1
|
Kim J, Kim JY, Byeon HE, Kim JW, Kim HA, Suh CH, Choi S, Linton MF, Jung JY. Inhibition of Toll-like Receptors Alters Macrophage Cholesterol Efflux and Foam Cell Formation. Int J Mol Sci 2024; 25:6808. [PMID: 38928513 PMCID: PMC11203583 DOI: 10.3390/ijms25126808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists on cholesterol efflux and foam cell formation in human macrophages. Stimulated monocytes were treated with TLR antagonists (MIP2), and the cholesterol efflux transporter expression and foam cell formation were analyzed. The administration of MIP2 attenuated the foam cell formation induced by lipopolysaccharides (LPS) and oxidized low-density lipoproteins (ox-LDL) in stimulated THP-1 cells (p < 0.001). The expression of ATP-binding cassette transporters A (ABCA)-1, ABCG-1, scavenger receptor (SR)-B1, liver X receptor (LXR)-α, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA and proteins were increased (p < 0.001) following MIP2 administration. A concentration-dependent decrease in the phosphorylation of p65, p38, and JNK was also observed following MIP2 administration. Moreover, an inhibition of p65 phosphorylation enhanced the expression of ABCA1, ABCG1, SR-B1, and LXR-α. TLR inhibition promoted the cholesterol efflux pathway by increasing the expression of ABCA-1, ABCG-1, and SR-B1, thereby reducing foam cell formation. Our results suggest a potential role of the p65/NF-kB/LXR-α/ABCA1 axis in TLR-mediated cholesterol homeostasis.
Collapse
Affiliation(s)
- Jaemi Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Ji-Yun Kim
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.-Y.K.)
| | - Hye-Eun Byeon
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.-Y.K.)
| | - Ji-Won Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Hyoun-Ah Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Chang-Hee Suh
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
| | - MacRae F. Linton
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Ju-Yang Jung
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| |
Collapse
|
2
|
Kang N, Ji Z, Li Y, Gao J, Wu X, Zhang X, Duan Q, Zhu C, Xu Y, Wen L, Shi X, Liu W. Metabolite-derived damage-associated molecular patterns in immunological diseases. FEBS J 2024; 291:2051-2067. [PMID: 37432883 DOI: 10.1111/febs.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are typically derived from the endogenous elements of necrosis cells and can trigger inflammatory responses by activating DAMPs-sensing receptors on immune cells. Failure to clear DAMPs may lead to persistent inflammation, thereby contributing to the pathogenesis of immunological diseases. This review focuses on a newly recognized class of DAMPs derived from lipid, glucose, nucleotide, and amino acid metabolic pathways, which are then termed as metabolite-derived DAMPs. This review summarizes the reported molecular mechanisms of these metabolite-derived DAMPs in exacerbating inflammation responses, which may attribute to the pathology of certain types of immunological diseases. Additionally, this review also highlights both direct and indirect clinical interventions that have been explored to mitigate the pathological effects of these DAMPs. By summarizing our current understanding of metabolite-derived DAMPs, this review aims to inspire future thoughts and endeavors on targeted medicinal interventions and the development of therapies for immunological diseases.
Collapse
Affiliation(s)
- Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Ji Gao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qinghui Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Can Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yue Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Luyao Wen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
3
|
Kim D, Choi H, Oh H, Lee J, Hwang Y, Kang SS. Mutanolysin-Digested Peptidoglycan of Lactobacillus reuteri Promotes the Inhibition of Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses through the Regulation of Signaling Cascades via TLR4 Suppression. Int J Mol Sci 2023; 25:42. [PMID: 38203215 PMCID: PMC10779245 DOI: 10.3390/ijms25010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Periodontitis is an oral infectious disease caused by various pathogenic bacteria, such as Porphyromonas gingivalis. Although probiotics and their cellular components have demonstrated positive effects on periodontitis, the beneficial impact of peptidoglycan (PGN) from probiotic Lactobacillus remains unclear. Therefore, our study sought to investigate the inhibitory effect of PGN isolated from L. reuteri (LrPGN) on P. gingivalis-induced inflammatory responses. Pretreatment with LrPGN significantly inhibited the production of interleukin (IL)-1β, IL-6, and CCL20 in RAW 264.7 cells induced by P. gingivalis lipopolysaccharide (LPS). LrPGN reduced the phosphorylation of PI3K/Akt and MAPKs, as well as NF-κB activation, which were induced by P. gingivalis LPS. Furthermore, LrPGN dose-dependently reduced the expression of Toll-like receptor 4 (TLR4), indicating that LrPGN inhibits periodontal inflammation by regulating cellular signaling cascades through TLR4 suppression. Notably, LrPGN exhibited stronger inhibition of P. gingivalis LPS-induced production of inflammatory mediators compared to insoluble LrPGN and proteinase K-treated LrPGN. Moreover, MDP, a minimal bioactive PGN motif, also dose-dependently inhibited P. gingivalis LPS-induced inflammatory mediators, suggesting that MDP-like molecules present in the LrPGN structure may play a crucial role in the inhibition of inflammatory responses. Collectively, these findings suggest that LrPGN can mitigate periodontal inflammation and could be a useful agent for the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Donghan Kim
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hanhee Choi
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyeonjun Oh
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Jiyeon Lee
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Yongjin Hwang
- Novalacto Co., Ltd., Daejon 34016, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
Marroquin TY, Guauque-Olarte S. Integrative analysis of gene and protein expression in atherosclerosis-related pathways modulated by periodontal pathogens. Systematic review. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:8-22. [PMID: 36654677 PMCID: PMC9841036 DOI: 10.1016/j.jdsr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
The mechanisms modulated by periodontal pathogens in atherosclerosis are not fully understood. Aim: to perform an integrative analysis of gene and protein expression modulated by periodontal pathogens in cells and animal models for atherosclerosis. Methods Cochrane, PRISMA and AMSTAR2 guidelines for systematic reviews were followed. Data search was conducted in Pub-med, LILACS and Science Direct databases. Gene and protein expression data were collected from the included papers to perform an overrepresentation analysis using the Reactome Pathway Analysis tool and the KEGG database. Results Thirty-two papers were included in the review, they analyzed the effect of Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus anginosus, Streptococcus sanguinis, Tannerella forsythia, and Treponema denticola or/and their virulent factors on gene and protein expression in human cells and animal models of atherosclerosis. Some of the modulated pathways include the immune system, programmed cell death, cellular responses to external stimuli, transport of small molecules, and signal transduction (p < 0.05). Those pathways are known to be involved in different stages of atherosclerosis progression. Conclusion Based on the performed analysis, it is possible to state that periodontal pathogens have the potential to be a contributing factor for atherosclerosis even in absence of a high-fat diet or high shear stress.
Collapse
Affiliation(s)
| | - Sandra Guauque-Olarte
- GIOM group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Envigado, Colombia
| |
Collapse
|
5
|
Alrouji M, Al-Kuraishy HM, Al-Mahammadawy AKAA, Al-Gareeb AI, Saad HM, Batiha GES. The potential role of cholesterol in Parkinson's disease neuropathology: perpetrator or victim. Neurol Sci 2023; 44:3781-3794. [PMID: 37428278 DOI: 10.1007/s10072-023-06926-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by deposition of α-synuclein and aggregation of Lewy bodies. Cholesterol is involved with PD neuropathology in bidirectional ways that could be protective or harmful. Thus, the objective of the present review was to verify the potential role of cholesterol in PD neuropathology. Deregulation of ion channels and receptors induced by cholesterol alteration suggests a possible mechanism for the neuroprotective effects of cholesterol against PD development. However, high serum cholesterol level increases PD risk indirectly by 27-hydroxycholesterol which induces oxidative stress, inflammation, and apoptosis. Besides, hypercholesterolemia triggers the accumulation of cholesterol in macrophages and immune cells leading to the release of pro-inflammatory cytokines with progression of neuroinflammation subsequently. Additionally, cholesterol increases aggregation of α-synuclein and induces degeneration of dopaminergic neurons (DN) in the substantia nigra (SN). Hypercholesterolemia may lead to cellular Ca2+ overload causing synaptic and the development of neurodegeneration. In conclusion, cholesterol has bidirectional effects on PD neuropathology and might be protective or harmful.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyah University, M.B.Ch.B, FRCP; Box, Baghdad, 14132, Iraq
| | | | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyah University, M.B.Ch.B, FRCP; Box, Baghdad, 14132, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al Beheira, 22511, Egypt.
| |
Collapse
|
6
|
Amato M, Lupi SM, Polizzi A, Santonocito S, Viglianisi G, Cicciù M, Isola G. New Trends in the Impact of Periodontal Treatment on Early Cardiovascular Diseases Outcomes: Insights and Future Perspectives. Rev Cardiovasc Med 2023; 24:287. [PMID: 39077574 PMCID: PMC11273151 DOI: 10.31083/j.rcm2410287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular diseases represent the primary worldwide cause of mortality, and periodontitis is the main cause of tooth loss. The incidence of atherosclerotic disease has been reported to be higher in individuals affected by periodontitis than in individuals without, regardless of many common risk factors are present. Various pathogenetic models have been presented to clarify the close correlation between these two diseases. First, periodontal bacteria and their toxins can enter the circulation both during dental procedures and normal activities such as eating and teeth brushing. Periodontal bacteria may indirectly contribute to coronary artery disease (e.g., by causing immunological reactions) or directly by damaging coronary arteries. Periodontal treatment significantly reduces periodontal pathogens such as Porphyromonas gingivalis (Pg) or Actinobacillus actinomycetemcomitans (Aa) in deep periodontal pockets. Moreover, periodontal treatment may lower blood inflammatory mediators, enhance the lipid profile, and cause favourable changes in various surrogate markers for cardiovascular disease. The way in which oral bacteremia and periodontal inflammation cause atherosclerosis is still unclear and needs further studies. The real effectiveness of periodontal treatment in preventing cardiovascular events is a topic of current interest. In this regard, this review article explores new insights and provides an indication of future directions on the function of periodontal inflammation and oral bacteria in the incidence and progression of atherosclerosis and cardiovascular diseases, with the main focus on assessing the impact of periodontal treatment on cardiovascular disease outcome biomarkers.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of
Dentistry, University of Catania, 95124 Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinico-Surgical, Diagnostic and Pediatric Sciences, School
of Dentistry, University of Pavia, 27100 Pavia, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of
Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of
Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of
Dentistry, University of Catania, 95124 Catania, Italy
| | - Marco Cicciù
- Department of General Surgery and Surgical-Medical Specialties, School of
Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of
Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
7
|
Miao YB, Xu T, Gong Y, Chen A, Zou L, Jiang T, Shi Y. Cracking the intestinal lymphatic system window utilizing oral delivery vehicles for precise therapy. J Nanobiotechnology 2023; 21:263. [PMID: 37559085 PMCID: PMC10413705 DOI: 10.1186/s12951-023-01991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Oral administration is preferred over other drug delivery methods due to its safety, high patient compliance, ease of ingestion without discomfort, and tolerance of a wide range of medications. However, oral drug delivery is limited by the poor oral bioavailability of many drugs, caused by extreme conditions and absorption challenges in the gastrointestinal tract. This review thoroughly discusses the targeted drug vehicles to the intestinal lymphatic system (ILS). It explores the structure and physiological barriers of the ILS, highlighting its significance in dietary lipid and medication absorption and transport. The review presents various approaches to targeting the ILS using spatially precise vehicles, aiming to enhance bioavailability, achieve targeted delivery, and reduce first-pass metabolism with serve in clinic. Furthermore, the review outlines several methods for leveraging these vehicles to open the ILS window, paving the way for potential clinical applications in cancer treatment and oral vaccine delivery. By focusing on targeted drug vehicles to the ILS, this article emphasizes the critical role of these strategies in improving therapeutic efficacy and patient outcomes. Overall, this article emphasizes the critical role of targeted drug vehicles to the ILS and the potential impact of these strategies on improving therapeutic efficacy and patient outcomes.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Tianxing Xu
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Tao Jiang
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
- Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
8
|
Conway J, Certo M, Lord JM, Mauro C, Duggal NA. Understanding the role of host metabolites in the induction of immune senescence: Future strategies for keeping the ageing population healthy. Br J Pharmacol 2022; 179:1808-1824. [PMID: 34435354 DOI: 10.1111/bph.15671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Advancing age is accompanied by significant remodelling of the immune system, termed immune senescence, and increased systemic inflammation, termed inflammageing, both of which contribute towards an increased risk of developing chronic diseases in old age. Age-associated alterations in metabolic homeostasis have been linked with changes in a range of physiological functions, but their effects on immune senescence remains poorly understood. In this article, we review the recent literature to formulate hypotheses as to how an age-associated dysfunctional metabolism, driven by an accumulation of key host metabolites (saturated fatty acids, cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, tryptophan and short-chain fatty acids), might play a role in driving immune senescence and inflammageing, ultimately leading to diseases of old age. We also highlight the potential use of metabolic immunotherapeutic strategies targeting these processes in counteracting immune senescence and restoring immune homeostasis in older adults. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.
Collapse
Affiliation(s)
- Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham and University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Zhu X, Huang H, Zhao L. PAMPs and DAMPs as the Bridge Between Periodontitis and Atherosclerosis: The Potential Therapeutic Targets. Front Cell Dev Biol 2022; 10:856118. [PMID: 35281098 PMCID: PMC8915442 DOI: 10.3389/fcell.2022.856118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic artery disease characterized by plaque formation and vascular inflammation, eventually leading to myocardial infarction and stroke. Innate immunity plays an irreplaceable role in the vascular inflammatory response triggered by chronic infection. Periodontitis is a common chronic disorder that involves oral microbe-related inflammatory bone loss and local destruction of the periodontal ligament and is a risk factor for atherosclerosis. Periodontal pathogens contain numerous pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide, CpG DNA, and Peptidoglycan, that initiate the inflammatory response of the innate immunity depending on the recognition of pattern-recognition receptors (PRRs) of host cells. The immune-inflammatory response and destruction of the periodontal tissue will produce a large number of damage-associated molecular patterns (DAMPs) such as neutrophil extracellular traps (NETs), high mobility group box 1 (HMGB1), alarmins (S100 protein), and which can further affect the progression of atherosclerosis. Molecular patterns have recently become the therapeutic targets for inflammatory disease, including blocking the interaction between molecular patterns and PRRs and controlling the related signal transduction pathway. This review summarized the research progress of some representative PAMPs and DAMPs as the molecular pathological mechanism bridging periodontitis and atherosclerosis. We also discussed possible ways to prevent serious cardiovascular events in patients with periodontitis and atherosclerosis by targeting molecular patterns.
Collapse
Affiliation(s)
- Xuanzhi Zhu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hanyao Huang, ; Lei Zhao,
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hanyao Huang, ; Lei Zhao,
| |
Collapse
|
10
|
Negrini TDC, Carlos IZ, Duque C, Caiaffa KS, Arthur RA. Interplay Among the Oral Microbiome, Oral Cavity Conditions, the Host Immune Response, Diabetes Mellitus, and Its Associated-Risk Factors-An Overview. FRONTIERS IN ORAL HEALTH 2022; 2:697428. [PMID: 35048037 PMCID: PMC8757730 DOI: 10.3389/froh.2021.697428] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review of the literature aimed to investigate the interplay between the oral microbiome, oral cavity conditions, and host immune response in Diabetes mellitus (DM). Moreover, this review also aimed to investigate how DM related risk factors, such as advanced age, hyperglycemia, hyperlipidemia, obesity, hypertension and polycystic ovary syndrome (PCOS), act in promoting or modifying specific mechanisms that could potentially perpetuate both altered systemic and oral conditions. We found that poorly controlled glycemic index may exert a negative effect on the immune system of affected individuals, leading to a deficient immune response or to an exacerbation of the inflammatory response exacerbating DM-related complications. Hyperglycemia induces alterations in the oral microbiome since poor glycemic control is associated with increased levels and frequencies of periodontal pathogens in the subgingival biofilm of individuals with DM. A bidirectional relationship between periodontal diseases and DM has been suggested: DM patients may have an exaggerated inflammatory response, poor repair and bone resorption that aggravates periodontal disease whereas the increased levels of systemic pro-inflammatory mediators found in individuals affected with periodontal disease exacerbates insulin resistance. SARS-CoV-2 infection may represent an aggravating factor for individuals with DM. Individuals with DM tend to have low salivary flow and a high prevalence of xerostomia, but the association between prevalence/experience of dental caries and DM is still unclear. DM has also been associated to the development of lesions in the oral mucosa, especially potentially malignant ones and those associated with fungal infections. Obesity plays an important role in the induction and progression of DM. Co-affected obese and DM individuals tend to present worse oral health conditions. A decrease in HDL and, an increase in triglycerides bloodstream levels seem to be associated with an increase on the load of periodontopathogens on oral cavity. Moreover, DM may increase the likelihood of halitosis. Prevalence of impaired taste perception and impaired smell recognition tend to be greater in DM patients. An important interplay among oral cavity microbiome, DM, obesity and hypertension has been proposed as the reduction of nitrate into nitrite, in addition to contribute to lowering of blood pressure, reduces oxidative stress and increases insulin secretion, being these effects desirable for the control of obesity and DM. Women with PCOS tend to present a distinct oral microbial composition and an elevated systemic response to selective members of this microbial community, but the association between oral microbiome, PCOS are DM is still unknown. The results of the studies presented in this review suggest the interplay among the oral microbiome, oral cavity conditions, host immune response and DM and some of the DM associated risk factors exist. DM individuals need to be encouraged and motivated for an adequate oral health care. In addition, these results show the importance of adopting multidisciplinary management of DM and of strengthening physicians-dentists relationship focusing on both systemic and on oral cavity conditions of DM patients.
Collapse
Affiliation(s)
- Thais de Cássia Negrini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Cristiane Duque
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Karina Sampaio Caiaffa
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Community Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Miao YB, Lin YJ, Chen KH, Luo PK, Chuang SH, Yu YT, Tai HM, Chen CT, Lin KJ, Sung HW. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104139. [PMID: 34596293 DOI: 10.1002/adma.202104139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Targeted oral delivery of a drug via the intestinal lymphatic system (ILS) has the advantages of protecting against hepatic first-pass metabolism of the drug and improving its pharmacokinetic performance. It is also a promising route for the oral delivery of vaccines and therapeutic agents to induce mucosal immune responses and treat lymphatic diseases, respectively. This article describes the anatomical structures and physiological characteristics of the ILS, with an emphasis on enterocytes and microfold (M) cells, which are the main gateways for the transport of particulate delivery vehicles across the intestinal epithelium into the lymphatics. A comprehensive overview of recent advances in the rational engineering of particulate vehicles, along with the challenges and opportunities that they present for improving ILS drug delivery, is provided, and the mechanisms by which such vehicles target and transport through enterocytes or M cells are discussed. The use of naturally sourced materials, such as yeast microcapsules and their derived polymeric β-glucans, as novel ILS-targeting delivery vehicles is also reviewed. Such use is the focus of an emerging field of research. Their potential use in the oral delivery of nucleic acids, such as mRNA vaccines, is proposed.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Kuan-Hung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Po-Kai Luo
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Shun-Hao Chuang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Tzu Yu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hsien-Meng Tai
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
12
|
Jiang S, Huang S, Liu J, Zhou Q, Liu X. Attenuation of Porphyromonas Gingival Lipopolysaccharide-Induced Periodontal Ligament Stem Cells Injury and Inflammation by Blocking Cell Pyroptosis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Periodontitis is a chronic inflammation of periodontal tissue, and programmed cell death plays an important role in chronic periodontitis induced by P. gingivalis. Studies have shown that the increased expression of pyroptosis-related NLRP3 inflammasome and the pro-inflammatory
cytokines IL-1β and IL-18 in gingivitis, invasive periodontitis, and chronic periodontitis patients. The present study aimed to investigate whether the inhibition of pyroptosis could protect porphyromonas gingival lipopolysaccharide (pg-LPS)-induced human periodontal ligament stem
cells (hPDLSCs) injury and inflammation. The hPDLSCs were treated with pg-LPS and ATP in the presence of caspase1/4 inhibitor VX765. The cell proliferation and survival were assessed by CCK-8, the osteogenic differentiation capacity was evaluated by Alkaline Phosphatase (ALP) assay and alizarin
red staining. Then, cell apoptosis, cleavage of gasdermin D (GSDMD) and generation of inflammatory cytokines were estimated. Lastly, western blotting was used to detect the expression of potential target proteins. Results showed that the treatment of pg-LPS plus ATP significantly inhibited
the proliferation, survival and osteogenic differentiation of hPDLSCs, while inducing cell apoptosis, pyroptosis and inflammation. However, the presence of VX765 partially recovered the cell proliferation, survival and osteogenic differentiation. At the same time, VX765 inhibited cell apoptosis,
cleavage of GSDMD and generation of inflammatory cytokines. Besides, the expression of related proteins including Bax, Bcl-2, cleaved (c)-caspase3, c-caspase4, c-caspase1, Toll Like Receptor 4, High Mobility Group Box 1 (HMGB1) and NLRP3 was all rescued by VX765. In conclusion, our results
revealed that the blocking of cell pyroptosis could protect hPDLSCs from pg-LPS-induced injury. Therefore, the application of pyroptosis inhibitor may be a valuable therapeutic approach for treating periodontitis.
Collapse
Affiliation(s)
- Shuangfeng Jiang
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, 518035, China
| | - Shanjuan Huang
- Department of Pediatric Dentistry, Shanghai Ninth People’s Hospital, Shanghai, 200011, China
| | - Jin Liu
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, 518035, China
| | - Qi Zhou
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, 518035, China
| | - Xiaosheng Liu
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, 518035, China
| |
Collapse
|
13
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
14
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|
15
|
Herrera D, Molina A, Buhlin K, Klinge B. Periodontal diseases and association with atherosclerotic disease. Periodontol 2000 2020; 83:66-89. [PMID: 32385870 DOI: 10.1111/prd.12302] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases still account for the majority of deaths worldwide, although significant improvements in survival, after being affected by cardiovascular disease, have been achieved in the last decades. Periodontal diseases are also a common global burden. Several studies have shown a link between cardiovascular disease and periodontitis, although evidence is still lacking regarding the direct cause-effect relation. During the 2012 "Periodontitis and systemic diseases" workshop, the available evidence on the association between cardiovascular and periodontal diseases was discussed, covering biologic plausibility and clinical studies. The objective of the present narrative review was to update the previous reviews presented at the 2012 workshop, following similar methodological approaches, aiming to critically assess the available evidence. With regard to biologic plausibility, two aspects were reviewed: (a) for microbiologic mechanisms, assessing periodontal bacteria as a contributing factor to atherosclerosis based on seven "proofs," substantial evidence was found for Proofs 1 through 6, but not for Proof 7 (periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models), concluding that periodontal pathogens can contribute to atherosclerosis; (b) mechanistic studies, addressing five different inflammatory pathways that could explain the links between periodontitis and cardiovascular disease with the addition of some extra pathways , suggest an association between both entities, based on the presence of higher levels of these inflammatory markers in patients with periodontitis and cardiovascular disease, vs healthy controls, as well as on the evidence that periodontal treatment reduces serum levels of these mediators. When evidence from clinical studies was analyzed, two aspects were covered: (a) epidemiologic studies support the estimation that the incidence of atherosclerotic disease is higher in individuals with periodontitis than in individuals with no reported periodontitis, irrespective of many common risk factors, but with a substantial variability in the definitions used in reporting of exposure to periodontal diseases in different studies; (b) intervention trials have shown that periodontal therapy can reduce serum inflammatory mediators, improve the lipids profile, and induce positive changes in other cardiovascular disease surrogate measures, but no evidence is available to support that adequate periodontal therapy is able to reduce the risk for cardiovascular diseases, or the incidence of cardiovascular disease events in periodontitis patients.
Collapse
Affiliation(s)
- David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense, Madrid, Spain
| | - Ana Molina
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense, Madrid, Spain
| | - Kare Buhlin
- Perio Section, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bjorn Klinge
- Perio Section, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Periodontology, Faculty of Odontology, Malmo University, Malmo, Sweden
| |
Collapse
|
16
|
Aral K, Milward MR, Kapila Y, Berdeli A, Cooper PR. Inflammasomes and their regulation in periodontal disease: A review. J Periodontal Res 2020; 55:473-487. [PMID: 31960443 DOI: 10.1111/jre.12733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/15/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β), which is secreted by host tissues leading to periodontal tissue inflammation, is a major pro-inflammatory cytokine in the pathogenesis of periodontal disease. The conversion of pro-IL-1β into its biologically active form is controlled by multiprotein complexes named as inflammasomes, which are key regulator of host defense mechanisms and inflammasome involved diseases, including the periodontal diseases. Inflammasomes are regulated by different proteins and processes, including pyrin domain (PYD)-only proteins (POPs), CARD-only proteins (COPs), tripartite motif family proteins (TRIMs), autophagy, and interferons. A review of in vitro, in vivo, and clinical data from these publications revealed that several inflammasomes including (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) have been found to be involved in periodontal disease pathogenesis. To the best of our knowledge, the current article provides the first review of the literature focusing on studies that evaluated both inflammasomes and their regulators in periodontal disease. An upregulation for inflammasomes and a downregulation of inflammasome regulator proteins including POPs, COPs, and TRIMs have been reported in periodontal disease. Although interferons (types I and II) and autophagy have been found to be involved in periodontal disease, their possible role in inflammasome activation has not evaluated yet. Modulating the excessive inflammatory response by the use of inflammasome regulators may have potential in the management of periodontal disease.
Collapse
Affiliation(s)
- Kübra Aral
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham, UK.,Republic of Turkey Ministry of Health, Ankara, Turkey
| | - Michael R Milward
- Periodontology, School of Dentistry, University of Birmingham, Birmingham, UK
| | - Yvonne Kapila
- Orofacial Sciences, The School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Afig Berdeli
- Molecular Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Paul R Cooper
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham, UK.,Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Romero-Castro NS, Vázquez-Villamar M, Muñoz-Valle JF, Reyes-Fernández S, Serna-Radilla VO, García-Arellano S, Castro-Alarcón N. Relationship between TNF-α, MMP-8, and MMP-9 levels in gingival crevicular fluid and the subgingival microbiota in periodontal disease. Odontology 2019; 108:25-33. [DOI: 10.1007/s10266-019-00435-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
18
|
Yuan HX, Feng XE, Liu EL, Ge R, Zhang YL, Xiao BG, Li QS. 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone attenuates LPS-induced inflammation and ROS production in EA.hy926 cells via HMBOX1 induction. J Cell Mol Med 2018; 23:453-463. [PMID: 30358079 PMCID: PMC6307801 DOI: 10.1111/jcmm.13948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.
Collapse
Affiliation(s)
- Hong-Xia Yuan
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Xiu-E Feng
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - En-Li Liu
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Rui Ge
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yuan-Lin Zhang
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Bao-Guo Xiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Qing-Shan Li
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| |
Collapse
|
19
|
Kang W, Shang L, Wang T, Liu H, Ge S. Rho-kinase inhibitor Y-27632 downregulates LPS-induced IL-6 and IL-8 production via blocking p38 MAPK and NF-κB pathways in human gingival fibroblasts. J Periodontol 2018; 89:883-893. [DOI: 10.1002/jper.17-0571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| | - Lingling Shang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| | - Hongrui Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| |
Collapse
|
20
|
Li R, Wang J, Li R, Zhu F, Xu W, Zha G, He G, Cao H, Wang Y, Yang J. ATP/P2X7-NLRP3 axis of dendritic cells participates in the regulation of airway inflammation and hyper-responsiveness in asthma by mediating HMGB1 expression and secretion. Exp Cell Res 2018; 366:1-15. [PMID: 29545090 DOI: 10.1016/j.yexcr.2018.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/18/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022]
Abstract
The ATP/P2X7 axis of dendritic cells (DCs) mediates the activation of NLRP3 inflammasome and promotes secretion of interleukin (IL)-1β and IL-18 to induce T helper (Th) 2, Th17 differentiation in the pathogenesis of asthma. NLRP3 inflammasome also regulates high mobility protein 1 (HMGB1) release in DCs. Recent studies demonstrated the correlation between HMGB1 expression and airway inflammation and hyper-responsiveness (AHR) in asthma. However, the relationship between the ATP/P2X7-NLRP3 axis and HMGB1 in DCs in asthma is still unclear. ATP, apyrase, Brilliant Blue G, BzATP, glibenclamide, and Z-YVAD-FMK were administered to ovalbumin (OVA)-induced murine asthmatic model. For in vitro studies, bone marrow-derived mononuclear cells (BMDCs) were primed with LPS and stimulated with the same reagents. Activation of the ATP/P2X7 axis aggravated airway inflammation and AHR in the lung and induced Th2, Th17 polarization in asthmatic mice. Inhibition of NLRP3 inflammasome weakened cardinal features of asthma and blocked Th2, Th17 polarization. In vitro and vivo, ATP/P2X7 axis activated NLRP3 inflammasome and induced HMGB1 expression and release from DCs. Inhibition of NLRP3 inflammasome reduced HMGB1 expression and release. The ATP/P2X7-NLRP3 axis of DCs participates in mediating airway inflammation, AHR, and promoting Th2, Th17 inflammatory responses in asthmatic mice by inducing HMGB1 expression and secretion.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, PR China
| | - Jing Wang
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Ruifang Li
- Department of Neurology, Hubei third people's Hospital, Wuhan, Hubei 430033, PR China
| | - Fangfang Zhu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Wenjuan Xu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, PR China
| | - Gan Zha
- Department of Respiratory Medicine, People's Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Guangzhen He
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, PR China
| | - Huan Cao
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, PR China
| | - Yimin Wang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, PR China
| | - Jiong Yang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
21
|
Exosomes: Outlook for Future Cell-Free Cardiovascular Disease Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 998:285-307. [PMID: 28936747 DOI: 10.1007/978-981-10-4397-0_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the number one cause of death globally with an estimated 7.4 million people dying from coronary heart disease. Studies have been conducted to identify the therapeutic utility of exosomes in many diseases, including cardiovascular diseases. It has been demonstrated that exosomes are immune modulators, can be used to treat cardiac ischemic injury, pulmonary hypertension and many other diseases, including cancers. Exosomes can be used as a biomarker for disease and cell-free drug delivery system for targeting the cells. Many studies suggest that exosomes can be used as a cell-free vaccine for many diseases. In this chapter, we explore the possibility of future therapeutic potential of exosomes in various cardiovascular diseases.
Collapse
|
22
|
Nativel B, Couret D, Giraud P, Meilhac O, d'Hellencourt CL, Viranaïcken W, Da Silva CR. Porphyromonas gingivalis lipopolysaccharides act exclusively through TLR4 with a resilience between mouse and human. Sci Rep 2017; 7:15789. [PMID: 29150625 PMCID: PMC5693985 DOI: 10.1038/s41598-017-16190-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Porphyromonas gingivalis is a key bacterium in chronic periodontitis, which is associated with several chronic inflammatory diseases. Lipopolysaccharides from P. gingivalis (Pg LPS) can activate multiple cell types via the production of pro-inflammatory cytokines. The receptors for Pg LPS have initially been reported as TLR2, contrasting with the well-studied TLR4 receptor for E. coli LPS; this observation remains controversial since synthetic Pg lipid A activates TLR4 but not TLR2. Despite this observation, the dogma of Pg LPS-mediated TLR2 activation remains the basis of many hypotheses and result interpretations. In the present work, we aimed at determining whether TLR4 or TLR2, or both, mediate Pg LPS pro-inflammatory activity using Pg LPS with different grades of purity, instead of synthetic lipid A from Pg LPS. Here we show that Pg LPS 1) acts exclusively through TLR4, and 2) are differently recognized by mouse and human TLR4 both in vitro and in vivo. Taken together, our results suggest that Pg LPS activity is mediated exclusively through TLR4 and only weakly induces proinflammatory cytokine secretion in mouse models. Caution should be taken when extrapolating data from mouse systems exposed to Pg or Pg LPS to humans.
Collapse
Affiliation(s)
- Brice Nativel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,CHU de La Réunion, Unité de soins intensifs neurologiques, Saint Pierre de La Réunion, France
| | - Pierre Giraud
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Wildriss Viranaïcken
- Université de La Réunion, CNRS UMR9192, INSERM U1187, IRD UMR249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France.
| | - Christine Robert Da Silva
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.
| |
Collapse
|
23
|
Che C, Liu J, Ma L, Xu H, Bai N, Zhang Q. LOX-1 is involved in IL-1β production and extracellular matrix breakdown in dental peri-implantitis. Int Immunopharmacol 2017; 52:127-135. [PMID: 28898769 DOI: 10.1016/j.intimp.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore whether lectin-type oxidized LDL receptor 1 (LOX-1), interleukin 1 beta (IL-1β), matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) are involved in the nosogenesis of human dental peri-implantitis and determine the role of LOX-1 in IL-1β, MMP2 and MMP9 production in response to Porphyromonas gingivalis. METHODS Peri-implant crevicular fluid (PICF) was collected from ten patients with healthy implants and ten patients with peri-implantitis. The LOX-1 protein in PICF was detected by Western-blot, and the expression of LOX-1 in superficial gingiva of peri-implantitis patients was detected by immunofluorescence staining. The IL-1β, MMP2 and MMP9 proteins in PICF were detected by enzyme-linked immunosorbent assay (ELISA). THP-1 macrophages were pretreated with neutralizing antibody (LOX-1) and inhibitors (LOX-1 and c-Jun N-terminal kinase, JNK) to evaluate the role of LOX-1 and JNK in IL-1β production, as well as the role of LOX-1 in MMP2 and MMP9 production in response to P. gingivalis by quantitative polymerase chain reaction (RT-PCR) and Western-blot. RESULTS LOX-1, IL-1β, MMP2 and MMP9 increased in PICF of peri-implantitis patients and in THP-1 macrophages on P. gingivalis stimulation. IL-1β, MMP2 and MMP9 production in response to P. gingivalis in THP-1 macrophages was dependent on LOX-1. JNK was responsible for LOX-1 induced IL-1β production as a result of P. gingivalis infection. CONCLUSION LOX-1 is involved in IL-1β production and extracellular matrix breakdown is a novel inflammatory pathway trigger and potential drug target in human dental peri-implantitis.
Collapse
Affiliation(s)
- Chengye Che
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huirong Xu
- Department of Pathology, ZiBo Central Hospital, ZiBo, Shandong Province, China
| | - Na Bai
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
24
|
Kang W, Wang T, Hu Z, Liu F, Sun Y, Ge S. Metformin Inhibits Porphyromonas gingivalis Lipopolysaccharide-Influenced Inflammatory Response in Human Gingival Fibroblasts via Regulating Activating Transcription Factor-3 Expression. J Periodontol 2017; 88:e169-e178. [PMID: 28548885 DOI: 10.1902/jop.2017.170168] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic periodontitis, one of the most prevalent oral diseases, is associated with Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) infection and has profound effects on type 2 diabetes mellitus (t2DM). Metformin, a well-known antidiabetic agent, has been reported to exert anti-inflammatory effects on various cells. This study aims to investigate the role of metformin on LPS-influenced inflammatory response in human gingival fibroblasts (HGFs). METHODS Dose-dependent additive effects of metformin on LPS-influenced HGFs were detected. Cell-counting assay was used to determine effects of metformin and LPS on viability of HGFs. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to detect levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in differently treated cells. Activating transcription factor-3 (ATF3) small interfering (si)RNA transfection was used to determine the mechanism of metformin action, and the transfection efficiency was observed by fluorescence microscope. Effects of ATF3 knockdown were determined by qRT-PCR and Western blot. RESULTS Results showed that 5 μg/mL Pg LPS and 0.1, 0.5, and 1 mM metformin exhibited no toxicity to HGFs, and metformin inhibited LPS-influenced IL-1β, IL-6, and TNF-α production in a dose-dependent manner. Metformin and LPS could synergistically facilitate ATF3 expression, and ATF3 knockdown abolished inhibitory effects of metformin on LPS-influenced inflammatory cytokine production in HGFs. CONCLUSION The present study confirms that metformin suppresses LPS-enhanced IL-6, IL-1β, and TNF-α production in HGFs via increasing ATF3 expression.
Collapse
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Zhekai Hu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China
| | - Feng Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| |
Collapse
|