1
|
Machii Y, Tsukamoto M, Kataoka T, Kondo R. Genomic and phenotypic characterisation of Leeuwenhoekiella obamensis sp. nov., a novel marine bacterium isolated from the surface water of a Japanese fishing port. Antonie Van Leeuwenhoek 2025; 118:49. [PMID: 39869186 DOI: 10.1007/s10482-025-02061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025]
Abstract
A novel aerobic marine bacterium, FRT2T, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2T clustered with genus Leeuwenhoekiella. Closest relatives of FRT2T were Leeuwenhoekiella palythoae KMM 6264T and Leeuwenhoekiella nanhaiensis G18T with 16S rRNA gene sequence identities of 95.1% and 94.5%, respectively, suggesting that FRT2T is a novel species of genus Leeuwenhoekiella. Phylogenetic analysis of 81 bacterial core gene sequences also placed FRT2T in a highly supported lineage distinct from described Leeuwenhoekiella species. Values of digital DNA-DNA hybridisation and average nucleotide identity between FRT2T and type strains of species of genus Leeuwenhoekiella indicate that FRT2T is a novel species of the genus Leeuwenhoekiella. Cells were Gram-stain-negative rods with 0.3-0.8 µm width and 1.6-4.1 µm length. The bacterium was strictly aerobic, produced yellow-orange-pigments and showed gliding motility. Na+ was needed to grow FRT2T with optimal growth in the presence of 3.0-4.0% (w/v) NaCl. Growth pH and temperature ranges were 5.5-8.5 (optimum pH 6.5-7.5) and 10-39 °C (optimum 25-35 °C), respectively. Major cellular fatty acids were iso-C15:0, iso-C15:1, iso-C17:0 3-OH and summed feature 3 (C16:1ω6c and/or C16:1ω7c). The only respiratory quinone was MK-6. Genomic G + C content of FRT2T was 38.9%. FRT2T represents a novel species, for which the name Leeuwenhoekiella obamensis sp. nov. is proposed, with type strain FRT2T (= BCRC 81451T = DSM 118489T = JCM 36940T).
Collapse
Affiliation(s)
- Yuka Machii
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mao Tsukamoto
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Takafumi Kataoka
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
2
|
Kämpfer P, Lipski A, Lawrence KS, Olive WR, Newman MM, McInroy JA, Viver T. Flavobacterium plantiphilum sp. nov., Flavobacterium rhizophilum sp. nov., Flavobacterium rhizosphaerae sp. nov., Chryseobacterium terrae sp. nov., and Sphingomonas plantiphila sp. nov. isolated from salty soil showing plant growth promoting potential. Syst Appl Microbiol 2025; 48:126588. [PMID: 39883993 DOI: 10.1016/j.syapm.2025.126588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Members of the genera Flavobacterium, Chryseobacterium and Sphingomonas constitute a group of microorganisms in the rhizosphere associated with plant growth promoting (PGP) features. A polyphasic approach was employed to ascertain the taxonomic status of five selected strains. Overall genome relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genera Flavobacterium, Chryseobacterium and Sphingomonas were found to be below the established thresholds, respectively. Morphological, physiological, and biochemical characteristics of the strains confirmed their status as five novel species. A large variety of genes involved in plant growth promotion and carbohydrate utilization were found in all strains suggesting a contribution of all strains to PGP. Based on the result of the polyphasic characterization, the following names are proposed: Chryseobacterium terrae sp. nov., with the strain ST-37T as the type strain (= CCM 9260T = LMG 32728T); Flavobacterium plantiphilum sp. nov., with the strain ST-87T as the type strain CIP 112180T = DSM 114790T = LMG 32757T); Flavobacterium rhizophilum sp. nov., with the strain ST-75T as the type strain (= CIP 112185T = DSM 114831T = LMG 32758T); Flavobacterium rhizosphaerae sp. nov., with the strain ST-119T as the type strain (CIP 112181T = DSM 114832T = LMG 32756T); and Sphingomonas plantiphila sp. nov. with the strain ST-64 T as the type strain (= CCM 9261T = CIP 112178T = DSM 114515T = LMG 32729T).
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Germany.
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und -hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Walker R Olive
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Molli M Newman
- Department of Biological and Environmental Sciences, 213 MSCX, Troy University, Troy, AL, USA
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Tomeu Viver
- Marine Microbiology Group (MMG), Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| |
Collapse
|
3
|
Rhein-Knudsen N, Reyes-Weiss DS, Klau LJ, Jeudy A, Roret T, Stokke R, Eijsink VGH, Aachmann FL, Czjzek M, Horn SJ. Identification and Characterization of a New Thermophilic κ-Carrageenan Sulfatase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2044-2055. [PMID: 39797788 PMCID: PMC11760155 DOI: 10.1021/acs.jafc.4c09751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms. Characterizing these enzymes is crucial for understanding carrageenan utilization and may eventually enable the development of targeted processes to modify carrageenans for industrial applications. In our study, we characterized a κ-carrageenan sulfatase, AMOR_S1_16A, belonging to the sulfatase S1_16 subfamily, which selectively desulfates the nonreducing end galactoses of κ-carrageenan oligomers in an exomode. Notably, AMOR_S1_16A represents the first κ-carrageenan sulfatase within the S1_16 subfamily and exhibits a novel enzymatic activity. This study provides further understanding of the substrate specificity and characteristics of the S1_16 subfamily. Moreover, this research highlights that many processes and enzymes remain to be discovered to fully understand carrageenan utilization pathways and to develop enzymatic processes for carrageenan modification and processing.
Collapse
Affiliation(s)
- Nanna Rhein-Knudsen
- Faculty
of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
- CNRS,
Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universitée, 29680 Roscoff, France
| | - Diego S. Reyes-Weiss
- Faculty
of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Leesa J. Klau
- Department
of Biotechnology and Food Science, NTNU
Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7419 Trondheim, Norway
- Department
of Process Technology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway
| | - Alexandra Jeudy
- CNRS,
Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universitée, 29680 Roscoff, France
| | - Thomas Roret
- CNRS,
Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universitée, 29680 Roscoff, France
| | - Runar Stokke
- Department
of Biological Sciences and Centre for Deep Sea Research, University of Bergen, 5020 Bergen, Norway
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Finn L. Aachmann
- Department
of Biotechnology and Food Science, NTNU
Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7419 Trondheim, Norway
| | - Mirjam Czjzek
- CNRS,
Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universitée, 29680 Roscoff, France
| | - Svein Jarle Horn
- Faculty
of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| |
Collapse
|
4
|
Facimoto CT, Clements KD, White WL, Handley KM. Hindguts of Kyphosus sydneyanus harbor phylogenetically and genomically distinct Alistipes capable of degrading algal polysaccharides and diazotrophy. mSystems 2025; 10:e0100724. [PMID: 39714211 PMCID: PMC11748540 DOI: 10.1128/msystems.01007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
The genus Alistipes (Bacteroidota) is most often associated with human clinical samples and livestock. However, Alistipes are also prevalent in the hindgut of the marine herbivorous fish Kyphosus sydneyanus (Silver Drummer), and analysis of their carbohydrate-active enzyme (CAZyme) encoding gene repertoires suggests Alistipes degrade macroalgal biomass to support fish nutrition. To further explore host-associated traits unique to K. sydneyanus-derived Alistipes, we compared 445 high-quality genomes of Alistipes available in public databases (e.g., human and ruminant associated) with 99 metagenome-assembled genomes (MAGs) from the K. sydneyanus gut. Analyses showed that Alistipes from K. sydneyanus are phylogenetically distinct from other hosts and comprise 26 species based on genomic average nucleotide identity (ANI) analyses. Ruminant- and fish-derived Alistipes had significantly smaller genomes than human-derived strains, and lower GC contents, possibly reflecting a symbiotic relationship with their hosts. The fish-derived Alistipes were further delineated by their genetic capacity to fix nitrogen, biosynthesize cobalamin (vitamin B12), and utilize marine polysaccharides (e.g., alginate and carrageenan). The distribution of CAZymes encoded by Alistipes from K. sydneyanus was not phylogenetically conserved. Distinct CAZyme gene compositions were observed between closely related species. Conversely, CAZyme gene clusters (operons) targeting the same substrates were found across diverse species. Nonetheless, transcriptional data suggest that closely related Alistipes target specific groups of substrates within the fish hindgut. Results highlight host-specific adaptations among Alistipes in the fish hindgut that likely contribute to K. sydneyanus digesting their seaweed diet, and diverse and redundant carbohydrate-degrading capabilities across these Alistipes species.IMPORTANCEDespite numerous reports of the Alistipes genus in humans and ruminants, its diversity and function remain understudied, and there is no clear consensus on whether it positively or negatively impacts host health. Given the symbiotic role of gut communities in the Kyphosus sydneyanus hindgut, where Alistipes are prevalent, and the diversity of carbohydrate-active enzymes (CAZymes) encoded that likely contribute to the breakdown of important substrates in the host diet, it is likely that this genus provides essential services to the fish host. Therefore, considering its metabolism in various contexts and hosts is crucial for understanding the ecology of the genus. Our study highlights the distinct genetic traits of Alistipes based on host association, and the potential of fish-associated Alistipes to transform macroalgae biomass into nutraceuticals (alginate oligosaccharides, β-glucans, sulfated galactans, and sulfated fucans).
Collapse
Affiliation(s)
- Cesar T. Facimoto
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kendall D. Clements
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - W. Lindsey White
- Department of Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Wilkie I, Orellana LH. Elusive marine Verrucomicrobiota: Seasonally abundant members of the novel genera Seribacter and Chordibacter specialize in degrading sulfated glycans. Syst Appl Microbiol 2025; 48:126562. [PMID: 39637512 DOI: 10.1016/j.syapm.2024.126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Members of the phylum Verrucomicrobiota play a significant role in various ecosystems, yet they are underrepresented in databases due to their comparatively lower abundance and isolation challenges. The use of cultivation-independent approaches has unveiled their hidden diversity and specialized metabolic capabilities, yet many of these populations remain uncharacterized. In this study, we focus on members of the family MB11C04 associated with North Sea spring blooms. Our analyses revealed recurrent MB11C04 populations with increased abundance in the late stages of spring blooms over ten-years. By examining their genomic content, we identified specialized genetic features for the degradation of complex polysaccharides, particularly sulfated and fucose-rich compounds, suggesting their role in utilizing organic matter during the collapse of the bloom. Furthermore, we describe two novel genera each with a novel species (Seribacter gen. Nov., Chordibacter gen. Nov.) in accordance with the SeqCode initiative based on high quality metagenome-assembled genomes. We also propose a new name for the family MB11C04, Seribacteraceae. Our findings shed light on the ecological significance and metabolic potential of Verrucomicrobiota populations in spring bloom events.
Collapse
Affiliation(s)
- Isabella Wilkie
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
| |
Collapse
|
6
|
Stevens MJ, Rempe SB. Binding of Sulfates and Water to Monovalent Cations. J Phys Chem A 2024; 128:10785-10795. [PMID: 39642391 DOI: 10.1021/acs.jpca.4c05454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The binding of the sulfate ligand group to monovalent cations in the presence of water is important for many systems. To understand the structure and energetics of sulfate complexes, we use density functional theory to study ethyl sulfate binding to the monovalent cations Li+, Na+, and K+, and to water. The free energies of binding and optimal structures are calculated for a range of the number of ethyl sulfates and waters. Without water, the most optimal structure for all the cations is bidentate binding by two ethyl sulfates, yielding a 4-fold coordination. With water, the lowest free energy structures also have two ethyl sulfates, but the coordination varies with cations. For complexes with water, the four oxygen atoms in the sulfate group enable multiple binding geometries for the cations and for hydrogen bonding with water. Many of these geometries differ in free energy by only a small amount (1-2 kcal/mol), meaning there will be multiple binding configurations in bulk solution. In comparison to the optimal structures for binding to the carboxylate group, there is more variation for binding to the sulfate group as a function of cation type and the number of waters. The polarization of the atoms is significant and varies among the sulfate oxygen atoms. The water oxygen charge is often larger than that of sulfate oxygen, which plays a role in the preference for monodentate ligand binding to cations in the presence of water.
Collapse
Affiliation(s)
- Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
7
|
Mistry R, Byrne DP, Starns D, Barsukov IL, Yates EA, Fernig DG. Polysaccharide sulfotransferases: the identification of putative sequences and respective functional characterisation. Essays Biochem 2024; 68:431-447. [PMID: 38712401 PMCID: PMC11625862 DOI: 10.1042/ebc20230094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
The vast structural diversity of sulfated polysaccharides demands an equally diverse array of enzymes known as polysaccharide sulfotransferases (PSTs). PSTs are present across all kingdoms of life, including algae, fungi and archaea, and their sulfation pathways are relatively unexplored. Sulfated polysaccharides possess anti-inflammatory, anticoagulant and anti-cancer properties and have great therapeutic potential. Current identification of PSTs using Pfam has been predominantly focused on the identification of glycosaminoglycan (GAG) sulfotransferases because of their pivotal roles in cell communication, extracellular matrix formation and coagulation. As a result, our knowledge of non-GAG PSTs structure and function remains limited. The major sulfotransferase families, Sulfotransfer_1 and Sulfotransfer_2, display broad homology and should enable the capture of a wide assortment of sulfotransferases but are limited in non-GAG PST sequence annotation. In addition, sequence annotation is further restricted by the paucity of biochemical analyses of PSTs. There are now high-throughput and robust assays for sulfotransferases such as colorimetric PAPS (3'-phosphoadenosine 5'-phosphosulfate) coupled assays, Europium-based fluorescent probes for ratiometric PAP (3'-phosphoadenosine-5'-phosphate) detection, and NMR methods for activity and product analysis. These techniques provide real-time and direct measurements to enhance the functional annotation and subsequent analysis of sulfated polysaccharides across the tree of life to improve putative PST identification and characterisation of function. Improved annotation and biochemical analysis of PST sequences will enhance the utility of PSTs across biomedical and biotechnological sectors.
Collapse
Affiliation(s)
- Ravina Mistry
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - David Starns
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Igor L Barsukov
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Edwin A Yates
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - David G Fernig
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
8
|
Chen B, Liu G, Chen Q, Wang H, Liu L, Tang K. Discovery of a novel marine Bacteroidetes with a rich repertoire of carbohydrate-active enzymes. Comput Struct Biotechnol J 2024; 23:406-416. [PMID: 38235362 PMCID: PMC10792170 DOI: 10.1016/j.csbj.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Members of the phylum Bacteroidetes play a key role in the marine carbon cycle through their degradation of polysaccharides via carbohydrate-active enzymes (CAZymes) and polysaccharide utilization loci (PULs). The discovery of novel CAZymes and PULs is important for our understanding of the marine carbon cycle. In this study, we isolated and identified a potential new genus of the family Catalimonadaceae, in the phylum Bacteroidetes, from the southwest Indian Ocean. Strain TK19036, the type strain of the new genus, is predicted to encode CAZymes that are relatively abundant in marine Bacteroidetes genomes. Tunicatimonas pelagia NBRC 107804T, Porifericola rhodea NBRC 107748T and Catalinimonas niigatensis NBRC 109829T, which exhibit 16 S rRNA similarities exceeding 90% with strain TK19036, and belong to the same family, were selected as reference strains. These organisms possess a highly diverse repertoire of CAZymes and PULs, which may enable them to degrade a wide range of polysaccharides, especially pectin and alginate. In addition, some secretory CAZymes in strain TK19036 and its relatives were predicted to be transported by type IX secretion system (T9SS). Further, to the best of our knowledge, we propose the first reported "hybrid" PUL targeting alginates in T. pelagia NBRC 107804T. Our findings provide new insights into the polysaccharide degradation capacity of marine Bacteroidetes, and suggest that T9SS may play a more important role in this process than previously believed.
Collapse
Affiliation(s)
- Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Huanyu Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Denoeud F, Godfroy O, Cruaud C, Heesch S, Nehr Z, Tadrent N, Couloux A, Brillet-Guéguen L, Delage L, Mckeown D, Motomura T, Sussfeld D, Fan X, Mazéas L, Terrapon N, Barrera-Redondo J, Petroll R, Reynes L, Choi SW, Jo J, Uthanumallian K, Bogaert K, Duc C, Ratchinski P, Lipinska A, Noel B, Murphy EA, Lohr M, Khatei A, Hamon-Giraud P, Vieira C, Avia K, Akerfors SS, Akita S, Badis Y, Barbeyron T, Belcour A, Berrabah W, Blanquart S, Bouguerba-Collin A, Bringloe T, Cattolico RA, Cormier A, Cruz de Carvalho H, Dallet R, De Clerck O, Debit A, Denis E, Destombe C, Dinatale E, Dittami S, Drula E, Faugeron S, Got J, Graf L, Groisillier A, Guillemin ML, Harms L, Hatchett WJ, Henrissat B, Hoarau G, Jollivet C, Jueterbock A, Kayal E, Knoll AH, Kogame K, Le Bars A, Leblanc C, Le Gall L, Ley R, Liu X, LoDuca ST, Lopez PJ, Lopez P, Manirakiza E, Massau K, Mauger S, Mest L, Michel G, Monteiro C, Nagasato C, Nègre D, Pelletier E, Phillips N, Potin P, Rensing SA, Rousselot E, Rousvoal S, Schroeder D, Scornet D, Siegel A, Tirichine L, Tonon T, Valentin K, Verbruggen H, Weinberger F, Wheeler G, Kawai H, Peters AF, Yoon HS, Hervé C, Ye N, Bapteste E, Valero M, Markov GV, Corre E, Coelho SM, Wincker P, Aury JM, Cock JM. Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems. Cell 2024; 187:6943-6965.e39. [PMID: 39571576 DOI: 10.1016/j.cell.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/20/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Brown seaweeds are keystone species of coastal ecosystems, often forming extensive underwater forests, and are under considerable threat from climate change. In this study, analysis of multiple genomes has provided insights across the entire evolutionary history of this lineage, from initial emergence, through later diversification of the brown algal orders, down to microevolutionary events at the genus level. Emergence of the brown algal lineage was associated with a marked gain of new orthologous gene families, enhanced protein domain rearrangement, increased horizontal gene transfer events, and the acquisition of novel signaling molecules and key metabolic pathways, the latter notably related to biosynthesis of the alginate-based extracellular matrix, and halogen and phlorotannin biosynthesis. We show that brown algal genome diversification is tightly linked to phenotypic divergence, including changes in life cycle strategy and zoid flagellar structure. The study also showed that integration of large viral genomes has had a significant impact on brown algal genome content throughout the emergence of the lineage.
Collapse
Affiliation(s)
- France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Svenja Heesch
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Zofia Nehr
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Nachida Tadrent
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Loraine Brillet-Guéguen
- CNRS, UMR 8227, Laboratory of Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Dean Mckeown
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Taizo Motomura
- Muroran Marine Station, Hokkaido University, Muroran, Japan
| | - Duncan Sussfeld
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France; Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Xiao Fan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Lisa Mazéas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Terrapon
- Aix Marseille University, CNRS, UMR 7257 AFMB, Marseille, France; INRAE, USC 1408 AFMB, Marseille, France
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lauric Reynes
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Seok-Wan Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihoon Jo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Kenny Bogaert
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Céline Duc
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Pélagie Ratchinski
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka Lipinska
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France; Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Eleanor A Murphy
- University of Bristol, Bristol, UK; Marine Biological Association, Plymouth, UK
| | - Martin Lohr
- Johannes Gutenberg University, Mainz, Germany
| | - Ananya Khatei
- Algal and Microbial Biotechnology Division, Nord University, Bodø, Norway
| | | | - Christophe Vieira
- Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Komlan Avia
- INRAE, Université de Strasbourg, UMR SVQV, 68000 Colmar, France
| | | | - Shingo Akita
- Faculty of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan
| | - Yacine Badis
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Arnaud Belcour
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Wahiba Berrabah
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Samuel Blanquart
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Ahlem Bouguerba-Collin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Alexandre Cormier
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l'Ifremer, 29280 Plouzané, France
| | - Helena Cruz de Carvalho
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Université Paris Est-Créteil (UPEC), Faculté des Sciences et Technologie, 61, Avenue du Général De Gaulle, 94000 Créteil, France
| | - Romain Dallet
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Ahmed Debit
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Erwan Denis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Christophe Destombe
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Erica Dinatale
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Simon Dittami
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Elodie Drula
- Aix Marseille University, CNRS, UMR 7257 AFMB, Marseille, France; INRAE, USC 1408 AFMB, Marseille, France
| | - Sylvain Faugeron
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeanne Got
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Marie-Laure Guillemin
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France; Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Lars Harms
- Alfred Wegener Institute (AWI), Bremenhaven, Germany
| | | | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Chloé Jollivet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Ehsan Kayal
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kazuhiro Kogame
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Arthur Le Bars
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France; CNRS, Institut Français de Bioinformatique, IFB-core, Évry, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Line Le Gall
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Ronja Ley
- Johannes Gutenberg University, Mainz, Germany
| | - Xi Liu
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Steven T LoDuca
- Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Pascal Jean Lopez
- Centre National de la Recherche Scientifique, UMR BOREA MNHN/CNRS-8067/SU/IRD/Université de Caen Normandie/Université des Antilles, Plouzané, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Eric Manirakiza
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Karine Massau
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Stéphane Mauger
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Laetitia Mest
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Catia Monteiro
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Delphine Nègre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Naomi Phillips
- Biology Department, Arcadia University, Glenside, PA, USA
| | - Philippe Potin
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Ellyn Rousselot
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Sylvie Rousvoal
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Delphine Scornet
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Anne Siegel
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Thierry Tonon
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | | | | | | | | | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Kobe, Japan.
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Cécile Hervé
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| | - Naihao Ye
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France.
| | - Myriam Valero
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France.
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France.
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France.
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France.
| | - J Mark Cock
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
10
|
Silva-Solar S, Viver T, Wang Y, Orellana LH, Knittel K, Amann R. Acidimicrobiia, the actinomycetota of coastal marine sediments: Abundance, taxonomy and genomic potential. Syst Appl Microbiol 2024; 47:126555. [PMID: 39342656 DOI: 10.1016/j.syapm.2024.126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Microbial communities in marine sediments represent some of the densest and most diverse biological communities known, with up to a billion cells and thousands of species per milliliter. Among this taxonomic diversity, the class Acidimicrobiia, within the phylum Actinomycetota, stands out for its consistent presence, yet its limited taxonomic understanding obscures its ecological role. We used metagenome-assembled genomes from a 5-year Arctic fjord sampling campaign and compared them to publicly available Acidimicrobiia genomes using 16S rRNA gene and whole-genome phylogenies, alongside gene prediction and annotation to study their taxonomy and genomic potential. Overall, we provide a taxonomic overview of the class Acidimicrobiia and show its significant prevalence in Isfjorden and Helgoland coastal sediments, representing over 90% of Actinomycetota 16S rRNA gene sequences, and 3-7% of Bacteria. We propose Benthobacter isfjordensis gen. nov., sp. nov., Hadalibacter litoralis gen. nov., sp. nov., and two new species from Ilumatobacter, following SeqCode guidelines. In addition, we report the first in situ quantification of the family Ilumatobacteraceae, revealing its substantial presence (1-6%) in coastal sediments. This work highlights the need of refining the taxonomy of Acidimicrobiia to better understand their ecological contributions.
Collapse
Affiliation(s)
- Sebastián Silva-Solar
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Tomeu Viver
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Yueqing Wang
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany.
| |
Collapse
|
11
|
Mazéas L, Bouguerba-Collin A, Cock JM, Denoeud F, Godfroy O, Brillet-Guéguen L, Barbeyron T, Lipinska AP, Delage L, Corre E, Drula E, Henrissat B, Czjzek M, Terrapon N, Hervé C. Candidate genes involved in biosynthesis and degradation of the main extracellular matrix polysaccharides of brown algae and their probable evolutionary history. BMC Genomics 2024; 25:950. [PMID: 39390408 PMCID: PMC11468063 DOI: 10.1186/s12864-024-10811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Brown algae belong to the Stramenopiles phylum and are phylogenetically distant from plants and other multicellular organisms. This independent evolutionary history has shaped brown algae with numerous metabolic characteristics specific to this group, including the synthesis of peculiar polysaccharides contained in their extracellular matrix (ECM). Alginates and fucose-containing sulphated polysaccharides (FCSPs), the latter including fucans, are the main components of ECMs. However, the metabolic pathways of these polysaccharides remain poorly described due to a lack of genomic data. RESULTS An extensive genomic dataset has been recently released for brown algae and their close sister species, for which we previously performed an expert annotation of key genes involved in ECM-carbohydrate metabolisms. Here we provide a deeper analysis of this set of genes using comparative genomics, phylogenetics analyses, and protein modelling. Two key gene families involved in both the synthesis and degradation of alginate were suggested to have been acquired by the common ancestor of brown algae and their closest sister species Schizocladia ischiensis. Our analysis indicates that this assumption can be extended to additional metabolic steps, and thus to the whole alginate metabolic pathway. The pathway for the biosynthesis of fucans still remains biochemically unresolved and we also investigate putative fucosyltransferase genes that may harbour a fucan synthase activity in brown algae. CONCLUSIONS Our analysis is the first extensive survey of carbohydrate-related enzymes in brown algae, and provides a valuable resource for future research into the glycome and ECM of brown algae. The expansion of specific families related to alginate metabolism may have represented an important prerequisite for the evolution of developmental complexity in brown algae. Our analysis questions the possible occurrence of FCSPs outside brown algae, notably within their closest sister taxon and in other Stramenopiles such as diatoms. Filling this knowledge gap in the future will help determine the origin and evolutionary history of fucan synthesis in eukaryotes.
Collapse
Affiliation(s)
- Lisa Mazéas
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Ahlem Bouguerba-Collin
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - J Mark Cock
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - France Denoeud
- Génomique Métabolique, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Genoscope, Evry, 91057, France
| | - Olivier Godfroy
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Loraine Brillet-Guéguen
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Tristan Barbeyron
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Ludovic Delage
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Elodie Drula
- Aix Marseille Univ, CNRS, UMR 7257 AFMB, Marseille, France
- INRAE, USC 1408 AFMB, Marseille, France
- INRAE, Aix-Marseille Univ, UMR1163 BBF, Marseille, France
| | - Bernard Henrissat
- Aix Marseille Univ, CNRS, UMR 7257 AFMB, Marseille, France
- INRAE, USC 1408 AFMB, Marseille, France
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mirjam Czjzek
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Terrapon
- Aix Marseille Univ, CNRS, UMR 7257 AFMB, Marseille, France
- INRAE, USC 1408 AFMB, Marseille, France
| | - Cécile Hervé
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
12
|
Liu GL, Wu SL, Sun Z, Xing MD, Chi ZM, Liu YJ. ι-Carrageenan catabolism is initiated by key sulfatases in the marine bacterium Pseudoalteromonas haloplanktis LL1. Appl Environ Microbiol 2024; 90:e0025524. [PMID: 38874338 PMCID: PMC11267874 DOI: 10.1128/aem.00255-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria contribute substantially to cycle macroalgae polysaccharides in marine environments. Carrageenans are the primary cell wall polysaccharides of red macroalgae. The carrageenan catabolism mechanism and pathways are still largely unclear. Pseudoalteromonas is a representative bacterial genus that can utilize carrageenan. We previously isolated the strain Pseudoalteromonas haloplanktis LL1 that could grow on ι-carrageenan but produce no ι-carrageenase. Here, through a combination of bioinformatic, biochemical, and genetic analyses, we determined that P. haloplanktis LL1 processed a desulfurization-depolymerization sequential pathway for ι-carrageenan utilization, which was initiated by key sulfatases PhSulf1 and PhSulf2. PhSulf2 acted as an endo/exo-G4S (4-O-sulfation-β-D-galactopyranose) sulfatase, while PhSulf1 was identified as a novel endo-DA2S sulfatase that could function extracellularly. Because of the unique activity of PhSulf1 toward ι-carrageenan rather than oligosaccharides, P. haloplanktis LL1 was considered to have a distinct ι-carrageenan catabolic pathway compared to other known ι-carrageenan-degrading bacteria, which mainly employ multifunctional G4S sulfatases and exo-DA2S (2-O-sulfation-3,6-anhydro-α-D-galactopyranose) sulfatase for sulfate removal. Furthermore, we detected widespread occurrence of PhSulf1-encoding gene homologs in the global ocean, indicating the prevalence of such endo-acting DA2S sulfatases as well as the related ι-carrageenan catabolism pathway. This research provides valuable insights into the enzymatic processes involved in carrageenan catabolism within marine ecological systems.IMPORTANCECarrageenan is a type of linear sulfated polysaccharide that plays a significant role in forming cell walls of marine algae and is found extensively distributed throughout the world's oceans. To the best of our current knowledge, the ι-carrageenan catabolism in marine bacteria either follows the depolymerization-desulfurization sequential process initiated by ι-carrageenase or starts from the desulfurization step catalyzed by exo-acting sulfatases. In this study, we found that the marine bacterium Pseudoalteromonas haloplanktis LL1 processes a distinct pathway for ι-carrageenan catabolism employing a specific endo-acting DA2S-sulfatase PhSulf1 and a multifunctional G4S sulfatase PhSulf2. The unique PhSulf1 homologs appear to be widely present on a global scale, indicating the indispensable contribution of the marine bacteria containing the distinct ι-carrageenan catabolism pathway. Therefore, this study would significantly enrich our understanding of the molecular mechanisms underlying carrageenan utilization, providing valuable insights into the intricate roles of marine bacteria in polysaccharide cycling in marine environments.
Collapse
Affiliation(s)
- Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity, Qingdao, China
| | - Sheng-Lei Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Zhe Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity, Qingdao, China
| | - Meng-Dan Xing
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity, Qingdao, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity, Qingdao, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Raba G, Luis AS, Schneider H, Morell I, Jin C, Adamberg S, Hansson GC, Adamberg K, Arike L. Metaproteomics reveals parallel utilization of colonic mucin glycans and dietary fibers by the human gut microbiota. iScience 2024; 27:110093. [PMID: 38947523 PMCID: PMC11214529 DOI: 10.1016/j.isci.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
A diet lacking dietary fibers promotes the expansion of gut microbiota members that can degrade host glycans, such as those on mucins. The microbial foraging on mucin has been associated with disruptions of the gut-protective mucus layer and colonic inflammation. Yet, it remains unclear how the co-utilization of mucin and dietary fibers affects the microbiota composition and metabolic activity. Here, we used 14 dietary fibers and porcine colonic and gastric mucins to study the dynamics of mucin and dietary fiber utilization by the human fecal microbiota in vitro. Combining metaproteome and metabolites analyses revealed the central role of the Bacteroides genus in the utilization of complex fibers together with mucin while Akkermansia muciniphila was the main utilizer of sole porcine colonic mucin but not gastric mucin. This study gives a broad overview of the colonic environment in response to dietary and host glycan availability.
Collapse
Affiliation(s)
- Grete Raba
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ana S. Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Hannah Schneider
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Indrek Morell
- Center of Food and Fermentation Technologies, 12618 Tallinn, Estonia
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
- Center of Food and Fermentation Technologies, 12618 Tallinn, Estonia
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| |
Collapse
|
14
|
Fuchs A, Hupfeld E, Sieber V. To gel or not to gel - Tuning the sulfation pattern of carrageenans to expand their field of application. Carbohydr Polym 2024; 333:121930. [PMID: 38494212 DOI: 10.1016/j.carbpol.2024.121930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Carrageenans represent a major cell wall component of red macro algae and, as established gelling and thickening agents, they contribute significantly to a broad variety of commercial applications in the food and cosmetic industry. As a highly sulfated class of linear polysaccharides, their functional properties are strongly related to the sulfation pattern of their carrabiose repeating units. Therefore, the biocatalytic fine-tuning of these polymers by generating tailored sulfation architectures harnessing the hydrolytic activity of sulfatases could be a powerful tool to produce novel polymer structures with tuned properties to expand applications of carrageenans beyond their current use. To contribute to this vision, we sought to identify novel carrageenan sulfatases by studying several putative carrageenolytic clusters in marine heterotrophic bacteria. This approach revealed two novel formylglycine-dependent sulfatases from Cellulophaga algicola DSM 14237 and Cellulophaga baltica DSM 24729 with promiscuous hydrolytic activity towards the sulfated galactose in the industrially established ι- and κ-carrageenan, converting them into α- and β-carrageenan, respectively, and enabling the production of a variety of novel pure and hybrid carrageenans. The rheological analysis of these enzymatically generated structures revealed significantly altered physicochemical properties that may open the gate to a variety of novel carrageenan-based applications.
Collapse
Affiliation(s)
- Alexander Fuchs
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Enrico Hupfeld
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany; SynBioFoundry@TUM, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany; TUM Catalysis Research Center, Ernst-Otto-Fischer-Straße1, 85748 Garching, Germany; School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia 4072, Australia.
| |
Collapse
|
15
|
Oliver A, Podell S, Wegley Kelly L, Sparagon WJ, Plominsky AM, Nelson RS, Laurens LML, Augyte S, Sims NA, Nelson CE, Allen EE. Enrichable consortia of microbial symbionts degrade macroalgal polysaccharides in Kyphosus fish. mBio 2024; 15:e0049624. [PMID: 38534158 PMCID: PMC11077953 DOI: 10.1128/mbio.00496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce genomic information about the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) from previously described Kyphosus gut metagenomes and newly sequenced bioreactor enrichments reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzyme collections able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) highlight the importance of metabolic contributions from multiple phyla to broaden polysaccharide degradation capabilities. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.IMPORTANCESeaweed has long been considered a promising source of sustainable biomass for bioenergy and aquaculture feed, but scalable industrial methods for decomposing terrestrial compounds can struggle to break down seaweed polysaccharides efficiently due to their unique sulfated structures. Fish of the genus Kyphosus feed on seaweed by leveraging gastrointestinal bacteria to degrade algal polysaccharides into simple sugars. This study reconstructs metagenome-assembled genomes for these gastrointestinal bacteria to enhance our understanding of herbivorous fish digestion and fermentation of algal sugars. Investigations at the gene level identify Kyphosus guts as an untapped source of seaweed-degrading enzymes ripe for further characterization. These discoveries set the stage for future work incorporating marine enzymes and microbial communities in the industrial degradation of algal polysaccharides.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii, USA
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii, USA
| | - Eric E. Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Macdonald JFH, Pérez-García P, Schneider YKH, Blümke P, Indenbirken D, Andersen JH, Krohn I, Streit WR. Community dynamics and metagenomic analyses reveal Bacteroidota's role in widespread enzymatic Fucus vesiculosus cell wall degradation. Sci Rep 2024; 14:10237. [PMID: 38702505 PMCID: PMC11068906 DOI: 10.1038/s41598-024-60978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.
Collapse
Affiliation(s)
- Jascha F H Macdonald
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Pablo Pérez-García
- Institute for General Microbiology, Molecular Microbiology, Kiel University, Kiel, Germany
| | - Yannik K-H Schneider
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Patrick Blümke
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Jeanette H Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| |
Collapse
|
17
|
Gong Y, Shang DD, Sun CL, Du ZJ, Chen GJ. Direct Degradation of Fresh and Dried Macroalgae by Agarivorans albus B2Z047. Mar Drugs 2024; 22:203. [PMID: 38786594 PMCID: PMC11122777 DOI: 10.3390/md22050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.
Collapse
Affiliation(s)
- Ya Gong
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Dan-Dan Shang
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
| | - Cheng-Lin Sun
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Fuchs A, Romeis D, Hupfeld E, Sieber V. Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5816-5827. [PMID: 38442258 PMCID: PMC10958521 DOI: 10.1021/acs.jafc.3c08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Marine biomass stands out as a sustainable resource for generating value-added chemicals. In particular, anhydrosugars derived from carrageenans exhibit a variety of biological functions, rendering them highly promising for utilization and cascading in food, cosmetic, and biotechnological applications. However, the limitation of available sulfatases to break down the complex sulfation patterns of carrageenans poses a significant limitation for the sustainable production of valuable bioproducts from red algae. In this study, we screened several carrageenolytic polysaccharide utilization loci for novel sulfatase activities to assist the efficient conversion of a variety of sulfated galactans into the target product 3,6-anhydro-D-galactose. Inspired by the carrageenolytic pathways in marine heterotrophic bacteria, we systematically combined these novel sulfatases with other carrageenolytic enzymes, facilitating the development of the first enzymatic one-pot biotransformation of ι- and κ-carrageenan to 3,6-anhdyro-D-galactose. We further showed the applicability of this enzymatic bioconversion to a broad series of hybrid carrageenans, rendering this process a promising and sustainable approach for the production of value-added biomolecules from red-algal feedstocks.
Collapse
Affiliation(s)
- Alexander Fuchs
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Dennis Romeis
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Enrico Hupfeld
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Chair
of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology
and Sustainability, Technical University
of Munich, Schulgasse 16, 94315 Straubing, Germany
- SynBioFoundry@TUM, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
- Catalytic
Research Center, Ernst-Otto-Fischer-Straße1, 85748 Garching, Germany
- School
of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia 4072, Australia
| |
Collapse
|
19
|
Liu N, Kivenson V, Peng X, Cui Z, Lankiewicz TS, Gosselin KM, English CJ, Blair EM, O'Malley MA, Valentine DL. Pontiella agarivorans sp. nov., a novel marine anaerobic bacterium capable of degrading macroalgal polysaccharides and fixing nitrogen. Appl Environ Microbiol 2024; 90:e0091423. [PMID: 38265213 PMCID: PMC10880615 DOI: 10.1128/aem.00914-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2T from microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2T represents a novel species within the Pontiella genus in the Kiritimatiellota phylum (within the PVC superphylum). Strain NLcol2T is able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T (= DSM 113125T = MCCC 1K08672T) is proposed to be the type strain of a novel species in the Pontiella genus, and the name Pontiella agarivorans sp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of the Kiritimatiellota phylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2T expands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.
Collapse
Affiliation(s)
- Na Liu
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Xuefeng Peng
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, China
| | - Thomas S. Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kelsey M. Gosselin
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chance J. English
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Ecology Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Elaina M. Blair
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
- Biological Engineering Program, University of California, Santa Barbara, California, USA
| | - David L. Valentine
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
20
|
Miksch S, Orellana LH, Oggerin de Orube M, Vidal-Melgosa S, Solanki V, Hehemann JH, Amann R, Knittel K. Taxonomic and functional stability overrules seasonality in polar benthic microbiomes. THE ISME JOURNAL 2024; 18:wrad005. [PMID: 38365229 PMCID: PMC10811738 DOI: 10.1093/ismejo/wrad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 02/18/2024]
Abstract
Coastal shelf sediments are hot spots of organic matter mineralization. They receive up to 50% of primary production, which, in higher latitudes, is strongly seasonal. Polar and temperate benthic bacterial communities, however, show a stable composition based on comparative 16S rRNA gene sequencing despite different microbial activity levels. Here, we aimed to resolve this contradiction by identifying seasonal changes at the functional level, in particular with respect to algal polysaccharide degradation genes, by combining metagenomics, metatranscriptomics, and glycan analysis in sandy surface sediments from Isfjorden, Svalbard. Gene expressions of diverse carbohydrate-active enzymes changed between winter and spring. For example, β-1,3-glucosidases (e.g. GH30, GH17, GH16) degrading laminarin, an energy storage molecule of algae, were elevated in spring, while enzymes related to α-glucan degradation were expressed in both seasons with maxima in winter (e.g. GH63, GH13_18, and GH15). Also, the expression of GH23 involved in peptidoglycan degradation was prevalent, which is in line with recycling of bacterial biomass. Sugar extractions from bulk sediments were low in concentrations during winter but higher in spring samples, with glucose constituting the largest fraction of measured monosaccharides (84% ± 14%). In porewater, glycan concentrations were ~18-fold higher than in overlying seawater (1107 ± 484 vs. 62 ± 101 μg C l-1) and were depleted in glucose. Our data indicate that microbial communities in sandy sediments digest and transform labile parts of photosynthesis-derived particulate organic matter and likely release more stable, glucose-depleted residual glycans of unknown structures, quantities, and residence times into the ocean, thus modulating the glycan composition of marine coastal waters.
Collapse
Affiliation(s)
- Sebastian Miksch
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Monike Oggerin de Orube
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Silvia Vidal-Melgosa
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- MARUM MPG Bridge Group Marine Glycobiology, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Vipul Solanki
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jan-Hendrik Hehemann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- MARUM MPG Bridge Group Marine Glycobiology, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
21
|
Facimoto CT, Clements KD, White WL, Handley KM. Bacteroidia and Clostridia are equipped to degrade a cascade of polysaccharides along the hindgut of the herbivorous fish Kyphosus sydneyanus. ISME COMMUNICATIONS 2024; 4:ycae102. [PMID: 39165393 PMCID: PMC11333855 DOI: 10.1093/ismeco/ycae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
The gut microbiota of the marine herbivorous fish Kyphosus sydneyanus are thought to play an important role in host nutrition by supplying short-chain fatty acids (SCFAs) through fermentation of dietary red and brown macroalgae. Here, using 645 metagenome-assembled genomes (MAGs) from wild fish, we determined the capacity of different bacterial taxa to degrade seaweed carbohydrates along the gut. Most bacteria (99%) were unclassified at the species level. Gut communities and CAZyme-related transcriptional activity were dominated by Bacteroidia and Clostridia. Both classes possess genes CAZymes acting on internal polysaccharide bonds, suggesting their role initiating glycan depolymerization, followed by rarer Gammaproteobacteria and Verrucomicrobiae. Results indicate that Bacteroidia utilize substrates in both brown and red algae, whereas other taxa, namely, Clostridia, Bacilli, and Verrucomicrobiae, utilize mainly brown algae. Bacteroidia had the highest CAZyme gene densities overall, and Alistipes were especially enriched in CAZyme gene clusters (n = 73 versus just 62 distributed across all other taxa), pointing to an enhanced capacity for macroalgal polysaccharide utilization (e.g., alginate, laminarin, and sulfated polysaccharides). Pairwise correlations of MAG relative abundances and encoded CAZyme compositions provide evidence of potential inter-species collaborations. Co-abundant MAGs exhibited complementary degradative capacities for specific substrates, and flexibility in their capacity to source carbon (e.g., glucose- or galactose-rich glycans), possibly facilitating coexistence via niche partitioning. Results indicate the potential for collaborative microbial carbohydrate metabolism in the K. sydneyanus gut, that a greater variety of taxa contribute to the breakdown of brown versus red dietary algae, and that Bacteroidia encompass specialized macroalgae degraders.
Collapse
Affiliation(s)
- Cesar T Facimoto
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - W Lindsey White
- Department of Environmental Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
22
|
Silchenko AS, Taran IV, Usoltseva RV, Zvyagintsev NV, Zueva AO, Rubtsov NK, Lembikova DE, Nedashkovskaya OI, Kusaykin MI, Isaeva MP, Ermakova SP. The Discovery of the Fucoidan-Active Endo-1→4-α-L-Fucanase of the GH168 Family, Which Produces Fucoidan Derivatives with Regular Sulfation and Anticoagulant Activity. Int J Mol Sci 2023; 25:218. [PMID: 38203394 PMCID: PMC10778895 DOI: 10.3390/ijms25010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Sulfated polysaccharides of brown algae, fucoidans, are known for their anticoagulant properties, similar to animal heparin. Their complex and irregular structure is the main bottleneck in standardization and in defining the relationship between their structure and bioactivity. Fucoidan-active enzymes can be effective tools to overcome these problems. In the present work, we identified the gene fwf5 encoding the fucoidan-active endo-fucanase of the GH168 family in the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The biochemical characteristics of the recombinant fucanase FWf5 were investigated. Fucanase FWf5 was shown to catalyze the endo-type cleavage of the 1→4-O-glycosidic linkages between 2-O-sulfated α-L-fucose residues in fucoidans composed of the alternating 1→3- and 1→4-linked residues of sulfated α-L-fucose. This is the first report on the endo-1→4-α-L-fucanases (EC 3.2.1.212) of the GH168 family. The endo-fucanase FWf5 was used to selectively produce high- and low-molecular-weight fucoidan derivatives containing either regular alternating 2-O- and 2,4-di-O-sulfation or regular 2-O-sulfation. The polymeric 2,4-di-O-sulfated fucoidan derivative was shown to have significantly greater in vitro anticoagulant properties than 2-O-sulfated derivatives. The results have demonstrated a new type specificity among fucanases of the GH168 family and the prospects of using such enzymes to obtain standard fucoidan preparations with regular sulfation and high anticoagulant properties.
Collapse
Affiliation(s)
- Artem S. Silchenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Ilya V. Taran
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Roza V. Usoltseva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Nikolay V. Zvyagintsev
- Laboratory of Physical and Chemical Research Methods, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia
| | - Anastasiya O. Zueva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Nikita K. Rubtsov
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Dana E. Lembikova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Olga I. Nedashkovskaya
- Laboratory of Microbiology, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia;
| | - Mikhail I. Kusaykin
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Marina P. Isaeva
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| |
Collapse
|
23
|
Oliver A, Podell S, Kelly LW, Sparagon WJ, Plominsky AM, Nelson RS, Laurens LML, Augyte S, Sims NA, Nelson CE, Allen EE. Enrichable consortia of microbial symbionts degrade macroalgal polysaccharides in Kyphosus fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568905. [PMID: 38076955 PMCID: PMC10705383 DOI: 10.1101/2023.11.28.568905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce foundational genomic work on the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzymes able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) suggest the potential for microbial transfer between marine sediment and Kyphosus digestive tracts. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Eric E. Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Hameed A, Suchithra KV, Lin SY, Stothard P, Young CC. Genomic potential for inorganic carbon sequestration and xenobiotic degradation in marine bacterium Youngimonas vesicularis CC-AMW-E T affiliated to family Paracoccaceae. Antonie Van Leeuwenhoek 2023; 116:1247-1259. [PMID: 37740842 DOI: 10.1007/s10482-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Ecological studies on marine microbial communities largely focus on fundamental biogeochemical processes or the most abundant constituents, while minor biological fractions are frequently neglected. Youngimonas vesicularis CC-AMW-ET, isolated from coastal surface seawater in Taiwan, is an under-represented marine Paracoccaceae (earlier Rhodobacteraceae) member. The CC-AMW-ET genome was sequenced to gain deeper insights into its role in marine carbon and sulfur cycles. The draft genome (3.7 Mb) contained 63.6% GC, 3773 coding sequences and 51 RNAs, and displayed maximum relatedness (79.06%) to Thalassobius litoralis KU5D5T, a Roseobacteraceae member. While phototrophic genes were absent, genes encoding two distinct subunits of carbon monoxide dehydrogenases (CoxL, BMS/Form II and a novel form III; CoxM and CoxS), and proteins involved in HCO3- uptake and interconversion, and anaplerotic HCO3- fixation were found. In addition, a gene coding for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, form II), which fixes atmospheric CO2 was found in CC-AMW-ET. Genes for complete assimilatory sulfate reduction, sulfide oxidation (sulfide:quinone oxidoreductase, SqrA type) and dimethylsulfoniopropionate (DMSP) cleavage (DMSP lyase, DddL) were also identified. Furthermore, genes that degrade aromatic hydrocarbons such as quinate, salicylate, salicylate ester, p-hydroxybenzoate, catechol, gentisate, homogentisate, protocatechuate, 4-hydroxyphenylacetic acid, N-heterocyclic aromatic compounds and aromatic amines were present. Thus, Youngimonas vesicularis CC-AMW-ET is a potential chemolithoautotroph equipped with genetic machinery for the metabolism of aromatics, and predicted to play crucial roles in the biogeochemical cycling of marine carbon and sulfur.
Collapse
Affiliation(s)
- Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India.
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Kokkarambath Vannadil Suchithra
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
25
|
Nishida AH, Ochman H. Origins and Evolution of Novel Bacteroides in Captive Apes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563286. [PMID: 37961372 PMCID: PMC10634691 DOI: 10.1101/2023.10.20.563286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bacterial strains evolve in response to the gut environment of their hosts, with genomic changes that influence their interactions with hosts as well as with other members of the gut community. Great apes in captivity have acquired strains of Bacteroides xylanisolvens, which are common within gut microbiome of humans but not typically found other apes, thereby enabling characterization of strain evolution following colonization. Here, we isolate, sequence and reconstruct the history of gene gain and loss events in numerous captive-ape-associated strains since their divergence from their closest human-associated strains. We show that multiple captive-ape-associated B. xylanisolvens lineages have independently acquired gene complexes that encode functions related to host mucin metabolism. Our results support the finding of high genome fluidity in Bacteroides, in that several strains, in moving from humans to captive apes, have rapidly gained large genomic regions that augment metabolic properties not previously present in their relatives.
Collapse
Affiliation(s)
- Alexandra H. Nishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712 USA
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712 USA
| |
Collapse
|
26
|
Priest T, von Appen WJ, Oldenburg E, Popa O, Torres-Valdés S, Bienhold C, Metfies K, Boulton W, Mock T, Fuchs BM, Amann R, Boetius A, Wietz M. Atlantic water influx and sea-ice cover drive taxonomic and functional shifts in Arctic marine bacterial communities. THE ISME JOURNAL 2023; 17:1612-1625. [PMID: 37422598 PMCID: PMC10504371 DOI: 10.1038/s41396-023-01461-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
The Arctic Ocean is experiencing unprecedented changes because of climate warming, necessitating detailed analyses on the ecology and dynamics of biological communities to understand current and future ecosystem shifts. Here, we generated a four-year, high-resolution amplicon dataset along with one annual cycle of PacBio HiFi read metagenomes from the East Greenland Current (EGC), and combined this with datasets spanning different spatiotemporal scales (Tara Arctic and MOSAiC) to assess the impact of Atlantic water influx and sea-ice cover on bacterial communities in the Arctic Ocean. Densely ice-covered polar waters harboured a temporally stable, resident microbiome. Atlantic water influx and reduced sea-ice cover resulted in the dominance of seasonally fluctuating populations, resembling a process of "replacement" through advection, mixing and environmental sorting. We identified bacterial signature populations of distinct environmental regimes, including polar night and high-ice cover, and assessed their ecological roles. Dynamics of signature populations were consistent across the wider Arctic; e.g. those associated with dense ice cover and winter in the EGC were abundant in the central Arctic Ocean in winter. Population- and community-level analyses revealed metabolic distinctions between bacteria affiliated with Arctic and Atlantic conditions; the former with increased potential to use bacterial- and terrestrial-derived substrates or inorganic compounds. Our evidence on bacterial dynamics over spatiotemporal scales provides novel insights into Arctic ecology and indicates a progressing Biological Atlantification of the warming Arctic Ocean, with consequences for food webs and biogeochemical cycles.
Collapse
Affiliation(s)
- Taylor Priest
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany.
| | - Wilken-Jon von Appen
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Ellen Oldenburg
- Institute for Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Ovidiu Popa
- Institute for Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Sinhué Torres-Valdés
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Christina Bienhold
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - William Boulton
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, 28359, Germany
| | - Matthias Wietz
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany.
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany.
| |
Collapse
|
27
|
Zhu XY, Li Y, Xue CX, Lidbury IDEA, Todd JD, Lea-Smith DJ, Tian J, Zhang XH, Liu J. Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems. MICROBIOME 2023; 11:175. [PMID: 37550707 PMCID: PMC10405439 DOI: 10.1186/s40168-023-01618-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Hadal trenches (>6000 m) are the deepest oceanic regions on Earth and depocenters for organic materials. However, how these enigmatic microbial ecosystems are fueled is largely unknown, particularly the proportional importance of complex polysaccharides introduced through deposition from the photic surface waters above. In surface waters, Bacteroidetes are keystone taxa for the cycling of various algal-derived polysaccharides and the flux of carbon through the photic zone. However, their role in the hadal microbial loop is almost unknown. RESULTS Here, culture-dependent and culture-independent methods were used to study the potential of Bacteroidetes to catabolize diverse polysaccharides in Mariana Trench waters. Compared to surface waters, the bathypelagic (1000-4000 m) and hadal (6000-10,500 m) waters harbored distinct Bacteroidetes communities, with Mesoflavibacter being enriched at ≥ 4000 m and Bacteroides and Provotella being enriched at 10,400-10,500 m. Moreover, these deep-sea communities possessed distinct gene pools encoding for carbohydrate active enzymes (CAZymes), suggesting different polysaccharide sources are utilised in these two zones. Compared to surface counterparts, deep-sea Bacteroidetes showed significant enrichment of CAZyme genes frequently organized into polysaccharide utilization loci (PULs) targeting algal/plant cell wall polysaccharides (i.e., hemicellulose and pectin), that were previously considered an ecological trait associated with terrestrial Bacteroidetes only. Using a hadal Mesoflavibacter isolate (MTRN7), functional validation of this unique genetic potential was demonstrated. MTRN7 could utilize pectic arabinans, typically associated with land plants and phototrophic algae, as the carbon source under simulated deep-sea conditions. Interestingly, a PUL we demonstrate is likely horizontally acquired from coastal/land Bacteroidetes was activated during growth on arabinan and experimentally shown to encode enzymes that hydrolyze arabinan at depth. CONCLUSIONS Our study implies that hadal Bacteroidetes exploit polysaccharides poorly utilized by surface populations via an expanded CAZyme gene pool. We propose that sinking cell wall debris produced in the photic zone can serve as an important carbon source for hadal heterotrophs and play a role in shaping their communities and metabolism. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ian D E A Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
28
|
Hornung BVH, Terrapon N. An objective criterion to evaluate sequence-similarity networks helps in dividing the protein family sequence space. PLoS Comput Biol 2023; 19:e1010881. [PMID: 37585436 PMCID: PMC10461819 DOI: 10.1371/journal.pcbi.1010881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/28/2023] [Accepted: 01/18/2023] [Indexed: 08/18/2023] Open
Abstract
The deluge of genomic data raises various challenges for computational protein annotation. The definition of superfamilies, based on conserved folds, or of families, showing more recent homology signatures, allow a first categorization of the sequence space. However, for precise functional annotation or the identification of the unexplored parts within a family, a division into subfamilies is essential. As curators of an expert database, the Carbohydrate Active Enzymes database (CAZy), we began, more than 15 years ago, to manually define subfamilies based on phylogeny reconstruction. However, facing the increasing amount of sequence and functional data, we required more scalable and reproducible methods. The recently popularized sequence similarity networks (SSNs), allows to cope with very large families and computation of many subfamily schemes. Still, the choice of the optimal SSN subfamily scheme only relies on expert knowledge so far, without any data-driven guidance from within the network. In this study, we therefore decided to investigate several network properties to determine a criterion which can be used by curators to evaluate the quality of subfamily assignments. The performance of the closeness centrality criterion, a network property to indicate the connectedness within the network, shows high similarity to the decisions of expert curators from eight distinct protein families. Closeness centrality also suggests that in some cases multiple levels of subfamilies could be possible, depending on the granularity of the research question, while it indicates when no subfamily emerged in some family evolution. We finally used closeness centrality to create subfamilies in four families of the CAZy database, providing a finer functional annotation and highlighting subfamilies without biochemically characterized members for potential future discoveries.
Collapse
Affiliation(s)
| | - Nicolas Terrapon
- Aix Marseille Université, CNRS, UMR 7257 AFMB, Marseille, France
- INRAE, USC 1408 AFMB, Marseille, France
| |
Collapse
|
29
|
Luis AS, Hansson GC. Intestinal mucus and their glycans: A habitat for thriving microbiota. Cell Host Microbe 2023; 31:1087-1100. [PMID: 37442097 PMCID: PMC10348403 DOI: 10.1016/j.chom.2023.05.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
The colon mucus layer is organized with an inner colon mucus layer that is impenetrable to bacteria and an outer mucus layer that is expanded to allow microbiota colonization. A major component of mucus is MUC2, a glycoprotein that is extensively decorated, especially with O-glycans. In the intestine, goblet cells are specialized in controlling glycosylation and making mucus. Some microbiota members are known to encode multiple proteins that are predicted to bind and/or cleave mucin glycans. The interactions between commensal microbiota and host mucins drive intestinal colonization, while at the same time, the microbiota can utilize the glycans on mucins and affect the colonic mucus properties. This review will examine this interaction between commensal microbes and intestinal mucins and discuss how this interplay affects health and disease.
Collapse
Affiliation(s)
- Ana S Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
30
|
Sun CC, Zhao WJ, Yue WZ, Cheng H, Sun FL, Wang YT, Wu ML, Engel A, Wang YS. Polymeric carbohydrates utilization separates microbiomes into niches: insights into the diversity of microbial carbohydrate-active enzymes in the inner shelf of the Pearl River Estuary, China. Front Microbiol 2023; 14:1180321. [PMID: 37425997 PMCID: PMC10322874 DOI: 10.3389/fmicb.2023.1180321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Polymeric carbohydrates are abundant and their recycling by microbes is a key process of the ocean carbon cycle. A deeper analysis of carbohydrate-active enzymes (CAZymes) can offer a window into the mechanisms of microbial communities to degrade carbohydrates in the ocean. In this study, metagenomic genes encoding microbial CAZymes and sugar transporter systems were predicted to assess the microbial glycan niches and functional potentials of glycan utilization in the inner shelf of the Pearl River Estuary (PRE). The CAZymes gene compositions were significantly different between in free-living (0.2-3 μm, FL) and particle-associated (>3 μm, PA) bacteria of the water column and between water and surface sediments, reflecting glycan niche separation on size fraction and selective degradation in depth. Proteobacteria and Bacteroidota had the highest abundance and glycan niche width of CAZymes genes, respectively. At the genus level, Alteromonas (Gammaproteobacteria) exhibited the greatest abundance and glycan niche width of CAZymes genes and were marked by a high abundance of periplasmic transporter protein TonB and members of the major facilitator superfamily (MFS). The increasing contribution of genes encoding CAZymes and transporters for Alteromonas in bottom water contrasted to surface water and their metabolism are tightly related with particulate carbohydrates (pectin, alginate, starch, lignin-cellulose, chitin, and peptidoglycan) rather than on the utilization of ambient-water DOC. Candidatus Pelagibacter (Alphaproteobacteria) had a narrow glycan niche and was primarily preferred for nitrogen-containing carbohydrates, while their abundant sugar ABC (ATP binding cassette) transporter supported the scavenging mode for carbohydrate assimilation. Planctomycetota, Verrucomicrobiota, and Bacteroidota had similar potential glycan niches in the consumption of the main component of transparent exopolymer particles (sulfated fucose and rhamnose containing polysaccharide and sulfated-N-glycan), developing considerable niche overlap among these taxa. The most abundant CAZymes and transporter genes as well as the widest glycan niche in the abundant bacterial taxa implied their potential key roles on the organic carbon utilization, and the high degree of glycan niches separation and polysaccharide composition importantly influenced bacterial communities in the coastal waters of PRE. These findings expand the current understanding of the organic carbon biotransformation, underlying the size-fractionated glycan niche separation near the estuarine system.
Collapse
Affiliation(s)
- Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Wen-Jie Zhao
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Zhong Yue
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Fu-Lin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Yu-Tu Wang
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Mei-Lin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Anja Engel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
31
|
Lu DC, Wang FQ, Amann RI, Teeling H, Du ZJ. Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae. MICROBIOME 2023; 11:126. [PMID: 37264413 PMCID: PMC10233909 DOI: 10.1186/s40168-023-01559-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. RESULTS We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera. CONCLUSIONS Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract.
Collapse
Affiliation(s)
- De-Chen Lu
- Marine College, Shandong University, No. 180, Wenhua Xilu, Weihai, Shandong Province 264209 China
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, 28359 Germany
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Feng-Qing Wang
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, 28359 Germany
| | - Rudolf I. Amann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, 28359 Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, 28359 Germany
| | - Zong-Jun Du
- Marine College, Shandong University, No. 180, Wenhua Xilu, Weihai, Shandong Province 264209 China
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 China
| |
Collapse
|
32
|
Podell S, Oliver A, Kelly LW, Sparagon WJ, Plominsky AM, Nelson RS, Laurens LML, Augyte S, Sims NA, Nelson CE, Allen EE. Herbivorous Fish Microbiome Adaptations to Sulfated Dietary Polysaccharides. Appl Environ Microbiol 2023; 89:e0215422. [PMID: 37133385 PMCID: PMC10231202 DOI: 10.1128/aem.02154-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Marine herbivorous fish that feed primarily on macroalgae, such as those from the genus Kyphosus, are essential for maintaining coral health and abundance on tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species have been used to connect host gut microbial taxa with predicted protein functional capacities likely to contribute to efficient macroalgal digestion. Bacterial community compositions, algal dietary sources, and predicted enzyme functionalities were analyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy) and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to identify likely polysaccharide utilization locus associations and to visualize potential cooperative networks of extracellularly exported proteins targeting complex sulfated polysaccharides. These insights into the gut microbiota of herbivorous marine fish and their functional capabilities improve our understanding of the enzymes and microorganisms involved in digesting complex macroalgal sulfated polysaccharides. IMPORTANCE This work connects specific uncultured bacterial taxa with distinct polysaccharide digestion capabilities lacking in their marine vertebrate hosts, providing fresh insights into poorly understood processes for deconstructing complex sulfated polysaccharides and potential evolutionary mechanisms for microbial acquisition of expanded macroalgal utilization gene functions. Several thousand new marine-specific candidate enzyme sequences for polysaccharide utilization have been identified. These data provide foundational resources for future investigations into suppression of coral reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass into value-added commercial fuel and chemical products.
Collapse
Affiliation(s)
- Sheila Podell
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Aaron Oliver
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, USA
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, USA
| | - Eric E. Allen
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
33
|
Nguyen TTH, Vuong TQ, Han HL, Li Z, Lee YJ, Ko J, Nedashkovskaya OI, Kim SG. Three marine species of the genus Fulvivirga, rich sources of carbohydrate-active enzymes degrading alginate, chitin, laminarin, starch, and xylan. Sci Rep 2023; 13:6301. [PMID: 37072506 PMCID: PMC10113389 DOI: 10.1038/s41598-023-33408-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Bacteroidota is a group of marine polysaccharide degraders, which play a crucial role in the carbon cycle in the marine ecosystems. In this study, three novel gliding strains, designated as SS9-22T, W9P-11T, and SW1-E11T, isolated from algae and decaying wood were proposed to represent three novel species of the genus Fulvivirga. We identified a large number of genes encoding for carbohydrate-active enzymes, which potentially participate in polysaccharide degradation, based on whole genome sequencing. The 16S rRNA sequence similarities among them were 94.4-97.2%, and against existing species in the genus Fulvivirga 93.1-99.8%. The complete genomes of strains SS9-22T, W9P-11T, and SW1-E11T comprised one circular chromosome with size of 6.98, 6.52, and 6.39 Mb, respectively; the GC contents were 41.9%, 39.0%, and 38.1%, respectively. The average nucleotide identity and the digital DNA-DNA hybridization values with members in the genus Fulvivirga including the isolates were in a range of 68.9-85.4% and 17.1-29.7%, respectively, which are low for the proposal of novel species. Genomic mining in three genomes identified hundreds of carbohydrate-active enzymes (CAZymes) covering up to 93 CAZyme families and 58-70 CAZyme gene clusters, exceeding the numbers of genes present in the other species of the genus Fulvivirga. Polysaccharides of alginate, chitin, laminarin, starch, and xylan were degraded in vitro, highlighting that the three strains are rich sources of CAZymes of polysaccharide degraders for biotechnological applications. The phenotypic, biochemical, chemotaxonomic, and genomic characteristics supported the proposal of three novel species in the genus Fulvivirga, for which the names Fulvivirga ulvae sp. nov. (SS9-22T = KCTC 82072T = GDMCC 1.2804T), Fulvivirga ligni sp. nov. (W9P-11T = KCTC 72992T = GDMCC 1.2803T), and Fulvivirga maritima sp. nov. (SW1-E11T = KCTC 72832T = GDMCC 1.2802T) are proposed.
Collapse
Affiliation(s)
- Tra T H Nguyen
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tien Q Vuong
- Hanoi University of Science, Vietnam National University, Hanoi, 10000, Vietnam
| | - Ho Le Han
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550000, Vietnam
| | - Zhun Li
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yong-Jae Lee
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Jaeho Ko
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Olga I Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690022
| | - Song-Gun Kim
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
34
|
Kang JY, Song HY, Kim JM. Agarolytic Pathway in the Newly Isolated Aquimarina sp. Bacterial Strain ERC-38 and Characterization of a Putative β-agarase. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:314-327. [PMID: 37002465 PMCID: PMC10163077 DOI: 10.1007/s10126-023-10206-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/19/2023] [Indexed: 05/06/2023]
Abstract
Marine microbes, particularly Bacteroidetes, are a rich source of enzymes that can degrade diverse marine polysaccharides. Aquimarina sp. ERC-38, which belongs to the Bacteroidetes phylum, was isolated from seawater in South Korea. It showed agar-degrading activity and required an additional carbon source for growth on marine broth 2216. Here, the genome of the strain was sequenced to understand its agar degradation mechanism, and 3615 protein-coding sequences were predicted, which were assigned putative functions according to their annotated functional feature categories. In silico genome analysis revealed that the ERC-38 strain has several carrageenan-degrading enzymes but could not degrade carrageenan because it lacked genes encoding κ-carrageenanase and S1_19A type sulfatase. Moreover, the strain possesses multiple genes predicted to encode enzymes involved in agarose degradation, which are located in a polysaccharide utilization locus. Among the enzymes, Aq1840, which is closest to ZgAgaC within the glycoside hydrolase 16 family, was characterized using a recombinant enzyme expressed in Escherichia coli BL21 (DE3) cells. An enzyme assay revealed that recombinant Aq1840 mainly converts agarose to NA4. Moreover, recombinant Aq1840 could weakly hydrolyze A5 into A3 and NA2. These results showed that Aq1840 is involved in at least the initial agar degradation step prior to the metabolic pathway that uses agarose as a carbon source for growth of the strain. Thus, this enzyme can be applied to development and manufacturing industry for prebiotic and antioxidant food additive. Furthermore, our genome sequence analysis revealed that the strain is a potential resource for research on marine polysaccharide degradation mechanisms and carbon cycling.
Collapse
Affiliation(s)
- Ji Young Kang
- Industrial Microbiology and Bioprocess Research Center, Korea Research, Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup, Jeonbuk, 56212, Republic of Korea.
| | - Ha-Yeon Song
- Department of Life and Environmental Sciences, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Jung-Mi Kim
- Department of Life and Environmental Sciences, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
35
|
O-Mucin-degrading carbohydrate-active enzymes and their possible implication in inflammatory bowel diseases. Essays Biochem 2023; 67:331-344. [PMID: 36912232 PMCID: PMC10154620 DOI: 10.1042/ebc20220153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/14/2023]
Abstract
Inflammatory bowel diseases (IBD) are modern diseases, with incidence rising around the world. They are associated with perturbation of the intestinal microbiota, and with alteration and crossing of the mucus barrier by the commensal bacteria that feed on it. In the process of mucus catabolism and invasion by gut bacteria, carbohydrate-active enzymes (CAZymes) play a critical role since mucus is mainly made up by O- and N-glycans. Moreover, the occurrence of IBD seems to be associated with low-fiber diets. Conversely, supplementation with oligosaccharides, such as human milk oligosaccharides (HMOs), which are structurally similar to intestinal mucins and could thus compete with them towards bacterial mucus-degrading CAZymes, has been suggested to prevent inflammation. In this mini-review, we will establish the current state of knowledge regarding the identification and characterization of mucus-degrading enzymes from both cultured and uncultured species of gut commensals and enteropathogens, with a particular focus on the present technological opportunities available to further the discovery of mucus-degrading CAZymes within the entire gut microbiome, by coupling microfluidics with metagenomics and culturomics. Finally, we will discuss the challenges to overcome to better assess how CAZymes targeting specific functional oligosaccharides could be involved in the modulation of the mucus-driven cross-talk between gut bacteria and their host in the context of IBD.
Collapse
|
36
|
A bacterial sulfoglycosidase highlights mucin O-glycan breakdown in the gut ecosystem. Nat Chem Biol 2023; 19:778-789. [PMID: 36864192 DOI: 10.1038/s41589-023-01272-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.
Collapse
|
37
|
Poulet L, Mathieu S, Drouillard S, Buon L, Touvrey M, Helbert W. α-Carrageenan: An alternative route for the heterogenous phase degradation of hybrid ι-/κ-carrageenan. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
38
|
Castronovo S, Helmholz L, Wolff D, Poulsen JS, Nielsen JL, Ternes TA, Schmidt TC, Wick A. Protein fractionation and shotgun proteomics analysis of enriched bacterial cultures shed new light on the enzymatically catalyzed degradation of acesulfame. WATER RESEARCH 2023; 230:119535. [PMID: 36610183 DOI: 10.1016/j.watres.2022.119535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The removal of organic micropollutants in municipal wastewater treatment is an extensively studied field of research, but the underlying enzymatic processes have only been elucidated to a small extent so far. In order to shed more light on the enzymatic degradation of the artificial sweetener acesulfame (ACE) in this context, we enriched two bacterial taxa which were not yet described to be involved in the degradation of ACE, an unknown Chelatococcus species and Ensifer adhaerens, by incubating activated sludge in chemically defined media containing ACE as sole carbon source. Cell-free lysates were extracted, spiked with ACE and analyzed via target LC-MS/MS, demonstrating for the first time enzymatically catalyzed ACE degradation outside of living cells. Fractionation of the lysate via two-dimensional fast protein liquid chromatography (FPLC) succeeded in a partial separation of the enzymes catalyzing the initial transformation reaction of ACE from those catalyzing the further transformation pathway. Thereby, an accumulation of the intermediate transformation product acetoacetamide-n-sulfonic acid (ANSA) in the ACE-degrading fractions was achieved, providing first quantitative evidence that the cleavage of the sulfuric ester moiety of ACE is the initial transformation step. The metaproteome of the enrichments was analyzed in the FPLC fractions and in the unfractionated lysate, using shotgun proteomics via UHPLC-HRMS/MS and label-free quantification. The comparison of protein abundances in the FPLC fractions to the corresponding ACE degradation rates revealed a metallo-β-lactamase fold metallo-hydrolase as most probable candidate for the enzyme catalyzing the initial transformation from ACE to ANSA. This enzyme was by far the most abundant of all detected proteins and amounted to a relative protein abundance of 91% in the most active fraction after the second fractionation step. Moreover, the analysis of the unfractionated lysate resulted in a list of further proteins possibly involved in the transformation of ACE, most striking a highly abundant amidase likely catalyzing the further transformation of ANSA, and an ABC transporter substrate-binding protein that may be involved in the uptake of ACE into the cell.
Collapse
Affiliation(s)
- Sandro Castronovo
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany.
| | - Lissa Helmholz
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - David Wolff
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | | | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| |
Collapse
|
39
|
Mazéas L, Yonamine R, Barbeyron T, Henrissat B, Drula E, Terrapon N, Nagasato C, Hervé C. Assembly and synthesis of the extracellular matrix in brown algae. Semin Cell Dev Biol 2023; 134:112-124. [PMID: 35307283 DOI: 10.1016/j.semcdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022]
Abstract
In brown algae, the extracellular matrix (ECM) and its constitutive polymers play crucial roles in specialized functions, including algal growth and development. In this review we offer an integrative view of ECM construction in brown algae. We briefly report the chemical composition of its main constituents, and how these are interlinked in a structural model. We examine the ECM assembly at the tissue and cell level, with consideration on its structure in vivo and on the putative subcellular sites for the synthesis of its main constituents. We further discuss the biosynthetic pathways of two major polysaccharides, alginates and sulfated fucans, and the progress made beyond the candidate genes with the biochemical validation of encoded proteins. Key enzymes involved in the elongation of the glycan chains are still unknown and predictions have been made at the gene level. Here, we offer a re-examination of some glycosyltransferases and sulfotransferases from published genomes. Overall, our analysis suggests novel investigations to be performed at both the cellular and biochemical levels. First, to depict the location of polysaccharide structures in tissues. Secondly, to identify putative actors in the ECM synthesis to be functionally studied in the future.
Collapse
Affiliation(s)
- Lisa Mazéas
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Rina Yonamine
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Japan
| | - Tristan Barbeyron
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Bernard Henrissat
- CNRS, Aix Marseille Univ, UMR 7257 AFMB, 13288 Marseille, France; INRAE, USC1408 AFMB, 13288 Marseille, France; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Technical University of Denmark, DTU Bioengineering, DK-2800 Kgs., Lyngby, Denmark
| | - Elodie Drula
- CNRS, Aix Marseille Univ, UMR 7257 AFMB, 13288 Marseille, France; INRAE, USC1408 AFMB, 13288 Marseille, France
| | - Nicolas Terrapon
- CNRS, Aix Marseille Univ, UMR 7257 AFMB, 13288 Marseille, France; INRAE, USC1408 AFMB, 13288 Marseille, France
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Japan
| | - Cécile Hervé
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| |
Collapse
|
40
|
Mucin utilization by gut microbiota: recent advances on characterization of key enzymes. Essays Biochem 2023; 67:345-353. [PMID: 36695502 PMCID: PMC10154618 DOI: 10.1042/ebc20220121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
The gut microbiota interacts with the host through the mucus that covers and protects the gastrointestinal epithelium. The main component of the mucus are mucins, glycoproteins decorated with hundreds of different O-glycans. Some microbiota members can utilize mucin O-glycans as carbons source. To degrade these host glycans the bacteria express multiple carbohydrate-active enzymes (CAZymes) such as glycoside hydrolases, sulfatases and esterases which are active on specific linkages. The studies of these enzymes in an in vivo context have started to reveal their importance in mucin utilization and gut colonization. It is now clear that bacteria evolved multiple specific CAZymes to overcome the diversity of linkages found in O-glycans. Additionally, changes in mucin degradation by gut microbiota have been associated with diseases like obesity, diabetes, irritable bowel disease and colorectal cancer. Thereby understanding how CAZymes from different bacteria work to degrade mucins is of critical importance to develop new treatments and diagnostics for these increasingly prevalent health problems. This mini-review covers the recent advances in biochemical characterization of mucin O-glycan-degrading CAZymes and how they are connected to human health.
Collapse
|
41
|
Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1 T. Antonie Van Leeuwenhoek 2023; 116:39-51. [PMID: 36396850 DOI: 10.1007/s10482-022-01796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Members of the genus Alteromonas are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain Alteromonas fortis 1T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with A. fortis 1 T, and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and A. fortis 1T. However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related Alteromonas strains.
Collapse
|
42
|
Functions and specificity of bacterial carbohydrate sulfatases targeting host glycans. Essays Biochem 2022; 67:429-442. [PMID: 36562177 PMCID: PMC10154612 DOI: 10.1042/ebc20220120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Sulfated host glycans (mucin O-glycans and glycosaminoglycans [GAGs]) are critical nutrient sources and colonisation factors for Bacteroidetes of the human gut microbiota (HGM); a complex ecosystem comprising essential microorganisms that coevolved with humans to serve important roles in pathogen protection, immune signalling, and host nutrition. Carbohydrate sulfatases are essential enzymes to access sulfated host glycans and are capable of exquisite regio- and stereo-selective substrate recognition. In these enzymes, the common recognition features of each subfamily are correlated with their genomic and environmental context. The exo-acting carbohydrate sulfatases are attractive drug targets amenable to small-molecule screening and subsequent engineering, and their high specificity will help elucidate the role of glycan sulfation in health and disease. Inhibition of carbohydrate sulfatases provides potential routes to control Bacteroidetes growth and to explore the influence of host glycan metabolism by Bacteroidetes on the HGM ecosystem. The roles of carbohydrate sulfatases from the HGM organism Bacteroides thetaiotaomicron and the soil isolated Pedobacter heparinus (P. heparinus) in sulfated host glycan metabolism are examined and contrasted, and the structural features underpinning glycan recognition and specificity explored.
Collapse
|
43
|
Stam M, Lelièvre P, Hoebeke M, Corre E, Barbeyron T, Michel G. SulfAtlas, the sulfatase database: state of the art and new developments. Nucleic Acids Res 2022; 51:D647-D653. [PMID: 36318251 PMCID: PMC9825549 DOI: 10.1093/nar/gkac977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
SulfAtlas (https://sulfatlas.sb-roscoff.fr/) is a knowledge-based resource dedicated to a sequence-based classification of sulfatases. Currently four sulfatase families exist (S1-S4) and the largest family (S1, formylglycine-dependent sulfatases) is divided into subfamilies by a phylogenetic approach, each subfamily corresponding to either a single characterized specificity (or few specificities in some cases) or to unknown substrates. Sequences are linked to their biochemical and structural information according to an expert scrutiny of the available literature. Database browsing was initially made possible both through a keyword search engine and a specific sequence similarity (BLAST) server. In this article, we will briefly summarize the experimental progresses in the sulfatase field in the last 6 years. To improve and speed up the (sub)family assignment of sulfatases in (meta)genomic data, we have developed a new, freely-accessible search engine using Hidden Markov model (HMM) for each (sub)family. This new tool (SulfAtlas HMM) is also a key part of the internal pipeline used to regularly update the database. SulfAtlas resource has indeed significantly grown since its creation in 2016, from 4550 sequences to 162 430 sequences in August 2022.
Collapse
Affiliation(s)
| | | | - Mark Hoebeke
- Sorbonne Université, CNRS, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, Bretagne, France
| | - Erwan Corre
- Sorbonne Université, CNRS, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, Bretagne, France
| | - Tristan Barbeyron
- Correspondence may also be addressed to Tristan Barbeyron. Tel: +33 298 29 23 30; Fax: +33 298 29 23 24;
| | - Gurvan Michel
- To whom correspondence should be addressed. Tel: +33 298 29 23 30; Fax: +33 298 29 23 24;
| |
Collapse
|
44
|
Smith MM, Melrose J. Xylan Prebiotics and the Gut Microbiome Promote Health and Wellbeing: Potential Novel Roles for Pentosan Polysulfate. Pharmaceuticals (Basel) 2022; 15:ph15091151. [PMID: 36145372 PMCID: PMC9503530 DOI: 10.3390/ph15091151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022] Open
Abstract
This narrative review highlights the complexities of the gut microbiome and health-promoting properties of prebiotic xylans metabolized by the gut microbiome. In animal husbandry, prebiotic xylans aid in the maintenance of a healthy gut microbiome. This prevents the colonization of the gut by pathogenic organisms obviating the need for dietary antibiotic supplementation, a practice which has been used to maintain animal productivity but which has led to the emergence of antibiotic resistant bacteria that are passed up the food chain to humans. Seaweed xylan-based animal foodstuffs have been developed to eliminate ruminant green-house gas emissions by gut methanogens in ruminant animals, contributing to atmospheric pollution. Biotransformation of pentosan polysulfate by the gut microbiome converts this semi-synthetic sulfated disease-modifying anti-osteoarthritic heparinoid drug to a prebiotic metabolite that promotes gut health, further extending the therapeutic profile and utility of this therapeutic molecule. Xylans are prominent dietary cereal components of the human diet which travel through the gastrointestinal tract as non-digested dietary fibre since the human genome does not contain xylanolytic enzymes. The gut microbiota however digest xylans as a food source. Xylo-oligosaccharides generated in this digestive process have prebiotic health-promoting properties. Engineered commensal probiotic bacteria also have been developed which have been engineered to produce growth factors and other bioactive factors. A xylan protein induction system controls the secretion of these compounds by the commensal bacteria which can promote gut health or, if these prebiotic compounds are transported by the vagal nervous system, may also regulate the health of linked organ systems via the gut–brain, gut–lung and gut–stomach axes. Dietary xylans are thus emerging therapeutic compounds warranting further study in novel disease prevention protocols.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - James Melrose
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Correspondence:
| |
Collapse
|
45
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
46
|
Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders. THE ISME JOURNAL 2022; 16:2027-2039. [PMID: 35589967 PMCID: PMC9296495 DOI: 10.1038/s41396-022-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
Macroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans DsijT has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae. Co-cultures experiments with the non-degrading strain Tenacibaculum aestuarii SMK-4T showed that Z. galactanivorans can act as a pioneer that initiates algal breakdown and shares public goods with other bacteria. A comparison of eight Zobellia strains, and strong transcriptomic shifts in Z. galactanivorans cells using fresh macroalgae vs. isolated polysaccharides, revealed potential overlooked traits of pioneer bacteria. Besides brown algal polysaccharide degradation, they notably include oxidative stress resistance proteins, type IX secretion system proteins and novel uncharacterized polysaccharide utilization loci. Overall, this work highlights the relevance of studying fresh macroalga degradation to fully understand the metabolic and ecological strategies of pioneer microbial degraders, key players in macroalgal biomass remineralization.
Collapse
|
47
|
Luis AS, Baslé A, Byrne DP, Wright GSA, London JA, Jin C, Karlsson NG, Hansson GC, Eyers PA, Czjzek M, Barbeyron T, Yates EA, Martens EC, Cartmell A. Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nat Chem Biol 2022; 18:841-849. [PMID: 35710619 PMCID: PMC7613211 DOI: 10.1038/s41589-022-01039-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/14/2022] [Indexed: 12/31/2022]
Abstract
Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.
Collapse
Affiliation(s)
- Ana S Luis
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gareth S A Wright
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - James A London
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Faculty of Health Sciences, Department of Life Sciences and Health, Pharmacy, Oslo Metropolitan University, Oslo, Norway
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mirjam Czjzek
- Sorbonne Université, Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Alan Cartmell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
48
|
Mashima R, Nakanishi M. Mammalian Sulfatases: Biochemistry, Disease Manifestation, and Therapy. Int J Mol Sci 2022; 23:ijms23158153. [PMID: 35897729 PMCID: PMC9330403 DOI: 10.3390/ijms23158153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Sulfatases are enzymes that catalyze the removal of sulfate from biological substances, an essential process for the homeostasis of the body. They are commonly activated by the unusual amino acid formylglycine, which is formed from cysteine at the catalytic center, mediated by a formylglycine-generating enzyme as a post-translational modification. Sulfatases are expressed in various cellular compartments such as the lysosome, the endoplasmic reticulum, and the Golgi apparatus. The substrates of mammalian sulfatases are sulfolipids, glycosaminoglycans, and steroid hormones. These enzymes maintain neuronal function in both the central and the peripheral nervous system, chondrogenesis and cartilage in the connective tissue, detoxification from xenobiotics and pharmacological compounds in the liver, steroid hormone inactivation in the placenta, and the proper regulation of skin humidification. Human sulfatases comprise 17 genes, 10 of which are involved in congenital disorders, including lysosomal storage disorders, while the function of the remaining seven is still unclear. As for the genes responsible for pathogenesis, therapeutic strategies have been developed. Enzyme replacement therapy with recombinant enzyme agents and gene therapy with therapeutic transgenes delivered by viral vectors are administered to patients. In this review, the biochemical substrates, disease manifestation, and therapy for sulfatases are summarized.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Correspondence: ; Fax: +81-3-3417-2238
| | | |
Collapse
|
49
|
Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group. THE ISME JOURNAL 2022; 16:1570-1582. [PMID: 35169264 PMCID: PMC9122927 DOI: 10.1038/s41396-022-01209-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Abstract
Niche concept is a core tenet of ecology that has recently been applied in marine microbial research to describe the partitioning of taxa based either on adaptations to specific conditions across environments or on adaptations to specialised substrates. In this study, we combine spatiotemporal dynamics and predicted substrate utilisation to describe species-level niche partitioning within the NS5 Marine Group. Despite NS5 representing one of the most abundant marine flavobacterial clades from across the world’s oceans, our knowledge on their phylogenetic diversity and ecological functions is limited. Using novel and database-derived 16S rRNA gene and ribosomal protein sequences, we delineate the NS5 into 35 distinct species-level clusters, contained within four novel candidate genera. One candidate species, “Arcticimaribacter forsetii AHE01FL”, includes a novel cultured isolate, for which we provide a complete genome sequence—the first of an NS5—along with morphological insights using transmission electron microscopy. Assessing species’ spatial distribution dynamics across the Tara Oceans dataset, we identify depth as a key influencing factor, with 32 species preferring surface waters, as well as distinct patterns in relation to temperature, oxygen and salinity. Each species harbours a unique substrate-degradation potential along with predicted substrates conserved at the genus-level, e.g. alginate in NS5_F. Successional dynamics were observed for three species in a time-series dataset, likely driven by specialised substrate adaptations. We propose that the ecological niche partitioning of NS5 species is mainly based on specific abiotic factors, which define the niche space, and substrate availability that drive the species-specific temporal dynamics.
Collapse
|
50
|
Skoog EJ, Moore KR, Gong J, Ciccarese D, Momper L, Cutts EM, Bosak T. Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the cycling of sulfated EPS in Shark Bay pustular mats. ISME COMMUNICATIONS 2022; 2:43. [PMID: 37938726 PMCID: PMC9723792 DOI: 10.1038/s43705-022-00128-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 05/24/2023]
Abstract
Cyanobacteria and extracellular polymeric substances (EPS) in peritidal pustular microbial mats have a two-billion-year-old fossil record. To understand the composition, production, degradation, and potential role of EPS in modern analogous communities, we sampled pustular mats from Shark Bay, Australia and analyzed their EPS matrix. Biochemical and microscopic analyses identified sulfated organic compounds as major components of mat EPS. Sulfur was more abundant in the unmineralized regions with cyanobacteria and less prevalent in areas that contained fewer cyanobacteria and more carbonate precipitates. Sequencing and assembly of the pustular mat sample resulted in 83 high-quality metagenome-assembled genomes (MAGs). Metagenomic analyses confirmed cyanobacteria as the primary sources of these sulfated polysaccharides. Genes encoding for sulfatases, glycosyl hydrolases, and other enzymes with predicted roles in the degradation of sulfated polysaccharides were detected in the MAGs of numerous clades including Bacteroidetes, Chloroflexi, Hydrogenedentes, Myxococcota, Verrucomicrobia, and Planctomycetes. Measurable sulfatase activity in pustular mats and fresh cyanobacterial EPS confirmed the role of sulfatases in the degradation of sulfated EPS. These findings suggest that the synthesis, modification, and degradation of sulfated polysaccharides influence microbial interactions, carbon cycling, and biomineralization processes within peritidal pustular microbial mats.
Collapse
Affiliation(s)
- Emilie J Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Kelsey R Moore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA, 91125, USA
| | - Jian Gong
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Davide Ciccarese
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lily Momper
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Exponent, Inc., Pasadena, CA, 91106, USA
| | - Elise M Cutts
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|