1
|
Li Y, Liu Y, Xie S, Zhu Y, Ding X, Zhang W, Xian S, Wu G, Sun H, Yan J, Lu B, Yao Y, Qian W, Lu Y, Yang Y, Xu D, Huang R, Ji S. Metabolic response to burn injury: a comprehensive bibliometric study. Front Med (Lausanne) 2025; 11:1451371. [PMID: 39830385 PMCID: PMC11739346 DOI: 10.3389/fmed.2024.1451371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Objective Burns lead to systemic changes manifested by systemic disturbances in water-electrolyte balance and systemic metabolic and inflammatory responses. The hypermetabolic response after a burn injury relies on metabolic, hormonal, and inflammatory dysregulation mechanisms. This study aimed to provide a comprehensive bibliometric analysis of the burn metabolism research field, identifying key trends, influential contributors, and emerging research hotspots to inform future investigative efforts. Ultimately, we conducted an extensive review of the literature, synthesizing the findings to clarify the present understanding within our field of study. Methods We obtained 8,823 scientific publications on burn injury and metabolism from the core Web of Science (WOS) database collection. In this work, biblioshiny was used to visualize and analyze the data, and VOSviewer was used to verify the results. Results From a total of 8,823 publications, we found a general upward trend in annual publications and citation frequency. According to Bradford's Law, 21 high-production journals were classified as core sources based on the number of publications, and the most productive journal was Burns. The most published countries and authors in this field were the United States and Herndon DN. The most local cited document in this field was the article titled "Catecholamines: Mediator of the Hypermetabolic Response to Thermal Injury" authored by Wilmore DW. The thematic map showed that studies on injury, thermal injury, and sepsis were relatively mature. In contrast, research on metabolism, stress, and responses, and research on mortality, resistance, and management were less well-developed but were essential for the field. Conclusion Research on burns and metabolism is increasing. Based on the bibliometric analysis, our study summarized the complex interplay between burn-induced systemic metabolic alterations and inflammatory responses, emphasizing the significance of hypermetabolism and its management. The role of propranolol, insulin, oxandrolone, and nutritional interventions in modulating the hypermetabolic state was discussed. Additionally, our study underscored the challenges of managing sepsis and drug-resistant infections in burn patients as an important future area of research.
Collapse
Affiliation(s)
- Yixu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinran Ding
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guosheng Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jiale Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijin Qian
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Madaan T, Doan K, Hartman A, Gherardini D, Ventrola A, Zhang Y, Kotagiri N. Advances in Microbiome-Based Therapeutics for Dermatological Disorders: Current Insights and Future Directions. Exp Dermatol 2024; 33:e70019. [PMID: 39641544 PMCID: PMC11663288 DOI: 10.1111/exd.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
The human skin hosts an estimated 1000 bacterial species that are essential for maintaining skin health. Extensive clinical and preclinical studies have established the significant role of the skin microbiome in dermatological disorders such as atopic dermatitis, psoriasis, diabetic foot ulcers, hidradenitis suppurativa and skin cancers. In these conditions, the skin microbiome is not only altered but, in some cases, implicated in disease pathophysiology. Microbiome-based therapies (MBTs) represent an emerging category of live biotherapeutic products with tremendous potential as a novel intervention platform for skin diseases. Beyond using established wild-type strains native to the skin, these therapies can be enhanced to express targeted therapeutic molecules, offering more tailored treatment approaches. This review explores the role of the skin microbiome in various common skin disorders, with a particular focus on the development and therapeutic potential of MBTs for treating these conditions.
Collapse
Affiliation(s)
- Tushar Madaan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Kyla Doan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Alexandra Hartman
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Dominick Gherardini
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Alec Ventrola
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Yuhang Zhang
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Nalinikanth Kotagiri
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
3
|
Moysidis M, Chorti A, Cheva A, Abba Deka I, Tzikos G, Kosmidis C, Koutelidakis I, Tsetis JK, Papavramidis T, Kotzampassi K. L. plantarum UBLP-40 Versus the Combined Formula of L. rhamnosus UBLP-58 and B. longum UBBL-64 in Excisional Wound Healing: A Cellular Perspective. Pharmaceuticals (Basel) 2024; 17:1414. [PMID: 39598326 PMCID: PMC11597307 DOI: 10.3390/ph17111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION The utilization of probiotics in enhancing the active healing of skin wounds represents a burgeoning trend in contemporary medicine. Previous research has extensively explored wound healing mechanisms involving the strains of Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Bifidobacterium longum. This study seeks to compare and interpret cellular findings derived from immunohistochemical and pathological applications. METHODS Three groups (the control, Lactiplantibacillus plantarum (RO1) group, and Lacticaseibacillus rhamnosus and Bifidobacterium longum (PRO2) group) underwent histological analysis, and microscopic cell counting were employed, offering insights into dynamic changes among neutrophils, lymphocytes, plasmacytes, mast cells, fibroblasts, and newly formed vessels across distinct treatment groups and temporal intervals. RESULTS The neutrophil count was found to be elevated in PRO2 on day 2, while the same group resulted in the highest decline on day 15. The number of fibroblasts peaked on day 4 for the PRO1 group, compared to the other two groups, which peaked on day 8. The lymphocyte count was the highest in the control group, while they peaked on day 4 in PRO2. The mast cells and plasmacytes were variable and sparse among all groups and time frames. Neovascularization was promoted by PRO1 and PRO2 groups on day 4 and remained high on day 8 for PRO2. CONCLUSIONS Probiotic strains can be beneficial to the human population and in assisting skin wound healing, each strain working differently and more effectively in different healing phases. Thus, a combined formula containing different probiotics to modulate various healing phases is desirable.
Collapse
Affiliation(s)
- Moysis Moysidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Angeliki Cheva
- Department of Pathology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (I.A.D.)
| | - Ioanna Abba Deka
- Department of Pathology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (I.A.D.)
| | - Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Christoforos Kosmidis
- 3th Department of Surgery, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Koutelidakis
- 2nd Department of Surgery, G. Gennimatas University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Joulia K. Tsetis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Theodossis Papavramidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| |
Collapse
|
4
|
Guarnieri A, Venditti N, Cutuli MA, Brancazio N, Salvatore G, Magnifico I, Pietrangelo L, Falcone M, Vergalito F, Nicolosi D, Scarsella F, Davinelli S, Scapagnini G, Petronio Petronio G, Di Marco R. Human breast milk isolated lactic acid bacteria: antimicrobial and immunomodulatory activity on the Galleria mellonella burn wound model. Front Cell Infect Microbiol 2024; 14:1428525. [PMID: 39310784 PMCID: PMC11412949 DOI: 10.3389/fcimb.2024.1428525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Managing burn injuries is a challenge in healthcare. Due to the alarming increase in antibiotic resistance, new prophylactic and therapeutic strategies are being sought. This study aimed to evaluate the potential of live Lactic Acid Bacteria for managing burn infections, using Galleria mellonella larvae as an alternative preclinical animal model and comparing the outcomes with a common antibiotic. Methods The antimicrobial activity of LAB isolated from human breast milk was assessed in vitro against Pseudomonas aeruginosa ATCC 27853. Additionally, the immunomodulatory effects of LAB were evaluated in vivo using the G. mellonella burn wound infection model. Results and discussion In vitro results demonstrated the antimicrobial activity of Lactic Acid Bacteria against P. aeruginosa. In vivo results show that their prophylactic treatment improves, statistically significant, larval survival and modulates the expression of immunity-related genes, Gallerimycin and Relish/NF-κB, strain-dependently. These findings lay the foundation and suggest a promising alternative for burn wound prevention and management, reducing the risk of antibiotic resistance, enhancing immune modulation, and validating the potential G. mellonella as a skin burn wound model.
Collapse
Affiliation(s)
- Antonio Guarnieri
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Noemi Venditti
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
- Unità Operativa (UO) Laboratorio Analisi, Responsible Research Hospital, Campobasso, Italy
| | - Marco Alfio Cutuli
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Natasha Brancazio
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giovanna Salvatore
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Irene Magnifico
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Laura Pietrangelo
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Marilina Falcone
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Franca Vergalito
- Università degli Studi del Molise Department of Agricultural, Environmental and Food Sciences, Campobasso, Italy
| | - Daria Nicolosi
- Università degli Studi di Catania Department of Drug and Health Sciences, Catania, Italy
| | - Franco Scarsella
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
- ASReM-Azienda Sanitaria Regionale del Molise, Campobasso, Italy
| | - Sergio Davinelli
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giovanni Scapagnini
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giulio Petronio Petronio
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Roberto Di Marco
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| |
Collapse
|
5
|
Locker J, Serrage HJ, Ledder RG, Deshmukh S, O'Neill CA, McBain AJ. Microbiological insights and dermatological applications of live biotherapeutic products. J Appl Microbiol 2024; 135:lxae181. [PMID: 39090975 DOI: 10.1093/jambio/lxae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
As our understanding of dermatological conditions advances, it becomes increasingly evident that traditional pharmaceutical interventions are not universally effective. The intricate balance of the skin microbiota plays a pivotal role in the development of various skin conditions, prompting a growing interest in probiotics, or live biotherapeutic products (LBPs), as potential remedies. Specifically, the topical application of LBPs to modulate bacterial populations on the skin has emerged as a promising approach to alleviate symptoms associated with common skin conditions. This review considers LBPs and their application in addressing a wide spectrum of dermatological conditions with particular emphasis on three key areas: acne, atopic dermatitis, and wound healing. Within this context, the critical role of strain selection is presented as a pivotal factor in effectively managing these dermatological concerns. Additionally, the review considers formulation challenges associated with probiotic viability and proposes a personalised approach to facilitate compatibility with the skin's unique microenvironment. This analysis offers valuable insights into the potential of LBPs in dermatological applications, underlining their promise in reshaping the landscape of dermatological treatments while acknowledging the hurdles that must be overcome to unlock their full potential.
Collapse
Affiliation(s)
- Jessica Locker
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Hannah J Serrage
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | | | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
6
|
Alhubail M, McBain AJ, O'Neill CA. A survey of multiple candidate probiotic bacteria reveals specificity in the ability to modify the effects of key wound pathogens. Microbiol Spectr 2024; 12:e0034724. [PMID: 38700333 PMCID: PMC11237428 DOI: 10.1128/spectrum.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
We have evaluated the inhibitory effects of supernatants and lysates derived from several candidate probiotics, on the growth and biofilm formation of wound pathogens, and their ability to protect human primary epidermal keratinocytes from the toxic effects of pathogens. Supernatants (neutralized and non-neutralized) and lysates (via sonication) from Lactiplantibacillus plantarum, Limosilactobacillus reuteri, Bifidobacterium longum, Lacticaseibacillus rhamnosus GG, and Escherichia coli Nissle 1917 were tested for their inhibitory effects against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumanni. The supernatants of L. plantarum, L. rhamnosus, B. longum, and L. rhamnosus GG reduced the growth of S. aureus, E. coli, and A. baumanni. B. longum additionally inhibited P. aeruginosa growth. However, neutralized Lactobacillus supernatants did not inhibit growth and in some cases were stimulatory. Lysates of L. plantarum and L. reuteri inhibited S. pyogenes while B. longum lysates inhibited E. coli and S. aureus growth. E. coli Nissle 1917 lysates enhanced the growth of S. pyogenes and P. aeruginosa. Biofilm formation by E. coli was reduced by lysates of L. reuteri and neutralized supernatants of all candidate probiotics. P. aeruginosa biofilm formation was reduced by E. coli Nissle supernatant but increased by L. plantarum, L. reuteri, and Bifidobacterium longum lysates. L. reuteri decreased the toxic effects of S. aureus on keratinocytes while E. coli Nissle 1917 lysates protected keratinocytes from S. pyogenes toxicity. In conclusion, lactobacilli and E. coli Nissle lysates confer inhibitory effects on pathogenic growth independently of acidification and may beneficially alter the outcome of interactions between host cell-pathogen in a species-specific manner.IMPORTANCEOne of the attributes of probiotics is their ability to inhibit pathogens. For this reason, many lactobacilli have been investigated for their effects as potential topical therapeutics against skin pathogens. However, this field is in its infancy. Even though probiotics are known to be safe when taken orally, the potential safety concerns when applied to potentially compromised skin are unknown. For this reason, we believe that extracts of probiotics will offer advantages over the use of live bacteria. In this study, we have surveyed five candidate probiotics, when used as extracts, in terms of their effects against common wound pathogens. Our data demonstrate that some probiotic extracts promote the growth of pathogens and highlight the need for careful selection of species and strains when probiotics are to be used topically.
Collapse
Affiliation(s)
- Muna Alhubail
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Faculty of Biology, School of Health Sciences, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine A. O'Neill
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
8
|
Asadzadegan R, Haratian N, Sadeghi M, Maroufizadeh S, Mobayen M, Sedigh Ebrahim Saraei H, Hasannejad‐Bibalan M. Antibiofilm and antimicrobial activity of Lactobacillus cell free supernatant against Pseudomonas aeruginosa isolated from burn wounds. Int Wound J 2023; 20:4112-4121. [PMID: 37455022 PMCID: PMC10681627 DOI: 10.1111/iwj.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
The present study investigated the antimicrobial and anti-biofilm effects of indigenous Lactobacillus probiotic strains on Pseudomonas aeruginosa isolated from burn wound infection in laboratory conditions. The effect of 7 probiotic strains isolated from infant faeces on the pathogenicity factors of P. aeruginosa, including protease, elastase, antibiofilm and antipyocyanin was measured. Also, diffusion methods in the well and micro broth dilution were used to evaluate the antimicrobial activity of probiotics. All tests were performed in triplicate. A negative control and a positive control were used for each test. SPSS version 22 software was used for statistical analysis, and a p < 0.05 was considered statistically significant. A total of 30 clinical isolates of P. aeruginosa were isolated. The elastolytic activity of P. aeruginosa isolates decreased after adding Cell free supernatant (CFS) of each Lactobacillus. L1, L4, L5, and L6 strains had a 100% inhibitory effect on pathogen isolates. L3 and L7 strains had the lowest inhibitory effect. The inhibitory effect of CFS extracted from lactobacilli on protease production by P. aeruginosa. L1, L4, L5, and L6 strains had an inhibitory effect on all tested isolates. L2, L3, and L7 strains had a less inhibitory effect. L4 strain had the highest inhibitory effect on pyocyanin production by P. aeruginosa (50%), followed by L5 (43.3%), L1 (40%), and L6 (23.3%) strains. L3 and L7 strains had no inhibitory effect on the pyocyanin production of P. aeruginosa isolates. It was found that the CFS of 4 isolates (L1, L4, L5, and L6) was the most active extract and had a 100% inhibitory effect against biofilm formation of all P. aeruginosa strains. The L3 strain had the least inhibitory effect against the biofilm formation of pathogens. Overall, this study showed that probiotics could be promising alternatives to combat the pathogenicity of P. aeruginosa in burn wounds.
Collapse
Affiliation(s)
- Reza Asadzadegan
- Student Research Committee, School of MedicineGuilan University of Medical SciencesRashtIran
| | - Negar Haratian
- Farhikhtegan Medical Convergence Sciences Research Center,Farhikhtegan Hospital Tehran Medical SciencesIslamic AzadUniversityTehranIran
| | - Mahsa Sadeghi
- Burn and Regenerative Medicine Research CenterGuilan University of Medical SciencesRashtIran
- Department of Microbiology, School of MedicineGuilan University of Medical SciencesRashtIran
| | - Saman Maroufizadeh
- Department of Biostatistics and Epidemiology, School of HealthGuilan University of Medical SciencesRashtIran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research CenterGuilan University of Medical SciencesRashtIran
| | | | | |
Collapse
|
9
|
Li Z, Zhang S, Zuber F, Altenried S, Jaklenec A, Langer R, Ren Q. Topical application of Lactobacilli successfully eradicates Pseudomonas aeruginosa biofilms and promotes wound healing in chronic wounds. Microbes Infect 2023; 25:105176. [PMID: 37406851 DOI: 10.1016/j.micinf.2023.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Chronic wounds are difficult to treat due to the presence of biofilm which prevents wound healing. Pseudomonas aeruginosa is one of the most common pathogens found in chronic wounds and conventional treatment strategies have been ineffective in the eradication of its biofilm, without harming the surrounding healthy tissue at the same time. Here, we introduced an innovative approach applying the probiotic product Bio-K+ (containing three lactobacilli) topically as an antimicrobial and antibiofilm agent. We identified lactic acid as the main active component. While antibiotics and antiseptics such as silver-ions only demonstrated limited efficacy, Bio-K+ was able to completely eradicate mature P. aeruginosa biofilms established in an in-vitro and ex-vivo human skin model. Furthermore, it demonstrated biocompatibility in the co-culture with human dermal fibroblasts and accelerated the migration of fibroblasts in a cell migration assay promoting wound healing. To enhance clinical practicability, we introduced Bio-K+ into the hydrocolloid dressing Aquacel, achieving sustained release of lactic acid and biofilm eradication. This new treatment approach applying probiotics could represent a major improvement in the management of chronic wounds and can be extended in treating other biofilm-associated infections.
Collapse
Affiliation(s)
- Zhihao Li
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Sixuan Zhang
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Flavia Zuber
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Qun Ren
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
10
|
Ishi S, Kanno E, Tanno H, Kurosaka S, Shoji M, Imai T, Yamaguchi K, Kotsugai K, Niiyama M, Kurachi H, Makabe F, Watanabe T, Sato K, Ishii K, Hara H, Imai Y, Kawakami K. Cutaneous wound healing promoted by topical administration of heat-killed Lactobacillus plantarum KB131 and possible contribution of CARD9-mediated signaling. Sci Rep 2023; 13:15917. [PMID: 37741861 PMCID: PMC10517988 DOI: 10.1038/s41598-023-42919-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
Optimal conditions for wound healing require a smooth transition from the early stage of inflammation to proliferation, and during this time alternatively activated (M2) macrophages play a central role. Recently, heat-killed lactic acid bacteria (LAB), such as Lactobacillus plantarum (L. plantarum) have been reported as possible modulators affecting the immune responses in wound healing. However, how signaling molecules regulate this process after the administration of heat-killed LAB remains unclear. In this study, we examined the effect of heat-killed L. plantarum KB131 (KB131) administration on wound healing and the contribution of CARD9, which is an essential signaling adaptor molecule for NF-kB activation upon triggering through C-type lectin receptors, in the effects of this bacterium. We analyzed wound closure, histological findings, and inflammatory responses. We found that administration of KB131 accelerated wound closure, re-epithelialization, granulation area, CD31-positive vessels, and α-SMA-positive myofibroblast accumulated area, as well as the local infiltration of leukocytes. In particular, M2 macrophages were increased, in parallel with CCL5 synthesis. The acceleration of wound healing responses by KB131 was canceled in CARD9-knockout mice. These results indicate that the topical administration of KB131 accelerates wound healing, accompanying increased M2 macrophages, which suggests that CARD9 may be involved in these responses.
Collapse
Affiliation(s)
- Shinyo Ishi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Emi Kanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Hiromasa Tanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shiho Kurosaka
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
- Bio-Lab Co., Ltd, 2-1-3 Komagawa, Hidaka-shi, Japan
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Toshiro Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Kenji Yamaguchi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Kanna Kotsugai
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Momoko Niiyama
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Haruko Kurachi
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Fuko Makabe
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | | | - Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
- Department of Clinical Microbiology and Infection, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| |
Collapse
|
11
|
Kaur Sandhu S, Raut J, Kumar S, Singh M, Ahmed B, Singh J, Rana V, Rishi P, Ganesh N, Dua K, Pal Kaur I. Nanocurcumin and viable Lactobacillus plantarum based sponge dressing for skin wound healing. Int J Pharm 2023; 643:123187. [PMID: 37394156 DOI: 10.1016/j.ijpharm.2023.123187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Curcumin loaded solid lipid nanoparticles (CSLNs) and probiotic (Lactobacillus plantarum UBLP-40; L. plantarum) were currently co-incorporated into a wound dressing. The combination with manifold anti-inflammatory, anti-infective, analgesic, and antioxidant properties of both curcumin and L. plantarum will better manage complex healing process. Recent reports indicate that polyphenolics like curcumin improve probiotic effects. Curcumin was nanoencapsulated (CSLNs) to improve its bioprofile and achieve controlled release on the wound bed. Bacteriotherapy (probiotic) is established to promote wound healing via antimicrobial activity, inhibition of pathogenic toxins, immunomodulation, and anti-inflammatory actions. Combination of CSLNs with probiotic enhanced (560%) its antimicrobial effects against planktonic cells and biofilms of skin pathogen, Staphylococcus aureus 9144. The sterile dressing was devised with selected polymers, and optimized for polymer concentration, and dressing characteristics using a central composite design. It exhibited a swelling ratio of 412 ± 36%, in vitro degradation time of 3 h, optimal water vapor transmission rate of 1516.81 ± 155.25 g/m2/day, high tensile strength, low-blood clotting index, case II transport, and controlled release of curcumin. XRD indicated strong interaction between employed polymers. FESEM revealed a porous sponge like meshwork embedded with L. plantarum and CSLNs. It degraded and released L. plantarum, which germinated in the wound bed. The sponge was stable under refrigerated conditions for up to six months. No translocation of probiotic from wound to the internal organs confirmed safety. The dressing exhibited faster wound closure and lowered bioburden in the wound area in mice. This was coupled with a decrease in TNF-α, MMP-9, and LPO levels; and an increase in VEGF, TGF-β, and antioxidant enzymes such as catalase and GSH, establishing multiple healing pathways. Results were compared with CSLNs and probiotic-alone dressings. The dressing was as effective as the silver nanoparticle-based marketed hydrogel dressing; however, the cost and risk of developing resistance would be much lower currently.
Collapse
Affiliation(s)
- Simarjot Kaur Sandhu
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Jayant Raut
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08844, USA
| | - Mandeep Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Vikas Rana
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Narayanan Ganesh
- Jawaharlal Nehru Cancer Hospital & Research Centre, Bhopal 462001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
12
|
Chin JD, Zhao L, Mayberry TG, Cowan BC, Wakefield MR, Fang Y. Photodynamic Therapy, Probiotics, Acetic Acid, and Essential Oil in the Treatment of Chronic Wounds Infected with Pseudomonas aeruginosa. Pharmaceutics 2023; 15:1721. [PMID: 37376169 PMCID: PMC10301549 DOI: 10.3390/pharmaceutics15061721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a prevalent medical problem that burdens millions of patients across the world, chronic wounds pose a challenge to the healthcare system. These wounds, often existing as a comorbidity, are vulnerable to infections. Consequently, infections hinder the healing process and complicate clinical management and treatment. While antibiotic drugs remain a popular treatment for infected chronic wounds, the recent rise of antibiotic-resistant strains has hastened the need for alternative treatments. Future impacts of chronic wounds are likely to increase with aging populations and growing obesity rates. With the need for more effective novel treatments, promising research into various wound therapies has seen an increased demand. This review summarizes photodynamic therapy, probiotics, acetic acid, and essential oil studies as developing antibiotic-free treatments for chronic wounds infected with Pseudomonas aeruginosa. Clinicians may find this review informative by gaining a better understanding of the state of current research into various antibiotic-free treatments. Furthermore. this review provides clinical significance, as clinicians may seek to implement photodynamic therapy, probiotics, acetic acid, or essential oils into their own practice.
Collapse
Affiliation(s)
- Jaeson D. Chin
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Lei Zhao
- The Department of Respiratory Medicine, The Second People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei 230002, China
| | - Trenton G. Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Braydon C. Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
13
|
Asuku M, Shupp JW. Burn wound conversion: clinical implications for the treatment of severe burns. J Wound Care 2023; 32:S11-S20. [PMID: 37121662 DOI: 10.12968/jowc.2023.32.sup5.s11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The identification of novel treatments for severe burn wounds relies on accurate clinical assessments of the extent of injury. However, evaluation of burn wound depth can be challenging due to the tendency for burn wounds to progress over time in a little-understood process known as 'burn wound conversion'. Local factors affecting the burn wound, such as inflammation, oxidative stress-induced tissue damage, vasostasis and bacterial infections, lead to increased cell death by apoptosis or oncosis, while systemic events may promote burn wound conversion. Acute shock, metabolic derangements, age or immunomodulation can modify cytokine secretion, lower immune responses, decrease blood flow or cause bacterial infection at the burn wound site. Therefore, therapeutic approaches targeting specific mechanisms that reduce cell death, improve wound reperfusion and promote tissue regrowth should favourably enhance burn wound healing, and long-term functional and aesthetic outcomes. Our current understanding of these mechanisms mostly comes from animal studies, underscoring the need for extensive research in humans. A streamlined approach would be to investigate the parallels in other disease states that exhibit ischaemia and potential reperfusion, such as ischaemic stroke and myocardial infarction. Moreover, in view of the limited knowledge available on the subject, the need exists for further clinical research into burn wound conversion and novel target pathways to ameliorate its effects. This review describes events that affect the viability of cells at the burn wound site resulting in burn wound conversion, and identifies potential targets for clinical interventions that may diminish burn wound conversion.
Collapse
Affiliation(s)
| | - Jeffrey W Shupp
- Department of Surgery, Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, MedStar Washington Hospital Center, Washington, DC, US
| |
Collapse
|
14
|
Han Z, Yuan M, Liu L, Zhang K, Zhao B, He B, Liang Y, Li F. pH-Responsive wound dressings: advances and prospects. NANOSCALE HORIZONS 2023; 8:422-440. [PMID: 36852666 DOI: 10.1039/d2nh00574c] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wound healing is a complex and dynamic process, in which the pH value plays an important role in reflecting the wound status. Wound dressings are materials that are able to accelerate the healing process. Among the multifunctional advanced wound dressings developed in recent years, pH-responsive wound dressings, especially hydrogels, show great potential owing to their unique properties of adjusting their functions according to the wound conditions, thereby allowing the wound to heal in a regulated manner. However, a comprehensive review of pH-responsive wound dressings is lacking. This review summarizes the design strategies and advanced functions of pH-responsive hydrogel wound dressings, including their excellent antibacterial properties and significant pro-healing abilities. Other advanced pH-responsive materials, such as nanofibers, composite films, nanoparticle clusters, and microneedles, are also classified and discussed. Next, the pH-monitoring functions of pH-responsive wound dressings and the related pH indicators are summarized in detail. Finally, the achievements, challenges, and future development trends of pH-responsive wound dressings are discussed.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Lubin Liu
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Kaiyue Zhang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266000, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| |
Collapse
|
15
|
Li M, Xiao H, Su Y, Cheng D, Jia Y, Li Y, Yin Q, Gao J, Tang Y, Bai Q. Synergistic Inhibitory Effect of Honey and Lactobacillus plantarum on Pathogenic Bacteria and Their Promotion of Healing in Infected Wounds. Pathogens 2023; 12:pathogens12030501. [PMID: 36986423 PMCID: PMC10053434 DOI: 10.3390/pathogens12030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Prevention and control of infections have become a formidable challenge due to the increasing resistance of pathogens to antibiotics. Probiotics have been discovered to have positive effects on the host, and it is well-known that some Lactobacilli are effective in treating and preventing inflammatory and infectious diseases. In this study, we developed an antibacterial formulation consisting of honey and Lactobacillus plantarum (honey-L. plantarum). The optimal formulation of honey (10%) and L. plantarum (1 × 109 CFU/mL) was used to investigate its antimicrobial effect and mechanism in vitro, and its healing effect on wound healing of whole skin infections in rats. Biofilm crystalline violet staining and fluorescent staining results indicated that the honey-L. plantarum formulation prevented the biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa and increased the number of dead bacteria in the biofilms. Further mechanism studies revealed that the honey-L. plantarum formulation may inhibit biofilm formation by upregulating biofilm-related genes (icaA, icaR, sigB, sarA, and agrA) and downregulating quorum sensing (QS) associated genes (lasI, lasR, rhlI, rhlR, and pqsR). Furthermore, the honey-L. plantarum formulation decreased the number of bacteria in the infected wounds of rats and accelerated the formation of new connective tissue to promote wound healing. Our study suggests that the honey-L. plantarum formulation provides a promising option for the treatment of pathogenic infections and wound healing.
Collapse
Affiliation(s)
- Mei Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yongmei Su
- Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Danlin Cheng
- The First Clinical School, Chongqing Medical University, Chongqing 400016, China
| | - Yan Jia
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yong Tang
- Chongqing Orthopedics Hospital of Traditional Chinese Medicine, Chongqing 400039, China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| |
Collapse
|
16
|
Maitz J, Merlino J, Rizzo S, McKew G, Maitz P. Burn wound infections microbiome and novel approaches using therapeutic microorganisms in burn wound infection control. Adv Drug Deliv Rev 2023; 196:114769. [PMID: 36921627 DOI: 10.1016/j.addr.2023.114769] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Affiliation(s)
- J Maitz
- Department of Burns & Reconstructive Surgery, Concord Repatriation General Hospital, Australia; Burns & Reconstructive Surgery Research Group, ANZAC Research Institute, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia.
| | - J Merlino
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| | - S Rizzo
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia
| | - G McKew
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| | - P Maitz
- Department of Burns & Reconstructive Surgery, Concord Repatriation General Hospital, Australia; Burns & Reconstructive Surgery Research Group, ANZAC Research Institute, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| |
Collapse
|
17
|
The Antimicrobial Effect of Various Single-Strain and Multi-Strain Probiotics, Dietary Supplements or Other Beneficial Microbes against Common Clinical Wound Pathogens. Microorganisms 2022; 10:microorganisms10122518. [PMID: 36557771 PMCID: PMC9781324 DOI: 10.3390/microorganisms10122518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The skin is the largest organ in the human body and is colonized by a diverse microbiota that works in harmony to protect the skin. However, when skin damage occurs, the skin microbiota is also disrupted, and pathogens can invade the wound and cause infection. Probiotics or other beneficial microbes and their metabolites are one possible alternative treatment for combating skin pathogens via their antimicrobial effectiveness. The objective of our study was to evaluate the antimicrobial effect of seven multi-strain dietary supplements and eleven single-strain microbes that contain probiotics against 15 clinical wound pathogens using the agar spot assay, co-culturing assay, and agar well diffusion assay. We also conducted genera-specific and species-specific molecular methods to detect the DNA in the dietary supplements and single-strain beneficial microbes. We found that the multi-strain dietary supplements exhibited a statistically significant higher antagonistic effect against the challenge wound pathogens than the single-strain microbes and that lactobacilli-containing dietary supplements and single-strain microbes were significantly more efficient than the selected propionibacteria and bacilli. Differences in results between methods were also observed, possibly due to different mechanisms of action. Individual pathogens were susceptible to different dietary supplements or single-strain microbes. Perhaps an individual approach such as a 'probiogram' could be a possibility in the future as a method to find the most efficient targeted probiotic strains, cell-free supernatants, or neutralized cell-free supernatants that have the highest antagonistic effect against individual clinical wound pathogens.
Collapse
|
18
|
Srivastava P, Sondak T, Sivashanmugam K, Kim KS. A Review of Immunomodulatory Reprogramming by Probiotics in Combating Chronic and Acute Diabetic Foot Ulcers (DFUs). Pharmaceutics 2022; 14:2436. [PMID: 36365254 PMCID: PMC9699442 DOI: 10.3390/pharmaceutics14112436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 08/29/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are characterized by a lack of angiogenesis and distal limb diabetic neuropathy. This makes it possible for opportunistic pathogens to protect the biofilm-encased micro-communities, causing a delay in wound healing. The acute and chronic phases of DFU-associated infections are distinguished by the differential expression of innate proinflammatory cytokines and tumor necrosis factors (TNF-α and -β). Efforts are being made to reduce the microbial bioburden of wounds by using therapies such as debridement, hyperbaric oxygen therapy, shock wave therapy, and empirical antibiotic treatment. However, the constant evolution of pathogens limits the effectiveness of these therapies. In the wound-healing process, continuous homeostasis and remodeling processes by commensal microbes undoubtedly provide a protective barrier against diverse pathogens. Among commensal microbes, probiotics are beneficial microbes that should be administered orally or topically to regulate gut-skin interaction and to activate inflammation and proinflammatory cytokine production. The goal of this review is to bridge the gap between the role of probiotics in managing the innate immune response and the function of proinflammatory mediators in diabetic wound healing. We also highlight probiotic encapsulation or nanoformulations with prebiotics and extracellular vesicles (EVs) as innovative ways to tackle target DFUs.
Collapse
Affiliation(s)
- Prakhar Srivastava
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Tesalonika Sondak
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Karthikeyan Sivashanmugam
- School of Biosciences and Technology, High Throughput Screening Lab, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
19
|
Kumari M, Nanda DK. Potential of Curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns 2022:S0305-4179(22)00278-9. [DOI: 10.1016/j.burns.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
20
|
Soleymanzadeh Moghadam S, Momeni M, Mazar Atabaki S, Mousavi Shabestari T, Boustanshenas M, Afshar M, Roham M. Topical Treatment of Second-Degree Burn Wounds with Lactobacillus plantarum Supernatant: Phase I Trial. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:460-468. [PMID: 36532643 PMCID: PMC9745757 DOI: 10.30699/ijp.2022.551202.2863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 09/10/2024]
Abstract
BACKGROUND & OBJECTIVE A burn wound is sterile immediately after injury, but opportunistic bacteria colonize the wound within 48 to 72 hours after the burn, causing delayed or failed burn wound healing. In addition, the presence of multidrug-resistant (MDR) pathogens doubles the treatment problems. Lactobacillus plantarum (L. plantarum) is a well-known antibacterial and healing agent that could be used topically to treat burn wounds. CASE SERIES PRESENTATION This clinical trial study (Case Series) was performed on 20 patients with deep second-degree burns. Patients had bilateral wounds; the wound on one side of the body was considered as control (treated with silver sulfadiazine) and the other side of the body as treatment (treated with bacteria-free supernatants (BFS) of L. plantarum). The wounds were evaluated by microbial assessments and assessments related to healing. Pseudomonas aeruginosa, Klebsiella pneumonia, and Staphylococcus aureus were isolated from 4 (22.2%), 0%, and 2 (11.1%) of wounds treated with L. plantarum on the fifth day of the treatment, respectively. Furthermore, 12 (66.7%) of wounds treated with L. plantarum were free from bacteria. The need for skin grafting was the same in both treatment and control groups, but graft rejection in the group treated with L. plantarum was (0%) (P=0.02). CONCLUSION Regarding eliminating or reducing infection and wound healing, bacteria-free supernatants of L. plantarum can be considered a possible topical treatment option in the case of second-degree burn wounds.
Collapse
Affiliation(s)
- Somayeh Soleymanzadeh Moghadam
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mahnoush Momeni
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mazar Atabaki
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Mousavi Shabestari
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mastaneh Afshar
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maryam Roham
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Tajabadi FH, Karimian SM, Mohsenipour Z, Mohammadi S, Salehi M, Sattarzadeh M, Fakhari S, Momeni M, Dahmardehei M, Feizabadi MM. Biocontrol Treatment: Application of Bdellovibrio bacteriovorus HD100 against Burn Wound Infection Caused by Pseudomonas aeroginosa in Mice. Burns 2022:S0305-4179(22)00230-3. [DOI: 10.1016/j.burns.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
|
22
|
Karampoor M, Fouladpour A, Yavari S, Samadnia A, Akhoondian M, Ghazanfari MJ, Karkhah S. Probiotics as a promising treatment approach to burn wound healing. Burns 2022; 48:2003-2005. [DOI: 10.1016/j.burns.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
|
23
|
Schuermann LE, Bergmann CB, Goetzman H, Caldwell CC, Satish L. Heat-killed probiotic Lactobacillus plantarum affects the function of neutrophils but does not improve survival in murine burn injury. Burns 2022; 49:877-888. [PMID: 35850881 DOI: 10.1016/j.burns.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Probiotics have become of interest as therapeutics in trauma or sepsis-induced inflammation due to their ability to affects the immune response. However, their use is still under debate due to the potential risk of septicemia. Therefore, heat-killed probiotics offer a potential alternative, with recent research suggesting a comparable immunomodulating potential and increased safety. In a previous study, we demonstrated decreased mortality by administration of live Lactobacillus plantarum in a mouse burn-sepsis model. Neutrophils are an essential innate defense against pathogens. Therefore, our present study aims to understand the impact of heat-killed probiotic L. plantarum (HKLP) on neutrophil function. Utilizing an in vitro stimulation with HKLP and a burn-infection in vivo model, we determined that administration of HKLP induced significant release of granulocyte-colony stimulating factor (G-CSF) and stimulated the release of pro-and anti-inflammatory cytokines. HKLP had no impact on neutrophil function, such as phagocytosis, oxidative burst, and NETosis, but increased apoptosis and activated neutrophils. HKLP did not improve survival. Together, contrary to our hypothesis, heat-killed probiotics did not improve neutrophil function and survival outcome in a murine severe burn injury model.
Collapse
Affiliation(s)
- Lauren E Schuermann
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA
| | - Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Holly Goetzman
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Charles C Caldwell
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA; Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Latha Satish
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Moysidis M, Stavrou G, Cheva A, Abba Deka I, Tsetis JK, Birba V, Kapoukranidou D, Ioannidis A, Tsaousi G, Kotzampassi K. The 3-D configuration of excisional skin wound healing after topical probiotic application. Injury 2022; 53:1385-1393. [PMID: 35148901 DOI: 10.1016/j.injury.2022.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
Nowadays, there is an increasing knowledge that probiotic bacteria, topically applied, affects skin pathology. The objective of this study is to evaluate the effect on wound healing of locally applied probiotics by calculating the 3-D configuration of a standardized excisional wound. Fifty-two male Wistar rats were randomly allocated into groups: control, PRO1 [L. plantarum] and PRO2 [L. rhamnosus, B. longum]. Six excisional full-thickness wounds were created on each dorsum by an 8-mm circular biopsy punch; probiotics or saline were applied on days 0, 2, 4, 8, 16, photos of the wounds taken and specimens excised for histology [4 rats/group/time-point]. Both probiotic-groups exhibited accelerated healing significantly faster than the control, throughout, PRO2 exhibiting finally the best results [day 16]. However, only on day 2, did PRO1 exhibit the best results [wounded area, borders distance and epitheliazation line]. The results clearly demonstrate that the topical application of probiotics significantly improves the healing process, each strain working differently and more effectively in different healing phases. Thus, a combined formula containing different probiotics to modulate various healing phases is desirable. To this end our research continous.
Collapse
Affiliation(s)
- Moysis Moysidis
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - George Stavrou
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Aggeliki Cheva
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Abba Deka
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vasiliki Birba
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Dorothea Kapoukranidou
- Department of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aris Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Tsaousi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.
| |
Collapse
|
25
|
Moraffah F, Kiani M, Abdollahi M, Yoosefi S, Vatanara A, Samadi N. In Vitro-In Vivo Correlation for the Antibacterial Effect of Lactiplantibacillus plantarum as a Topical Healer for Infected Burn Wound. Probiotics Antimicrob Proteins 2022; 14:675-689. [PMID: 35349102 DOI: 10.1007/s12602-022-09934-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 01/20/2023]
Abstract
Difficulties in delivering antimicrobial agents to wound areas and emersion of multiple drug resistant organisms (MDROs) have converted managing burn infections into a complicated task in medicine. Probiotics emerged not only as a probable solution for burn infections but also as an accelerator in the healing process. The probability of in vitro-in vivo correlation (IVIVC) in probiotic activity leads to lower costs in finding new therapeutic options. Simulated wound fluid (SWF) was used to evaluate the antibacterial function of Lactiplantibacillus plantarum in wounds. The growth parameters in SWF were evaluated using a logistic model to predict growth behavior in the wound area. In addition, probiotic antimicrobial activity and secretion of antibacterial substances in SWF were also studied. Data were used to select the initial dose and apply frequency for in vivo study. The wound models were infected by two main pathogens (Pseudomonas aeruginosa or Staphylococcus aureus). In vitro results showed less lag time associated with considerable acid production in SWF. In the following, secretion of antimicrobial substances and co-aggregation with pathogens became more important. The susceptibility of pathogens to these factors was different, and culture medium affected the yield of each factor involved in eliminating pathogens. Histological analysis and macroscopic examination of wounds revealed probiotics as effective as positive control or more. There were some differences in the antibacterial functions of probiotics in simulated and real wound environments. The in vitro effect of probiotics on removal of pathogens was not the same as the trend seen in vivo.
Collapse
Affiliation(s)
- Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Kiani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Aswathanarayan JB, Rao P, HM S, GS S, Rai RV. Biofilm-Associated Infections in Chronic Wounds and Their Management. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Rezaei Z, Khanzadi S, Salari A. Biofilm formation and antagonistic activity of Lacticaseibacillus rhamnosus (PTCC1712) and Lactiplantibacillus plantarum (PTCC1745). AMB Express 2021; 11:156. [PMID: 34825290 PMCID: PMC8617238 DOI: 10.1186/s13568-021-01320-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, the health benefits of probiotic bacteria are well known, and this has taken up a great deal of space in food science and health, both research and operational. On the other hand, anti-biofilm properties on food pathogens in the food and pharmaceutical industries have created an attractive challenge. This study aimed to describe the inhibitory activity of cell-free supernatants (CFS), planktonic cells, and biofilm form of lactobacilus strains (L. rhamnosus and L. plantarum) against food pathogens such as Pseudomonas aeruginosa and Listeria monocytogenes. Anti-bacterial activities of the CFS of lactobacillus strains were assessed by the microplate method and via violet staining. Evaluation of the antagonistic activity of planktonic cells and biofilm of LAB were performed by the spread plate method. The results showed the incubation time of 48 h was the best time to produce biofilm. Although the planktonic states reduce the pathogens bacterial about 1 –1.5 log, but in biofilm forms, decreased L. monocytogenes about 4.5 log compared to the control, and in the case of P. aeruginosa, a growth reduction of about 2.13 log was observed. Furthermore, biofilm formation of L. monocytogenes in the presence of L. rhamnosus cell-free supernatant was more weakly than L. plantarum CFS, but their CFS effect on reducing the bacterial population of P. aeruginosa was the same. According to the study, biofilm produced by probiotic strains can be considered a new approach for biological control. Also, cell-free supernatant can be used as postbiotic in the food and pharmaceutical industries.
Collapse
|
28
|
Seyedi Moghaddam S, Neff A. Avoidance of milk and dairy products after oral surgery-is such a recommendation still valid? A cross-sectional study among German and international oral and maxillofacial surgeons and dental practitioners with review of the literature. Oral Maxillofac Surg 2021; 26:563-573. [PMID: 34694519 DOI: 10.1007/s10006-021-01017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE For prevention of wound-healing complications, patients in German-speaking countries are traditionally advised to avoid consumption of milk and dairy products after oral surgery. In the absence of national and international guidelines, this study investigates scientific evidence and compares international practice, frequency scale, and rationale behind such recommendation. METHODS Comparison of a German cross-sectional mono-center-questionnaire pilot study and a survey among international oral and maxillofacial surgeons (OMFS), specialized oral surgeons and general dentists, evaluating international practice regarding post-operative dietary and nutrition recommendations. Our literature review further assessed scientific evidence for relevant effects of probiotics, prebiotics, and/or synbiotics. RESULTS Among German study participants, 56% (n = 64/114) advise patients to avoid milk and dairy products, with 42% of OMFS (n = 38) and 65% (n = 76) of the general dentists recommending abstention (p = .027). In striking contrast, such recommendation could not be identified in our international survey (n = 143) (t test, p < .001) nor in the literature. There were significant differences between German and international study participants regarding the rationale for dietary recommendations, with dental schools and literature most frequently indicated as sources (Fisher's exact test, p < .001). CONCLUSION The hypothesis of a harmful effect of the consumption of milk and dairy products after dentoalveolar surgery could not be supported by evidence. The recommendation to avoid dairy products post-surgery was identified as a specific phenomenon practiced almost exclusively in German-speaking countries. Corresponding recommendations, most probably based on a now irrelevant risk of contracting tuberculosis from milk products, can at present no longer be substantiated.
Collapse
Affiliation(s)
- Schiwa Seyedi Moghaddam
- Dental Office Dr. Jalali Sohi, 63796, Kahl am Main, Germany. .,Philipps University of Marburg, Biegenstraße 10, 35037, Marburg, Germany.
| | - Andreas Neff
- Klinik and Poliklinik für Mund-, Kiefer- and Gesichtschirurgie (Oral and Maxillofacial Surgery), Universitätsklinikum Marburg, 35033, Marburg, Germany
| |
Collapse
|
29
|
Tanno H, Kanno E, Kurosaka S, Oikawa Y, Watanabe T, Sato K, Kasamatsu J, Miyasaka T, Ishi S, Shoji M, Takagi N, Imai Y, Ishii K, Tachi M, Kawakami K. Topical Administration of Heat-Killed Enterococcus faecalis Strain KH2 Promotes Re-Epithelialization and Granulation Tissue Formation during Skin Wound-Healing. Biomedicines 2021; 9:1520. [PMID: 34829749 PMCID: PMC8614852 DOI: 10.3390/biomedicines9111520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Lactic acid bacteria (LAB) are known to have beneficial effects on immune responses when they are orally administered as bacterial products. Although the beneficial effects of LAB have been reported for the genera Lactobacillus and Lactococcus, little has been uncovered on the effects of the genus Enterococcus on skin wound-healing. In this study, we aimed to clarify the effect of heat-killed Enterococcus faecalis KH2 (heat-killed KH2) strain on the wound-healing process and to evaluate the therapeutic potential in chronic skin wounds. We analyzed percent wound closure, re-epithelialization, and granulation area, and cytokine and growth factor production. We found that heat-killed KH2 contributed to the acceleration of re-epithelialization and the formation of granulation tissue by inducing tumor necrosis factor-α, interleukin-6, basic fibroblast growth factor, transforming growth factor (TGF)-β1, and vascular endothelial growth factor production. In addition, heat-killed KH2 also improved wound closure, which was accompanied by the increased production of TGF-β1 in diabetic mice. Topical administration of heat-killed KH2 might have therapeutic potential for the treatment of chronic skin wounds in diabetes mellitus. In the present study, we concluded that heat-killed KH2 promoted skin wound-healing through the formation of granulation tissues and the production of inflammatory cytokines and growth factors.
Collapse
Affiliation(s)
- Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Shiho Kurosaka
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Yukari Oikawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.S.); (K.I.); (K.K.)
| | - Takumi Watanabe
- Bio-Lab Co., Ltd., 2-1-3 Komagawa, Hidaka-shi 350-1249, Japan;
| | - Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.S.); (K.I.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Shinyo Ishi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Naoyuki Takagi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.S.); (K.I.); (K.K.)
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.S.); (K.I.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
30
|
Polak K, Jobbágy A, Muszyński T, Wojciechowska K, Frątczak A, Bánvölgyi A, Bergler-Czop B, Kiss N. Microbiome Modulation as a Therapeutic Approach in Chronic Skin Diseases. Biomedicines 2021; 9:biomedicines9101436. [PMID: 34680552 PMCID: PMC8533290 DOI: 10.3390/biomedicines9101436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing quantity of evidence on how skin and gut microbiome composition impacts the course of various dermatological diseases. The strategies involving the modulation of bacterial composition are increasingly in the focus of research attention. The aim of the present review was to analyze the literature available in PubMed (MEDLINE) and EMBASE databases on the topic of microbiome modulation in skin diseases. The effects and possible mechanisms of action of probiotics, prebiotics and synbiotics in dermatological conditions including atopic dermatitis (AD), psoriasis, chronic ulcers, seborrheic dermatitis, burns and acne were analyzed. Due to the very limited number of studies available regarding the topic of microbiome modulation in all skin diseases except for AD, the authors decided to also include case reports and original studies concerning oral administration and topical application of the pro-, pre- and synbiotics in the final analysis. The evaluated studies mostly reported significant health benefits to the patients or show promising results in animal or ex vivo studies. However, due to a limited amount of research and unambiguous results, the topic of microbiome modulation as a therapeutic approach in skin diseases still warrants further investigation.
Collapse
Affiliation(s)
- Karina Polak
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Antal Jobbágy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Tomasz Muszyński
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland;
| | - Kamila Wojciechowska
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Aleksandra Frątczak
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Beata Bergler-Czop
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
- Correspondence:
| |
Collapse
|
31
|
Wilson RM, Walker JM, Yin K. Different Concentrations of Lactobacillus acidophilus Cell Free Filtrate Have Differing Anti-Biofilm and Immunomodulatory Effects. Front Cell Infect Microbiol 2021; 11:737392. [PMID: 34589444 PMCID: PMC8473619 DOI: 10.3389/fcimb.2021.737392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 01/14/2023] Open
Abstract
Probiotics such as various strains of Lactobacillaceae have been shown to have antimicrobial and immunomodulatory activity. In vitro studies have shown that Lactobacilli can decrease bacterial biofilm formation. Effects on immune cells have been unclear with most studies showing anti-inflammatory activity. The mechanism of effects has not been clearly elucidated. In these studies, we used different concentrations of live Lactobacillus acidophilus as well as cell free filtrate (CFF) derived from different concentrations of bacteria. Use of CFF is advantageous as a therapeutic because in vivo it can directly contact immune cells and its concentration is fixed. Both live cells and CFF inhibited Pseudomonas aeruginosa biofilm formation. Importantly, we show that high concentration CFF destroyed mature biofilm. This activity was not due to a lowered pH per se, as pH matched HCl did not remove mature biofilm. High concentration CFF totally inhibited P. aeruginosa growth and was bactericidal (>99.99%), but low concentration CFF was not bactericidal. To examine the immunomodulatory effects of L. acidophilus, we incubated THP-1 monocytes and derived macrophages with CFF and measured TNFα production. CFF did not significantly increase TNFα production in THP-1 monocytes. When cells were prestimulated with LPS, high concentration CFF increased TNFα production even further. In macrophages, high concentration CFF alone increased TNFα production but did not affect LPS prestimulated cells. In contrast, low concentration CFF decreased TNFα production in LPS prestimulated cells. To elucidate the possible mechanisms for these effects, we repeated the experiments using a NF-κB reporter THP-1 cell line. High concentration CFF increased NF-κB activity in monocytes and macrophages. In LPS prestimulated macrophages, only low concentration CFF reduced NF-κB activity. These results suggest that high concentration CFF alone induced NF-κB expression which could account partially for an increase in TNFα production. On the other hand, in macrophages, the lower non-bactericidal concentration of CFF reduced NF-κB expression and decreased TNFα production after LPS prestimulation. Taken together, the results provide evidence that different concentrations of L. acidophilus CFF possess varying bactericidal, anti-biofilm and immunomodulatory effects. This is important in vivo to evaluate the possible use of L. acidophilus CFF in different conditions.
Collapse
Affiliation(s)
- Rachael M Wilson
- Department of Cell Biology and Neuroscience, Rowan University - School of Osteopathic Medicine, Stratford, NJ, United States
| | - Jean M Walker
- Department of Cell Biology and Neuroscience, Rowan University - School of Osteopathic Medicine, Stratford, NJ, United States
| | - Kingsley Yin
- Department of Cell Biology and Neuroscience, Rowan University - School of Osteopathic Medicine, Stratford, NJ, United States
| |
Collapse
|
32
|
Lorenzo B, Luca S, Antonio M, Alberto DM, Cesare F, Omar C. Effects of Probiotics in the Management of Infected Chronic Wounds: From Cell Culture to Human Studies. ACTA ACUST UNITED AC 2021; 15:193-206. [PMID: 31713496 DOI: 10.2174/1574884714666191111130630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/16/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. METHODS Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords "probiotics" and "wound" and "injuries", "probiotics" and "wound" and "ulcer", "biofilm" and "probiotics" and "wound", "biofilm" and "ulcer" and "probiotics", "biofilm" and "ulcer" and "probiotics", "probiotics" and "wound". RESULTS The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. DISCUSSION The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. CONCLUSIONS Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.
Collapse
Affiliation(s)
- Brognara Lorenzo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Salmaso Luca
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Mazzotti Antonio
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Di M Alberto
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Faldini Cesare
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cauli Omar
- Nursing Department, University of Valencia, Valencia, Spain
| |
Collapse
|
33
|
Stanbro J, Park JM, Bond M, Stockelman MG, Simons MP, Watters C. Topical Delivery of Lactobacillus Culture Supernatant Increases Survival and Wound Resolution in Traumatic Acinetobacter baumannii Infections. Probiotics Antimicrob Proteins 2021; 12:809-818. [PMID: 31741312 DOI: 10.1007/s12602-019-09603-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Species of Lactobacillus have been proposed as potential candidates for treating wound infections due to their ability to lower pH, decrease inflammation, and release antimicrobial compounds. This study investigated the impact of lactobacilli (Lactobacillus acidophilus ATCC 4356, Lactobacillus casei ATCC 393, Lactobacillus reuteri ATCC 23272) secreted products on wound pathogens in vitro and in a murine wound infection model. Evaluation of 1-5 day lactobacilli conditioned media (CM) revealed maximal inhibition against wound pathogens using the 5-day CM. The minimum inhibitory concentration (MIC) of 5-day Lactobacillus CMs was tested by diluting CM in Mueller-Hinton (MH) broth from 0 to 25% and was found to be 12.5% for A. baumannii. Concentrating the CM to 10× with a 3 kDa centrifuge filter decreased the CM MIC to 6.25-12.5% for A. baumannii planktonic cells. Minimal impact of 5-day CMs was observed against bacterial biofilms. No toxicity was observed when these Lactobacillus CMs were injected into Galleria melonella waxworms. For the murine A. baumannii wound infection studies, improved survival was observed following topical treatment with L. acidophilus ATCC 4356 or L. reuteri ATCC 23272, while L. reuteri ATCC 23272 treatment alone improved wound resolution. Overall, this study suggests that the topical application of certain Lactobacillus species byproducts could be effective against gram-negative multi-drug resistant (MDR) wound pathogens, such as A. baumannii.
Collapse
Affiliation(s)
- Josh Stanbro
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Ju Me Park
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Matthew Bond
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Michael G Stockelman
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Mark P Simons
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Chase Watters
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
34
|
Aavani F, Biazar E, Heshmatipour Z, Arabameri N, Kamalvand M, Nazbar A. Applications of bacteria and their derived biomaterials for repair and tissue regeneration. Regen Med 2021; 16:581-605. [PMID: 34030458 DOI: 10.2217/rme-2020-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microorganisms such as bacteria and their derived biopolymers can be used in biomaterials and tissue regeneration. Various methods have been applied to regenerate damaged tissues, but using probiotics and biomaterials derived from bacteria with improved economic-production efficiency and highly applicable properties can be a new solution in tissue regeneration. Bacteria can synthesize numerous types of biopolymers. These biopolymers possess many desirable properties such as biocompatibility and biodegradability, making them good candidates for tissue regeneration. Here, we reviewed different types of bacterial-derived biopolymers and highlight their applications for tissue regeneration.
Collapse
Affiliation(s)
- Farzaneh Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), 15916-34311 Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Nasibeh Arabameri
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Abolfazl Nazbar
- National Cell Bank, Pasteur Institute of Iran, 13169-43551 Tehran, Iran
| |
Collapse
|
35
|
Abstract
Objectives: Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data Sources: Original paper, search of the literature. Study Selection: By several members of the original task force with specific expertise in basic/translational science. Data Extraction: None. Data Synthesis: None. Conclusions: In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
|
36
|
Martínez-Pizarro S. Topical probiotics in the treatment of infected wounds in critical care. ENFERMERIA INTENSIVA 2021; 32:112-113. [PMID: 34099263 DOI: 10.1016/j.enfie.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 10/21/2022]
Affiliation(s)
- S Martínez-Pizarro
- Enfermería, Hospital Público Comarcal la Inmaculada, Huércal-Overa, Almería, Spain.
| |
Collapse
|
37
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
38
|
Soedjana H, Nadia J, Sundoro A, Hasibuan L, Rubianti I, Putri A, Septrina R, Riestiano B, Prasetyo A, Harianti S. The Profile Of Severe Burn Injury Patients With Sepsis In Hasan Sadikin Bandung General HospitaL. ANNALS OF BURNS AND FIRE DISASTERS 2020; 33:312-316. [PMID: 33708021 PMCID: PMC7894849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 06/12/2023]
Abstract
Burn injury remains a major global health issue. An estimated 180,000 people die annually due to burn injury, and most cases occur in low- and middle-income countries, including Indonesia. Several complications of burns may lead to mortality, and sepsis is one of the major threats, with the risk of developing multi organ dysfunction syndrome. This study applied a descriptive-retrospective method on 3-year medical records of severe burn injury patients. The data were classified according to age, etiology, outcome, antibiotic resistance, and pathogens of sepsis. There were 100 medical records of severe burn injury, and 55% of them were accompanied by sepsis. The highest number of sepsis cases was found in the age category of 40-50 years old. Nearly 80% of the cases were fire-related burns. Blood and burn wound culture of recovered patients showed 55% contamination with gram-positive bacteria, and 50% of them with Staphylococcus hominis. Contamination of blood and burn wound culture of deceased patients with gram-negative bacteria was 100%, 60% of them with Pseudomonas Aeruginosa. There is a more than 50% chance of severe burn patients falling into septic conditions. More than half of the patients were infected with gram-negative bacteria. Pseudomonas aeruginosa remains the main culprit of septic burn-related death.
Collapse
Affiliation(s)
- H. Soedjana
- Hardisiswo Soedjana, M.D., PhD
Division of Plastic Reconstructive and Aesthetic Surgery, Department of Surgery, Hasan Sadikin General Hospital / Padjajaran UniversityJl. Pasteur No.38, Pasteur, Sukajadi, Kota Bandung, West Java 40161Indonesia+62 82216643530+62 222036615
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang L, Han Z, Chen C, Li Z, Yu S, Qu Y, Zeng R. Novel probiotic-bound oxidized Bletilla striata polysaccharide-chitosan composite hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111265. [DOI: 10.1016/j.msec.2020.111265] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
|
40
|
O'Sullivan JN, Rea MC, Hill C, Ross RP. Protecting the outside: biological tools to manipulate the skin microbiota. FEMS Microbiol Ecol 2020; 96:5836215. [PMID: 32396198 DOI: 10.1093/femsec/fiaa085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Interest surrounding the role that skin microbes play in various aspects of human health has recently experienced a timely surge, particularly among researchers, clinicians and consumer-focused industries. The world is now approaching a post-antibiotic era where conventional antibacterial therapeutics have shown a loss in effectiveness due to overuse, leading to the looming antibiotic resistance crisis. The increasing threat posed by antibiotic resistance is compounded by an inadequate discovery rate of new antibiotics and has, in turn, resulted in global interest for alternative solutions. Recent studies have demonstrated that imbalances in skin microbiota are associated with assorted skin diseases and infections. Specifically, restoration of this ecosystem imbalance results in an alleviation of symptoms, achieved simply by applying bacteria normally found in abundance on healthy skin to the skin of those deficient in beneficial bacteria. The aim of this review is to discuss the currently available literature on biological tools that have the potential to manipulate the skin microbiota, with particular focus on bacteriocins, phage therapy, antibiotics, probiotics and targets of the gut-skin axis. This review will also address how the skin microbiota protects humans from invading pathogens in the external environment while discussing novel strategies to manipulate the skin microbiota to avoid and/or treat various disease states.
Collapse
Affiliation(s)
- Julie N O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.,School of Microbiology, Food Science & Technology Building, University College Cork, College Road, Cork, Ireland, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - Colin Hill
- School of Microbiology, Food Science & Technology Building, University College Cork, College Road, Cork, Ireland, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - R Paul Ross
- School of Microbiology, Food Science & Technology Building, University College Cork, College Road, Cork, Ireland, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| |
Collapse
|
41
|
Chappell TC, Nair NU. Engineered lactobacilli display anti-biofilm and growth suppressing activities against Pseudomonas aeruginosa. NPJ Biofilms Microbiomes 2020; 6:48. [PMID: 33127888 PMCID: PMC7599214 DOI: 10.1038/s41522-020-00156-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilms are an emerging target for new therapeutics in the effort to address the continued increase in resistance and tolerance to traditional antimicrobials. In particular, the distinct nature of the biofilm growth state often means that traditional antimcirobials, developed to combat planktonic cells, are ineffective. Biofilm treatments are designed to both reduce pathogen load at an infection site and decrease the development of resistance by rendering the embedded organisms more susceptible to treatment at lower antimicrobial concentrations. In this work, we developed a new antimicrobial treatment modality using engineered lactic acid bacteria (LAB). We first characterized the natural capacity of two lactobacilli, L. plantarum and L. rhamnosus, to inhibit P. aeruginosa growth, biofilm formation, and biofilm viability, which we found to be dependent upon the low pH generated during culture of the LAB. We further engineered these LAB to secrete enzymes known to degrade P. aeruginosa biofilms and show that our best performing engineered LAB, secreting a pathogen-derived enzyme (PelAh), degrades up to 85% of P. aeruginosa biofilm.
Collapse
Affiliation(s)
- Todd C Chappell
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
42
|
Huang FC, Lu YT, Liao YH. Beneficial effect of probiotics on Pseudomonas aeruginosa-infected intestinal epithelial cells through inflammatory IL-8 and antimicrobial peptide human beta-defensin-2 modulation. Innate Immun 2020; 26:592-600. [PMID: 32988256 DOI: 10.1177/1753425920959410] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Pseudomonas aeruginosa can rapidly induce fatal sepsis, even in previously healthy infants or children treated with appropriate antibiotics. To reduce antibiotic overuse, exploring novel complementary therapies, such as probiotics that reportedly protect patients against P. aeruginosa infection, would be particularly beneficial. However, the major mechanism underlying the clinical effects is not completely understood. We thus aimed to investigate how probiotics affect IL-8 and human beta-defensin 2 (hBD-2) in P. aeruginosa-infected intestinal epithelial cells (IECs). We infected SW480 IECs with wild type PAO1 P. aeruginosa following probiotic treatment with Lactobacillus rhamnosus GG or Bifidobacterium longum spp. infantis S12, and analysed the mRNA expression and secreted protein of IL-8 and hBD-2, Akt signalling and NOD1 receptor protein expression. We observed that probiotics enhanced hBD-2 expression but suppressed IL-8 responses when administered before infection. They also enhanced P. aeruginosa-induced membranous NOD1 protein expression and Akt activation. The siRNA-mediated Akt or NOD1 knockdown counteracted P. aeruginosa-induced IL-8 or hBD-2 expression, indicating regulatory effects of these probiotics. In conclusion, these data suggest that probiotics exert reciprocal regulation of inflammation and antimicrobial peptides in P. aeruginosa-infected IECs and provide supporting evidence for applying probiotics to reduce antibiotic overuse.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Ting Lu
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Hsuan Liao
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
43
|
Knackstedt R, Knackstedt T, Gatherwright J. The role of topical probiotics on wound healing: A review of animal and human studies. Int Wound J 2020; 17:1687-1694. [PMID: 32869480 DOI: 10.1111/iwj.13451] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogenic, opportunistic, and commensal bacterial coexist in the intestinal tract, and imbalances among these strains have been linked to systemic inflammation and a variety of disease states. Similarly, human skin plays an important role as an interface between the body and the environment with an estimated 1 billion microbes per square centimetres. Skin microbiome fluctuations that cause increases in pathologic bacteria, either because of individual and/or environmental factors, can lead to disease states at the skin level ranging from inflammatory conditions to infections. As wounds are inherently associated with perturbations in the local microflora due to injury and activation of the immune responses, the addition of topical probiotics could be a means to prevent infection, regulate inflammation, and potentially augment healing. The goal of this review is to analyse the impact the skin microbiome has on cutaneous wound healing with a focus on developing proposed treatment algorithms and support for their therapeutic potential.
Collapse
|
44
|
Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch Microbiol 2020; 202:2825-2840. [PMID: 32747998 DOI: 10.1007/s00203-020-02005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
M18 strain of Streptococcus salivarius is a bacterial replacement probiotic that has been suggested for use in the oral cavity. Here, we have shown that S. salivarius M18 cell-free supernatant reduced the growth of the two most common human pathogens Pseudomonas aeruginosa and Klebsiella pneumonia and sensitized the pathogenic bacteria to antibiotic. Besides, the supernatant inhibited biofilm formation of P. aeruginosa drastically. For pinpointing the biomolecular changes that occurred in P. aeruginosa incubated with the probiotic supernatant, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used. Unsupervised learning algorithms, principal component analysis (PCA) and hierarchical cluster analysis (HCA), and intensity analyses of individual spectral bands exhibited comprehensive alterations in the polysaccharide and lipid contents and compositions of P. aeruginosa cultivated with S. salivarius M18 cell-free supernatant. These results indicate that S. salivarius M18 has the potential for the prevention or alleviation of different pathogen-induced infections along with the infections of oral pathogens.
Collapse
|
45
|
Deutschman CS, Hellman J, Roca RF, De Backer D, Coopersmith CM. The surviving sepsis campaign: basic/translational science research priorities. Intensive Care Med Exp 2020; 8:31. [PMID: 32676795 PMCID: PMC7365694 DOI: 10.1186/s40635-020-00312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data sources Original paper, search of the literature. Study selection This study is selected by several members of the original task force with specific expertise in basic/translational science. Data extraction and data synthesis are not available. Conclusions In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
Affiliation(s)
- Clifford S Deutschman
- Department of Pediatrics, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Ricard Ferrer Roca
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Daniel De Backer
- Chirec Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
46
|
Martínez-Pizarro S. Topical probiotics in the treatment of infected wounds in critical care. ENFERMERIA INTENSIVA 2020; 32:112-113. [PMID: 32451299 DOI: 10.1016/j.enfi.2020.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 10/24/2022]
Affiliation(s)
- S Martínez-Pizarro
- Enfermería, Hospital Público Comarcal la Inmaculada, Huércal-Overa, Almería, España.
| |
Collapse
|
47
|
Salyer CE, Bomholt C, Beckmann N, Bergmann CB, Plattner CA, Caldwell CC. Novel Therapeutics for the Treatment of Burn Infection. Surg Infect (Larchmt) 2020; 22:113-120. [PMID: 32429749 DOI: 10.1089/sur.2020.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Burn injury continues to be a significant cause of morbidity and death, with infectious complications being the primary cause of death. Patients are susceptible to overwhelming infection secondary to both the physical breakdown of the skin and mucosal barrier and the immune dysfunction that accompanies the inflammatory response to a major burn. With resistance to traditional antibiosis looming as a serious threat to patient outcome, advancement in the treatment of burn infections is imperative. Methods: Between February 15 and March 15, 2020, a search of Pubmed and clinicaltrials.gov was performed using search terms such as "burn immunotherapy," "therapeutic microorganisms in burn," "burn infection clinical trials," and applicable variations. Results: Topical antimicrobial drugs continue to be standard of care for burn wound injuries, but personalized and molecular treatments that rely on immune manipulation of the host show great promise. We discuss novel therapeutics for the treatment of burn infection: Probiotics and therapeutic microorganisms, immune modulators, tailored monoclonal antibodies, and extracellular vesicles and proteins. Conclusions: The treatment strategies discussed employ manipulation of structure and function in host immune cells and pathogen virulence for improved outcomes in burn infection.
Collapse
Affiliation(s)
- Christen E Salyer
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christina Bomholt
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nadine Beckmann
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christian B Bergmann
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Courtney A Plattner
- Urology Division, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles C Caldwell
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Research, Shriners Hospital for Children, Cincinnati, Ohio, USA
| |
Collapse
|
48
|
Oryan A, Alemzadeh E, Eskandari MH. Kefir Accelerates Burn Wound Healing Through Inducing Fibroblast Cell Migration In Vitro and Modulating the Expression of IL-1ß, TGF-ß1, and bFGF Genes In Vivo. Probiotics Antimicrob Proteins 2020; 11:874-886. [PMID: 29948798 DOI: 10.1007/s12602-018-9435-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Kefir is a natural probiotic compound with a long history of health benefits which can improve wound healing. This study investigated the regeneration potential of kefir in vitro scratch assay and in vivo burn wound in rat model. Cytotoxicity of different concentrations of kefir was evaluated by colorimetric methylthiazoltetrazolium assay. A scratch wound experiment was performed to investigate the ability of kefir in reducing the gap of wounds in a dose-dependent manner, in vitro. The standardized kefir was incorporated into silver sulfadiazine (SSD) and applied on burn wounds in vivo, and was compared with the SSD and negative control groups after 7, 14, and 28 days of treatment. The wound sites were then removed for histopathological and morphometric analyses, assessment of interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1), basic fibroblast growth factor (bFGF), dry weight, and hydroxyproline contents. Kefir enhanced proliferation and migration of human dermal fibroblast (HDF) cells and 12.50, 6.25, and 3.12 μL/mL concentrations showed better effects on the scratch assay. Kefir resulted in reduction of IL-1β and TGF-β1 expression at day 7 compared to the negative control. Kefir also reduced the expression of IL-1β at days 14 and 28 and stimulated bFGF at day 28. It significantly improved the dry matter and hydroxyproline contents in the burn wounds. Kefir also resulted in enhanced angiogenesis and elevated migration and proliferation of fibroblasts and improved fibrous connective tissue formation in the wound area. The morphometric results indicated significant global contraction values in the kefir-treated wounds compared to other groups. Taken together, the findings suggest that kefir has considerable ability to accelerate healing of the burn wounds. Therefore, kefir may be a possible option to improve the outcomes of severe burns.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
49
|
Hadian Y, Fregoso D, Nguyen C, Bagood MD, Dahle SE, Gareau MG, Isseroff RR. Microbiome-skin-brain axis: A novel paradigm for cutaneous wounds. Wound Repair Regen 2020; 28:282-292. [PMID: 32034844 DOI: 10.1111/wrr.12800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Chronic wounds cause a significant burden on society financially, medically, and psychologically. Unfortunately, patients with nonhealing wounds often suffer from comorbidities that further compound their disability. Given the high rate of depressive symptoms experienced by patients with chronic wounds, further studies are needed to investigate the potentially linked pathophysiological changes in wounds and depression in order to improve patient care. The English literature on wound healing, inflammatory and microbial changes in chronic wounds and depression, and antiinflammatory and probiotic therapy was reviewed on PubMed. Chronic wound conditions and depression were demonstrated to share common pathologic features of dysregulated inflammation and altered microbiome, indicating a possible relationship. Furthermore, alternative treatment strategies such as immune-targeted and probiotic therapy showed promising potential by addressing both pathophysiological pathways. However, many existing studies are limited to a small study population, a cross-sectional design that does not establish temporality, or a wide range of confounding variables in the context of a highly complex and multifactorial disease process. Therefore, additional preclinical studies in suitable wound models, as well as larger clinical cohort studies and trials are necessary to elucidate the relationship between wound microbiome, healing, and depression, and ultimately guide the most effective therapeutic and management plan for chronic wound patients.
Collapse
Affiliation(s)
- Yasmin Hadian
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Section, VA Northern California Health Care System, Mather, California
| | - Daniel Fregoso
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Chuong Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Michelle D Bagood
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Sara E Dahle
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Podiatry Section, VA Northern California Health Care System, Mather, California
| | - Melanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Section, VA Northern California Health Care System, Mather, California
| |
Collapse
|
50
|
Di Lonardo A, De Rosa M, Graziano A, Pascone C, Lucattelli E. Effectiveness of topical α-Tocopherol Acetate in burn infection treatment. ANNALS OF BURNS AND FIRE DISASTERS 2019; 32:282-288. [PMID: 32431578 PMCID: PMC7197917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 06/11/2023]
Abstract
Infection following burn injury is critical, especially for patients with large total body surface area burns and in skin graft donor sites. Although various aspects of α-tocopherol acetate (α-TA) beneficial effects on wound healing have been validated, it appears that no study has specifically addressed its antimicrobial potential. The purpose of this study was to explore the therapeutic efficacy of topical application of α-TA in terms of bacterial load reduction. Between January 2018 and June 2018, 20 patients with mid-deep and deep burn wounds were included in the present study (average TBSA approximately 42%, range 25-67%). Patient average age was 47.75 years (range 25-72 years), 8 were male. In each patient two clinically similar areas were identified and treated every 24 hours with topical application of α-TA in the form of Filme Olio® (Group 1) and conventional medication (Group 2). All the patients had positive results for bacterial cultures before treatment. Despite the presence of initial bacterial infection, a quicker reduction of exudates and pain and a progressive and faster bacterial load reduction was observed in Group 1. Negative cultures were obtained after 3 days on average in Group 1 (range 1-6 days) and 8 days in Group 2 (range 5-9 days). This study clearly shows the importance of the therapeutic targeting of infection in the treatment of burns. α-TA may represent a safe, simple and inexpensive method for improving the healing of difficult wounds with local infection.
Collapse
Affiliation(s)
- A. Di Lonardo
- Burn Centre, Cisanello University Hospital, Pisa, Italy
| | - M. De Rosa
- Burn Centre, Cisanello University Hospital, Pisa, Italy
| | - A. Graziano
- Burn Centre, Cisanello University Hospital, Pisa, Italy
| | - C. Pascone
- Burn Centre, Cisanello University Hospital, Pisa, Italy
| | - E. Lucattelli
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, Florence, Italy
| |
Collapse
|