1
|
Chowra UK, Regon P, Kobayashi Y, Koyama H, Panda SK. Characterization of Al 3+-toxicity responses and molecular mechanisms underlying organic acid efflux in Vigna mungo (L.) Hepper. PLANTA 2024; 260:116. [PMID: 39400747 DOI: 10.1007/s00425-024-04547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Aluminium (Al3+) toxicity in acidic soils poses a significant challenge for crop cultivation and reduces crop productivity. The primary defense mechanism against Al3+ toxicity involves the activation of organic acid secretion. In this study, responses of 9 Vigna mungo cultivars to Al3+ toxicity were investigated, with a particular emphasis on the root system and crucial genes involved in Al3+ tolerance using molecular cloning and expression analysis. Sensitive blackgram-KM2 cultivars exposed to 100-µM Al3+ toxicity for 72 h exhibited a root-growth inhibition of approximately 66.17%. Significant loss of membrane integrity and structural deformative roots were found to be the primary symptoms of Al3+ toxicity in blackgram. MATE (Multidrug and Toxic Compound Extrusion) and ALS3 (Aluminium Sensitive 3) genes were successfully cloned from a sensitive blackgram cv KM2 with phylogenetic analysis revealing their evolutionary relationship to Vigna radiata and Glycine max. The MATE gene is mainly localized in the plasma membrane, and highly expressed under Al3+, thus suggesting its role in transports of citrate-Al3+ complexes, and detoxifying Al3+ within plant cells. In addition, ALS3 was also induced under Al3+ toxicity, which codes the UDP-glucose transporter and is required for the maintenance of ions homeostasis. In summary, this study highlights the understanding of Al3+ toxicity and underlying molecular mechanisms linked to the efflux of organic acid in blackgram, ultimately aiding the framework for the development of strategies to enhance the resilience of blackgram and other pulse crops in Al-rich soils.
Collapse
Affiliation(s)
| | - Preetom Regon
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Sanjib Kumar Panda
- Plant Functional Genomics and Molecular Biology Laboratory, Department of Biochemistry, Central University of Rajasthan, Ajmer, Bandarsindri, Rajasthan, 305817, India.
| |
Collapse
|
2
|
Agar G, Yagci Ergul S, Yuce M, Arslan Yuksel E, Aydin M, Taspinar MS. Ellagic acid alleviates aluminum and/or drought stress through morpho-physiochemical adjustments and stress-related gene expression in Zea mays L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59521-59532. [PMID: 39358657 DOI: 10.1007/s11356-024-35185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
This study investigates the potential of ellagic acid (EA) to mitigate the effects of drought and aluminum (Al3+) stresses in maize by examining various morpho-physiochemical parameters and gene expressions. Maize (Zea mays L.) serves as a crucial global food source, but its growth and productivity are significantly hindered by drought and aluminum (Al3+) stresses, which lead to impaired root development, elevated levels of reactive oxygen species (ROS), diminished photosynthetic efficiency, and reduced water and mineral absorption. Recently, ellagic acid (EA), a polyphenolic compound with potent antioxidant properties, has been identified for its role in regulating plant growth and enhancing stress tolerance mechanisms. However, the specific mechanisms through which EA contributes to Al3+ and/or drought tolerance in plants remain largely unknown. The present study was conducted to examine the defensive role of EA (100 μg/mL) in some morpho-physiochemical parameters and the expression profiles of some stress-related genes (ZmCPK22, ZmXTH1, ZmHIPP4, ZmSGR, ZmpsbA, ZmAPX1, and ZmGST1) in drought (polyethylene glycol-6000 (PEG-6000), - 0.6 MPa) and aluminum chloride (AlCl3, 60 μM) stressed Zea mays Ada 523 grown in nutrient solution. Our results indicated that drought and aluminum chloride stresses affected root length, shoot height, H2O2 content, chlorophyll content (SPAD), electrolyte leakage (EL), and relative water content (RWC) of maize with several significant (P < 0.05) shifts up and down. Conversely, EA (100 μg/mL) treatment had a mitigating effect on these parameters. Moreover, EA also mitigated the antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)), and regulated the expressions of aforementioned genes. These findings determined that EA treatment could efficiently improve the gene expressions and morpho-physiochemical parameters under drought and/or Al3+ stresses, thereby increasing the seedlings' adaptability to these stresses.
Collapse
Affiliation(s)
- Guleray Agar
- Faculty of Science, Department of Biology, Ataturk University, 25240, Erzurum, Turkey
| | - Semra Yagci Ergul
- Faculty of Medicine, Department of Medicinal Genetics, Kafkas University, 36000, Kars, Turkey
| | - Merve Yuce
- Faculty of Agriculture, Department of Horticulture, Ataturk University, 25240, Erzurum, Turkey
| | - Esra Arslan Yuksel
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey.
| | - Murat Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
3
|
Yazicioglu H, Hocaoglu-Ozyigit A, Ucar B, Yolcu S, Yalcin IE, Suner S, Ozyigit II. Physiological alterations and genotoxic damage under combined aluminum and cadmium treatments in Bryophyllum daigremontianum clones. Mol Biol Rep 2024; 51:1019. [PMID: 39331170 DOI: 10.1007/s11033-024-09936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Cadmium (Cd) is one of the most important stress factors in plants, with its high mobility in soils, ease of uptake by plants and toxicity at low concentrations. Aluminum (Al) is another phytotoxic metal, the accumulation of which is a crucial agricultural complication for plants, especially in acidic soils. METHODS AND RESULTS In this study, Bryophyllum daigremontianum clone plantlets were obtained from bulbiferous spurs of a mother plant and separated into four different groups and watered with Hoagland solution and mixtures containing 0, 50, 100, and 200 µM of AlCl3 and CdCl2 each for 75 days. Control groups were maintained under the same conditions without Al and Cd treatment. To simulate acidic soil conditions typical of environments where Al toxicity is prevalent, the soil pH was adjusted to 4.5 by spraying the sulphuric acid (0.2%) with 2-day intervals after each irrigation day. After harvesting, growth parameters such as shoot length and thickness, root, shoot and leaf fresh and dry weights were measured, along with physiological parameters like mineral nutrient status, total protein, and photosynthetic pigment concentrations (chlorophyll a, b, a/b, total chlorophyll, and carotenoid) in both control and experimental groups of B. daigremontianum clones. In response to Al and Cd applications, the plant height, shoot thickness and carotenoid levels were declined, whereas the increments were found in leaf/shoot/root fresh weight, root dry weight, and total protein content. Moreover, differences in genomic alterations were investigated using 21 ISSR and 19 RAPD markers, which both have been used extensively as genetic markers to specify phylogenetic relationships among different cultivars as well as stress-dependent genetic alterations. RAPD primers were used due to their arbitrary sequences and the unknown genome sequence of the plant material used. In contrast, ISSR primers were preferred for a genome-wide genotoxic effect scan via non-arbitrary and more common genetic markers. Distinct types of band polymorphisms detected via RAPD and ISSR markers include band loss, and new band formation under a combination of Al and Cd stress. 17 ISSR and 14 RAPD primers generated clear electrophoretic bands. CONCLUSION The study revealed that combined application of Al and Cd affect B. daigremontianum clones in terms of growth, physiology and genotoxicity related to the increasing concentrations.
Collapse
Affiliation(s)
- Hulya Yazicioglu
- Institute of Pure and Applied Sciences, Marmara University, Istanbul, 34722, Türkiye
| | | | - Bihter Ucar
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Türkiye
| | - Salim Suner
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye
| | - Ibrahim Ilker Ozyigit
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye.
- Environmental Issues Application and Research Center, Marmara University, Istanbul, 34722, Türkiye.
| |
Collapse
|
4
|
Bartholomé J, Ospina JO, Sandoval M, Espinosa N, Arcos J, Ospina Y, Frouin J, Beartschi C, Ghneim T, Grenier C. Genomic selection for tolerance to aluminum toxicity in a synthetic population of upland rice. PLoS One 2024; 19:e0307009. [PMID: 39173048 PMCID: PMC11341055 DOI: 10.1371/journal.pone.0307009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024] Open
Abstract
Over half of the world's arable land is acidic, which constrains cereal production. In South America, different rice-growing regions (Cerrado in Brazil and Llanos in Colombia and Venezuela) are particularly affected due to high aluminum toxicity levels. For this reason, efforts have been made to breed for tolerance to aluminum toxicity using synthetic populations. The breeding program of CIAT-CIRAD is a good example of the use of recurrent selection to increase productivity for the Llanos in Colombia. In this study, we evaluated the performance of genomic prediction models to optimize the breeding scheme by hastening the development of an improved synthetic population and elite lines. We characterized 334 families at the S0:4 generation in two conditions. One condition was the control, managed with liming, while the other had high aluminum toxicity. Four traits were considered: days to flowering (FL), plant height (PH), grain yield (YLD), and zinc concentration in the polished grain (ZN). The population presented a high tolerance to aluminum toxicity, with more than 72% of the families showing a higher yield under aluminum conditions. The performance of the families under the aluminum toxicity condition was predicted using four different models: a single-environment model and three multi-environment models. The multi-environment models differed in the way they integrated genotype-by-environment interactions. The best predictive abilities were achieved using multi-environment models: 0.67 for FL, 0.60 for PH, 0.53 for YLD, and 0.65 for ZN. The gain of multi-environment over single-environment models ranged from 71% for YLD to 430% for FL. The selection of the best-performing families based on multi-trait indices, including the four traits mentioned above, facilitated the identification of suitable families for recombination. This information will be used to develop a new cycle of recurrent selection through genomic selection.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Alliance Bioversity CIAT, Cali, Colombia
| | | | | | - Natalia Espinosa
- Alliance Bioversity CIAT, Cali, Colombia
- FEDEARROZ–Fondo Nacional del Arroz, Bogotá, Colombia
| | - Jairo Arcos
- HarvestPlus Program, Alliance Bioversity CIAT, Cali, Colombia
| | | | - Julien Frouin
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Cédric Beartschi
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Thaura Ghneim
- Departamento de Ciencias Biológicas, Universidad ICESI, Cali, Colombia
| | - Cécile Grenier
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Miao S, Lu J, Zhang G, Jiang J, Li P, Qian Y, Wang W, Xu J, Zhang F, Zhao X. Candidate Genes and Favorable Haplotypes Associated with Iron Toxicity Tolerance in Rice. Int J Mol Sci 2024; 25:6970. [PMID: 39000075 PMCID: PMC11241266 DOI: 10.3390/ijms25136970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Iron (Fe) toxicity is a major issue adversely affecting rice production worldwide. Unfortunately, the physiological and genetic mechanisms underlying Fe toxicity tolerance in rice remain relatively unknown. In this study, we conducted a genome-wide association study using a diverse panel consisting of 551 rice accessions to identify genetic mechanisms and candidate genes associated with Fe toxicity tolerance. Of the 29 quantitative trait loci (QTL) for Fe toxicity tolerance detected on chromosomes 1, 2, 5, and 12, five (qSH_Fe5, qSFW_Fe2.3, qRRL5.1, qRSFW1.1, and qRSFW12) were selected to identify candidate genes according to haplotype and bioinformatics analyses. The following five genes were revealed as promising candidates: LOC_Os05g40160, LOC_Os05g40180, LOC_Os12g36890, LOC_Os12g36900, and LOC_Os12g36940. The physiological characteristics of rice accessions with contrasting Fe toxicity tolerance reflected the importance of reactive oxygen species-scavenging antioxidant enzymes and Fe homeostasis for mitigating the negative effects of Fe toxicity on rice. Our findings have clarified the genetic and physiological mechanisms underlying Fe toxicity tolerance in rice. Furthermore, we identified valuable genetic resources for future functional analyses and the development of Fe toxicity-tolerant rice varieties via marker-assisted selection.
Collapse
Affiliation(s)
- Siyu Miao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
| | - Jingbing Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
| | - Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Jing Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
| | - Pingping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
| | - Yukang Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (S.M.); (J.L.); (J.J.); (P.L.); (Y.Q.); (W.W.); (J.X.)
| |
Collapse
|
6
|
Belachew KY, Skovbjerg CK, Andersen SU, Stoddard FL. Phenotyping revealed tolerance traits and genotypes for acidity and aluminum toxicity in European Vicia faba L. PHYSIOLOGIA PLANTARUM 2024; 176:e14404. [PMID: 38922894 DOI: 10.1111/ppl.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.
Collapse
Affiliation(s)
- Kiflemariam Y Belachew
- Viikki Plant Science Centre, Department of Agricultural Sciences, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Department of Horticulture, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Frederick L Stoddard
- Viikki Plant Science Centre, Department of Agricultural Sciences, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Ningombam L, Hazarika BN, Singh YD, Singh RP, Yumkhaibam T. Aluminium stress tolerance by Citrus plants: a consolidated review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:705-718. [PMID: 38846464 PMCID: PMC11150227 DOI: 10.1007/s12298-024-01457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Aluminium, a metallic element abundant in soils as aluminosilicates minerals, poses a toxic threat to plants, particularly in acidic soil conditions, thereby affecting their growth and development. Given their adaptability to diverse soil and climate conditions, Citrus plants have gained significant attention regarding their tolerance to Aluminium toxicity. In the North-eastern region of India, where soils are often slightly acidic with elevated aluminium levels, Citrus species are predominantly found. Understanding the tolerance mechanisms of these Citrus fruits and screening wild Citrus species for their adaptability to abiotic stresses is crucial for enhancing fruit production. Numerous investigations have demonstrated that Citrus species exhibit remarkable tolerance to aluminium contamination, surpassing the typical threshold of 30% incidence. When cultivated in acidic soils, Citrus plants encounter restricted root growth and reduced nutrient and moisture uptake, leading to various nutrient deficiency symptoms. However, promisingly, certain Citrus species such as Citrus jambhiri (Rough lemon), Poncirus trifoliata, Citrus sinensis, and Citrus grandis have shown considerable aluminium tolerance. This comprehensive review delves into the subject of aluminium toxicity and its implications, while also shedding light on the mechanisms through which Citrus plants develop tolerance to this element.
Collapse
Affiliation(s)
- Linthoingambi Ningombam
- Department of Fruit Science, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| | - B. N. Hazarika
- Department of Fruit Science, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| | - Yengkhom Disco Singh
- Department of Post Harvest Technology, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| | - Ram Preet Singh
- Department of Fruit Science, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| | - Tabalique Yumkhaibam
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agriculture University, Pasighat, Arunachal Pradesh 791102 India
| |
Collapse
|
8
|
Singh D, Maithreyi S, Taunk J, Singh MP. Physiological and proteomic characterization revealed the response mechanisms underlying aluminium tolerance in lentil (Lens culinaris Medikus). PHYSIOLOGIA PLANTARUM 2024; 176:e14298. [PMID: 38685770 DOI: 10.1111/ppl.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 05/02/2024]
Abstract
Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shubhra Maithreyi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Kumar S, Shukla V, Tripathi YN, Aamir M, Divyanshu K, Yadav M, Upadhyay RS. Biochemical changes, antioxidative profile, and efficacy of the bio-stimulant in plant defense response against Sclerotinia sclerotiorum in common bean ( Phasaeolus vulgaris L.). Heliyon 2024; 10:e23030. [PMID: 38169743 PMCID: PMC10758741 DOI: 10.1016/j.heliyon.2023.e23030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Sclerotinia sclerotiorum, is a highly destructive pathogen with widespread impact on common bean (Phasaeolus vulgaris L.) worldwide. In this work, we investigated the efficacy of microbial consortia in bolstering host defense against sclerotinia rot. Specifically, we evaluated the performance of a microbial consortia comprising of Trichoderma erinaceum (T51) and Trichoderma viride (T52) (referred to as the T4 treatment) in terms of biochemical parameters, alleviation of the ROS induced cellular toxicity, membrane integrity (measured as MDA content), nutrient profiling, and the host defense-related antioxidative enzyme activities. Our findings demonstrate a notable enhancement in thiamine content, exhibiting 1.887 and 1.513-fold higher in the T4 compared to the un-inoculated control and the T1 treatment (only S. sclerotiorum treated). Similarly, the total proline content exhibited 3.46 and 1.24-fold higher and the total phenol content was 4.083 and 2.625-fold higher in the T4 compared to the un-inoculated control and the T1 treatment, respectively. Likewise, a general trend was found for other antioxidative and non-oxidative enzyme activities. However, results found were approximately similar in T2 treatment (bioprimed with T51) or T3 treatments (bioprimed with T52). Further, host defense attribute (survival rate) under the pathogen challenged condition was maximum in the T4 (15.55 % disease incidence) compared to others. Therefore, bio priming with consortia could be useful in reducing the economic losses incited by S. sclerotiorum in common beans.
Collapse
Affiliation(s)
- Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
- Central Ayurveda Research Institute, Bhubaneswar, 751029, Odisha, India
| | - Vaishali Shukla
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Yashoda Nandan Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mohd Aamir
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mukesh Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Bhattacharjee B, Ali A, Tuteja N, Gill S, Pattanayak A. Identification and expression pattern of aluminium-responsive genes in roots of rice genotype with reference to Al-sensitivity. Sci Rep 2023; 13:12184. [PMID: 37500702 PMCID: PMC10374657 DOI: 10.1038/s41598-023-39238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Aluminium (Al) is the third most abundant element in the Earth's crust. Globally, acidic soil occupies 30-40% of ice-free land areas; Al toxicity is a major threat to crops. The first symptom of Al toxicity is the inhibition of root growth followed by poor root hair development, swollen root apices, necrosis of leaves and reduced yield. Although Rice (Oryza sativa) is an Al toxicity tolerant crop, it shows considerable variations among rice genotypes to Al exposure. Therefore, it is pertinent to understand Al toxicity and underlying mechanisms for Al tolerance in Rice. In the present study, 63 rice genotypes screened under Al stress showed significant variations of root growth. Expression stability of endogenous control genes (ECGs) revealed sulphite reductase (SR) as the most stable ECG that can be used as a reference gene for quantitative real-time PCR (qRT-PCR). Expression patterns of Al-responsive genes suggest genes associated with cytoskeletal dynamics, metabolism, and ion transporter could play significant roles in Al adaptation and tolerance in rice. The results showed Motodhan, Vietnam-1, Yimyu and N-861 as Al-toxicity tolerant, while Lespah, RCPL-13, VL-31329, and UPR2919-141-1 as most Al-sensitive genotypes among the studied rice lines cultivated in North-East India.
Collapse
Affiliation(s)
- Bijoya Bhattacharjee
- Division of Crop Science, ICAR Research Complex for NEH Region, Barapani, Meghalaya, India.
| | - Akib Ali
- Division of Crop Science, ICAR Research Complex for NEH Region, Barapani, Meghalaya, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sarvajeet Gill
- Centre for Biotechnology, Maharishi Dayanand University, Rohtak, Haryana, India
| | | |
Collapse
|
11
|
Haydar MS, Ali S, Mandal P, Roy D, Roy MN, Kundu S, Kundu S, Choudhuri C. Fe-Mn nanocomposites doped graphene quantum dots alleviate salt stress of Triticum aestivum through osmolyte accumulation and antioxidant defense. Sci Rep 2023; 13:11040. [PMID: 37419934 PMCID: PMC10328949 DOI: 10.1038/s41598-023-38268-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
An investigation was carried out to evaluate the effect of graphene quantum dots (GQD) and its nanocomposites on germination, growth, biochemical, histological, and major ROS detoxifying antioxidant enzyme activities involved in salinity stress tolerance of wheat. Seedlings were grown on nutrient-free sand and treatment solutions were applied through solid matrix priming and by foliar spray. Control seedlings under salinity stress exhibited a reduction in photosynthetic pigment, sugar content, growth, increased electrolyte leakage, and lipid peroxidation, whereas iron-manganese nanocomposites doped GQD (FM_GQD) treated seedlings were well adapted and performed better compared to control. Enzymatic antioxidants like catalase, peroxidase, glutathione reductase and NADPH oxidase were noted to increase by 40.5, 103.2, 130.19, and 141.23% respectively by application of FM_GQD. Histological evidence confirmed a lower extent of lipid peroxidation and safeguarding the plasma membrane integrity through osmolyte accumulation and redox homeostasis. All of these interactive phenomena lead to an increment in wheat seedling growth by 28.06% through FM_GQD application. These findings highlight that micronutrient like iron, manganese doped GQD can be a promising nano-fertilizer for plant growth and this article will serve as a reference as it is the very first report regarding the ameliorative role of GQD in salt stress mitigation.
Collapse
Affiliation(s)
- Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Palash Mandal
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
- Department of Chemistry, Alipurduar University, Alipurduar, West Bengal, 734013, India
| | - Sourav Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Sudipta Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Chandrani Choudhuri
- Department of Botany, North Bengal St. Xavier's College, University of North Bengal, Rajganj, Jalpaiguri, West Bengal, 735134, India.
| |
Collapse
|
12
|
Liang X, Qian R, Ou Y, Wang D, Lin X, Sun C. Lipid peroxide-derived short-chain aldehydes promote programmed cell death in wheat roots under aluminum stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130142. [PMID: 36265378 DOI: 10.1016/j.jhazmat.2022.130142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Lipid peroxidation is a primary event in plant roots exposed to aluminum (Al) toxicity, which leads to the formation of reactive aldehydes. Current evidence demonstrates that the resultant aldehydes are integrated components of cellular damage in plants. Here, we investigated the roles of aldehydes in mediating Al-induced damage, particularly cell death, using two wheat genotypes with different Al resistances. Aluminum treatment significantly induced cell death, which was accompanied by decreased root activity and cell length. Al-induced cell death displayed granular nuclei and internucleosomal fragmentation of nuclear DNA, suggesting these cells underwent programmed cell death (PCD). During this process, caspase-3-like protease activity was extensively enhanced and showed a significant difference between these two wheat genotypes. Further experiments showed that Al-induced cell death was positively correlated with aldehydes levels. Al-induced representative diagnostic markers for PCD, such as TUNEL-positive nuclei and DNA fragmentation, were further enhanced by the aldehyde donor (E)-2-hexenal, but significantly suppressed by the aldehyde scavenger carnosine. As the crucial executioner of Al-induced PCD, the activity of caspase-3-like protease was further enhanced by (E)-2-hexenal but inhibited by carnosine in wheat roots. These results suggest that reactive aldehydes sourced from lipid peroxidation mediate Al-initiated PCD probably through activating caspase-3-like protease in wheat roots.
Collapse
Affiliation(s)
- Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Ofoe R, Thomas RH, Asiedu SK, Wang-Pruski G, Fofana B, Abbey L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1085998. [PMID: 36714730 PMCID: PMC9880555 DOI: 10.3389/fpls.2022.1085998] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Raymond H. Thomas
- School of Science and the Environment, Memorial University of Newfoundland, Grenfell Campus, Corner Brook, NL, Canada
| | - Samuel K. Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Bourlaye Fofana
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| |
Collapse
|
14
|
Yoshida CHP, Pacheco AC, de Marcos Lapaz A, de Souza Ferreira C, Dal-Bianco M, Viana JMS, Ribeiro C. Tolerance mechanisms to aluminum in popcorn inbred lines involving aluminum compartmentalization and ascorbate-glutathione redox pathway. PLANTA 2023; 257:28. [PMID: 36592255 DOI: 10.1007/s00425-022-04062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Inbred line 11-133 of popcorn showed the lowest apoplast Al and total Al concentrations and Al-lumogallion complex, associated with a more efficient antioxidant system, mainly due to glutathione metabolism. Popcorn (Zea mays L. var. everta) is largely intended for human consumption. About 40% of the world's arable soils are acidic. In soils acidic, aluminum (Al) ionizes producing the trivalent cation, which is highly toxic to plants. Hence, this work aimed to: (1) evaluate the Al toxicity sites and its effect on the structure of the root tips, (2) quantify Al concentrations in the apoplast and symplast of the roots, and (3) to elucidate the modulation on the activity of antioxidant enzymes and metabolites of the ascorbate-glutathione cycle in two popcorn inbred lines (ILs) 11-133 and 11-60, classified as tolerant and sensitive to this metal, respectively. Aluminum toxicity did not affect the shoot growth; however, there was a yellowing of the oldest leaf blade only in 11-60. The better performance of 11-133 is related to lower apoplastic and total Al concentrations and Al accumulation in the root associated with a lower fluorescence of Al-lumogallion complex at the root tip, indicating the presence of mechanisms of chelation with this metal. Consequently, this IL showed less change in root morphoanatomy and lower reactive oxygen species and malondialdehyde content, which are associated with a more efficient enzymatic and non-enzymatic system, mainly due to the higher content of the glutathione metabolite and the higher activities of superoxide dismutase, monodehydroascorbate reductase, dehydroascorbate reductase, γ-glutamylcysteine synthetase, and glutathione peroxidase enzymes. Thus, these findings illustrated above indicate how internal mechanisms of detoxification respond to Al in popcorn, which can be used as tolerance biomarkers.
Collapse
Affiliation(s)
| | - Ana Claudia Pacheco
- Departamento de Agronomia, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, 19067-175, Brazil
| | - Allan de Marcos Lapaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Clayton de Souza Ferreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maximiller Dal-Bianco
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Cleberson Ribeiro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
15
|
Phukunkamkaew S, Tisarum R, Sotesaritkul T, Maksup S, Singh HP, Cha-Um S. Aluminum uptake, translocation, physiological changes, and overall growth inhibition in rice genotypes (Oryza sativa) at vegetative stage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:187-197. [PMID: 35635683 DOI: 10.1007/s10653-022-01291-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) contamination in acidic soil is a major problem in paddy field, causing grain yield loss, especially in central plains of Thailand. The objective of this study was to assess Al content in the root tissues, its translocation to the leaves, and Al toxicity in three genotypes of rice, RD35 (local acidic-tolerant), Azucena (positive-check Al-tolerant), and IR64 (high yielding) under 0 (control) or 1 mM AlCl3 (Al toxicity) at pH 4.5. Al content in the root tissues of rice cv. RD35 under 1 mM AlCl3 was peaked at 4.18 mg g‒1 DW and significantly translocated to leaf tissues (0.35 mg g‒1 DW), leading to reduced leaf greenness (SPAD) (by 44.9% over the control) and declined net photosynthetic rate (Pn) (by 54.5% over the control). In contrast, Al level in cvs. Azucena and IR64 was restricted in the roots (2.12 mg g‒1 DW) with low amount of translocation in the leaf tissues (0.26 mg g‒1 DW), resulting in maintained values of SPAD and Pn. In cv. RD35, root and shoot traits including root length, root fresh weight, shoot height, shoot fresh weight, and shoot dry weight in 1 mM Al treatment were significantly dropped by > 35% over the control, whereas these parameters in cvs. Azucena and IR64 were retained. Based on the results, RD35 rice genotype was identified as Al sensitive as it demonstrated Al toxicity in both aboveground and belowground parts, whereas Azucena and IR64 were found tolerant to 1 mM Al as they demonstrated storage of Al in the root tissues to reduce toxicity in the leaf tissues. The study suggests that root traits, shoot attributes, chlorophyll degradation, and photosynthetic reduction can be successfully employed for the screening of Al-tolerant genotypes in rice breeding programs.
Collapse
Affiliation(s)
- Suwanna Phukunkamkaew
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarunyaporn Maksup
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
16
|
Ribeiro C, de Marcos Lapaz A, de Freitas-Silva L, Ribeiro KVG, Yoshida CHP, Dal-Bianco M, Cambraia J. Aluminum promotes changes in rice root structure and ascorbate and glutathione metabolism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:2085-2098. [PMID: 36573146 PMCID: PMC9789240 DOI: 10.1007/s12298-022-01262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In acidic soil, aluminum (Al) ionizes into trivalent cation and becomes highly toxic to plants. Thus, the objectives of this work were (i) to evaluate the Al concentration and identify sites of Al toxicity and its effect on the structure on rice root tips and (ii) to elucidate the adjustments involved in the activities/contents of enzymes/compounds in the roots against Al. For this, two genotypes with contrasting Al tolerance were used. Our results showed that the root length of the tolerant genotype was not affected after Al exposure. We also observed that both the genotypes used strategies to avoid Al uptake, such as the overlap of P and Al in the tolerant genotype and the presence of border cells in the sensitive genotype, which proved inefficient. In the tolerant genotype, other external Al detoxification mechanisms may have contributed to the lower Al concentration in roots and lower fluorescence of the Al-lumogallion complex. Additionally, both genotypes present the activation of key enzymes to decrease oxidative stress, such as CAT, POX, APX, and DHAR, and a more reducing redox environment, mainly due to the increase in the AA/DHA ratio. However, higher total ascorbate, AA, total glutathione, and GSH contents associated with higher SOD, GPX, and GR activities contributed to the reduction of oxidative stress in the tolerant genotype after Al exposure. Furthermore, there was a strong association between the sensitive genotype to Al concentration, O2 •- content, and MDA amount; therefore, these traits can be used as sensitivity indicators in Al studies.
Collapse
Affiliation(s)
- Cleberson Ribeiro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900 Brazil
| | - Allan de Marcos Lapaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais Brazil
| | | | | | | | - Maximiller Dal-Bianco
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais Brazil
| | - José Cambraia
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900 Brazil
| |
Collapse
|
17
|
Ahmed B, Rizvi A, Syed A, Rajput VD, Elgorban AM, Al-Rejaie SS, Minkina T, Khan MS, Lee J. Understanding the phytotoxic impact of Al 3+, nano-size, and bulk Al 2O 3 on growth and physiology of maize (Zea mays L.) in aqueous and soil media. CHEMOSPHERE 2022; 300:134555. [PMID: 35405193 DOI: 10.1016/j.chemosphere.2022.134555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/10/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The release and accumulation of metal-oxide nanoparticles in soils have threatened terrestrial plants. However, limited knowledge is available on the accumulation of nano-Al2O3 (22 nm), bulk-Al2O3 (167 nm), and Al3+ by maize plants and the subsequent impact on its physiology and growth in agar (0.7% w/v), hydroponic (1X), and soil. Maize plants were cultivated with 0.05-2 mg g-1 or ml-1 of three Al types and their biological attributes, oxidative status, Al bioaccumulation, and translocation were measured. The ICP-MS results revealed a dose-dependent increase (P ≤ 0.05 or ≤0.01) in Al content in maize tissues following nano-Al2O3 and Al3+ exposure, however, plants exposed to bulk-Al2O3 showed no significant uptake of Al. Atomic mapping by EDX during SEM analysis and TEM revealed varied distributions of nano-Al2O3 from roots to aerial parts and intracellular transportation. Al deposition in tissues followed the order: Al3+ > nano-Al2O3 > bulk-Al2O3 and therefore, a similar trend of toxicity was observed for seed germination, the emergence of plant organs, length, biomass accumulation, total chlorophyll, phosphorus content, and total soluble protein. Oxidative stress was profoundly induced dose-dependently and was highest at 2 mg ml-1 or g-1 of Al3+ and nano-Al2O3 when superoxide radical formation, proline induction, activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (GPX), and glutathione reductase (GR) and membrane lipid peroxidation were measured. Aluminum toxicity was found higher in hydroponically grown maize compared to soil-grown maize. Forty days exposure in soil showed greater inhibition of maize growth compared to 20 days exposure. This study is significant in understanding the maize response to different Al types in soil and soil-free media.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Asfa Rizvi
- Department of Botany, Jamia Hamdard University, New Delhi, 110062, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, P.O. Box 55760, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
18
|
Dawood MFA, Tahjib-Ul-Arif M, Sohag AAM, Abdel Latef AAH. Fluoride mitigates aluminum-toxicity in barley: morpho-physiological responses and biochemical mechanisms. BMC PLANT BIOLOGY 2022; 22:287. [PMID: 35698026 PMCID: PMC9190151 DOI: 10.1186/s12870-022-03610-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND To our knowledge, the role of exogenous fluoride (F-) on aluminum (Al)-stress mitigation in plants has not been investigated yet. In this experiment, barley (Hordeum vulgaris) seedlings were exposed to excessive Al3+ concentrations (aluminum chloride, 0.5, 1.0, 2.0, 3.0, and 4.0 mM) with and without fluoride (0.025% sodium fluoride) to explore the possible roles of fluoride on the alleviation of Al-toxicity. RESULTS Overall, Al-stress caused inhibition of growth and the production of photosynthetic pigments. Principal component analysis showed that the growth inhibitory effects were driven by increased oxidative stress and the interruption of water balance in barley under Al-stress. Fluoride priming, on the other hand, enhanced growth traits, chlorophyll a and b content, as well as invigorated the protection against oxidative damage by enhancing overall antioxidant capacity. Fluoride also improved osmotic balance by protecting the plasma membrane. Fluoride reduced endogenous Al3+ content, restored Al-induced inhibition of glutathione-S-transferase, and increased the contents of phytochelatins and metallothioneins, suggesting that fluoride reduced Al3+ uptake and improved chelation of Al3+. CONCLUSIONS Aluminum chloride-induced harmful effects are abridged by sodium fluoride on barely via enhancing antioxidative responses, the chelation mechanism causing reduction of Al uptake and accumulation of barely tissues. Advanced investigations are necessary to uncover the putative mechanisms underpinning fluoride-induced Al-stress tolerance in barley and other economically significant crops, where our results might serve as a solid reference.
Collapse
Affiliation(s)
- Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | |
Collapse
|
19
|
An Evaluation of Aluminum Tolerant Pseudomonas aeruginosa A7 for In Vivo Suppression of Fusarium Wilt of Chickpea Caused by Fusarium oxysporum f. sp. ciceris and Growth Promotion of Chickpea. Microorganisms 2022; 10:microorganisms10030568. [PMID: 35336143 PMCID: PMC8950562 DOI: 10.3390/microorganisms10030568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Chickpea wilt, caused by Fusarium oxysporum f. sp. ciceris, is a disease that decreases chickpea productivity and quality and can reduce its yield by as much as 15%. A newly isolated, moss rhizoid-associated Pseudomonas aeruginosa strain A7, demonstrated strong inhibition of Fusarium oxysporum f. sp. ciceris growth. An in vitro antimicrobial assay revealed A7 to suppress the growth of several fungal and bacterial plant pathogens by secreting secondary metabolites and by producing volatile compounds. In an in vivo pot experiment with Fusarium wilt infection in chickpea, the antagonist A7 exhibited a disease reduction by 77 ± 1.5%, and significantly reduced the disease incidence and severity indexes. Furthermore, A7 promoted chickpea growth in terms of root and shoot length and dry biomass during pot assay. The strain exhibited several traits associated with plant growth promotion, extracellular enzymatic production, and stress tolerance. Under aluminum stress conditions, in vitro growth of chickpea plants by A7 resulted in a significant increase in root length and plant biomass production. Additionally, hallmark genes for antibiotics production were identified in A7. The methanol extract of strain A7 demonstrated antimicrobial activity, leading to the identification of various antimicrobial compounds based on retention time and molecular weight. These findings strongly suggest that the strain’s significant biocontrol potential and plant growth enhancement could be a potential environmentally friendly process in agricultural crop production.
Collapse
|
20
|
Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, Kalidindi U, Bansal R, Roy S, Anand A, Singh B. Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect" of heavy metals. CHEMOSPHERE 2022; 287:131957. [PMID: 34450367 DOI: 10.1016/j.chemosphere.2021.131957] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
An increase in technological interventions and ruthless urbanization in the name of development has deteriorated our environment over time and caused the buildup of heavy metals (HMs) in the soil and water resources. These heavy metals are gaining increased access into our food chain through the plant and/or animal-based products, to adversely impact human health. The issue of how to restrict the entry of HMs or modulate their response in event of their ingress into the plant system is worrisome. The current knowledge on the interactive-regulatory role and contribution of different physical, biophysical, biochemical, physiological, and molecular factors that determine the heavy metal availability-uptake-partitioning dynamics in the soil-plant-environment needs to be updated. The present review critically analyses the interactive overlaps between different adaptation and tolerance strategies that may be causally related to their cellular localization, conjugation and homeostasis, a relative affinity for the transporters, rhizosphere modifications, activation of efflux pumps and vacuolar sequestration that singly or collectively determine a plant's response to HM stress. Recently postulated role of gaseous pollutants such as SO2 and other secondary metabolites in heavy metal tolerance, which may be regulated at the whole plant and/or tissue/cell is discussed to delineate and work towards a "not so heavy" response of plants to heavy metals present in the contaminated soils.
Collapse
Affiliation(s)
- Meenakshi Thakur
- College of Horticulture and Forestry (Dr. Y.S. Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Shamima Praveen
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Mahesh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413 115, India
| | - Chandan Kumar Gupta
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226 002, India
| | - Usha Kalidindi
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ruchi Bansal
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Suman Roy
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700 120, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
21
|
Kar S, Mai HJ, Khalouf H, Ben Abdallah H, Flachbart S, Fink-Straube C, Bräutigam A, Xiong G, Shang L, Panda SK, Bauer P. Comparative Transcriptomics of Lowland Rice Varieties Uncovers Novel Candidate Genes for Adaptive Iron Excess Tolerance. PLANT & CELL PHYSIOLOGY 2021; 62:624-640. [PMID: 33561287 PMCID: PMC8462385 DOI: 10.1093/pcp/pcab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 05/19/2023]
Abstract
Iron (Fe) toxicity is a major challenge for plant cultivation in acidic waterlogged soil environments, where lowland rice is a major staple food crop. Only few studies have addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance. Out of 16 lowland rice varieties, we identified a pair of contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. The two lines differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation and Fe and metal contents. These responses were likely due to genetic origin as they were mirrored by differential gene expression patterns, obtained through RNA sequencing, and corresponding gene ontology term enrichment in tolerant vs. susceptible lines. Thirty-five genes of the metal homeostasis category, mainly root expressed, showed differential transcriptomic profiles suggestive of an induced tolerance mechanism. Twenty-two out of these 35 metal homeostasis genes were present in selection sweep genomic regions, in breeding signatures, and/or differentiated during rice domestication. These findings suggest that Fe excess tolerance is an important trait in the domestication of lowland rice, and the identified genes may further serve to design the targeted Fe tolerance breeding of rice crops.
Collapse
Affiliation(s)
- Saradia Kar
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Hadeel Khalouf
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Heithem Ben Abdallah
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Samantha Flachbart
- Institute of Plant Biochemistry, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | | | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Universitätsstr. 27, Bielefeld 33615, Germany
| | - Guosheng Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lianguang Shang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
22
|
Jahan N, Javed MA, Khan A, Manan FA, Tabassum B. Genetic architecture of Al 3+ toxicity tolerance in rice F 2:3 populations determined through QTL mapping. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:794-805. [PMID: 33871748 DOI: 10.1007/s10646-021-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Aluminum (Al3+) toxicity is one of the factors limiting crop production in acidic soils. Identifying quantitative trait loci (QTLs)/genes for tolerance to Al3+ toxicity at seed germination can aid the development of new tolerant cultivars. The segregating population derived from Pak Basmati (Indica) × Pokkali (Indica) was used for mapping QTLs linked with tolerance to Al3+ toxicity ranging from 0 to 20 mM at pH 4 ± 0.2 at germination. The favorable alleles for all new QTLs were analyzed based on germination traits, i.e., final germination percentage (FG%), germination energy (GE), germination speed (GS), germination index (GI), mean germination time (MGT), germination value (GV), germination velocity (GVe), peak value of germination (GPV), and germination capacity (GC), and growth traits, such as root length (RL), shoot length (SL), total dry biomass (TDB) and germination vigor index (GVI). The phenotypic evolution showed transgressive variations. For genome-wide mapping, 90 polymorphic SSRs with 4 gene-specific markers and Win QTL Cart were used for QTL analysis. In all, 35 QTLs for germination and 11 QTLs for seedling growth were detected in distinct chromosomal regions by composite interval mapping (CIM), and multiple interval mapping (MIM) confirmed the pleiotropy at region RM128 on chromosome 1. Based on our genetic mapping studies, the genes/QTLs underlying tolerance to Al3+ toxicity could differ for both the germination and seedling stages in segregated populations. The QTLs identified in this study could be a source of new alleles for improving tolerance to Al3+ toxicity in rice.
Collapse
Affiliation(s)
- Nusrat Jahan
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan.
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia.
| | - Muhammad Arshad Javed
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia
| | - Anwar Khan
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Fazilah Abd Manan
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
23
|
Awasthi JP, Kusunoki K, Saha B, Kobayashi Y, Koyama H, Panda SK. Comparative RNA-Seq analysis of the root revealed transcriptional regulation system for aluminum tolerance in contrasting indica rice of North East India. PROTOPLASMA 2021; 258:517-528. [PMID: 33184696 DOI: 10.1007/s00709-020-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Expression pattern of aluminum (Al) tolerance genes is one of the major determinants of Al avoidance/tolerance within plant cultivars. We have performed transcriptome analysis of two contrasting (Al-tolerant, Disang; Al-sensitive, Joymati) cultivars of India's North Eastern region, an indica rice diversity hotspot, on exposure to excess Al3+ treatment in acidic condition. Co-expression analysis and SNPs enrichment analysis proposed the role of both trans-acting and cis-acting polymorphisms in Al signaling in the Al-tolerant cultivar. We proposed ten major genes, including arginine decarboxylase, phytase, and beta-glucosidase aggregating factor as candidates responsible for Al tolerance based on transcriptome analysis. Al3+ stress led to changes in the alternative splicing profile of the Al-tolerant cultivar. These studies demonstrated the transcriptional variations affiliated to Al avoidance/tolerance in contrasting indica rice of North East India and provided us with several candidate genes responsible for Al tolerance.
Collapse
Affiliation(s)
- Jay Prakash Awasthi
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Kazutaka Kusunoki
- Plant Cell Technology Laboratory, Faculty of Applied Biological Sciences, Gifu University, Gifu, 5011193, Japan
| | - Bedabrata Saha
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Yuriko Kobayashi
- Plant Cell Technology Laboratory, Faculty of Applied Biological Sciences, Gifu University, Gifu, 5011193, Japan
| | - Hiroyuki Koyama
- Plant Cell Technology Laboratory, Faculty of Applied Biological Sciences, Gifu University, Gifu, 5011193, Japan
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
24
|
Ramakrishna G, Kaur P, Singh A, Yadav SS, Sharma S, Singh NK, Gaikwad K. Comparative transcriptome analyses revealed different heat stress responses in pigeonpea (Cajanus cajan) and its crop wild relatives. PLANT CELL REPORTS 2021; 40:881-898. [PMID: 33837822 DOI: 10.1007/s00299-021-02686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Comparative transcriptome analyses accompanied by biochemical assays revealed high variability in heat stress response in Cajanus species. Among the studied species, C. scarabaeoides was the most thermotolerant followed by C. cajanifolius, C. cajan, and C. acutifolius. Pigeonpea is one of the climate-resilient grain legumes. Though the optimum temperature for cultivated pigeonpea is ~ 25-35 °C, its wild relatives grow in temperatures ranging between 18 and 45 °C. To gain insight into molecular mechanisms responsible for the heat stress tolerance in pigeonpea, we conducted time-series transcriptome analysis of one pigeonpea cultivar (Cajanus cajan) and two wild relatives, Cajanus acutifolius, and Cajanus scarabaeoides subjected to heat stress at 42 ± 2 ºC for 30 min and 3 h. A total of 9521, 12,447, and 5282 identified transcripts were differentially expressed in C. cajan, C. acutifolius, and C. scarabaeoides, respectively. In this study, we observed that a significant number of genes undergo alternative splicing in a species-specific pattern during heat stress. Gene expression profiling analysis, histochemical assay, chlorophyll content, and electrolyte leakage assay showed that C. scarabaeoides has adaptive features for heat stress tolerance. The gene set enrichment analyses of differentially expressed genes in these Cajanus species during heat stress revealed that oxidoreductase activity, transcription factor activity, oxygen-evolving complex, photosystem-II, thylakoid, phenylpropanoid biosynthetic process, secondary metabolic process, and flavonoid biosynthetic process were highly affected. The histochemical assay showed more lipid peroxidation in C. acutifolius compared to other Cajanus species inferring the presence of higher quantities of polyunsaturated fatty acids in the plasma membrane which might have led to severe damage of membrane-bound organelles like chloroplast, and high electrolyte leakage during heat stress. This study paves the way for the identification of candidate genes, which can be useful for the development of thermo-tolerant pigeonpea cultivars.
Collapse
Affiliation(s)
- G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Parampreet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sunishtha S Yadav
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
25
|
Rawat N, Singla-Pareek SL, Pareek A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. PHYSIOLOGIA PLANTARUM 2021; 171:653-676. [PMID: 32949408 DOI: 10.1111/ppl.13217] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/13/2020] [Indexed: 05/15/2023]
Abstract
The plasma membrane (PM) is possibly the most diverse biological membrane of plant cells; it separates and guards the cell against its external environment. It has an extremely complex structure comprising a mosaic of lipids and proteins. The PM lipids are responsible for maintaining fluidity, permeability and integrity of the membrane and also influence the functioning of membrane proteins. However, the PM is the primary target of environmental stress, which affects its composition, conformation and properties, thereby disturbing the cellular homeostasis. Maintenance of integrity and fluidity of the PM is a prerequisite for ensuring the survival of plants during adverse environmental conditions. The ability of plants to remodel membrane lipid and protein composition plays a crucial role in adaptation towards varying abiotic environmental cues, including high or low temperature, drought, salinity and heavy metals stress. The dynamic changes in lipid composition affect the functioning of membrane transporters and ultimately regulate the physical properties of the membrane. Plant membrane-transport systems play a significant role in stress adaptation by cooperating with the membrane lipidome to maintain the membrane integrity under stressful conditions. The present review provides a holistic view of stress responses and adaptations in plants, especially the changes in the lipidome and proteome of PM under individual or combined abiotic stresses, which cause alterations in the activity of membrane transporters and modifies the fluidity of the PM. The tools to study the varying lipidome and proteome of the PM are also discussed.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
26
|
Bolaños-Villegas P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. FRONTIERS IN PLANT SCIENCE 2021; 12:659558. [PMID: 33868354 PMCID: PMC8044525 DOI: 10.3389/fpls.2021.659558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Cohesin is a multi-unit protein complex from the structural maintenance of chromosomes (SMC) family, required for holding sister chromatids together during mitosis and meiosis. In yeast, the cohesin complex entraps sister DNAs within tripartite rings created by pairwise interactions between the central ring units SMC1 and SMC3 and subunits such as the α-kleisin SCC1 (REC8/SYN1 in meiosis). The complex is an indispensable regulator of meiotic recombination in eukaryotes. In Arabidopsis and maize, the SMC1/SMC3 heterodimer is a key determinant of meiosis. In Arabidopsis, several kleisin proteins are also essential: SYN1/REC8 is meiosis-specific and is essential for double-strand break repair, whereas AtSCC2 is a subunit of the cohesin SCC2/SCC4 loading complex that is important for synapsis and segregation. Other important meiotic subunits are the cohesin EXTRA SPINDLE POLES (AESP1) separase, the acetylase ESTABLISHMENT OF COHESION 1/CHROMOSOME TRANSMISSION FIDELITY 7 (ECO1/CTF7), the cohesion release factor WINGS APART-LIKE PROTEIN 1 (WAPL) in Arabidopsis (AtWAPL1/AtWAPL2), and the WAPL antagonist AtSWITCH1/DYAD (AtSWI1). Other important complexes are the SMC5/SMC6 complex, which is required for homologous DNA recombination during the S-phase and for proper meiotic synapsis, and the condensin complexes, featuring SMC2/SMC4 that regulate proper clustering of rDNA arrays during interphase. Meiotic recombination is the key to enrich desirable traits in commercial plant breeding. In this review, I highlight critical advances in understanding plant chromatid cohesion in the model plant Arabidopsis and crop plants and suggest how manipulation of crossover formation during meiosis, somatic DNA repair and chromosome folding may facilitate transmission of desirable alleles, tolerance to radiation, and enhanced transcription of alleles that regulate sexual development. I hope that these findings highlight opportunities for crop breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| |
Collapse
|
27
|
Regon P, Dey S, Chowardhara B, Saha B, Kar S, Tanti B, Panda SK. Physio-biochemical and molecular assessment of Iron (Fe 2+) toxicity responses in contrasting indigenous aromatic Joha rice cultivars of Assam, India. PROTOPLASMA 2021; 258:289-299. [PMID: 33070240 DOI: 10.1007/s00709-020-01574-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/13/2020] [Indexed: 05/26/2023]
Abstract
Iron (Fe) toxicity is one of the major abiotic stresses which limits the yield of lowland rice. This study aims to investigate the physiological, biochemical, and molecular aspects of two contrasting aromatic Joha rice, viz., Keteki and Kola Joha of Assam. Oxidative damage caused due to Fe2+ toxicity was quantitatively determined. Fe2+ toxicity in the growth medium increases the level of ROS and anti-oxidative enzyme activity. Along with the aforementioned damage caused due to Fe2+ toxicity, chlorophyll content decreases in both the rice varieties. Detection of Fe3+ and Fe2+ was also conducted by Perls' Prussian and Turnbull blue method, respectively. In addition, spectrophotometric quantification of Fe2+ was determined by 2, 2'-Bipyridyl (Bpy). Above 2.5 mM, Fe2+ toxicity was found to be lethal in rice seedlings affecting their total growth and biomass. Gene expression analysis of iron-regulated transporter 1 (OsIRT1), Yellow Stripe-Like 15 (OsYSL15), and ferritin 1 (OsFer1) revealed the differential gene expression over a time period of Fe2+ toxicity. Our study suggested that the different parameters which are considered here can be helpful for the better understanding of how aromatic Joha rice performed under Fe2+ toxicity which can also help to reveal broader aspects that how gene players are involved in the iron homeostasis mechanism in Joha rice in coming future.
Collapse
Affiliation(s)
- Preetom Regon
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Sangita Dey
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Bhaben Chowardhara
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Bedabrata Saha
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050, India
| | - Saradia Kar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Guwahati, Assam, 781014, India
| | - Sanjib Kumar Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
28
|
Kulkarni V, Sawbridge T, Kaur S, Hayden M, Slater AT, Norton SL. New sources of lentil germplasm for aluminium toxicity tolerance identified by high throughput hydroponic screening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:563-576. [PMID: 33854284 PMCID: PMC7981344 DOI: 10.1007/s12298-021-00954-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 05/11/2023]
Abstract
Aluminium (Al) toxicity in acid soils inhibits root elongation and development causing reduced water and nutrient uptake by the root system, which ultimately reduces the crop yield. This study established a high throughput hydroponics screening method and identified Al toxicity tolerant accessions from a set of putative acid tolerant lentil accessions. Four-day old lentil seedlings were screened at 5 µM Al (pH 4.5) for three days in hydroponics. Measured pre and post treatment root length was used to calculate the change in root length (ΔRL) and relative root growth (RRG%). A subset of 15 selected accessions were used for acid soil Al screening, and histochemical and biochemical analyses. Al treatment significantly reduced the ΔRL with an average of 32.3% reduction observed compared to the control. Approximately 1/4 of the focused identification of germplasm strategy accessions showed higher RRG% than the known tolerant line ILL6002 which has the RRG% of 37.9. Very tolerant accessions with RRG% of > 52% were observed in 5.4% of the total accessions. A selection index calculated based on all root traits in acid soil screening was highest in AGG70137 (636.7) whereas it was lowest in Precoz (76.3). All histochemical and biochemical analyses supported the hydroponic results as Northfield, AGG70137, AGG70561 and AGG70281 showed consistent good performance. The identified new sources of Al tolerant lentil germplasm can be used to breed new Al toxicity tolerant lentil varieties. The established high throughput hydroponic method can be routinely used for screening lentil breeding populations for Al toxicity tolerance. Future recommendations could include evaluation of the yield potential of the selected subset of accessions under acid soil field conditions, and the screening of a wider range of landrace accessions originating from areas with Al toxic acid soils.
Collapse
Affiliation(s)
- Vani Kulkarni
- Australian Grains Genebank, Agriculture Victoria, 110 Natimuk Road, Horsham, VIC 3400 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
| | - Tim Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Sukhjiwan Kaur
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Matthew Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Anthony T. Slater
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Sally L. Norton
- Australian Grains Genebank, Agriculture Victoria, 110 Natimuk Road, Horsham, VIC 3400 Australia
| |
Collapse
|
29
|
Vance W, Pradeep K, Strachan SR, Diffey S, Bell RW. Novel Sources of Tolerance to Aluminium Toxicity in Wild Cicer ( Cicer reticulatum and Cicer echinospermum) Collections. FRONTIERS IN PLANT SCIENCE 2021; 12:678211. [PMID: 34249045 PMCID: PMC8269930 DOI: 10.3389/fpls.2021.678211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/25/2021] [Indexed: 05/05/2023]
Abstract
In acid soils, the toxic form of aluminium, Al3+, significantly inhibits root growth and elongation, leading to less water and nutrient uptake. Previous research had shown differential Al toxicity tolerance among cultivated Cicer arietinum L. (chickpea); however, the potential for developing tolerant cultivars is limited by the narrow genetic diversity of cultivated chickpeas. Recent collections from Turkey of wild Cicer species, Cicer reticulatum, and Cicer echinospermum, have increased the available gene pool significantly, but there has been no large-scale screening of wild Cicer for acid tolerance or Al3+ toxicity tolerance. This study evaluated 167 wild Cicer and 17 Australian chickpea cultivars in a series of screenings under controlled growth conditions. The pH of 4.2 and Al concentrations of 15 and 60 μM Al were selected for large-scale screening based on dose response experiments in a low ionic strength nutrient solution. The change in root length showed better discrimination between tolerant and sensitive lines when compared with shoot and root dry weights and was used as a selection criterion. In a large-scale screening, 13 wild Cicer reticulatum accessions had a higher root tolerance index (≥50%), and eight had higher relative change in root length (≥40%) compared with PBA Monarch, which showed greater tolerance among the Australian domestic cultivars screened. In general, C. reticulatum species were found to be more tolerant than C. echinospermum, while genetic population groups Ret_5, Ret_6, and Ret_7 from Diyarbakir and Mardin Province were more tolerant than other groups. Among C. echinospermum, Ech_6 from the Siv-Diyar collection site of the Urfa Province showed better tolerance than other groups. In this first detailed screening of aluminium toxicity tolerance in the new wild Cicer collections, we identified accessions that were more tolerant than current domestic cultivars, providing promising germplasm for breeding programs to expand chickpea adaptation to acid soils.
Collapse
Affiliation(s)
- Wendy Vance
- Centre for Sustainable Farming Systems, Future Food Institute, Murdoch University, Perth, WA, Australia
- *Correspondence: Wendy Vance
| | - Karthika Pradeep
- Centre for Sustainable Farming Systems, Future Food Institute, Murdoch University, Perth, WA, Australia
| | - Scott R. Strachan
- Centre for Sustainable Farming Systems, Future Food Institute, Murdoch University, Perth, WA, Australia
| | | | - Richard W. Bell
- Centre for Sustainable Farming Systems, Future Food Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
30
|
Engel F, Cotelle S, Somensi CA, Testolin RC, Corrêa R, Toumi H, Férard JF, Radetski CM. A 3D ecotoxi-topological profile: Using concentration-time-response surfaces to show peroxidase activity in Zea mays (L.) exposed to aluminium or arsenic in hydroponic conditions. CHEMOSPHERE 2021; 262:127647. [PMID: 32739679 DOI: 10.1016/j.chemosphere.2020.127647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
This study sought to use concentration-time-response surfaces to show the effects of exposure to toxic (semi-)metals on peroxidase activity in higher plants as a function of exposure-concentration and exposure-time. Maize (Zea mays L.) seedlings (i.e., leaves and roots) were exposed to arsenic (as As3+) or aluminium (as Al3+) under hydroponic conditions, and their biomass and peroxidase enzyme responses were assessed at different concentration-time-exposures. The 3D ecotoxi-profile generated with these data showed two distinct regions: the first region is formed by exposures (i.e., points for time-concentration pairings) that were not statistically different from the results of the control points (i.e., zero toxicant concentration and all exposure-times), whereas the second region is formed by exposure pairings with results that were statistically different to those obtained from control pairings. Overall, the data show that enzyme activity increased over a shorter exposure-time when there was an increase in the exposure-concentration of the toxicant, which can be seen on a 3-D toxicity profile. We propose that quantitative relationship ratios from different assessed endpoints (e.g., biomass and enzyme activity) and enzymatic concentration-time-response surfaces could be helpful in the field of environmental-policy management.
Collapse
Affiliation(s)
- Fernanda Engel
- Universidade Do Vale Do Itajaí, Itajaí, Programa de Pós-Graduação Em Ciência e Tecnologia Ambiental, SC, Brazil
| | - Sylvie Cotelle
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France.
| | - Cleder A Somensi
- Instituto Federal Catarinense, Curso de Mestrado Em Tecnologia e Ambiente, Araquari, SC, Brazil
| | - Renan C Testolin
- Universidade Do Vale Do Itajaí, Laboratório de Remediação Ambiental, Itajaí, SC, Brazil
| | - Rogério Corrêa
- Universidade Do Vale Do Itajaí, Itajaí, Programa de Pós-Graduação Em Ciências Farmacêuticas, SC, Brazil
| | - Hela Toumi
- Université de Carthage, Faculté des Sciences de Bizerte, Laboratoire de Bio-surveillance de L'Environnement (LBE), 7021, Zarzouna, Bizerte, Tunisia
| | | | - Claudemir M Radetski
- Universidade Do Vale Do Itajaí, Itajaí, Programa de Pós-Graduação Em Ciência e Tecnologia Ambiental, SC, Brazil; Instituto Federal Catarinense, Curso de Mestrado Em Tecnologia e Ambiente, Araquari, SC, Brazil.
| |
Collapse
|
31
|
Kurina AB, Kosareva IA, Artemyeva AM. Genetic diversity of VIR Raphanus sativus L. collections on aluminum tolerance. Vavilovskii Zhurnal Genet Selektsii 2020; 24:613-624. [PMID: 33659847 PMCID: PMC7716579 DOI: 10.18699/vj20.655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Radish and small radish (Raphanus sativus L.) are popular and widely cultivated root vegetables in the
world, which occupy an important place in human nutrition. Edaphic stressors have a significant impact on their
productivity and quality. The main factor determining the phytotoxicity of acidic soils is the increased concentration
of mobile aluminum ions in the soil solution. The accumulation of aluminum in root tissues disrupts the processes
of cell division, initiation and growth of the lateral roots, the supply of plants with minerals and water. The study of
intraspecific variation in aluminum resistance of R. sativus is an important stage for the breeding of these crops. The
purpose of this work was to study the genetic diversity of R. sativus crops including 109 accessions of small radish
and radish of various ecological and geographical origin, belonging to 23 types, 14 varieties of European, Chinese
and Japanese subspecies on aluminum tolerance. In the absence of a rapid assessment methodology specialized for
the species studied, a method is used to assess the aluminum resistance of cereals using an eriochrome cyanine R
dye, which is based on the recovery or absence of restoration of mitotic activity of the seedlings roots subjected
to shock exposure to aluminum. The effect of various concentrations on the vital activity of plants was revealed:
a 66-mM concentration of AlCl3 · 6Н2О had a weak toxic effect on R. sativus accessions slowing down root growth;
83 mM contributed to a large differentiation of the small radish accessions and to a lesser extent for radish; 99 mM
inhibited further root growth in 13.0 % of small radish accessions and in 7.3 % of radish and had a highly damaging
effect. AlCl3 · 6Н2О at a concentration of 99 mM allowed us to identify the most tolerant small radish and radish
accessions that originate from countries with a wide distribution of acidic soils. In a result, it was possible to determine
the intraspecific variability of small radish and radish plants in the early stages of vegetation and to identify
genotypes that are contrasting in their resistance to aluminum. We recommend the AlCl3 · 6Н2О concentration of
83 mM for screening the aluminum resistance of small radish and 99 mM for radish. The modified method that we
developed is proposed as a rapid diagnosis of aluminum tolerance for the screening of a wide range of R. sativus
genotypes and a subsequent study of contrasting forms during a longer cultivation of plants in hydroponic culture
(including elemental analysis of roots and shoots, contrasting in resistance of accessions) as well as reactions of
plants in soil conditions.
Collapse
Affiliation(s)
- A B Kurina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - I A Kosareva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A M Artemyeva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
32
|
Aluminum-Specific Upregulation of GmALS3 in the Shoots of Soybeans: A Potential Biomarker for Managing Soybean Production in Acidic Soil Regions. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aluminum (Al) toxicity in acidic soils is a global agricultural problem that limits crop productivity through the inhibition of root growth. However, poor management associated with the application of soil acidity amendments such as lime (CaCO3) in certain crop types can pose a threat to low-input farming practices. Accordingly, it is important to develop appropriate techniques for the management of crop production in acidic soils. In this study, we identified ALS3 (ALUMINUM SENSITIVE 3) in soybeans (Glycine max, cultivar Toyomasari), which is highly expressed in the shoot under Al stress. GmALS3 (Glyma.10G047100) expression was found to be Al-specific under various stress conditions. We analyzed GmALS3 expression in the shoots of soybean plants grown in two different types of acidic soils (artificial and natural acidic soil) with different levels of liming and found that GmALS3 expression was suppressed with levels of liming that have been shown to eliminate soil Al3+ toxicity. Using soybeans as a model, we identified a potential biomarker that could indicate Al toxicity and appropriate liming levels for soybeans cultivated in acidic soils.
Collapse
|
33
|
Exogenous Glutathione-Mediated Drought Stress Tolerance in Rice (Oryza sativa L.) is Associated with Lower Oxidative Damage and Favorable Ionic Homeostasis. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2020. [DOI: 10.1007/s40995-020-00917-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Saha B, Swain D, Borgohain P, Rout GR, Koyama H, Panda SK. Enhanced exudation of malate in the rhizosphere due to AtALMT1 overexpression in blackgram (Vigna mungo L.) confers increased aluminium tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:701-708. [PMID: 32174006 DOI: 10.1111/plb.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Worldwide, 50% of soil is acidic, which induces aluminium (Al) toxicity in plants, as the phyto-availability of Al3+ increases in acidic soil. Plants responds to Al3+ toxicity by exuding organic acids into the rhizosphere. The organic acid responsible for Al3+ stress response varies from species to species, which in the case of blackgram (Vigna mungo L.) is citrate. In blackgram, an Arabidopsis malate transporter, AtALMT1, was overexpressed with the motive of inducing enhanced exudation of malate. Transgenics were generated using cotyledon node explants through Agrobacterium tumefaciens-mediated transformation. The putative transgenics were initially screened by AtALMT1-specific genomic DNA PCR, followed by quantitative PCR. Two independent transgenic events were identified and functionally characterized in the T3 generation. The transgenic lines, Line 1 and 2, showed better root growth, relative water content and chlorophyll content under Al3+ stress. Both lines also accounted for less oxidative damage, due to reduced accumulation of ROS molecules. Photosynthetic efficiency, as measured in terms of Fv /Fm , NPQ and Y(II), increased when compared to the wild type (WT). Relative expression of genes (VmSTOP1, VmALS3, VmMATE) responsible for Al3+ stress response in blackgram showed that overexpression of a malate transporter did not have any effect on their expression. Malate exudation increased whereas citrate exudation did not show any divergence from the WT. A pot stress assay found that the transgenics showed better adaptation to acidic soil. This report demonstrates that the overexpression of a malate transporter in a non-malate exuding species improves adaptation to Al3+ toxicity in acidic soil without effecting its stress response mechanism.
Collapse
Affiliation(s)
- B Saha
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - D Swain
- Department of Agricultural Biotechnology, Orissa University of Agricultural Technology, Bhubaneswar, India
| | - P Borgohain
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - G R Rout
- Department of Agricultural Biotechnology, Orissa University of Agricultural Technology, Bhubaneswar, India
| | - H Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - S K Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| |
Collapse
|
35
|
Salazar-Chavarría V, Sánchez-Nieto S, Cruz-Ortega R. Fagopyrum esculentum at early stages copes with aluminum toxicity by increasing ABA levels and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:170-176. [PMID: 32422533 DOI: 10.1016/j.plaphy.2020.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Aluminum toxicity (Al) is one of the main constraints for plant growth on acid soils. While most plants are sensitive to Al, some species have developed strategies to cope with this metal. Fagopyrum esculentum, Moench., var Mancan (Polygonaceae), despite being an aluminum-tolerant plant, shows root inhibition as a seedling during the first hours of exposure to Al, whereas at later times, it fully recovers. In this study, we assessed whether abscisic acid (ABA) levels and the antioxidant system might be involved in the early tolerance mechanisms of F. esculentum. The results showed that seedlings exposed to 50 μM Al for 3, 6, 12, 24, and 48 h showed decreases in the relative root growth (RRG), and there was an accumulation of Al in the root apex from 3 to 24 h. In addition, reactive oxygen species (ROS) levels increased, and were detected early after Al exposure; endogenous ABA levels increased and antioxidant enzyme activity increased, including catalase (CAT, EC1.11.1.6), glutathione reductase (GR, EC 1.6.4.2), ascorbate peroxidase (APX, EC 1.11.1.11), and superoxide dismutase (SOD, EC 1.15.1.1) activity. Seedlings treated with exogenous ABA also showed increased ROS levels and CAT and APX activity. The results suggest that after the first 12 h of Al treatment, root growth declines while ROS levels increase due to the entrance of Al into the root. However, the enzyme antioxidant system is promoted, which may impact the recovery of the root growth at later times and increasing levels of ABA might mediate this effect.
Collapse
Affiliation(s)
- Violeta Salazar-Chavarría
- Instituto de Ecología, UNAM, Circuito exterior Universitario S/N anexo Jardín Botánico exterior Ciudad Universitaria, Mexico
| | - Sobeida Sánchez-Nieto
- Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, C.P, 04500, Mexico
| | - Rocío Cruz-Ortega
- Instituto de Ecología, UNAM, Circuito exterior Universitario S/N anexo Jardín Botánico exterior Ciudad Universitaria, Mexico.
| |
Collapse
|
36
|
Vasconcelos CV, Costa AC, Müller C, Castoldi G, Costa AM, de Paula Barbosa K, Rodrigues AA, da Silva AA. Potential of calcium nitrate to mitigate the aluminum toxicity in Phaseolus vulgaris: effects on morphoanatomical traits, mineral nutrition and photosynthesis. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:203-216. [PMID: 32006192 DOI: 10.1007/s10646-020-02168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Common bean (Phaseolus vulgaris) cultivation occurs mainly in regions with acidic soils, where high aluminum (Al) concentration is a major constraint to crop production. In this study, we evaluated tolerance and sensitivity traits to Al exposure and calcium (Ca) deficiency in bean plants, and determined the efficiency of Ca to mitigate the toxic Al effects. Two bean cultivars (BRS Estilo and Campos Gerais) were grown in three soil conditions: (I) soil liming with calcium hydroxide Ca(OH)2 and Al unavailable (-Al+Ca); (II) fertilized soil with calcium nitrate [Ca(NO3)2·4H2O] and Al available (+Al+Ca); and (III) soil without Ca addition and Al available (+Al-Ca). At the beginning of the reproductive stage, we evaluated the photosynthetic processes, mineral nutrition, and leaf anatomy and morphological traits of plants. The photosynthetic parameters were good tools for monitor Al sensitivity in bean. +Al+Ca soil treatment mitigated the deleterious effects of Al on growth and mineral nutrition of both bean cultivars. However, Ca did not prevent the toxic effects of Al on leaf anatomy. Al stress and Ca deficiency caused negative effects on nutrient content, photosynthetic activity and leaf anatomy of bean plants. Calcium mitigated Al toxicity, primarily in the Campos Gerais cultivar, showing the potential to improve bean crop productivity in acid soils.
Collapse
Affiliation(s)
- Camila Vilela Vasconcelos
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education Science and Technology, Campus Rio Verde, PO Box 66, Rio Verde, Goiás, 75901-970, Brazil
| | - Alan Carlos Costa
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education Science and Technology, Campus Rio Verde, PO Box 66, Rio Verde, Goiás, 75901-970, Brazil.
| | - Caroline Müller
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education Science and Technology, Campus Rio Verde, PO Box 66, Rio Verde, Goiás, 75901-970, Brazil
| | - Gustavo Castoldi
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education Science and Technology, Campus Rio Verde, PO Box 66, Rio Verde, Goiás, 75901-970, Brazil
| | - Andréia Mendes Costa
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education Science and Technology, Campus Rio Verde, PO Box 66, Rio Verde, Goiás, 75901-970, Brazil
| | - Kássia de Paula Barbosa
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education Science and Technology, Campus Rio Verde, PO Box 66, Rio Verde, Goiás, 75901-970, Brazil
| | - Arthur Almeida Rodrigues
- Laboratory of Plant Anatomy, Goiano Federal Institute of Education Science and Technology, Campus Rio Verde, PO Box 66, Rio Verde, Goiás, 75901-970, Brazil
| | - Adinan Alves da Silva
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education Science and Technology, Campus Rio Verde, PO Box 66, Rio Verde, Goiás, 75901-970, Brazil
| |
Collapse
|
37
|
Barman F, Majumdar S, Arzoo SH, Kundu R. Genotypic variation among 20 rice cultivars/landraces in response to cadmium stress grown locally in West Bengal, India. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:193-206. [PMID: 31972388 DOI: 10.1016/j.plaphy.2020.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a hazardous soil contaminant and causes environmental toxicity when present beyond the allowable limit in soil. It can alter growth and metabolism in both plants and animals even at very low concentration. Being sessile in nature, plants try to evade this harmful effect by adopting various defence mechanisms including activation of antioxidants and other metal homeostasis mechanisms. This study shows the varietal Cd stress tolerance capacity of rice cultivars commonly grown in West Bengal, which is a rice biodiversity region in India. Seven days old rice (Oryza sativa L.) seedlings were treated with 10 μM CdCl2 for another 7days and different physiological and biochemical stress parameters were studied to compare the varietal stress responses. Principle component analysis (PCA) and root tolerance index (RTI) revealed that rice cultivars I.E.T-4786, Jamini and Netiya, Maharaj showed divergent stress responses towards susceptibility and tolerance. Histochemical localization of hydrogen peroxide (H2O2), superoxide (O2˙-) and pot experiment were performed in these four cultivars (I.E.T-4786-Jamini and Netiya-Maharaj) to elucidate the different Cd stress tolerance. Histochemical analysis, agronomic traits and grain Cd content analyses showed that I.E.T-4786 and Jamini were susceptible with no Cd accumulation in grain, whereas cultivars Netiya and Maharaj were stress tolerant and Cd accumulators. In addition, health risk assessment was monitored for dietary intake of Cd through Cd accumulating rice and non Cd accumulating rice genotypes were identified. Thus, the study identified the Cd tolerant and sensitive cultivars grown locally.
Collapse
Affiliation(s)
- Falguni Barman
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - Snehalata Majumdar
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - Shahira Helal Arzoo
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
38
|
Zhang M, He S, Zhan Y, Qin B, Jin X, Wang M, Zhang Y, Hu G, Teng Z, Wu Y. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PLoS One 2019; 14:e0226542. [PMID: 31869357 PMCID: PMC6927616 DOI: 10.1371/journal.pone.0226542] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/28/2019] [Indexed: 12/04/2022] Open
Abstract
Understanding the relationship between exogenous melatonin and water deficit stress is crucial for achieving high yields and alleviating the effects of water deficit stress on soybean (Glycine max (L.) Merrill) plants in agriculture. This study investigated the effects of exogenous melatonin on soybean photosynthetic capacity under water deficit stress induced by polyethylene glycol (PEG) 6000. We conducted a potting experiment in 2018 using the soybean (Glycine max L. Merrill) cultivar Suinong 26. We identified the impacts of a concentration of PEG 6000 simulating drought (15%, w/v) and an appropriate melatonin concentration (100 μmol/L) on the growth of soybean seedlings and flowering stages in a preliminary test. We applied exogenous melatonin by foliar spraying and root application to determine the effects on leaf photosynthesis during water deficit stress. Our results indicated that 15% PEG 6000 had an obvious inhibitory effect on the growth of soybean seedlings and flowering stages, causing oxidative stress and damage due to reactive oxygen species (ROS) (H2O2 and O2·-) accumulation and potentially reducing air exchange parameters and photosystem II (PSII) efficiency. The application of exogenous melatonin significantly relieved the inhibitory effects of PEG 6000 stress on seedlings and flowering growth, and gas exchange parameters, potentially improved PSII efficiency, improved the leaf area index (LAI) and the accumulation of dry matter, slowed down oxidative stress and damage to leaves by increasing the activity of antioxidant enzymes (SOD, POD, and CAT), reduced the content of malondialdehyde (MDA), and ultimately improved soybean yield. Overall, the results of this study demonstrated that application of exogenous melatonin at the seedlings and flowering stages of soybean is effective in alleviating plant damage caused by water deficit stress and improving the drought resistance of soybean plants. In addition, the results showed that application of exogenous melatonin by root is superior to foliar spraying.
Collapse
Affiliation(s)
- Mingcong Zhang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Songyu He
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yingce Zhan
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Bin Qin
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | | | - Mengxue Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yuxian Zhang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Guohua Hu
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Zhanlin Teng
- Huanan Agrotechnical Extension Center, Jiamusi, P.R. China
| | - Yaokun Wu
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, P.R. China
| |
Collapse
|
39
|
Aluminum stress differentially affects physiological performance and metabolic compounds in cultivars of highbush blueberry. Sci Rep 2019; 9:11275. [PMID: 31375763 PMCID: PMC6677737 DOI: 10.1038/s41598-019-47569-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/18/2019] [Indexed: 11/08/2022] Open
Abstract
Aluminum (Al) toxicity is one of the major factors that limit the growth and production of crops in acid soils. Highbush blueberry (Vaccinium corymbosum L.) cultivars differing in resistance to Al toxicity regarding root growth and photosynthetic performance were used. In this study, we compared the physiological and metabolic strategies to cope with Al toxicity among the highbush blueberry cultivars [two new ones (Camellia and Cargo) and three established ones (Brigitta (Al-resistant), Star and Duke)]. Aluminum concentration in roots and leaves increased in all cultivars after 24 and 48 h of exposure to Al, but less so in roots of cultivar Camellia and leaves of cultivar Cargo. These two cultivars displayed minor effects of Al exposure in terms of photosynthetic activity in comparison with the established cultivars. Furthermore, Cargo did not vary fluorescence parameters, whereas Camellia exhibited a decrease in effective quantum yield (ΦPSII) and electron transport rate (ETR) and a change in non-photochemical quenching (NPQ) and maximum quantum yield (Fv/Fm) under Al after 48 h. The Al treatment increased total phenols in leaves of Brigitta, Cargo, and Camellia, whereas antioxidant activity increased in Star and Cargo after 48 h. Aluminum exposure decreased malate concentration in roots of all cultivars, but no change was noted in fumarate concentration. The antioxidant activity correlated with photosynthetic performance and the total phenol concentration in the leaves of new cultivars exposed to Al, suggesting enhanced resistance in the short-term experiment. The principal component analysis separated the new from the established cultivars. In conclusion, the new cultivars appear to be more Al-resistant than the established ones, with Star being most Al-sensitive. Regarding the Al-resistance mechanisms of the new cultivars, it is suggested that Camellia could have a root Al-exclusion mechanism under Al toxicity. This mechanism could be explained by low Al concentration in roots, suggesting that this cultivar could exude organic acid, allowing to chelate Al in the rhizosphere. Nonetheless, further researches are needed to confirm this assumption.
Collapse
|
40
|
Awasthi JP, Saha B, Panigrahi J, Yanase E, Koyama H, Panda SK. Redox balance, metabolic fingerprint and physiological characterization in contrasting North East Indian rice for Aluminum stress tolerance. Sci Rep 2019; 9:8681. [PMID: 31213660 PMCID: PMC6581886 DOI: 10.1038/s41598-019-45158-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/29/2019] [Indexed: 12/04/2022] Open
Abstract
Aluminum (Al) toxicity is a serious problem for rice crop productivity in acidic soils worldwide. The present work was conducted to look out for the alteration in ROS homeostasis; metabolic fingerprint; and morphology in two contrasting Indica rice cultivars of North East India (NE India) to Al toxicity. Al stress led to excess accumulation of ROS (H2O2 and O2−), and this in turn induced ROS mediated cellular damage, as indicated by lipid peroxidation both qualitatively as well as quantitatively. This excessive ROS production also led to significant reduction in chlorophyll content and stomatal conductance. This was followed by the loss of photosynthetic efficiency as detected by chlorophyll fluorescence. This excessive damage due to ROS prompted us to check the anti-oxidative machinery. Antioxidants, especially enzymes (SOD, APX, POX, GR, CAT, DHAR, MDHAR) are very important players in maintenance of ROS homeostasis. In tolerant variety Disang, higher activity of these enzymes and vice versa in sensitive variety, was observed in response to Al treatment. The non-enzymatic antioxidants (proline, ascorbate and glutathione) also showed similar trend. Though the tolerant variety showed strong anti-oxidative machinery, it was unable to completely nullify the stress experienced by the seedlings. Organic acids are also important players in detoxification of Al stress through efflux in the rhizosphere. In tolerant genotype, citrate exudate was found to be more when compared to sensitive genotypes on exposure to high dose of Al. This is supported by higher abundance of FRDL4, a citrate transporter. Not only FRDL4, other stakeholders for Al stress response like ART1 and ALS1 depicted prominent transcript abundance in the tolerant variety. In conclusion, through this study detailed physiological and metabolic characterisation of two contrasting Indica rice varieties Disang and Joymati, native to NE India for Al tolerance was performed for the very first time.
Collapse
Affiliation(s)
- Jay Prakash Awasthi
- Assam University, Department of Life Science and Bioinformatics, Plant Molecular Biotechnology Lab, 788011, Silchar, India
| | - Bedabrata Saha
- Assam University, Department of Life Science and Bioinformatics, Plant Molecular Biotechnology Lab, 788011, Silchar, India
| | - Jogeswar Panigrahi
- Khallikote University, Department of Bioscience and Bioinformatics, 760001, Berhampur, India
| | - Emiko Yanase
- Gifu University, Faculty of Applied Biological Sciences, 5011193, Gifu, Japan
| | - Hiroyuki Koyama
- Gifu University, Faculty of Applied Biological Sciences, 5011193, Gifu, Japan
| | - Sanjib Kumar Panda
- Assam University, Department of Life Science and Bioinformatics, Plant Molecular Biotechnology Lab, 788011, Silchar, India.
| |
Collapse
|
41
|
Chakraborty S, Mishra A, Verma E, Tiwari B, Mishra AK, Singh SS. Physiological mechanisms of aluminum (Al) toxicity tolerance in nitrogen-fixing aquatic macrophyte Azolla microphylla Kaulf: phytoremediation, metabolic rearrangements, and antioxidative enzyme responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9041-9054. [PMID: 30719666 DOI: 10.1007/s11356-019-04408-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
To investigate the extent of aluminum toxicity tolerance of eco-friendly, fast-growing, fresh water, pteridophytic Azolla-Anabaena symbiotic association in terms of altered physiological signals; Azolla microphylla Kaulf was exposed to 0 (control), 100, 250, 500, and 750 μM AlCl3, at pH 4.5 for 6 days. The adversity of Al was increased in a dose-dependent manner and the highest was recorded at 750 μM AlCl3. Despite the significant loss in membrane integrity (80% electrolyte leakage) due to an enhanced generation of H2O2, A. microphylla reflected only 50% growth inhibition (fresh and dry weight) at 500 μM AlCl3 (LD50). However, the average root length of Azolla was drastically reduced at high concentration due to their direct contact with aluminum-containing growth medium. Contrary to this, the whole association maintained moderate chlorophyll, carbohydrate content, photosynthetic efficiency, nitrogen-fixing ability, and nitrogen content at high Al concentration. Probably, growth protection was pertained through significant detoxification of H2O2 by employing an efficient antioxidative defense system including antioxidative enzymes (SOD, APX, and CAT) and non-enzymatic antioxidant carotenoids. An enhanced level of phenolics and flavonoids in the root exudates possibly maintained a non-toxic level of aluminum inside the cell (195.8 μg Al/g FW) which makes A. microphylla a suitable pteridophytic plant to not only remove toxic Al from the contaminated sites but also to improve nitrogen status of those regions. Graphical abstract ᅟ.
Collapse
Affiliation(s)
| | - Aditi Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Ekta Verma
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Balkrishna Tiwari
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun K Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Satya Shila Singh
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
42
|
Awasthi JP, Saha B, Chowardhara B, Devi SS, Borgohain P, Panda SK. Qualitative Analysis of Lipid Peroxidation in Plants under Multiple Stress Through Schiff's Reagent: A Histochemical Approach. Bio Protoc 2018; 8:e2807. [PMID: 34286024 DOI: 10.21769/bioprotoc.2807] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 11/02/2022] Open
Abstract
Lipid peroxidation is a physiological indicator of both biotic and abiotic stress responses, hence is often used as a biomarker to assess stress-induced cell damage or death. Here we demonstrate an easy, quick and cheap staining method to assess lipid peroxidation in plant tissues. In this methodology, Schiff's reagent, is used to assay for membrane degradation. Histochemical detection of lipid peroxidation is performed in this protocol. In brief, Schiff's reagent detects aldehydes that originate from lipid peroxides in stressful condition. Schiff's reagent is prepared and applied to plants tissue. After the reaction, plant tissue samples are rinsed with a sulfite solution to retain the staining color. From this analysis, qualitative visualization of lipid peroxidation in plant tissue is observed in the form of magenta coloration. This reagent is useful for visualization of stress induced lipid peroxidation in plants. In this protocol, Indica rice root, Assam tea root and Indian mustard seedlings are used for demonstration.
Collapse
Affiliation(s)
- Jay Prakash Awasthi
- Plant Molecular Biotechnology Lab, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Bedabrata Saha
- Plant Molecular Biotechnology Lab, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Bhaben Chowardhara
- Plant Molecular Biotechnology Lab, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Sanjenbam Sanjibia Devi
- Plant Molecular Biotechnology Lab, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Pankaj Borgohain
- Plant Molecular Biotechnology Lab, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Lab, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| |
Collapse
|
43
|
Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 2018; 8:3560. [PMID: 29476114 PMCID: PMC5824784 DOI: 10.1038/s41598-018-21921-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/13/2018] [Indexed: 11/09/2022] Open
Abstract
The agricultural crops are often affected by the scarcity of fresh water. Seasonal drought is a major constraint on Northeast Indian agriculture. Almost 80% of the agricultural land in this region is acidic and facing severe drought during the winter period. Apart from classical breeding and transgenic approaches, the application of plant-growth-promoting bacteria (PGPB) is an alternative strategy for improving plant fitness under stressful conditions. The 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing PGPB offer drought stress tolerance by regulating plant ethylene levels. The aim of the present study was to evaluate the consortium effect of three ACC-deaminase producing rhizobacteria - Ochrobactrum pseudogrignonenseRJ12, Pseudomonas sp.RJ15 and Bacillus subtilisRJ46 on drought stress alleviation in Vigna mungo L. and Pisum sativum L. Consortium treatment significantly increase seed germination percentage, root length, shoot length, and dry weight of treated plants. An elevated production of reactive oxygen species scavenging enzymes and cellular osmolytes; higher leaf chlorophyll content; increase in relative water content and root recovery intension were observed after consortium treatment in comparison with the uninoculated plants under drought conditions. The consortium treatment decreased the ACC accumulation and down-regulated ACC-oxidase gene expression. This consortium could be an effective bio-formulator for crop health improvement in drought-affected acidic agricultural fields.
Collapse
Affiliation(s)
- Juthika Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rupak K Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rajashree Dhandia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Archana Yadav
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Ratul Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
| |
Collapse
|
44
|
Omisun T, Sahoo S, Saha B, Panda SK. Relative salinity tolerance of rice cultivars native to North East India: a physiological, biochemical and molecular perspective. PROTOPLASMA 2018; 255:193-202. [PMID: 28718009 DOI: 10.1007/s00709-017-1142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 07/04/2017] [Indexed: 05/24/2023]
Abstract
Salinity is the second most prevalent abiotic stress faced by plants, and rice is not an exception. Through this study, it has been tried upon, to study the relative salinity tolerance of eight local varieties of North East India. Preliminary screening was based on their dose- and time-dependent physiological responses to salinity stress. Among the cultivars, Tampha was found to be relatively more tolerant, whereas MSE9 the most sensitive. To further ascertain their tolerance capacity, MDA and H2O2 content was determined, which also confirmed the tolerance level of the two cultivars. Histochemical assays for root plasma membrane integrity and leaf and root H2O2 and O2- content also showed more damage in Tampha in comparison to MSE9. Finally, gene expression analysis for Na+/K+ co-transporters, OsHKT2;1, OsHKT2;3 and OsHKT2;4, was performed to observe how the expression level of these transporters varies with the tolerance capacity of these two cultivars in leaves and roots under different time frames. The study reveals Tampha to be the most tolerant and MSE9 the most sensitive when compared to the other six screened cultivars for salinity stress.
Collapse
Affiliation(s)
- Takhellambam Omisun
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Smita Sahoo
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Bedabrata Saha
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
45
|
Faseela P, Puthur JT. The imprints of the high light and UV-B stresses in Oryza sativa L. 'Kanchana' seedlings are differentially modulated. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:551-559. [PMID: 29253814 DOI: 10.1016/j.jphotobiol.2017.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 11/17/2022]
Abstract
High light and ultraviolet-B radiation (UV-B) are generally considered to have negative impact on photosynthesis and plant growth. The present study evaluates the tolerance potential of three cultivars of Oryza sativa L. (Kanchana, Mattatriveni and Harsha) seedlings towards high light and UV-B stress on the basis of photosynthetic pigment degradation, chlorophyll a fluorescence parameters and rate of lipid peroxidation, expressed by malondialdehyde content. Surprisingly, it was revealed that Kanchana was the most sensitive cultivar towards high light and at the same time it was the most tolerant cultivar towards UV-B stress. This contrasting feature of Kanchana towards high light and UV-B tolerance was further studied by analyzing photosystem (PS) I and II activity, mitochondrial activity, chlorophyll a fluorescence transient, enzymatic and non-enzymatic antioxidant defense system. Due to the occurrence of more PS I and PSII damages, the inhibition of photochemical efficiency and emission of dissipated energy as heat or fluorescence per PSII reaction center was higher upon high light exposure than UV-B treatments in rice seedlings of Kanchana. The mitochondrial activity was also found to be drastically altered upon high light as compared to UV-B treatments. The UV-B induced accumulation of non-enzymatic antioxidants (proline, total phenolics, sugar and ascorbate) and enzymatic antioxidants (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and glutathione reductase) in rice seedlings than those subjected to high light exposure afforded more efficient protection against UV-B radiation in rice seedlings. Our results proved that high tolerance of Kanchana towards UV-B than high light treatments, correlated linearly with the protected photosynthetic and mitochondrial machinery which was provided by upregulation of antioxidants particularly by total phenolics, ascorbate and ascorbate peroxidase in rice seedlings. Data presented in this study conclusively proved that rice cultivar Kanchana respond to different environmental signals independently and tolerance mechanisms to individual stress factors was also varied.
Collapse
Affiliation(s)
- Parammal Faseela
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malappuram, Kerala 673635, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malappuram, Kerala 673635, India.
| |
Collapse
|