1
|
Pasvanis Z, Kong RCK, Shah MH, Chan EC, Fan Gaskin JC. 3',4'-Dihydroxyflavonol Inhibits Fibrotic Response in a Rabbit Model of Glaucoma Filtration Surgery. Int J Mol Sci 2024; 25:10767. [PMID: 39409096 PMCID: PMC11476621 DOI: 10.3390/ijms251910767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Post-operative fibrosis of the filtering bleb limits the success of glaucoma filtration surgery (GFS). To minimise subconjunctival scarring following GFS, treatment with antimetabolites such as Mitomycin C (MMC) has become standard practice; however, their use is associated with considerable side effects. This study aimed to investigate the anti-scarring properties of 3',4'-dihydroxyflavonol (DiOHF). GFS was performed in New Zealand white rabbits who received eye drops of DiOHF three times daily and vehicle eye drops after surgery (n = 5) or a single intraoperative treatment of MMC (n = 5). Blebs were imaged immediately following surgery and on days 7, 15, 21, and 28 for clinical examination. On day 28, eyes were harvested to assess collagen deposition, expression of α-SMA, oxidative stress, angiogenesis, fibroblast activity, and inflammation in the conjunctiva/Tenon's layer. At 7 and 28 days post-GFS, MMC-treated blebs were more ischaemic than DiOHF- or vehicle-treated blebs. On day 28, DiOHF treatment significantly suppressed collagen accumulation, CD31 expression, Vimentin expression, and CD45 expression compared to the vehicle control. No difference was observed in 3-Nitrotyrosine or αSMA expression between treatment groups. Treatment with DiOHF reduced conjunctival scarring and angiogenesis in rabbits with GFS, which was comparable to MMC. DiOHF may be a safer and more effective wound-modulating agent than conventional antifibrotic therapy in GFS.
Collapse
Affiliation(s)
- Zoe Pasvanis
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Roy C. K. Kong
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Manisha H. Shah
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Elsa C. Chan
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Jennifer C. Fan Gaskin
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Glaucoma Research and Investigation Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| |
Collapse
|
2
|
Hasan Mujahid M, Upadhyay TK, Upadhye V, Sharangi AB, Saeed M. Phytocompound identification of aqueous Zingiber officinale rhizome (ZOME) extract reveals antiproliferative and reactive oxygen species mediated apoptotic induction within cervical cancer cells: an in vitro and in silico approach. J Biomol Struct Dyn 2024; 42:8733-8760. [PMID: 37639378 DOI: 10.1080/07391102.2023.2247089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
The prevalence of cervical cancer in women is in the fourth position among various other types of cancer globally. Many established therapies, including surgery, chemotherapy, and immunomodulation, are present, but high levels of side effects cause mortality and morbidity among the patients. Zingiber officinale rhizome (ZOME) has been potentially used to cure a variety of ailments and diseases. The aqueous ZOME extract also contains ample phytochemical constituents having anticancer effects on different cancers. The cell viability of HeLa cells was evaluated using MTT assay with IC50 at 97 µg/mL. Furthermore, a significant level of ROS generation causes the apoptosis of the cells. Nuclear staining dye DAPI and Hoechst 33342 showed DNA's fragmented and condensed form. Propidium Iodide staining showed necrotic or late-apoptotic cells. While acidic organelle dye LysoTracker and MitoTracker dye along with dual staining showed significant results. In silico studies were carried out using identified phytochemicals from GC-MS analysis with pharmacokinetics properties (ADMET), and targeted toward receptor proteins for molecular docking. Ligands with high docked scores were subjected to molecular dynamics simulations at 310 K for 100 ns. In vitro and in silico investigations in our studies showed that aqueous ZOME extract can be used as an efficient therapy against cervical cancer treatment as it showed significant cytotoxic and antiproliferative effects toward the HeLa cell line.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Vijay Upadhye
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal & Aromatic Crops, BCKV-Agricultural University, Mohanpur, West Bengal, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
3
|
Liao F, He D, Liu C, Vong CT, Zhong Z, Wang Y. Isolation and identification of angiogenesis-promoting components in Huanglian Jiedu decoction using live cell bio-specific extraction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115961. [PMID: 36442757 DOI: 10.1016/j.jep.2022.115961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian Jiedu Decoction (HLJDD) is a traditional heat-dissipating and detoxicating prescription used in Chinese medicine and has been extensively applied in the clinical treatment of ischemic stroke. Preliminary research confirmed that HLJDD exerts a neuroprotective effect on brain tissue injury caused by cerebral ischemia by promoting angiogenesis. However, the components of HLJDD responsible for its medicinal activity in ischemic injury remain unclear. AIM OF THE STUDY The aim of this study was to identify the active components of HLJDD that could promote angiogenesis and investigate its underlying mechanism, as well as Hypoxia-inducible factor-1α (HIF-1α)/Vascular endothelial growth factor (VEGF) signalings in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS The specific binding components of HLJDD with HUVECs were isolated and identified through a combination of live cell biospecific extraction, solid-phase extraction, and ultra performance liquid chromatography (UPLC)-Orbitrap Fusion Tribrid mass spectrometry (MS). Their pharmacological activity against oxygen-glucose deprivation-reperfusion (OGD/R) injury and in vitro pro-angiogenesis was validated using Cell Counting Kit-8 (CCK-8) and tube formation analysis, respectively. Finally, we explored the effect of active ingredients on the expression levels of HIF-1α and VEGF using enzyme-linked immunosorbent assay. Molecular docking was used to predict the potential binding of six active components to phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (AKT) and Von Hippel-Lindau (VHL) proteins, which are involved in the regulation of HIF-1α and are highly associated with angiogenesis. RESULTS A total of 13 HUVECs-specific HLJDD components were identified, and 10 of them were shown to protect against OGD/R injury. We were the first to demonstrate that two of these components have a protective role in OGD/R-induced HUVECs injury. Additionally, seven of these 10 components exhibited angiogenesis-promoting activity, and two of these components were shown, for the first time, to promote angiogenesis in HUVECs. These effects might occur through the HIF-1α/VEGF pathway. Molecular docking results showed that all six active ingredients could stably bind to PI3K and AKT proteins, suggesting that these two proteins may be potential targets for six active ingredients. CONCLUSIONS The approach employed in this study effectively identified proangiogenic components in HLJDD that might act via PI3K/AKT/HIF-1α/VEGF pathways and other mechanisms involved in angiogenesis. In conclusion, this study was the first to demonstrate four compounds with new bioactivities and could also provide insight into the isolation and discovery of new bioactive compounds existing in Chinese medicine with potential clinical value.
Collapse
Affiliation(s)
- Fengyun Liao
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Dongmei He
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, Guangdong, China.
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Chi Teng Vong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
4
|
Li C, Wang J, Niu Y, Zhang H, Ouyang H, Zhang G, Fu Y. Baicalin Nanocomplexes with an In Situ-Forming Biomimetic Gel Implant for Repair of Calvarial Bone Defects via Localized Sclerostin Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9044-9057. [PMID: 36753285 DOI: 10.1021/acsami.2c20946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In situ-forming hydrogels are highly effective in covering complex and irregular tissue defects. Herein, a biomimetic gel implant (CS-GEL) consisting of methacrylated chondroitin sulfate and gelatin is obtained via visible light irradiation, which displays rapid gelation (∼30 s), suitable mechanical properties, and biological features to support osteoblast attachment and proliferation. Sclerostin is proven to be a viable target to promote osteogenesis. Hence, baicalin, a natural flavonoid with a high affinity to sclerostin, is selected as the therapeutic compound to achieve localized neutralization of sclerostin. To overcome its poor solubility and permeability, a baicalin nanocomplex (BNP) is synthesized using Solutol HS15, which is then dispersed in the CS-GEL to afford a nanocomposite delivery system, i.e., BNP-loaded gel (BNP@CS-GEL). In vitro, BNP significantly downregulated the level of sclerostin in MLO-Y4 osteocytes. In vivo, either CS-GEL or BNP@CS-GEL is proven to effectively promote osteogenesis and angiogenesis in a calvarial critical-sized bone defect rat model, with BNP@CS-GEL showing the best pro-healing effect. Specifically, the BNP@CS-GEL-treated group significantly downregulated the sclerostin level as compared to the sham group (p < 0.05). RANKL expression was also significantly suppressed by BNP in MLO-Y4 cells and BNP@CS-GEL in vivo. Collectively, our study offers a facile and viable gel platform in combination with nanoparticulated baicalin for the localized neutralization of sclerostin to promote bone regeneration and repair.
Collapse
Affiliation(s)
- Chenrui Li
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Junru Wang
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Yining Niu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haonan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangwei Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Department of Public Health & College of Clinical Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Xia YT, Wu QY, Hok-Chi Cheng E, Ting-Xia Dong T, Qin QW, Wang WX, Wah-Keung Tsim K. The inclusion of extract from aerial part of Scutellaria baicalensis in feeding of pearl gentian grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceo-latus♂) promotes growth and immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 127:521-529. [PMID: 35792347 DOI: 10.1016/j.fsi.2022.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The root of Scutellaria baicalensis (Scutellaria Radix) has been used as herbal medicine for years in China; however, its stem and leaf (aerial part) are considered as waste. The water extract of aerial part of S. baicalensis, named as SBA, having anti-microbial property has been applied in fish aquaculture. To extend the usage of SBA in fish feeding, SBA was employed to feed pearl gentian grouper (a hybrid of Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂), and subsequently the total fish output, the levels of digestive enzymes and inflammatory cytokines were determined. Feeding the fish with different doses of SBA for two months, the body length and weight were significantly increased by 5%-10%. In parallel, the expressions of alkaline phosphatase and growth-related factors in bone, liver and muscle of SBA-fed fish were doubled, which could account the growth promoting effect of SBA. Besides, the activity of digestive enzyme, lipase, and the expressions of anti-inflammatory cytokines were markedly stimulated by 2-3 times under the feeding of 3% SBA-containing diet. The results indicated the growth promoting activity of SBA in culture of pearl gentian grouper, as well as the effect of SBA in strengthening the immunity. These beneficial effects of SBA feeding can increase the total yield of pearl gentian grouper in aquaculture. Thus, the re-cycle of waste products during the farming of S. baicalensis herb in serving as fish feeding should be encouraged.
Collapse
Affiliation(s)
- Yi-Teng Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi-Yun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Edwin Hok-Chi Cheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Xiong Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Zhang MX, Song Y, Xu WL, Zhang LX, Li C, Li YL. Natural Herbal Medicine as a Treatment Strategy for Myocardial Infarction through the Regulation of Angiogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8831750. [PMID: 35600953 PMCID: PMC9119779 DOI: 10.1155/2022/8831750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
Abstract
Methods We conducted a literature search on the bioactive components of medicinal plants and their effects on angiogenesis after MI. We searched for articles in Web of Science, MEDLINE, PubMed, Scopus, Google Scholar, and China National Knowledge Infrastructure databases before April 2021. Results In this article, we summarized the mechanisms by which copper ions, microRNA, Akt1, inflammation, oxidative stress, mitochondria, and pericytes are involved in angiogenesis after myocardial infarction. In addition, we reviewed the angiogenic effects of natural herbal medicines such as Salvia miltiorrhiza Bunge Bunge, Carthamus tinctorius L., Pueraria lobata, Astragalus, Panax ginseng C.A. Mey., Panax notoginseng (Burkill) F.H. Chen, Cinnamomum cassia (L.) J. Presl, Rehmannia glutinosa (Gaertn.) DC., Leonurus japonicus Houtt, Scutellaria baicalensis Georgi., and Geum macrophyllum Willd. Conclusions Some herbs have the effect of promoting angiogenesis. In the future, natural proangiogenic drugs may become candidates for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mu-xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Song
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wan-li Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling-xiao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yun-lun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
7
|
The Protective Effects of Securigera securidaca Seed Extract on Liver Injury Induced by Bile Duct Ligation in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6989963. [PMID: 35155679 PMCID: PMC8837422 DOI: 10.1155/2022/6989963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
This study is aimed at evaluating the effects of Securigera securidaca (SS) seed extract on cholestatic liver injury induced by bile duct ligation (BDL) in rats. Total polyphenols and flavonoids in SS seed extract were determined using a colorimetric assay, and their components were quantified using HPLC. Rats in four groups underwent BDL at the common bile duct and were treated for 21 days with either oral distilled water as vehicle, vitamin C, 100 mg/kg SS seed extract, or 200 mg/kg SS seed extract. Rats in the fifth group underwent abdominal incision without BDL and were treated with distilled water, and rats in the sixth group were healthy and received nothing. Finally, rats were sacrificed, blood samples were analyzed through biochemical methods, liver tissues were histologically assessed, and the expression of the TGFβ-1, iNOS, caspase-3, and α-SMA genes in the liver was assessed through real-time PCR. BDL significantly increased, and SS seed extract significantly decreased the serum levels of bilirubin and liver function enzymes. Moreover, SS seed extract suppressed the expression of the TGFβ-1, iNOS, caspase-3, and α-SMA genes, reduced the levels of nitric oxide, malondialdehyde, and protein carbonyl, and increased the levels of glutathione, total antioxidant capacity, and SOD and catalase enzyme activity in the serum and liver. Extract at a dose of 100 mg/kg had significant positive effects on liver morphology and parenchyma structure in a dose-dependent manner.
Collapse
|
8
|
Yi N, Mi Y, Xu X, Li N, Zeng F, Yan K, Tan K, Kuang G, Lu M. Baicalein Alleviates Osteoarthritis Progression in Mice by Protecting Subchondral Bone and Suppressing Chondrocyte Apoptosis Based on Network Pharmacology. Front Pharmacol 2022; 12:788392. [PMID: 35082670 PMCID: PMC8784526 DOI: 10.3389/fphar.2021.788392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
As life expectancy increases, Osteoarthritis (OA) is becoming a more frequently seen chronic joint disease. The main characteristics of OA are loss of articular cartilage, subchondral bone sclerosis, and synovial inflammation. Baicalein (Bai), a traditional Chinese medicine extracted from Scutellaria baicalensis Georgi, has been demonstrated to exert notable anti-inflammatory effects in previous studies, suggesting its potential effect in the treatment of OA. In this study, we first predicted the action targets of Bai, mapped target genes related to OA, identified potential anti-OA targets for Bai, performed gene ontology (GO) enrichment, and KEGG signaling pathway analyses of the action targets, and analyzed the molecular docking of key Bai targets. Additionally, the effect and potential mechanism of Bai against OA were verified in mouse knee OA models induced by destabilized medial meniscus (DMM) surgery. GO and KEGG analyses showed that 19 anti-OA targets were mainly involved in the response to oxidative stress, the response to hypoxia and apoptosis, and the PI3K-Akt and p53 signaling pathways. Molecular docking results indicated that BAX, BCL 2, and Caspase 3 enriched in the apoptotic signaling pathway have high binding affinity with Bai. Validation experiments showed that Bai can significantly attenuate the loss of articular cartilage (OARSI score), suppress synovial inflammation (synovitis score), and ameliorate subchondral bone resorption measured by micro-CT. In addition, Bai notably inhibited the expression of apoptosis-related proteins in articular cartilage (BAX, BCL 2, and Caspase 3). By combining network pharmacology with experimental validation, our study identifies and verifies the importance of the apoptotic signaling pathway in the treatment of OA by Bai. Bai may have promising application and potential therapeutic value in OA treatment.
Collapse
Affiliation(s)
- Nanxing Yi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Yilin Mi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotong Xu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Naping Li
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Fan Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Ke Yan
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kaiyun Tan
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Gaoyan Kuang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Min Lu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Yu M, Han S, Wang M, Han L, Huang Y, Bo P, Fang P, Zhang Z. Baicalin protects against insulin resistance and metabolic dysfunction through activation of GALR2/GLUT4 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153869. [PMID: 34923235 DOI: 10.1016/j.phymed.2021.153869] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus is a complex metabolic disorder associated with obesity, glucose intolerance and insulin resistance. Activation of GALR2 has been proposed as a therapeutic target for the treatment of insulin resistance. The previous studies showed that baicalin could mitigate insulin resistance, but the detailed mechanism of baicalin on insulin resistance has not been fully explored yet. PURPOSE In the present study, we evaluated whether baicalin mitigated insulin resistance via activation of GALR2 signaling pathway. STUDY DESIGN/METHODS Baicalin (25 mg/kg/d and 50 mg/kg/d) and/or GALR2 antagonist M871 (10 mg/kg/d) were injected individually or in combinations into obese mice once a day for three weeks, and normal and GALR2 knockdown myotubes were treated with baicalin (100 μM and 400 μM) or metformin (4 mM) in the absence or presence of M871 (800 nM) for 12 h, respectively. The molecular mechanism was explored in skeletal muscle and L6 myotubes. RESULTS The present findings showed that baicalin mitigated hyperglycemia and insulin resistance and elevated the levels of PGC-1α, GLUT4, p-p38MAPK, p-AKT and p-AS160 in skeletal muscle of obese mice. Strikingly, the baicalin-induced beneficial effects were abolished by GALR2 antagonist M871 in obese mice. In vitro, baicalin dramatically augmented glucose consumption and the activity of PGC1α-GLUT4 axis in myotubes through activation of p38MAPK and AKT pathways. Moreover, baicalin-induced elevations in glucose consumption related genes were abolished by GALR2 antagonist M871 or silencing of GALR2 in myotubes. CONCLUSIONS The present study for the first time demonstrated that baicalin protected against insulin resistance and metabolic dysfunction mainly through activation of GALR2-GLUT4 signal pathway. Our findings identified that activation of GALR2-GLUT4 signal pathway by baicalin could be a new therapeutic approach to treat insulin resistance and T2DM in clinic.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Huang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
10
|
Agarwal T, Tan SA, Onesto V, Law JX, Agrawal G, Pal S, Lim WL, Sharifi E, Moghaddam FD, Maiti TK. Engineered herbal scaffolds for tissue repair and regeneration: Recent trends and technologies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
11
|
Askey BC, Liu D, Rubin GM, Kunik AR, Song YH, Ding Y, Kim J. Metabolite profiling reveals organ-specific flavone accumulation in Scutellaria and identifies a scutellarin isomer isoscutellarein 8- O-β-glucuronopyranoside. PLANT DIRECT 2021; 5:e372. [PMID: 34977451 PMCID: PMC8689113 DOI: 10.1002/pld3.372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Scutellaria is a genus of plants containing multiple species with well-documented medicinal effects. S. baicalensis and S. barbata are among the best-studied Scutellaria species, and previous works have established flavones to be the primary source of their bioactivity. Recent genomic and biochemical studies with S. baicalensis and S. barbata have advanced our understanding of flavone biosynthesis in Scutellaria. However, as over several hundreds of Scutellaria species occur throughout the world, flavone biosynthesis in most species remains poorly understood. In this study, we analyzed organ-specific flavone profiles of seven Scutellaria species, including S. baicalensis, S. barbata, and two species native to the Americas (S. wrightii to Texas and S. racemosa to Central and South America). We found that the roots of almost all these species produce only 4'-deoxyflavones, while 4'-hydroxyflavones are accumulated exclusively in their aerial parts. On the other hand, S. racemosa and S. wrightii also accumulated high levels of 4'-deoxyflavones in their aerial parts, different with the flavone profiles of S. baicalensis and S. barbata. Furthermore, our metabolomics and NMR study identified the accumulation of isoscutellarein 8-O-β-glucuronopyranoside, a rare 4'-hydroxyflavone, in the stems and leaves of several Scutellaria species including S. baicalensis and S. barbata, but not in S. racemosa and S. wrightii. Distinctive organ-specific metabolite profiles among Scutellaria species indicate the selectivity and diverse physiological roles of flavones.
Collapse
Affiliation(s)
- Bryce C. Askey
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3)University of FloridaGainesvilleFLUSA
| | - Garret M. Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3)University of FloridaGainesvilleFLUSA
| | - Andrew R. Kunik
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Yeong Hun Song
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3)University of FloridaGainesvilleFLUSA
| | - Jeongim Kim
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFLUSA
- Plant Molecular and Cellular Biology Graduate ProgramUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
12
|
Fraguas-Sánchez AI, Martín-Sabroso C, Torres-Suárez AI. The chick embryo chorioallantoic membrane model: a research approach for ex vivo and in vivo experiments. Curr Med Chem 2021; 29:1702-1717. [PMID: 34176455 DOI: 10.2174/0929867328666210625105438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complementary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and tissue engineering research. OBJECTIVES This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and anti-infective therapies, analyzing its advantages and disadvantages compared to animal models. CONCLUSION The chick chorioallantoic membrane model shows great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), has even replaced the animal models.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Zhou X, Fu L, Wang P, Yang L, Zhu X, Li CG. Drug-herb interactions between Scutellaria baicalensis and pharmaceutical drugs: Insights from experimental studies, mechanistic actions to clinical applications. Biomed Pharmacother 2021; 138:111445. [PMID: 33711551 DOI: 10.1016/j.biopha.2021.111445] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Whilst the popular use of herbal medicine globally, it poses challenges in managing potential drug-herb interaction. There are two folds of the drug-herb interaction, a beneficial interaction that may improve therapeutic outcome and minimise the toxicity of drug desirably; by contrast, negative interaction may evoke unwanted clinical consequences, especially with drugs of narrow therapeutic index. Scutellaria baicalensis Georgi is one of the most popular medicinal plants used in Asian countries. It has been widely used for treating various diseases and conditions such as cancer, diabetes, inflammation, and oxidative stress. Studies on its extract and bioactive compounds have shown pharmacodynamic and pharmacokinetic interactions with a wide range of pharmaceutical drugs as evidenced by plenty of in vitro, in vivo and clinical studies. Notably, S. baicalensis and its bioactives including baicalein, baicalin and wogonin exhibited synergistic interactions with many pharmaceutical drugs to enhance their efficacy, reduce toxicity or overcome drug resistance to combat complex diseases such as cancer, diabetes and infectious diseases. On the other hand, S. baicalensis and its bioactives also affected the pharmacokinetic profile of many drugs in absorption, distribution, metabolism and elimination via the regulatory actions of the efflux pumps and cytochrome P450 enzymes. This review provides comprehensive references of the observed pharmacodynamic and pharmacokinetic drug interactions of Scutellaria baicalensis and its bioactives. We have elucidated the interaction with detailed mechanistic actions, identified the knowledge gaps for future research and potential clinical implications. Such knowledge is important for the practice of both conventional and complementary medicines, and it is essential to ensure the safe use of related herbal medicines. The review may be of great interest to practitioners, consumers, clinicians who require comprehensive information on the possible drug interactions with S. baicalensis and its bioactives.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ling Fu
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Second Chinese Medicine Hospital), Nanjing, Jiangsu 210017, People's Republic of China
| | - Pengli Wang
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; School of Chinese Medicine, School of Integrated Chinese & Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lan Yang
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; School of Chinese Medicine, School of Integrated Chinese & Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaoshu Zhu
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
14
|
Rizzo V, Ferlazzo N, Currò M, Isola G, Matarese M, Bertuccio MP, Caccamo D, Matarese G, Ientile R. Baicalin-Induced Autophagy Preserved LPS-Stimulated Intestinal Cells from Inflammation and Alterations of Paracellular Permeability. Int J Mol Sci 2021; 22:ijms22052315. [PMID: 33652555 PMCID: PMC7956379 DOI: 10.3390/ijms22052315] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have demonstrated a relevant role of intestinal epithelial cells in the immune response and in chronic inflammatory conditions, including ulcers, colitis, and Crohn's disease. Baicalin (BA), extracted from the root of Scutellaria baicalensis, has various beneficial healthy effects, including anti-inflammatory activity. However, few studies have evaluated BA effects on autophagic signaling in epithelial cell response to inflammatory stimuli. To explore possible beneficial effects of BA, HT-29 cells were exposed to lipopolysaccharide (LPS), in presence or absence of BA, for 4 h. We evaluated mRNA levels of autophagy-related genes and cytokines, triggering inflammatory response. Furthermore, the expression of claudin 1, involved in the regulation of paracellular permeability was analyzed. BA treatment repressed LPS-induced expression of TNF-α and IL-1β. The down-regulation of autophagy-related genes induced by LPS was counteracted by cell pretreatment with BA. Under these conditions, BA reduced the NF-κB activation caused by LPS. Also, BA restored mRNA and protein levels of claudin 1, which were reduced by LPS. In conclusion, in intestinal epithelial cells BA regulates the NF-κB activation and modulates both autophagic and inflammatory processes, leading to an improvement of paracellular permeability. These results suggest that the anti-inflammatory effects of BA can be associated to the regulation of autophagic flux.
Collapse
|
15
|
Khater M, Greco F, Osborn HMI. Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules 2020; 25:E4712. [PMID: 33066630 PMCID: PMC7594036 DOI: 10.3390/molecules25204712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract: An imbalance of angiogenesis contributes to many pathologies such as cancer, arthritis and retinopathy, hence molecules that can modulate angiogenesis are of considerable therapeutic importance. Despite many reports on the promising antiangiogenic properties of naturally occurring flavonoids, no flavonoids have progressed to the clinic for this application. This systematic review and meta-analysis therefore evaluates the antiangiogenic activities of a wide range of flavonoids and is presented in two sections. The first part of the study (Systematic overview) included 402 articles identified by searching articles published before May 2020 using ScienceDirect, PubMed and Web of Science databases. From this initial search, different classes of flavonoids with antiangiogenic activities, related pathologies and use of in vitro and/or in/ex vivo angiogenesis assays were identified. In the second part (Meta-analysis), 25 studies concerning the antiangiogenic evaluation of flavonoids using the in vivo chick chorioallantoic membrane (CAM) assay were included, following a targeted search on articles published prior to June 2020. Meta-analysis of 15 out of the 25 eligible studies showed concentration dependent antiangiogenic activity of six compared subclasses of flavonoids with isoflavones, flavonols and flavones being the most active (64 to 80% reduction of blood vessels at 100 µM). Furthermore, the key structural features required for the antiangiogenic activity of flavonoids were derived from the pooled data in a structure activity relationship (SAR) study. All in all, flavonoids are promising candidates for the development of antiangiogenic agents, however further investigations are needed to determine the key structural features responsible for their activity.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre, Cairo 12622, Egypt
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| |
Collapse
|
16
|
Bu L, Dai O, Zhou F, Liu F, Chen JF, Peng C, Xiong L. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother 2020; 132:110855. [PMID: 33059257 DOI: 10.1016/j.biopha.2020.110855] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic diseases, such as ischemic heart diseases and ischemic stroke, are the leading cause of death worldwide. Angiogenic therapy is a wide-ranging approach to fighting ischemic diseases. However, compared with anti-angiogenesis therapy for tumors, less attention has been paid to therapeutic angiogenesis. Recently, Traditional Chinese medicine (TCM) has garnered increasing interest for its definite curative effect and low toxicity. A growing number of studies have reported that TCM formulas, extracts, and compounds from herbal medicines exert pro-angiogenic activity, which has been confirmed in a few clinical trials. For comprehensive analysis of relevant literature, global and local databases including PubMed, Web of Science, and China National Knowledge Infrastructure were searched using keywords such as "angiogenesis," "neovascularization," "traditional Chinese medicine," "formula," "extract," and "compound." Articles were chosen that are closely and directly related to pro-angiogenesis. This review summarizes the pro-angiogenic activity and the mechanism of TCM formulas, extracts, and compounds; it delivers an in-depth understanding of the relationship between TCM and pro-angiogenesis and will provide new ideas for clinical practice.
Collapse
Affiliation(s)
- Lan Bu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ou Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin-Feng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
17
|
Fang P, Yu M, Shi M, Bo P, Gu X, Zhang Z. Baicalin and its aglycone: a novel approach for treatment of metabolic disorders. Pharmacol Rep 2020; 72:13-23. [PMID: 32016847 DOI: 10.1007/s43440-019-00024-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/27/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The current strategies for prevention and treatment of insulin resistance and type 2 diabetes are not fully effective and frequently accompanied by many negative effects. Therefore, novel ways to prevent insulin resistance and type 2 diabetes are urgently needed. The roots of Scutellaria radix are commonly used in traditional Chinese medicines for prevention and treatment of type 2 diabetes, atherosclerosis, hypertension, hyperlipidemia, dysentery, and other respiratory disorders. Baicalin and baicalein are the major and active ingredient extracts from Scutellaria baicalensis. METHODS A comprehensive and systematic review of literature on baicalin and baicalein was carried out. RESULTS Emerging evidence indicated that baicalin and baicalein possessed hepatoprotective, anti-oxidative, anti-dyslipidemic, anti-lipogenic, anti-obese, anti-inflammatory, and anti-diabetic effects, being effective for treating obesity, insulin resistance, non-alcoholic fatty liver, and dyslipidemia. Besides, baicalin and baicalein are almost non-toxic to epithelial, peripheral, and myeloid cells. CONCLUSION The purpose of this study is to focus on the therapeutic applications and accompanying molecular mechanisms of baicalin and baicalein against hyperglycemia, insulin resistance, type 2 diabetes, hyperlipidemia, obesity, and non-alcoholic fatty liver, and trying to establish a novel anti-obese and anti-diabetic strategy.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Xuewen Gu
- Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
18
|
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019; 10:E47. [PMID: 31892257 PMCID: PMC7022400 DOI: 10.3390/biom10010047] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/24/2022] Open
Abstract
The rising burden of cancer worldwide calls for an alternative treatment solution. Herbal medicine provides a very feasible alternative to western medicine against cancer. This article reviews the selected plant species with active phytochemicals, the animal models used for these studies, and their regulatory aspects. This study is based on a meticulous literature review conducted through the search of relevant keywords in databases, Web of Science, Scopus, PubMed, and Google Scholar. Twenty plants were selected based on defined selection criteria for their potent anticancer compounds. The detailed analysis of the research studies revealed that plants play an indispensable role in fighting different cancers such as breast, stomach, oral, colon, lung, hepatic, cervical, and blood cancer cell lines. The in vitro studies showed cancer cell inhibition through DNA damage and activation of apoptosis-inducing enzymes by the secondary metabolites in the plant extracts. Studies that reported in vivo activities of these plants showed remarkable results in the inhibition of cancer in animal models. Further studies should be performed on exploring more plants, their active compounds, and the mechanism of anticancer actions for use as standard herbal medicine.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Ajmal Khan
- Department of Zoology, University of Buner, Sowari 17290, Pakistan;
| | - Parveen Nisar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Sohail Ahmad Jan
- Department of Biotechnology, Hazara University, Mansehra 21120, Pakistan;
| | - Shakeeb Afridi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
- National Council for Tibb, Islamabad, Pakistan
| |
Collapse
|
19
|
Puri BK, White N, Monro JA. The effect of supplementation with Scutellaria baicalensis on hepatic function. Med Hypotheses 2019; 133:109402. [PMID: 31557595 DOI: 10.1016/j.mehy.2019.109402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
The dried root of the angiosperm Scutellaria baicalensis, also known as Chinese skullcap or Baikal skullcap, is widely used in traditional Chinese medicine, Korean traditional medicine and as a nutritional supplement; several studies have indicated that both the supplement and some of its ingredients may have clinically beneficial actions. However, the National Institutes of Health official guidance states that the use of Scutellaria "has been implicated in rare instances of clinically apparent liver injury" and that "the onset of symptoms and jaundice occurred within 6-24 weeks of starting skullcap, and the serum enzyme pattern was typically hepatocellular", with marked increases in serum alanine transaminase, aspartate transaminase, alkaline phosphatase and bilirubin levels. Careful perusal of all such published case reports showed that in each case the patient was concurrently taking at least one other supplement which had an established association with hepatic dysfunction. The authors hypothesised that long-term supplementation with Scutellaria baicalensis does not lead to hepatic dysfunction. The aim of this study was to test this hypothesis by assessing liver function before and after starting supplementation with Scutellaria baicalensis. Pre- and post-supplementation serum assays of alanine transaminase, aspartate transaminase, alkaline phosphatase and bilirubin were carried out in 17 patients (16 female) of average age 38.6 (standard error 4.4) years who had each taken 1335 mg dried root daily for an average of 444 (71) days. The mean baseline versus follow-up values for each liver function test were: alanine transaminase: 25.7 (2.6) IU/L v. 25.1 (1.7) IU/L; aspartate transaminase: 22.1 (1.1) IU/L v. 23.5 (1.3) IU/L; alkaline phosphatase: 63.7 (4.6) IU/L v. 63.3 (3.9) IU/L; and bilirubin: 6.1 (0.6) μM v. 6.0 (0.7) μM. None of these changes was statistically significant; indeed, three of the four parameters showed a non-significant decrease over time. Furthermore, none manifested clinical symptoms or signs of hepatic dysfunction during Scutellaria supplementation. These results suggest that daily intake of a relatively high level of Scutellaria baicalensis for over a year is not associated with any biochemical or clinical evidence of hepatic dysfunction. Indeed, Scutellaria baicalensis has been shown in murine experiments to have hepatoprotective actions.
Collapse
Affiliation(s)
- Basant K Puri
- C.A.R., Cambridge, UK; Hammersmith Hospital, London, UK.
| | - Nikita White
- Breakspear Medical Group, Hemel Hempstead, Hertfordshire, UK
| | - Jean A Monro
- Breakspear Medical Group, Hemel Hempstead, Hertfordshire, UK
| |
Collapse
|
20
|
Wang W, Zheng J, Cui N, Jiang L, Zhou H, Zhang D, Hao G. Baicalin ameliorates polycystic ovary syndrome through AMP-activated protein kinase. J Ovarian Res 2019; 12:109. [PMID: 31722718 PMCID: PMC6852906 DOI: 10.1186/s13048-019-0585-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder and regarded as the leading cause of anovulatory infertility. PCOS is characterized by reproductive dysfunction and metabolic disorders. Baicalin (BAL) is one of the most potent bioactive flavonoids isolated from the radix of Scutellaria baicalensis. In the present study, we investigated the potential effects of BAL on PCOS in dehydroepiandrosterone-treated rats. We found that BAL notably reduced the serum levels of free testosterone, total testosterone, follicle-stimulating hormone, luteinizing hormone, progesterone, and estradiol in PCOS rats. The increase of serum insulin level and HOMA-IR was markedly inhibited by BAL. Moreover, BAL decreased body weights, increased the number of rats with the regular estrous cycle, and ameliorated ovarian histological changes and follicular development in the DHEA-treated PCOS rats. The increase of pro-inflammatory cytokines (TNFα, IL-1β, and IL-18) and decrease of anti-inflammatory cytokine (IL-10) in PCOS rats were suppressed by BAL. BAL induced a significant decrease in the mRNA expression of steroidogenic enzymes, including 3β-HSD, CYP11A1, CYP19A1, StAR, in ovarian tissues in PCOS rats. Furthermore, BAL inhibited the decrease of AMPK protein level and phosphorylation, the decrease of Akt phosphorylation and the increase of 5α-reductase enzyme 1 expression in ovarian tissues in PCOS rats. The effects of BAL were inhibited by an inhibitor of AMPK, dorsomorphin. The upregulation of AMPK contributed to the beneficial effects of BAL. The results highlight the potential role of BAL for the intervention of PCOS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jiahua Zheng
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Na Cui
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lei Jiang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Han Zhou
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dan Zhang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Guimin Hao
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
21
|
Efficacy of traditional Chinese medication Tangminling pill in Chinese patients with type 2 diabetes. Biosci Rep 2019; 39:BSR20181729. [PMID: 30948503 PMCID: PMC6488948 DOI: 10.1042/bsr20181729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 12/23/2022] Open
Abstract
The morbidity of type 2 diabetes mellitus (T2DM) has been increasing rapidly worldwide. Tangminling pill, consisting of ten Chinese herbal medications, is usually prescribed for T2DM in mainland China. Whether treatment with Tangminling can improve clinical outcomes of T2DM patients was still debated. Four studies comparing Tangminling vs. placebo treatment in T2DM patients were included and 767 T2DM patients were enrolled in our analyses. Tangminling treatment exhibited better efficacy than placebo in reducing hemoglobin A1c (HbA1c) (1.11 vs. 0.32%; pooled weighted mean difference [WMD]: 0.80; 95% confidence interval [CI]: 0.65–0.96; P<0.001), fasting plasma glucose (0.82 vs. −0.40 mM; WMD: 1.10; 95% CI: 0.56–1.64; P<0.001), 2-h postprandial glucose (2-hr PG) (2.81 vs. 1.11 mM; WMD: 1.80; 95% CI: 1.72–1.88; P<0.001), homeostatic model assessment-β level (4.28 vs. 0.41; WMD: 0.44; 95% CI: 0.27–0.61; P<0.001), waist circumference (WC) (1.04 vs. 0.36 cm; WMD: 0.78; 95% CI: 0.37–1.19; P<0.001) and body weight index (0.37 vs. 0.11 kg/m2; WMD: 0.30; 95% CI: −0.00 to 0.61; P=0.05). Tangminling pill might reduce glucose level and body weight and improve β-cell function in T2DM patients. Our study highlights the important role of Tangminling pill in the management of T2DM.
Collapse
|
22
|
Perruchot MH, Gondret F, Robert F, Dupuis E, Quesnel H, Dessauge F. Effect of the flavonoid baicalin on the proliferative capacity of bovine mammary cells and their ability to regulate oxidative stress. PeerJ 2019; 7:e6565. [PMID: 30863682 PMCID: PMC6407502 DOI: 10.7717/peerj.6565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background High-yielding dairy cows are prone to oxidative stress due to the high metabolic needs of homeostasis and milk production. Oxidative stress and inflammation are tightly linked; therefore, anti-inflammatory and/or natural antioxidant compounds may help improve mammary cell health. Baicalin, one of the major flavonoids in Scutellaria baicalensis, has natural antioxidant and anti-inflammatory properties in various cell types, but its effects on bovine mammary epithelial cells (BMECs) have not been investigated. Methods Explants from bovine mammary glands were collected by biopsy at the peak of lactation (approximately 60 days after the start of lactation) (n = three animals) to isolate BMECs corresponding to mature secretory cells. Cell viability, apoptosis, proliferative capacity and reactive oxygen species (ROS) production by BMECs were measured after increasing doses of baicalin were added to the culture media in the absence or presence of H2O2, which was used as an in vitro model of oxidative stress. Results Low doses of baicalin (1–10 µg/mL) had no or only slightly positive effects on the proliferation and viability of BMECs, whereas higher doses (100 or 200 µg/mL) markedly decreased BMEC proliferation. Baicalin decreased apoptosis rate at low concentrations (10 µg/mL) but increased apoptosis at higher doses. ROS production was decreased in BMECs treated with increasing doses of baicalin compared with untreated cells, and this decreased production was associated with increased intracellular concentrations of catalase and NRF-2. Irrespective of the dose, baicalin pretreatment attenuated H2O2-induced ROS production. Discussion These results indicate that baicalin exerts protective antioxidant effects on bovine mammary cells. This finding suggests that baicalin could be used to prevent oxidative metabolic disorders in dairy cows.
Collapse
|
23
|
Zheng W, Cao L, Xu Z, Ma Y, Liang X. Anti-Angiogenic Alternative and Complementary Medicines for the Treatment of Endometriosis: A Review of Potential Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4128984. [PMID: 30402122 PMCID: PMC6191968 DOI: 10.1155/2018/4128984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
Endometriosis is caused by the growth or infiltration of endometrial tissues outside of the endometrium and myometrium. Symptoms include pain and infertility. Surgery and hormonal therapy are widely used in Western medicine for the treatment of endometriosis; however, the side effects associated with this practice include disease recurrence and menopause, which can severely influence quality of life. Angiogenesis is the main biological mechanism underlying the development of endometriosis. Numerous natural products and Chinese medicines with potent anti-angiogenic effects have been investigated, and the molecular basis underlying their therapeutic effects in endometriosis has been explored. This review aims to describe natural products and compounds that suppress angiogenesis associated with endometriosis and to assess their diverse molecular mechanisms of action. Furthermore, this review provides a source of information relating to alternative and complementary therapeutic products that mediate anti-angiogenesis. An extensive review of the literature and electronic databases, such as the China National Knowledge Infrastructure, PubMed, and Embase, was conducted using the keywords 'endometriosis,' 'traditional Chinese medicine,' 'Chinese herbal medicine,' 'natural compounds,' and 'anti-angiogenic' therapy. Anti-angiogenic therapy is an emerging strategy for the treatment of endometriosis. Natural anti-angiogenic products and Chinese medicines provide several beneficial clinical effects, including pain relief. In this review, we summarize clinical trials and experimental studies of endometriosis using natural products and Chinese medicines. In particular, we focus on anti-angiogenic products and alternative and complementary medicines for the treatment of endometriosis and additionally examine their therapeutic efficacy and mechanisms of action. Anti-angiogenic natural products and/or compounds provide a new approach for the treatment of endometriosis. Future work will require randomized trials with larger numbers of subjects, as well as long-term follow-up to confirm the findings described here.
Collapse
Affiliation(s)
| | - Lixing Cao
- Team of Application of Chinese Medicine in Perioperative Period, Guangdong Provincial Hospital of Chinese Medicine, China
| | - Zheng Xu
- Guangzhou University of Chinese Medicine, China
| | - Yuanyuan Ma
- Department of Gynecology, Anyang Hospital of Traditional Chinese Medicine, China
| | - Xuefang Liang
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, China
| |
Collapse
|
24
|
Wu T, Yu GY, Xiao J, Yan C, Kurihara H, Li YF, So KF, He RR. Fostering efficacy and toxicity evaluation of traditional Chinese medicine and natural products: Chick embryo as a high throughput model bridging in vitro and in vivo studies. Pharmacol Res 2018; 133:21-34. [DOI: 10.1016/j.phrs.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
|
25
|
Fang P, Yu M, Min W, Han S, Shi M, Zhang Z, Bo P. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. Diabetes Res Clin Pract 2018. [PMID: 29526684 DOI: 10.1016/j.diabres.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIMS Although baicalin has been shown to increase glucose uptake and insulin sensitivity in skeletal muscle of mice, there is no literature available about the effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. METHODS In the present study, diet-induced obese mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and 3T3-L1 cells were treated with 100, 200, 400 μM baicalin for 3 h. Then insulin resistance indexes and insulin signal protein levels were examined to elucidate whether baicalin increased glucose uptake and GLUT4 translocation in adipocytes of diet-induced obese mice. RESULTS The present findings showed that administration of baicalin decreased food intake, body weight, HOMA-IR and p-p38 MAPK and pERK levels, but enhanced pAKT and PGC-1α contents, as well as GLUT4 mRNA, PGC-1α mRNA expression in adipocytes, and reversed high fat diet-induced glucose intolerance, hyperglycemia and insulin resistance in diet-induced obese mice. Moreover, baicalin treatment increased GLUT4 concentration in plasma membranes of adipocytes. CONCLUSIONS These data demonstrated that baicalin accelerated GLUT4 translocation from intracellular membrane compartments to plasma membranes in adipocytes. Baicalin plays a significant role in elevation of glucose uptake and insulin sensitivity to promote glucose clearance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Shiyu Han
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Mingyi Shi
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
26
|
Kocyigit A, Guler EM, Karatas E, Caglar H, Bulut H. Dose-dependent proliferative and cytotoxic effects of melatonin on human epidermoid carcinoma and normal skin fibroblast cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:50-60. [PMID: 29704993 DOI: 10.1016/j.mrgentox.2018.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022]
Abstract
New in vitro studies have demonstrated that N-acetyl-5-methoxytryptamine (Melatonin) has cytotoxic and apoptotic effects on various cell types although most of the previous investigations document that it is a potent antioxidant. However, the precise molecular mechanism(s) of its effects are not fully elucidated. In this study, we examined dose-dependent cytotoxic, genotoxic, apoptotic and reactive oxygen species (ROS) generating effects of melatonin in human epidermoid carcinoma cells (A-431) and human normal skin fibroblastic cells (CCD-1079Sk). The cells were incubated with different doses of melatonin (0.031-5 mM) for 24 h. Cell viability was assessed based on luminometric ATP cell viability assay. Intracellular ROS was detected using 2,7-dichlorodihydrofluorescein-diacetate (H2DCF-DA) fluorescent probes. Genotoxicity was evaluated by alkaline single cell gel electrophoresis assay (Comet Assay). Apoptosis was evaluated by western blotting, DAPI staining, acridine orange/ethidium bromide and Annexin V-FITC/propidium iodide double staining methods Mitochondrial membrane potentials were measured by flow cytometry. Although lower doses of melatonin (0.031-0.06 mM) increased cell proliferation and decreased ROS generation, higher doses (0.125-5 mM) markedly inhibited the cell viability, induced DNA damage, apoptosis and ROS generation. Cytotoxic, genotoxic, apoptotic and ROS generating effects were significantly higher in cancer cells than those observed in normal cells. Melatonin-induced cell death, and ROS generating activity were effectively inhibited by N-acetyl-l-cysteine (NAC) In conclusion, at low doses, melatonin has proliferative effects on both cancer and normal cells, whereas high concentrations have cytotoxic effects. Cytotoxic, genotoxic and apoptotic effects at higher doses of melatonin may be due to its ROS production capacity.
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| | - Eray Metin Guler
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| | - Ersin Karatas
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| | - Hifa Caglar
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| | - Huri Bulut
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| |
Collapse
|
27
|
Fang P, Yu M, Zhang L, Wan D, Shi M, Zhu Y, Bo P, Zhang Z. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol Cell Endocrinol 2017; 448:77-86. [PMID: 28359800 DOI: 10.1016/j.mce.2017.03.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/04/2017] [Accepted: 03/26/2017] [Indexed: 01/24/2023]
Abstract
Obesity may cause several metabolic complications, including insulin resistance and type 2 diabetes mellitus. Despite great advances in medicine, people still keep exploring novel and effective drugs for treatment of obesity and insulin resistance. The aim of this study was to survey if baicalin might ameliorate obesity-induced insulin resistance and to explore its signal mechanisms in skeletal muscles of mice. Diet-induced obese (DIO) mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and C2C12 myotubes were treated with 100, 200, 400 μM baicalin for 12 h in this study. Then insulin resistance indexes and insulin signal protein levels in skeletal muscles were examined. We discovered that administration of baicalin decreased food intake, body weight, HOMA-IR and NT-PGC-1α levels, but enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA, PGC-1α mRNA, PPARγ mRNA, GLUT1 mRNA expression in skeletal muscles of obese mice and myotubes of C2C12 cells, and reversed high fat diet-induced glucose and insulin intolerance, hyperglycemia and insulin resistance in the mice. These results suggest that baicalin is a powerful and promising agent for treatment of obesity and insulin resistance via Akt/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.
Collapse
Affiliation(s)
- Penghua Fang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dan Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| |
Collapse
|