1
|
Barabadi H, Kamali M, Jounaki K, Karami K, Sadeghian-Abadi S, Jahani R, Hosseini O, Amidi S. Trametes versicolor laccase-derived silver nanoparticles: Green synthesis, structural characterization and multifunctional biological properties. Biochem Biophys Res Commun 2024; 740:150995. [PMID: 39561649 DOI: 10.1016/j.bbrc.2024.150995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Isolated enzymes serve as advantageous platforms for the fabrication of nanomaterials. The objective of this study was to fabricate silver nanoparticles (AgNPs) incorporated with Trametes versicolor laccase and evaluate their diverse biological properties. The AgNPs fabricated through laccase-mediated methods were characterized using various characterization techniques including UV-visible (UV-vis) spectroscopy, Energy-dispersive X-ray (EDX) spectroscopy, Dynamic light scattering (DLS) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and Field emission scanning electron microscopy (FE-SEM). The results showed that the laccase-incorporated AgNPs were spherical in shape with a Z-average diameter of 19.40 nm and a zeta potential of -19.2 mV. The AgNPs exhibited significant dose-dependent in vitro α-amylase, urease, and DPPH free radical inhibitory activities, with maximum inhibitions of 83.49 ± 1.06 %, 68.95 ± 3.60 %, and 67.36 ± 3.40 %, respectively, at a concentration of 1000 μg mL-1. Furthermore, the intrinsic pathway-mediated anticoagulant activity of the fabricated AgNPs was confirmed through the activated partial thromboplastin time (aPTT) assay, which serves as a global coagulation assay. Additionally, the laccase-incorporated AgNPs demonstrated antibacterial properties against both standard gram-positive strains of Staphylococcus epidermidis and Streptococcus mutans, with minimum inhibitory concentration (MIC) values of 2 and 4 μg mL-1, and minimum bactericidal concentration (MBC) values of 16 and 16 μg mL-1, respectively. The dose-dependent antibacterial performance of the AgNPs against both bacterial populations was also confirmed through flow cytometry. Moreover, the AgNPs exhibited 61.53 ± 3.17 % and 63.03 ± 1.44 % biofilm degradation against S. epidermidis and S. mutans, respectively, at the maximum tested concentration (20∗MIC).
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Melika Kamali
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Karami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Sadeghian-Abadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jahani
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salimeh Amidi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sousa LGV, Novak J, França A, Muzny CA, Cerca N. Gardnerella vaginalis, Fannyhessea vaginae, and Prevotella bivia Strongly Influence Each Other's Transcriptome in Triple-Species Biofilms. MICROBIAL ECOLOGY 2024; 87:117. [PMID: 39294302 PMCID: PMC11410844 DOI: 10.1007/s00248-024-02433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Bacterial vaginosis (BV), the most common vaginal infection worldwide, is characterized by the development of a polymicrobial biofilm on the vaginal epithelium. While Gardnerella spp. have been shown to have a prominent role in BV, little is known regarding how other species can influence BV development. Thus, we aimed to study the transcriptome of Gardnerella vaginalis, Fannyhessea vaginae, and Prevotella bivia, when growing in triple-species biofilms. Single and triple-species biofilms were formed in vitro, and RNA was extracted and sent for sequencing. cDNA libraries were prepared and sequenced. Quantitative PCR analysis (qPCR) was performed on the triple-species biofilms to evaluate the biofilm composition. The qPCR results revealed that the triple-species biofilms were mainly composed by G. vaginalis and P. bivia was the species with the lowest percentage. The RNA-sequencing analysis revealed a total of 432, 126, and 39 differentially expressed genes for G. vaginalis, F. vaginae, and P. bivia, respectively, when growing together. Gene ontology enrichment of G. vaginalis downregulated genes revealed several functions associated with metabolism, indicating a low metabolic activity of G. vaginalis when growing in polymicrobial biofilms. This work highlighted that the presence of 3 different BV-associated bacteria in the biofilm influenced each other's transcriptome and provided insight into the molecular mechanisms that enhanced the virulence potential of polymicrobial consortia. These findings will contribute to understand the development of incident BV and the interactions occurring within the biofilm.
Collapse
Affiliation(s)
- Lúcia G V Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Juliano Novak
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- Botucatu Medical School, Department of Pathology, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Angela França
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Portugal.
| |
Collapse
|
3
|
Gojković A, Vladimirov S, Antonić T, Bogavać-Stanojević N, Novović K, Spasojević-Kalimanovska V, Filipić B. The influence of various sample storage conditions and sample bacterial contamination on concentrations of routine biochemical parameters. J Med Biochem 2024; 43:413-423. [PMID: 39139161 PMCID: PMC11318062 DOI: 10.5937/jomb0-40360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/21/2023] [Indexed: 08/15/2024] Open
Abstract
Background The pre-analytical (PA) phase is the most vulnerable phase of the laboratory testing procedure, with critical procedures-collection, handling, sample transport, and time and temperature of sample storage. This study aimed to examine the stability of basic biochemical parameters depending on the samples' storage conditions and the number of freeze-thaw cycles (FTCs). In parallel, the presence of sample bacterial contamination during routine laboratory work was examined. Methods Two plasma pools (ethylenediaminetetraacetic acid (EDTA), and sodium-fluoride/potassium oxalate plasma (NaF)) were stored at +4 ˚C/-20 ˚C. Total chole - sterol (TC), glucose, triglycerides (TG), urea, and albumin concentrations were measured using BioSystems reagents (cholesterol oxidase/peroxidase, glucose oxidase/per - oxidase, glycerol phosphate oxidase/peroxidase, urease/ salicylate, and bromcresol green method, respectively) on Ilab 300+. Sample bacterial contamination was determined by 16S rRNA sequence analysis. The expe - riment encompassed a 5 day-period: Day 1-fresh sample, Day 2-1st FTC, Day 3-2nd FTC, Day 4-3rd FTC, Day 5-4th FTC. The appearance of bacteria in two consecutive samples was the experiment's endpoint.
Collapse
Affiliation(s)
- Amara Gojković
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Belgrade
| | - Sandra Vladimirov
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Belgrade
| | - Tamara Antonić
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Belgrade
| | | | - Katarina Novović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade
| | | | - Brankica Filipić
- University of Belgrade, Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade
| |
Collapse
|
4
|
Kohta M, Koyanagi H, Inagaki Y, Nishikawa K, Kobayashi N, Tamura S, Ishikawa M, Banno Y, Takekoshi K, Mano K, Sugama J. Selective detection of urease-producing bacteria on the genital skin surface in patients with incontinence-associated dermatitis. Int Wound J 2023; 20:3289-3297. [PMID: 37095598 PMCID: PMC10502248 DOI: 10.1111/iwj.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
We aimed to investigate the association between the presence of cutaneous urease-producing bacteria and the development of incontinence-associated dermatitis (IAD) using an original urea agar medium as a step toward developing advanced preventive measures. In previous clinical assessments, we developed an original urea agar medium to detect urease-producing bacteria via the medium's colour changes. In a cross-sectional study, specimens were collected via the swabbing technique at genital skin sites in 52 stroke patients hospitalised in a university hospital. The primary objective was to compare the presence of urease-producing bacteria between the IAD and no-IAD groups. Determining the bacterial count was the secondary objective. The prevalence of IAD was 48%. A significantly higher detection rate of urease-producing bacteria was observed in the IAD group than in the no-IAD group (P = .002) despite the total number of bacteria being equivalent between them. In conclusion, we discovered that there was a significant association between the presence of urease-producing bacteria and IAD development in hospitalised stroke patients.
Collapse
Affiliation(s)
- Masushi Kohta
- Research Center for Implementation Nursing Science InitiativeFujita Health UniversityToyoakeJapan
| | - Hiroe Koyanagi
- Research Center for Implementation Nursing Science InitiativeFujita Health UniversityToyoakeJapan
| | | | - Keiji Nishikawa
- Department of NursingFujita Health University Nanakuri Memorial HospitalTsuJapan
| | - Nanako Kobayashi
- Department of NursingFujita Health University HospitalToyoakeJapan
| | - Shigeru Tamura
- Department of NursingFujita Health University HospitalToyoakeJapan
| | - Miyuki Ishikawa
- Department of NursingFujita Health University HospitalToyoakeJapan
| | - Yumi Banno
- Department of NursingFujita Health University HospitalToyoakeJapan
| | - Kanako Takekoshi
- Department of NursingFujita Health University HospitalToyoakeJapan
| | - Keiko Mano
- Department of NursingFujita Health University HospitalToyoakeJapan
| | - Junko Sugama
- Research Center for Implementation Nursing Science InitiativeFujita Health UniversityToyoakeJapan
| |
Collapse
|
5
|
Sapkota A, Mondal A, Chug MK, Brisbois EJ. Biomimetic catheter surface with dual action NO-releasing and generating properties for enhanced antimicrobial efficacy. J Biomed Mater Res A 2023; 111:1627-1641. [PMID: 37209058 PMCID: PMC10524361 DOI: 10.1002/jbm.a.37560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Infection of indwelling catheters is a common healthcare problem, resulting in higher morbidity and mortality. The vulnerable population reliant on catheters post-surgery for food and fluid intake, blood transfusion, or urinary incontinence or retention is susceptible to hospital-acquired infection originating from the very catheter. Bacterial adhesion on catheters can take place during the insertion or over time when catheters are used for an extended period. Nitric oxide-releasing materials have shown promise in exhibiting antibacterial properties without the risk of antibacterial resistance which can be an issue with conventional antibiotics. In this study, 1, 5, and 10 wt % selenium (Se) and 10 wt % S-nitrosoglutathione (GSNO)-incorporated catheters were prepared through a layer-by-layer dip-coating method to demonstrate NO-releasing and NO-generating capability of the catheters. The presence of Se on the catheter interface resulted in a 5 times higher NO flux in 10% Se-GSNO catheter through catalytic NO generation. A physiological level of NO release was observed from 10% Se-GSNO catheters for 5 d, along with an enhanced NO generation via the catalytic activity as Se was able to increase NO availability. The catheters were also found to be compatible and stable when subjected to sterilization and storage, even at room temperature. Additionally, the catheters showed a 97.02% and 93.24% reduction in the adhesion of clinically relevant strains of Escherichia coli and Staphylococcus aureus, respectively. Cytocompatibility testing of the catheter with 3T3 mouse fibroblast cells supports the material's biocompatibility. These findings from the study establish the proposed catheter as a prospective antibacterial material that can be translated into a clinical setting to combat catheter-related infections.
Collapse
Affiliation(s)
- Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
6
|
Uttamamul N, Suksawat M, Phetcharaburanin J, Jitpean S, Lulitanond A, Sae-ung N, Boonsiri P, Tavichakorntrakool R. 1H NMR metabolic profiling of Staphylococcus pseudintermedius isolated from canine uroliths. PLoS One 2022; 17:e0277808. [PMID: 36395195 PMCID: PMC9671361 DOI: 10.1371/journal.pone.0277808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus pseudintermedius is a urease-producing bacteria which is a major cause of magnesium ammonium phosphate (MAP) urolithiasis in canine. A positive urolith culture is an important risk factor for MAP urolithiasis in canine. The mechanism underlying the metabolic changes of S. pseudintermedius after crystallization in artificial urine (AU) needs more defined baseline metabolic information. Therefore, we extensively investigated the metabolic changes of S. pseudintermedius extensively after crystallization in AU. A high urease activity and positive biofilm formation strain, entitled the S. pseudintermedius (SPMAP09) strain, was isolated from canine MAP uroliths, and analyzed using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. The molecular mechanism-specific metabolic phenotypes were clearly observed after crystallization in AU at day 3. The crystals induced by SPMAP09 were also confirmed and the major chemical composition identified as struvite. Interestingly, our findings demonstrated that a total of 11 identified metabolites were significantly changed. The levels of formate, homocarnosine, tyrosine, cis-aconitate, glycolate, ethyl malonate, valine and acetate level were significantly higher, accompanied with decreased levels of inosine, glucose, and threonine at day 3 compared with the initial time-point (day 0). In addition, our results exhibited that the glyoxylate and dicarboxylate metabolism was significantly related to the SPMAP09 strain at day 3 in AU. Thus, metabolic changes of the SPMAP09 strain after crystallization in AU potentially helps to explain the preliminary molecular mechanism for the crystals induced by S. pseudintermedius.
Collapse
Affiliation(s)
- Nahathai Uttamamul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supranee Jitpean
- Division of Surgery, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Aroonlug Lulitanond
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nattaya Sae-ung
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- * E-mail: ,
| |
Collapse
|
7
|
Chong CE, Bengtsson RJ, Horsburgh MJ. Comparative genomics of Staphylococcus capitis reveals species determinants. Front Microbiol 2022; 13:1005949. [PMID: 36246238 PMCID: PMC9563023 DOI: 10.3389/fmicb.2022.1005949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Staphylococcus capitis is primarily described as a human skin commensal but is now emergent as an opportunistic pathogen isolated from the bloodstream and prosthetic joint infections, and neonatal intensive care unit (NICU)-associated sepsis. We used comparative genomic analyses of S. capitis to provide new insights into commensal scalp isolates from varying skin states (healthy, dandruff lesional, and non-lesional), and to expand our current knowledge of the species populations (scalp isolates, n = 59; other skin isolates, n = 7; publicly available isolates, n = 120). A highly recombinogenic population structure was revealed, with genomes including the presence of a range of previously described staphylococcal virulence factors, cell wall-associated proteins, and two-component systems. Genomic differences between the two described S. capitis subspecies were explored, which revealed the determinants associated exclusively with each subspecies. The subspecies ureolyticus was distinguished from subspecies capitis based on the differences in antimicrobial resistance genes, β-lactam resistance genes, and β-class phenol soluble modulins and gene clusters linked to biofilm formation and survival on skin. This study will aid further research into the classification of S. capitis and virulence-linked phylogroups to monitor the spread and evolution of S. capitis.
Collapse
|
8
|
Balada C, Díaz V, Castro M, Echeverría-Bugueño M, Marchant MJ, Guzmán L. Chemistry and Bioactivity of Microsorum scolopendria (Polypodiaceae): Antioxidant Effects on an Epithelial Damage Model. Molecules 2022; 27:molecules27175467. [PMID: 36080235 PMCID: PMC9457714 DOI: 10.3390/molecules27175467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Microsorum scolopendia (MS), which grows on the Chilean island of Rapa Nui, is a medicinal fern used to treat several diseases. Despite being widely used, this fern has not been deeply investigated. The aim of this study was to perform a characterization of the polyphenolic and flavonoid identity, radical scavenging, antimicrobial, and anti-inflammatory properties of MS rhizome and leaf extracts (RAE and HAE). The compound identity was analyzed through the reversed-phase high-performance liquid chromatography (RP-HPLC) method coupled with mass spectrometry. The radical scavenging and anti-inflammatory activities were evaluated for DPPH, ORAC, ROS formation, and COX inhibition activity assay. The antimicrobial properties were evaluated using an infection model on Human Dermal Fibroblast adult (HDFa) cell lines incubated with Staphylococcus aureus and Staphylococcus epidermidis. The most abundant compounds were phenolic acids between 46% to 57% in rhizome and leaf extracts, respectively; followed by flavonoids such as protocatechic acid 4-O-glucoside, cirsimaritin, and isoxanthohumol, among others. MS extract inhibited and disaggregated the biofilm bacterial formed and showed an anti-inflammatory selective property against COX-2 enzyme. RAE generated a 64% reduction of ROS formation in the presence of S. aureus and 87.35% less ROS in the presence of S. epidermidis on HDFa cells. MS has great therapeutic potential and possesses several biological properties that should be evaluated.
Collapse
Affiliation(s)
- Cristóbal Balada
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Valentina Díaz
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Mónica Castro
- Laboratorio de Propagación, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, La Palma S/N, Quillota 2260000, Chile
| | - Macarena Echeverría-Bugueño
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Quillota 980, Viña del Mar 2531015, Chile
- Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad Andrés Bello, Quillota 980, Viña del Mar 2531015, Chile
| | - María José Marchant
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Leda Guzmán
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
- Correspondence:
| |
Collapse
|
9
|
Sivori F, Cavallo I, Kovacs D, Guembe M, Sperduti I, Truglio M, Pasqua M, Prignano G, Mastrofrancesco A, Toma L, Pimpinelli F, Morrone A, Ensoli F, Di Domenico EG. Role of Extracellular DNA in Dalbavancin Activity against Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms in Patients with Skin and Soft Tissue Infections. Microbiol Spectr 2022; 10:e0035122. [PMID: 35416701 PMCID: PMC9045124 DOI: 10.1128/spectrum.00351-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become the leading cause of skin and soft tissue infections (SSTIs). Biofilm production further complicates patient treatment, contributing to increased bacterial persistence and antibiotic tolerance. The study aimed to explore the efficacy of different antibiotics on biofilm-producing MRSA isolated from patients with SSTI. A total of 32 MRSA strains were collected from patients with SSTI. The MIC and minimal biofilm eradication concentration (MBEC) were measured in planktonic and biofilm growth. The study showed that dalbavancin, linezolid, and vancomycin all inhibited MRSA growth at their EUCAST susceptible breakpoint. Of the MRSA strains, 87.5% (n = 28) were strong biofilm producers (SBPs), while only 12.5% (n = 4) were weak biofilm producers (WBPs). The MBEC90 values for dalbavancin were significantly lower than those of linezolid and vancomycin in all tested strains. We also found that extracellular DNA (eDNA) contributes to the initial microbial attachment and biofilm formation. The amount of eDNA differed among MRSA strains and was significantly higher in those isolates with high dalbavancin and vancomycin tolerance. Exogenously added DNA increased the MBEC90 and protection of biofilm cells from dalbavancin activity. Of note, the relative abundance of eDNA was higher in MRSA biofilms exposed to MBEC90 dalbavancin than in untreated MRSA biofilms and those exposed to sub-MIC90. Overall, dalbavancin was the most active antibiotic against MRSA biofilms at concentrations achievable in the human serum. Moreover, the evidence of a drug-related increase of eDNA and its contribution to antimicrobial drug tolerance reveals novel potential targets for antibiofilm strategies against MRSA. IMPORTANCE Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs) worldwide. In addition, methicillin-resistant S. aureus (MRSA) is increasingly frequent in postoperative infections and responsible for a large number of hospital readmissions and deaths. Biofilm formation by S. aureus is a primary risk factor in SSTIs, due to a higher antibiotic tolerance. Our study showed that the biofilm-forming capacity varied among MRSA strains, although strong biofilm producers were significantly more abundant than weak biofilm producer strains. Notably, dalbavancin demonstrated a potent antibiofilm activity at concentrations achievable in human serum. Nevertheless, dalbavancin activity was affected by an increased concentration of extracellular DNA in the biofilm matrix. This study provides novel insight for designing more targeted therapeutic strategies against MRSA and to prevent or eradicate harmful biofilms.
Collapse
Affiliation(s)
- Francesca Sivori
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Maria Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Isabella Sperduti
- Biostatistical Unit-Clinical Trials Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mauro Truglio
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, Rome, Italy
| | - Grazia Prignano
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | | | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Fabrizio Ensoli
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Enea Gino Di Domenico
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, Rome, Italy
| |
Collapse
|
10
|
Tang H, Qu X, Zhang W, Chen X, Zhang S, Xu Y, Yang H, Wang Y, Yang J, Yuan WE, Yue B. Photosensitizer Nanodot Eliciting Immunogenicity for Photo-Immunologic Therapy of Postoperative Methicillin-Resistant Staphylococcus aureus Infection and Secondary Recurrence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107300. [PMID: 34865257 DOI: 10.1002/adma.202107300] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The treatment of postoperative infection caused by multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), has become an intractable clinical challenge owing to its low therapeutic efficacy and high risk of recurrence. Apart from imperfect antibacterial therapies, induction of insufficient immunogenicity, required for the successful clearance of a pathogen, may also contribute to the problem. Herein, an ultra-micro photosensitizer, AgB nanodots, using photothermal therapy, photodynamic therapy, and Ag+ ion sterilization, are utilized to efficiently clear invading MRSA both in vitro and in vivo. AgB nanodots are also found to upregulate host immunogenicity in a murine model and establish immunological memory by promoting the upregulated expression of danger signals that are commonly induced by stress-related responses, including sudden temperature spikes or excess reactive oxygen production. These stimulations boost the antibacterial effects of macrophages, dendritic cells, T cells, or even memory B cells, which is usually defined as infection-related immunogenic cell death. Hence, the proposed AgB nanodot strategy may offer a novel platform for the effective treatment of postoperative infection while providing a systematic immunotherapeutic strategy to combat persistent infections, thereby markedly reducing the incidence of recurrence following recovery from primary infections.
Collapse
Affiliation(s)
- Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Wenkai Zhang
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuan Chen
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Yang Xu
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongtao Yang
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH, 43210, USA
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei-En Yuan
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| |
Collapse
|
11
|
Pharmacodynamics of Moxifloxacin, Meropenem, Caspofungin and their Combinations Against In Vitro Polymicrobial Inter-kingdom Biofilms. Antimicrob Agents Chemother 2021; 66:e0214921. [PMID: 34930026 DOI: 10.1128/aac.02149-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms colonize medical devices and are often recalcitrant to antibiotics. Inter-kingdom biofilms, when at least a bacterium and a fungus are co-isolated, increase the likelihood of therapeutic failures. In this work, a three-species in vitro biofilm model including S. aureus, E. coli and C. albicans was used to study the activity of the antibiotics moxifloxacin and meropenem, the antifungal caspofungin, and combinations of them against inter-kingdom biofilms. The culturable cells and total biomass were evaluated to determine the pharmacodynamic parameters of the drug response for the incubation with the drugs alone. The synergic or antagonistic effects (increased/decreased effects) of the combination of drugs were analysed with the highest single agent method. Biofilms were imaged in confocal microscopy after live/dead staining. The drugs had limited activity when used alone against single-, dual- or three-species biofilms. When used in combination, additive effects were observed against single- or dual-species biofilms, and increased effects (synergy) against biomass of three-species biofilms. In addition, the two antibiotics showed different patterns, moxifloxacin being more active when targeting S. aureus and meropenem when targeting E. coli. All these observations were confirmed by confocal microscopy images. Our findings highlight the interest in combining caspofungin with antibiotics against inter-kingdom biofilms.
Collapse
|
12
|
Silva V, Caniça M, Capelo JL, Igrejas G, Poeta P. Diversity and genetic lineages of environmental staphylococci: a surface water overview. FEMS Microbiol Ecol 2021; 96:5909032. [PMID: 32949464 DOI: 10.1093/femsec/fiaa191] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - José L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal
- Proteomass Scientific Society, 2825-466 Costa de Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
13
|
Sadiq FA, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhao J, Zhang H. Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms. Crit Rev Microbiol 2021; 47:338-358. [PMID: 33651958 DOI: 10.1080/1040841x.2021.1887079] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Existence of most bacterial species, in natural, industrial, and clinical settings in the form of surface-adhered communities or biofilms has been well acknowledged for decades. Research predominantly focusses on single-species biofilms as these are relatively easy to study. However, microbiologists are now interested in studying multispecies biofilms and revealing interspecific interactions in these communities because of the existence of a plethora of different bacterial species together in almost all natural settings. Multispecies biofilms-led emergent properties are triggered by bacterial social interactions which have huge implication for research and practical knowledge useful for the control and manipulation of these microbial communities. Here, we discuss some important bacterial interactions that take place in multispecies biofilm communities and provide insights into community-wide changes that indicate bacterial interactions and elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Yuan L, Mgomi FC, Xu Z, Wang N, He G, Yang Z. Understanding of food biofilms by the application of omics techniques. Future Microbiol 2021; 16:257-269. [PMID: 33595346 DOI: 10.2217/fmb-2020-0218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biofilms constitute a protective barrier for foodborne pathogens to survive under stressful food processing conditions. Therefore, studies into the development and control of biofilms by novel techniques are vital for the food industry. In recent years, foodomics techniques have been developed for biofilm studies, which contributed to a better understanding of biofilm behavior, physiology, composition, as well as their response to antibiofilm methods at different molecular levels including genes, RNA, proteins and metabolic metabolites. Throughout this review, the main studies where foodomics tools used to explore the mechanisms for biofilm formation, dispersal and elimination were reviewed. The data summarized from relevant studies are important to design novel and appropriate biofilm elimination methods for enhancing food safety at any point of food processing lines.
Collapse
Affiliation(s)
- Lei Yuan
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China.,Fujian Provincial Key Laboratory of Food Microbiology & Enzyme Engineering, Xiamen, 361021, China
| | - Fedrick C Mgomi
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zhenbo Xu
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ni Wang
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Guoqing He
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenquan Yang
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
15
|
Vermassen A, Talon R, Andant C, Provot C, Desvaux M, Leroy S. Cell-Wall Hydrolases as Antimicrobials against Staphylococcus Species: Focus on Sle1. Microorganisms 2019; 7:microorganisms7110559. [PMID: 31726796 PMCID: PMC6921076 DOI: 10.3390/microorganisms7110559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Some staphylococcal species are opportunistic pathogens of humans and/or animals with Staphylococcus epidermidis as one of the most important. It causes a broad spectrum of diseases in humans and animals. This species is able to form biofilms and has developed antibiotic resistance, which has motivated research on new antibacterial agents. Cell-wall hydrolases (CWHs) can constitute a potential alternative. Following a hijacking strategy, we inventoried the CWHs of S. epidermidis. The lytic potential of representative CWHs that could be turned against staphylococci was explored by turbidity assays which revealed that cell wall glycosidases were not efficient, while cell wall amidases and cell wall peptidases were able to lyse S. epidermidis. Sle1, which is encoded by chromosomal gene and composed of three anchoring LysM domains and a C-terminal CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain, was one of the most active CWHs. The phylogeny of Sle1 revealed seven clusters mostly identified among staphylococci. Sle1 was able to lyse several staphylococcal species, including Staphylococcus aureus, both in planktonic and sessile forms, but not Micrococcus.
Collapse
Affiliation(s)
- Aurore Vermassen
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
| | - Régine Talon
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
| | - Carine Andant
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
| | - Christian Provot
- BioFilm Control, Biopôle Clermont Limagne, F-63360 Saint-Beauzire, France;
| | - Mickaël Desvaux
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
| | - Sabine Leroy
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
- Correspondence:
| |
Collapse
|
16
|
Szlauer W, Obłąk E, Paluch E, Baldy-Chudzik K. Biofilm and methods of its eradication. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.1605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microorganisms occur in the natural environment in the form of planktonic or create biofilms, i.e. communities of cells surrounded by the extracellular matrix. This is possible due to the phenomenon of quorum sensing, i.e. the ability of microorganisms to estimate their own density and change the expression of genes in response to them. Within such a structure, microorganisms are protected against harmful environmental conditions, their metabolic profile and the level of expression of individual genes are also changed, which leads to an increase in the pathogenicity of organisms associated in the form of biofilms. They pose a huge threat to hospital patients because they are capable of residing abiotic surfaces, such as catheters and endoprostheses, and can cause infection.
The current methods of combating microbes with antibiotics and fungicides lose their effectiveness, both due to the increasing drug resistance of clinically relevant strains, but also to the very properties of biofilms. This determines the need to search for new and effective methods (physical, chemical and biological) to eradicate biofilms
Collapse
Affiliation(s)
- Wojciech Szlauer
- Instytut Genetyki i Mikrobiologii, Uniwersytet Wrocławski, Wrocław
| | - Ewa Obłąk
- Instytut Genetyki i Mikrobiologii, Uniwersytet Wrocławski, Wrocław
| | - Emil Paluch
- Instytut Genetyki i Mikrobiologii, Uniwersytet Wrocławski, Wrocław
| | - Katarzyna Baldy-Chudzik
- Katedra Mikrobiologii i Genetyki, Wydział Nauk Biologicznych, Uniwersytet Zielonogórski, Zielona Góra
| |
Collapse
|
17
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
18
|
Castro J, Machado D, Cerca N. Unveiling the role of Gardnerella vaginalis in polymicrobial Bacterial Vaginosis biofilms: the impact of other vaginal pathogens living as neighbors. THE ISME JOURNAL 2019; 13:1306-1317. [PMID: 30670827 PMCID: PMC6474217 DOI: 10.1038/s41396-018-0337-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/13/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022]
Abstract
Bacterial vaginosis (BV) is characterized by a highly structured polymicrobial biofilm, which is strongly adhered to the vaginal epithelium and primarily consists of the bacterium Gardnerella vaginalis. However, despite the presence of other BV-associated bacteria, little is known regarding the impact of other species on BV development. To gain insight into BV progress, we analyzed the ecological interactions between G. vaginalis and 15 BV-associated microorganisms using a dual-species biofilm model. Bacterial populations were quantified using a validated peptide nucleic acid fluorescence in situ hybridization approach. Furthermore, biofilm structure was analyzed by confocal laser scanning microscopy. In addition, bacterial coaggregation ability was determined as well as the expression of key virulence genes. Remarkably, our results revealed distinct biofilm structures between each bacterial consortium, leading to at least three unique dual-species biofilm morphotypes. Furthermore, our transcriptomic findings seem to indicate that Enterococcus faecalis and Actinomyces neuii had a higher impact on the enhancement of G. vaginalis virulence, while the other tested species had a lower or no impact on G. vaginalis virulence. This study casts a new light on how BV-associated species can modulate the virulence aspects of G. vaginalis, contributing to a better understanding of the development of BV-associated biofilms.
Collapse
Affiliation(s)
- Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Daniela Machado
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
19
|
Kabanov D, Khabipova N, Valeeva L, Sharipova M, Rogov A, Kuznetsova S, Abaseva I, Mardanova A. Effect of Subtilisin-like Proteinase of Bacillus pumilus 3–19 on Pseudomonas aeruginosa Biofilms. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00617-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
LISOWSKA-ŁYSIAK KLAUDIA, KOSECKA-STROJEK MAJA, BIAŁECKA JOANNA, KASPROWICZ ANDRZEJ, GARBACZ KATARZYNA, PIECHOWICZ LIDIA, KMET VLADIMIR, SAVINI VINCENZO, MIĘDZOBRODZKI JACEK. New Insight into Genotypic and Phenotypic Relatedness of Staphylococcus aureus Strains from Human Infections or Animal Reservoirs. Pol J Microbiol 2019; 68:93-104. [PMID: 31050257 PMCID: PMC7256692 DOI: 10.21307/pjm-2019-011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 11/11/2022] Open
Abstract
Staphylococcus aureus is a common human and livestock opportunistic pathogen, and there is evidence of animal to human transmission. This paper aimed to recognize properties of the isolates from collections of human and livestock S. aureus strains and to estimate compatibility of results based on phenotypic tests, microarrays and the spa typing methods. The second goal was to study differences between human and animal isolates in terms of specificity of their hosts and the strain transmission among various hosts. Most strains showed multi-susceptible profiles and produced enzymes on a high level, and they were phenotypically and genetically similar. However, in contrast to the Polish bovine mastitis strains, the Slovakian strains were multi-resistant. In this research, the strains showed significant differences in terms of their phenotypic manifestations and the presence of hemolysins genes; however, other enzyme-encoding genes correlated to a higher extent with the microarrays results. Interestingly, there was a lack of enterotoxin genes in human Poultry-like protein A+ strains in comparison to other human strains. Our study showed that differences between virulence profiles of the human and animal strains correlated with their origin rather than their hosts, and any trait allowed clearly distinguishing between them based on the microarray results. Staphylococcus aureus is a common human and livestock opportunistic pathogen, and there is evidence of animal to human transmission. This paper aimed to recognize properties of the isolates from collections of human and livestock S. aureus strains and to estimate compatibility of results based on phenotypic tests, microarrays and the spa typing methods. The second goal was to study differences between human and animal isolates in terms of specificity of their hosts and the strain transmission among various hosts. Most strains showed multi-susceptible profiles and produced enzymes on a high level, and they were phenotypically and genetically similar. However, in contrast to the Polish bovine mastitis strains, the Slovakian strains were multi-resistant. In this research, the strains showed significant differences in terms of their phenotypic manifestations and the presence of hemolysins genes; however, other enzyme-encoding genes correlated to a higher extent with the microarrays results. Interestingly, there was a lack of enterotoxin genes in human Poultry-like protein A+ strains in comparison to other human strains. Our study showed that differences between virulence profiles of the human and animal strains correlated with their origin rather than their hosts, and any trait allowed clearly distinguishing between them based on the microarray results.
Collapse
Affiliation(s)
- KLAUDIA LISOWSKA-ŁYSIAK
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - MAJA KOSECKA-STROJEK
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - JOANNA BIAŁECKA
- Centre of Microbiological Research and Autovaccines, Krakow, Poland
| | | | - KATARZYNA GARBACZ
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - LIDIA PIECHOWICZ
- Department of Medical Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - VLADIMIR KMET
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Slovakia
| | - VINCENZO SAVINI
- Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara (PE), Italy
| | - JACEK MIĘDZOBRODZKI
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
21
|
Gannesen AV, Lesouhaitier O, Netrusov AI, Plakunov VK, Feuilloley MGJ. Regulation of Formation of Monospecies and Binary Biofilms by Human Skin Microbiota Components, Staphylococcus epidermidis and Staphylococcus aureus, by Human Natriuretic Peptides. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718050090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Tardajos MG, Cama G, Dash M, Misseeuw L, Gheysens T, Gorzelanny C, Coenye T, Dubruel P. Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications. Carbohydr Polym 2018; 191:127-135. [DOI: 10.1016/j.carbpol.2018.02.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/13/2023]
|