier MP. Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells. Acta Neuropathol Commun 2019; 7:155. [PMID: 31619292 PMCID: PMC6796454 DOI: 10.1186/s40478-019-0819-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/29/2019] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma cell ability to adapt their functioning to microenvironment changes is a source of the extensive intra-tumor heterogeneity characteristic of this devastating malignant brain tumor. A systemic view of the metabolic pathways underlying glioblastoma cell functioning states is lacking. We analyzed public single cell RNA-sequencing data from glioblastoma surgical resections, which offer the closest available view of tumor cell heterogeneity as encountered at the time of patients’ diagnosis. Unsupervised analyses revealed that information dispersed throughout the cell transcript repertoires encoded the identity of each tumor and masked information related to cell functioning states. Data reduction based on an experimentally-defined signature of transcription factors overcame this hurdle. It allowed cell grouping according to their tumorigenic potential, regardless of their tumor of origin. The approach relevance was validated using independent datasets of glioblastoma cell and tissue transcriptomes, patient-derived cell lines and orthotopic xenografts. Overexpression of genes coding for amino acid and lipid metabolism enzymes involved in anti-oxidative, energetic and cell membrane processes characterized cells with high tumorigenic potential. Modeling of their expression network highlighted the very long chain polyunsaturated fatty acid synthesis pathway at the core of the network. Expression of its most downstream enzymatic component, ELOVL2, was associated with worsened patient survival, and required for cell tumorigenic properties in vivo. Our results demonstrate the power of signature-driven analyses of single cell transcriptomes to obtain an integrated view of metabolic pathways at play within the heterogeneous cell landscape of patient tumors.
Collapse
|
28
|
Han J, Chen M, Fang Q, Zhang Y, Wang Y, Esma J, Qiao H. Prediction of the Prognosis Based on Chromosomal Instability-Related DNA Methylation Patterns of ELOVL2 and UBAC2 in PTCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:650-660. [PMID: 31698312 PMCID: PMC6906861 DOI: 10.1016/j.omtn.2019.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/12/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the most common malignant tumor of endocrine systems. Chromosomal instability (CIN) is crucial to the clinical prognoses of tumor patients. DNA methylation plays an important role in the regulation of gene expression and CIN. Based on PTC samples from The Cancer Genome Atlas database, we used multiple regression analyses to identify methylation patterns of CpG sites with the strongest correlation with gene expression. A total of 4,997 genes were obtained through combining the CpG sites, which were represented as featured DNA methylation patterns. In order to identify CIN-related epigenetic markers of PTC survival, we developed a method to characterize CIN based on DNA methylation patterns of genes using the Student’s t statistics. We found that 1,239 genes were highly associated with CIN. With the use of the log-rank test, univariate Cox regression analyses, and the Kaplan-Meier method, DNA methylation patterns of UBAC2 and ELOVL2, highly correlated with CIN, provided potential prognostic values for PTC. The higher these two genes, risk scores were correlated with worse PTC patient prognoses. Moreover, the ELOVL2 risk score was significantly different in the four stages of PTC, suggesting that it was related to the progress of PTC. The DNA methylation pattern associated with CIN may therefore be a good predictor of PTC survival.
Collapse
Affiliation(s)
- Jun Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Meijun Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qingxiao Fang
- Surgical Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yanqing Zhang
- Hematological Department, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Jamaspishvili Esma
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hong Qiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
29
|
Comparative transcriptome analysis of the human endocervix and ectocervix during the proliferative and secretory phases of the menstrual cycle. Sci Rep 2019; 9:13494. [PMID: 31530865 PMCID: PMC6749057 DOI: 10.1038/s41598-019-49647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Despite extensive studies suggesting increased susceptibility to HIV during the secretory phase of the menstrual cycle, the molecular mechanisms involved remain unclear. Our goal was to analyze transcriptomes of the endocervix and ectocervix during the proliferative and secretory phases using RNA sequencing to explore potential molecular signatures of susceptibility to HIV. We identified 202 differentially expressed genes (DEGs) between the proliferative and secretory phases of the cycle in the endocervix (adjusted p < 0.05). The biofunctions and pathways analysis of DEGs revealed that cellular assembly and epithelial barrier function in the proliferative phase and inflammatory response/cellular movement in the secretory phase were among the top biofunctions and pathways. The gene set enrichment analysis of ranked DEGs (score = log fold change/p value) in the endocervix and ectocervix revealed that (i) unstimulated/not activated immune cells gene sets positively correlated with the proliferative phase and negatively correlated with the secretory phase in both tissues, (ii) IFNγ and IFNα response gene sets positively correlated with the proliferative phase in the ectocervix, (iii) HIV restrictive Wnt/β-catenin signaling pathway negatively correlated with the secretory phase in the endocervix. Our data show menstrual cycle phase-associated changes in both endocervix and ectocervix, which may modulate susceptibility to HIV.
Collapse
|
30
|
Torno C, Staats S, Fickler A, de Pascual-Teresa S, Soledad Izquierdo M, Rimbach G, Schulz C. Combined effects of nutritional, biochemical and environmental stimuli on growth performance and fatty acid composition of gilthead sea bream (Sparus aurata). PLoS One 2019; 14:e0216611. [PMID: 31086380 PMCID: PMC6516738 DOI: 10.1371/journal.pone.0216611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
The reliance of the aquafeed industry on marine resources has to be reduced by innovative approaches in fish nutrition. Thus, a three-factorial approach (fish oil reduced diet, phytochemical genistein, and temperature reduction) was chosen to investigate the interaction of effects on growth performance and tissue omega-3 long chain polyunsaturated fatty acid (LC-PUFA) levels in juvenile sea bream (Sparus aurata, 12.5 ± 2.2 g). Genistein is a phytoestrogen with estrogen-like activity and thus LC-PUFA increasing potential. A decrease in the rearing temperature was chosen based on the positive effects of low temperature on fish lipid quality. The experimental diets were reduced in marine ingredients and had a fish oil content of either 6% dry matter (DM; F6: positive control) or 2% DM (F2: negative control) and were administered in the plain variant or with inclusion of 0.15% DM genistein (F6 + G and F2 + G). The feeding trial was performed simultaneously at 23°C and 19°C. The results indicated that solely temperature had a significant effect on growth performance and whole body nutrient composition of sea bream. Nevertheless, the interaction of all three factors significantly affected the fatty acid compositions of liver and fillet tissue. Most importantly, they led to a significant increase by 4.3% of fillet LC-PUFA content in sea bream fed with the diet F6 + G in comparison to control fish fed diet F6, when both groups were held at 19°C. It is hypothesized that genistein can act via estrogen-like as well as other mechanisms and that the dietary LC-PUFA content may impact its mode of action. Temperature most likely exhibited its effects indirectly via altered growth rates and metabolism. Although effects of all three factors and of genistein in particular were only marginal, they highlight a possibility to utilize the genetic capacity of sea bream to improve tissue lipid quality.
Collapse
Affiliation(s)
- Claudia Torno
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
- * E-mail:
| | - Stefanie Staats
- Food Science Research Group, Institute of Human Nutrition and Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Anna Fickler
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN–CSIC), Madrid, Spain
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Gerald Rimbach
- Food Science Research Group, Institute of Human Nutrition and Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Carsten Schulz
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
31
|
Kang YP, Yoon JH, Long NP, Koo GB, Noh HJ, Oh SJ, Lee SB, Kim HM, Hong JY, Lee WJ, Lee SJ, Hong SS, Kwon SW, Kim YS. Spheroid-Induced Epithelial-Mesenchymal Transition Provokes Global Alterations of Breast Cancer Lipidome: A Multi-Layered Omics Analysis. Front Oncol 2019; 9:145. [PMID: 30949448 PMCID: PMC6437068 DOI: 10.3389/fonc.2019.00145] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/20/2019] [Indexed: 01/06/2023] Open
Abstract
Metabolic rewiring has been recognized as an important feature to the progression of cancer. However, the essential components and functions of lipid metabolic networks in breast cancer progression are not fully understood. In this study, we investigated the roles of altered lipid metabolism in the malignant phenotype of breast cancer. Using a spheroid-induced epithelial-mesenchymal transition (EMT) model, we conducted multi-layered lipidomic and transcriptomic analysis to comprehensively describe the rewiring of the breast cancer lipidome during the malignant transformation. A tremendous homeostatic disturbance of various complex lipid species including ceramide, sphingomyelin, ether-linked phosphatidylcholines, and ether-linked phosphatidylethanolamine was found in the mesenchymal state of cancer cells. Noticeably, polyunsaturated fatty acids composition in spheroid cells was significantly decreased, accordingly with the gene expression patterns observed in the transcriptomic analysis of associated regulators. For instance, the up-regulation of SCD, ACOX3, and FADS1 and the down-regulation of PTPLB, PECR, and ELOVL2 were found among other lipid metabolic regulators. Significantly, the ratio of C22:6n3 (docosahexaenoic acid, DHA) to C22:5n3 was dramatically reduced in spheroid cells analogously to the down-regulation of ELOVL2. Following mechanistic study confirmed the up-regulation of SCD and down-regulation of PTPLB, PECR, ELOVL2, and ELOVL3 in the spheroid cells. Furthermore, the depletion of ELOVL2 induced metastatic characteristics in breast cancer cells via the SREBPs axis. A subsequent large-scale analysis using 51 breast cancer cell lines demonstrated the reduced expression of ELOVL2 in basal-like phenotypes. Breast cancer patients with low ELOVL2 expression exhibited poor prognoses (HR = 0.76, CI = 0.67–0.86). Collectively, ELOVL2 expression is associated with the malignant phenotypes and appear to be a novel prognostic biomarker in breast cancer. In conclusion, the present study demonstrates that there is a global alteration of the lipid composition during EMT and suggests the down-regulation of ELOVL2 induces lipid metabolism reprogramming in breast cancer and contributes to their malignant phenotypes.
Collapse
Affiliation(s)
- Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jung-Ho Yoon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | | | - Gi-Bang Koo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | - Hyun-Jin Noh
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | - Seung-Jae Oh
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | - Sae Bom Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ji Yeon Hong
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Won Jun Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seul Ji Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|
32
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
33
|
Fickler A, Staats S, Rimbach G, Schulz C. Screening dietary biochanin A, daidzein, equol and genistein for their potential to increase DHA biosynthesis in rainbow trout (Oncorhynchus mykiss). PLoS One 2019; 14:e0210197. [PMID: 30645603 PMCID: PMC6333376 DOI: 10.1371/journal.pone.0210197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023] Open
Abstract
Plant oil utilization in aquafeeds is still the most practical option, although it decreases the content of the nutritionally highly valuable omega-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) in fish. Phytoestrogens and their metabolites are putatively able to affect genes encoding proteins centrally involved in the biosynthesis of EPA and DHA due to their estrogenic potential. Thus, the aim of the study was to screen the potential of the phytoestrogens to stimulate the biosynthesis of EPA and DHA in rainbow trout (Oncorhynchus mykiss). Additionally, the potential effects on growth performance, nutrient composition and hepatic lipid metabolism in rainbow trout were investigated. For that, a vegetable oil based diet served as a control diet (C) and was supplemented with 15 g/kg dry matter of biochanin A (BA), daidzein (DA), genistein (G) and equol (EQ), respectively. These five diets were fed to rainbow trout (initial body weight 83.3 ± 0.4 g) for 52 days. Growth performance and nutrient composition of whole body homogenates were not affected by the dietary treatments. Furthermore, feeding EQ to rainbow trout significantly increased DHA levels by +8% in whole body homogenates compared to samples of fish fed the diet C. A tendency towards increased DHA levels in whole body homogenates was found for fish fed the diet G. Fish fed diets BA and DA lacked these effects. Moreover, EQ and G fed fish showed significantly decreased hepatic mRNA steady state levels for fatty acyl desaturase 2a (delta-6) (fads2a(d6)). In contrast, carnitine palmitoyl transferases 1 (cpt1) hepatic mRNA steady state levels and hepatic Fads2a(d6) protein contents were not affected by the dietary treatment. In conclusion, when combined with dietary vegetable oils, equol and genistein seem to stimulate the biosynthesis of DHA and thereby increase tissue DHA levels in rainbow trout, however, only to a moderate extent.
Collapse
Affiliation(s)
- Anna Fickler
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
- * E-mail:
| | - Stefanie Staats
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Carsten Schulz
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
| |
Collapse
|