1
|
Sherwood TA, Medvecky R, Miller C, Wetzel DL. Biochemical, molecular, and physiological assessments of crude oil dietary exposure in sub-adult red drum (Sciaenops ocellatus). Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109864. [PMID: 38378123 DOI: 10.1016/j.cbpc.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
A 14-day exposure study in which sub-adult red drum (Sciaenops ocellatus) were fed a petroleum crude oil-treated pellet feed was conducted to assess the potential effects of ingesting an oil-contaminated food source. Though food consumption decreased, significant polycyclic aromatic hydrocarbons accumulated in the body and liver, which did not affect the body and liver's fatty acid composition. In the red drum given the crude oil-treated feed, a significant decrease in the RNA:DNA growth rate index was noted, while only subtle changes in body and liver lipid composition were seen. Differentially expressed gene analysis in the liver demonstrated a significant down-regulation of leptin and up-regulation of the aryl hydrocarbon receptor nuclear translocator-like protein 1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated enrichment of terms and pathways associated with cholesterol biosynthesis and oxidative stress. Ingenuity Pathway Analysis further predicted activation of seven pathways associated with cholesterol biosynthesis. Measured oxidative stress biomarkers in the blood indicated decreased systemic antioxidants with increased lipid peroxidation. The results of this study suggest that dietary oil exposure alters the signaling of biological pathways critical in cholesterol biosynthesis and disruptions in systemic oxidative homeostasis.
Collapse
Affiliation(s)
- Tracy A Sherwood
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA.
| | - Rebecca Medvecky
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Christelle Miller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Dana L Wetzel
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| |
Collapse
|
2
|
Kumar V, Karam Q, Shajan AB, Al-Nuaimi S, Sattari Z, El-Dakour S. Transcriptome analysis of Sparidentex hasta larvae exposed to water-accommodated fraction of Kuwait crude oil. Sci Rep 2024; 14:3591. [PMID: 38351213 PMCID: PMC10864312 DOI: 10.1038/s41598-024-53408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Anthropogenic activities have been shown to significantly affect marine life. Water pollution and oil spills are particularly deleterious to the fish population, especially during their larval stage. In this study, Sobaity-sea bream Sparidentex hasta (Valenciennes, 1830) larvae were exposed to serial dilutions of water-accommodated fraction of Kuwait crude oil (KCO-WAF) for varying durations (3, 6, 24, 48, 72 or 96 h) in acute exposure regime. Gene expression was assessed using RNA sequencing and validated through RT-qPCR. The RNA sequencing data were aligned to the sequenced genome, and differentially expressed genes were identified in response to treatment with or without KCO-WAF at various exposure times. The highest number of differentially expressed genes was observed at the early time point of 6 h of post-exposure to KCO-WAF. The lowest number of differentially expressed genes were noticed at 96 h of treatment indicating early response of the larvae to KCO-WAF contaminant. The acquired information on the differentially expressed genes was then used for functional and pathway analysis. More than 90% of the differentially expressed genes had a significant BLAST match, with the two most common matching species being Acanthopagrus latus and Sparus aurata. Approximately 65% of the differentially expressed genes had Gene Ontology annotations, whereas > 35% of the genes had KEGG pathway annotations. The differentially expressed genes were found to be enriched for various signaling pathways (e.g., MAPK, cAMP, PI3K-Akt) and nervous system-related pathways (e.g., neurodegeneration, axon guidance, glutamatergic synapse, GABAergic synapse). Early exposure modulated the signaling pathways, while KCO-WAF exposure of larvae for a longer duration affected the neurodegenerative/nervous system-related pathways. RT-qPCR analysis confirmed the differential expression of genes at each time point. These findings provide insights into the underlying molecular mechanisms of the deleterious effects of acute exposure to oil pollution-on marine fish populations, particularly at the early larval stage of Sparidentex hasta.
Collapse
Affiliation(s)
- Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait.
| | - Qusaie Karam
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Anisha B Shajan
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Sabeeka Al-Nuaimi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Zainab Sattari
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Saleem El-Dakour
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| |
Collapse
|
3
|
Wigren MA, Johnson TA, Griffitt RJ, Hay AG, Knott JA, Sepúlveda MS. Limited impact of weathered residues from the Deepwater Horizon oil spill on the gut-microbiome and foraging behavior of sheepshead minnows ( Cyprinodon variegatus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:1-21. [PMID: 37830742 DOI: 10.1080/15287394.2023.2265413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.
Collapse
Affiliation(s)
- Maggie A Wigren
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Jonathan A Knott
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
4
|
Magnuson JT, Monticelli G, Schlenk D, Bisesi JH, Pampanin DM. Connecting gut microbiome changes with fish health conditions in juvenile Atlantic cod (Gadus morhua) exposed to dispersed crude oil. ENVIRONMENTAL RESEARCH 2023; 234:116516. [PMID: 37399986 DOI: 10.1016/j.envres.2023.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Polycyclic aromatic hydrocarbons found in crude oil can impair fish health following sublethal exposure. However, the dysbiosis of microbial communities within the fish host and influence it has on the toxic response of fish following exposure has been less characterized, particularly in marine species. To better understand the effect of dispersed crude oil (DCO) on juvenile Atlantic cod (Gadus morhua) microbiota composition and potential targets of exposure within the gut, fish were exposed to 0.05 ppm DCO for 1, 3, 7, or 28 days and 16 S metagenomic and metatranscriptomic sequencing on the gut and RNA sequencing on intestinal content were conducted. In addition to assessing species composition, richness, and diversity from microbial gut community analysis and transcriptomic profiling, the functional capacity of the microbiome was determined. Mycoplasma and Aliivibrio were the two most abundant genera after DCO exposure and Photobacterium the most abundant genus in controls, after 28 days. Metagenomic profiles were only significantly different between treatments after a 28-day exposure. The top identified pathways were involved in energy and the biosynthesis of carbohydrates, fatty acids, amino acids, and cellular structure. Biological processes following fish transcriptomic profiling shared common pathways with microbial functional annotations such as energy, translation, amide biosynthetic process, and proteolysis. There were 58 differently expressed genes determined from metatranscriptomic profiling after 7 days of exposure. Predicted pathways that were altered included those involved in translation, signal transduction, and Wnt signaling. EIF2 signaling was consistently dysregulated following exposure to DCO, regardless of exposure duration, with impairments in IL-22 signaling and spermine and spermidine biosynthesis in fish after 28 days. Data were consistent with predictions of a potentially reduced immune response related to gastrointestinal disease. Herein, transcriptomic-level responses helped explain the relevance of differences in gut microbial communities in fish following DCO exposure.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| | - Giovanna Monticelli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
5
|
Patowary R, Devi A, Mukherjee AK. Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:74459-74484. [PMID: 37219770 PMCID: PMC10204040 DOI: 10.1007/s11356-023-27698-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. Thus, intertwining nano- and bioremediation can lead to a suitable technology termed 'nanobioremediation' expected to nullify bioremediation's drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobioremediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying crude petroleum oil-contaminated sites.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India.
| |
Collapse
|
6
|
Nwizugbo KC, Ogwu MC, Eriyamremu GE, Ahana CM. Alterations in energy metabolism, total protein, uric and nucleic acids in African sharptooth catfish (Clarias gariepinus Burchell) exposed to crude oil and fractions. CHEMOSPHERE 2023; 316:137778. [PMID: 36640975 DOI: 10.1016/j.chemosphere.2023.137778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Water contamination by crude oil is a growing challenge and little is known about the probabilistic and non-probabilistic ecosystem and species consequences. Therefore, research aimed at understanding species survival strategy in crude oil-contaminated environments with focus on cellular metabolic alterations and dynamics is vital. This study assessed the alterations in lactate dehydrogenase (LDH), glucose (GLU), glucose-6-phosphate dehydrogenase (G-6-PDH), total protein (TP), uric and nucleic acids (UA, RNA, and DNA) in the liver, heart, kidney, blood supernatants, and muscle homogenates of African sharptooth catfish ([ASC] Clarias gariepinus) exposed to varying bonny-light crude oil concentrations to understand the underlying cause of their delayed development as well as potential health and wellbeing. Three concentrations (20, 50, and 100 mg/L) of diluted whole bonny-light crude oil (DWC), water-soluble (WSF), and water-insoluble (WIF) fractions of bonny-light crude oil were used to grow ASC for 9 weeks at room temperature. Biochemical assessments revealed significant (at p < 0.05) elevations in heart LDH (48.57 ± 4.67 to 3011.34 ± 4.67 U/L) and blood G-6-PDH activities (54.86 ± 0.00 to 128 ± 18.29 mU/mL), GLU (0.22 ± 0.01 to 0.77 ± 0.01 mg/dL), TP (5.15 ± 0.14 to 22.33 ± 0.21 g/L), UA (0.29 ± 0.05 to 10.05 ± 0.27 mg/dL), as well as liver DNA (0.38 ± 0.02 to 2.33 ± 0.09 μg/mL) and RNA (12.52 ± 0.05 to 30.44 ± 0.02 μg/mL) levels for laboratory-grown ASC in DWC, WSF, WIF, and oil-impacted Ubeji river collected ASC relative to the control. Due to greater levels of cellular metabolic alterations in oil-impacted Ubeji River collected ASC, it is evident that bonny-light contamination levels in the river is greater than 100 mg/L. In conclusion, bonny-light crude oil is toxic to ASC and induces stress response. The ecological changes caused by bonny-light crude oil contamination may ultimately affect niche functioning and the development of organs in ASC.
Collapse
Affiliation(s)
- Kenneth Chukwuemeka Nwizugbo
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Ugbowo, Benin City, PMB, 1154, Nigeria
| | - Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Appalachian State University, 212 Living Learning Center, 305 Bodenheimer Drive, Boone, NC, 28608, USA.
| | - George E Eriyamremu
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Ugbowo, Benin City, PMB, 1154, Nigeria
| | - Chidozie Michael Ahana
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Ugbowo, Benin City, PMB, 1154, Nigeria
| |
Collapse
|
7
|
Transcriptome profiling of blood from common bottlenose dolphins (Tursiops truncatus) in the northern Gulf of Mexico to enhance health assessment capabilities. PLoS One 2022; 17:e0272345. [PMID: 36001538 PMCID: PMC9401185 DOI: 10.1371/journal.pone.0272345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Following the 2010 Deepwater Horizon disaster and subsequent unusual mortality event, adverse health impacts have been reported in bottlenose dolphins in Barataria Bay, LA including impaired stress response and reproductive, pulmonary, cardiac, and immune function. These conditions were primarily diagnosed through hands-on veterinary examinations and analysis of standard diagnostic panels. In human and veterinary medicine, gene expression profiling has been used to identify molecular mechanisms underlying toxic responses and disease states. Identification of molecular markers of exposure or disease may enable earlier detection of health effects or allow for health evaluation when the use of specialized methodologies is not feasible. To date this powerful tool has not been applied to augment the veterinary data collected concurrently during dolphin health assessments. This study examined transcriptomic profiles of blood from 76 dolphins sampled in health assessments during 2013–2018 in the waters near Barataria Bay, LA and Sarasota Bay, FL. Gene expression was analyzed in conjunction with the substantial suite of health data collected using principal component analysis, differential expression testing, over-representation analysis, and weighted gene co-expression network analysis. Broadly, transcript profiles of Barataria Bay dolphins indicated a shift in immune response, cytoskeletal alterations, and mitochondrial dysfunction, most pronounced in dolphins likely exposed to Deepwater Horizon oiling. While gene expression profiles in Barataria Bay dolphins were altered compared to Sarasota Bay for all years, profiles from 2013 exhibited the greatest alteration in gene expression. Differentially expressed transcripts included genes involved in immunity, inflammation, reproductive failure, and lung or cardiac dysfunction, all of which have been documented in dolphins from Barataria Bay following the Deepwater Horizon oil spill. The genes and pathways identified in this study may, with additional research and validation, prove useful as molecular markers of exposure or disease to assist wildlife veterinarians in evaluating the health of dolphins and other cetaceans.
Collapse
|
8
|
Colin Y, Molbert N, Berthe T, Agostini S, Alliot F, Decencière B, Millot A, Goutte A, Petit F. Dysbiosis of fish gut microbiota is associated with helminths parasitism rather than exposure to PAHs at environmentally relevant concentrations. Sci Rep 2022; 12:11084. [PMID: 35773378 PMCID: PMC9246949 DOI: 10.1038/s41598-022-15010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
Although parasite infection and pollution are common threats facing wild populations, the response of the gut microbiota to the joint impact of these stressors remains largely understudied. Here, we experimentally investigated the effects of exposure to Polycyclic Aromatic Hydrocarbons (PAHs) and infection by a common acanthocephalan intestinal parasite (Pomphorhynchus sp.) on the gut microbial flora of a freshwater fish, the European chub (Squalius cephalus). Naturally infected or uninfected individuals were exposed to PAHs at environmentally realistic concentrations over a five-week period. Characterization of the gut bacterial community through 16S rRNA gene amplicon sequencing revealed that parasitic infection was a more structuring factor of bacterial diversity and composition than PAH exposure. Specifically, chub infected by Pomphorhynchus sp. harbored significantly less evenly represented gut bacterial communities than the uninfected ones. In addition, substantial changes in sequence abundance were observed within the main bacterial phyla, including the Firmicutes, Fusobacteriota, Actinobacteriota, and Proteobacteria. Again, these compositional changes correlated with host infection with Pomphorhynchus sp., confirming its pivotal role in gut microbial assemblage. Overall, these results highlight the importance of defining the parasitic status of individuals when conducting microbial ecotoxicological analyses at the digestive tract level, as this should lead to better understanding of microbiota modulations and help to identify microbial markers specifically associated with chemicals.
Collapse
Affiliation(s)
- Yannick Colin
- CNRS, M2C, UNICAEN, UNIROUEN, Normandie University, 76821, Rouen, France. .,CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France.
| | - Noëlie Molbert
- CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France
| | - Thierry Berthe
- CNRS, M2C, UNICAEN, UNIROUEN, Normandie University, 76821, Rouen, France.,CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France
| | - Simon Agostini
- Département de biologie, Centre de recherche en ecologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, CNRS, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Fabrice Alliot
- CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France.,EPHE, UMR 7619, PSL Research University, Sorbonne University, 4 place Jussieu, 75005, Paris, France
| | - Beatriz Decencière
- Département de biologie, Centre de recherche en ecologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, CNRS, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Alexis Millot
- Département de biologie, Centre de recherche en ecologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, CNRS, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Aurélie Goutte
- CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France.,EPHE, UMR 7619, PSL Research University, Sorbonne University, 4 place Jussieu, 75005, Paris, France
| | - Fabienne Petit
- CNRS, M2C, UNICAEN, UNIROUEN, Normandie University, 76821, Rouen, France.,CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
9
|
Dispersed Crude Oil Induces Dysbiosis in the Red Snapper Lutjanus campechanus External Microbiota. Microbiol Spectr 2022; 10:e0058721. [PMID: 35080447 PMCID: PMC8791192 DOI: 10.1128/spectrum.00587-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The fish external microbiota competitively excludes primary pathogens and prevents the proliferation of opportunists. A shift from healthy microbiota composition, known as dysbiosis, may be triggered by environmental stressors and increases host susceptibility to disease. The Deepwater Horizon (DWH) oil spill was a significant stressor event in the Gulf of Mexico. Despite anecdotal reports of skin lesions on fishes following the oil spill, little information is available on the impact of dispersed oil on the fish external microbiota. In this study, juvenile red snapper (Lutjanus campechanus) were exposed to a chemically enhanced water-accommodated fraction (CEWAF) of Corexit 9500/DWH oil (CEWAF) and/or the bacterial pathogen Vibrio anguillarum in treatments designed to detect changes in and recovery of the external microbiota. In fish chronically exposed to CEWAF, immunoglobulin M (IgM) expression significantly decreased between 2 and 4 weeks of exposure, coinciding with elevated liver total polycyclic aromatic hydrocarbons (PAHs). Dysbiosis was detected on fish chronically exposed to CEWAF compared to seawater controls, and addition of a pathogen challenge altered the final microbiota composition. Dysbiosis was prevented by returning fish to clean seawater for 21 days after 1 week of CEWAF exposure. Four fish exhibited lesions during the trial, all of which were exposed to CEWAF but not all of which were exposed to V. anguillarum. This study indicates that month-long exposure to dispersed oil leads to dysbiosis in the external microbiota. As the microbiota is vital to host health, these effects should be considered when determining the total impacts of pollutants in aquatic ecosystems. IMPORTANCE Fish skin is an immunologically active tissue. It harbors a complex community of microorganisms vital to host homeostasis as, in healthy fish, they competitively exclude pathogens found in the surrounding aquatic environment. Crude oil exposure results in immunosuppression in marine animals, altering the relationship between the host and its microbial community. An alteration of the healthy microbiota, a condition known as dysbiosis, increases host susceptibility to pathogens. Despite reports of external lesions on fishes following the DWH oil spill and the importance of the external microbiota to fish health, there is little information on the effect of dispersed oil on the external microbiota of fishes. This research provides insight into the impact of a stressor event such as an oil spill on dysbiosis and enhances understanding of long-term sublethal effects of exposure to aid in regulatory decisions for protecting fish populations during recovery.
Collapse
|
10
|
Takeshita R, Bursian SJ, Colegrove KM, Collier TK, Deak K, Dean KM, De Guise S, DiPinto LM, Elferink CJ, Esbaugh AJ, Griffitt RJ, Grosell M, Harr KE, Incardona JP, Kwok RK, Lipton J, Mitchelmore CL, Morris JM, Peters ES, Roberts AP, Rowles TK, Rusiecki JA, Schwacke LH, Smith CR, Wetzel DL, Ziccardi MH, Hall AJ. A review of the toxicology of oil in vertebrates: what we have learned following the Deepwater Horizon oil spill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:355-394. [PMID: 34542016 DOI: 10.1080/10937404.2021.1975182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.
Collapse
Affiliation(s)
- Ryan Takeshita
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
| | - Kathleen M Colegrove
- College of Veterinary Medicine, Illinois at Urbana-Champaign, Brookfield, Illinois, United States
| | - Tracy K Collier
- Zoological Pathology Program, Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States
| | - Kristina Deak
- College of Marine Sciences, University of South Florida, St. Petersburg, Florida, United States
| | | | - Sylvain De Guise
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Lisa M DiPinto
- Office of Response and Restoration, NOAA, Silver Spring, Maryland, United States
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, United States
| | - Martin Grosell
- RSMAS, University of Miami, Miami, Florida, United States
| | | | - John P Incardona
- NOAA Environmental Conservation Division, Northwest Fisheries Science Center, Seattle, Washington, United States
| | - Richard K Kwok
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | | | - Carys L Mitchelmore
- University of Maryland Center of Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, United States
| | - Jeffrey M Morris
- Health and Environment Division, Abt Associates, Boulder, Colorado, United States
| | - Edward S Peters
- Department of Epidemiology, LSU School of Public Health, New Orleans, Louisiana, United States
| | - Aaron P Roberts
- Advanced Environmental Research Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, United States
| | - Teresa K Rowles
- NOAA Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, United States
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland, United States
| | - Lori H Schwacke
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Cynthia R Smith
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Dana L Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, Sarasota, Florida, United States
| | - Michael H Ziccardi
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California, United States
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
11
|
McLoone P, Dyussupov O, Nurtlessov Z, Kenessariyev U, Kenessary D. The effect of exposure to crude oil on the immune system. Health implications for people living near oil exploration activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:762-787. [PMID: 31709802 DOI: 10.1080/09603123.2019.1689232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
People who reside near oil exploration activities may be exposed to toxins from gas flares or oil spills. The impact of such exposures on the human immune system has not been fully investigated. In this review, research investigating the effects of crude oil on the immune system is evaluated. The aim was to obtain a greater understanding of the possible immunological impact of living near oil exploration activities. In animals, the effect of exposure to crude oil on the immune system depends on the species, dose, exposure route, and type of oil. Important observations included; hematological changes resulting in anemia and alterations in white blood cell numbers, lymph node and splenic atrophy, genotoxicity in immune cells, modulation of cytokine gene expression and increased susceptibility to infectious diseases. In humans, there are reports that exposure to crude oil can increase the risk of developing certain types of cancer and cause immunomodulation.Abbreviations: A1AT: alpha-1 antitrypsin; ACH50: hemolytic activity of the alternative pathway; AHR: aryl hydrocarbon receptor; BALF: bronchoalveolar lavage fluid; COPD: chronic obstructive pulmonary disease; CYP: cytochrome P450; DNFB: 2, 4-dinitro-1-fluorobenzene; G-CSF: granulocyte-colony stimulating factor; IFN: interferon; IL: interleukin; 8-IP: 8-isoprostane; ISG15: interferon stimulated gene; LPO: lipid peroxidation; LTB4: leukotriene B4; M-CSF: macrophage-colony stimulating factor; MMC: melanomacrophage center; MPV: mean platelet volume; NK: natural killer; OSPM: oil sail particulate matter; PAH: polycyclic aromatic hydrocarbon; PBMC: peripheral blood mononuclear cell; PCV: packed cell volume; RBC: red blood cell; ROS: reactive oxygen species; RR: relative risk; TH: T helper; TNF: tumour necrosis factor; UV: ultraviolet; VNNV: Viral Nervous Necrosis Virus; WBC: white blood cell.
Collapse
Affiliation(s)
- Pauline McLoone
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Olzhas Dyussupov
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Zhaxybek Nurtlessov
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Ussen Kenessariyev
- Department of General Hygiene and Ecology, Kazakh National Medical University, Almaty, Kazakhstan
| | - Dinara Kenessary
- Department of General Hygiene and Ecology, Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
12
|
Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int J Mol Sci 2021; 22:ijms22179460. [PMID: 34502366 PMCID: PMC8430475 DOI: 10.3390/ijms22179460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361005, China
| |
Collapse
|
13
|
Zamora-Briseño JA, Améndola-Pimenta M, Ortega-Rosas DA, Pereira-Santana A, Hernández-Velázquez IM, González-Penagos CE, Pérez-Vega JA, Del Río-García M, Árcega-Cabrera F, Rodríguez-Canul R. Gill and liver transcriptomic responses of Achirus lineatus (Neopterygii: Achiridae) exposed to water-accommodated fraction (WAF) of light crude oil reveal an onset of hypoxia-like condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34309-34327. [PMID: 33646544 DOI: 10.1007/s11356-021-12909-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Crude oil is one of the most widespread pollutants released into the marine environment, and native species have provided useful information about the effect of crude oil pollution in marine ecosystems. We consider that the lined sole Achirus lineatus can be a useful monitor of the effect of crude oil in the Gulf of Mexico (GoM) because this flounder species has a wide distribution along the GoM, and its response to oil components is relevant. The objective of this study was to compare the transcriptomic changes in liver and gill of adults lined sole fish (Achirus lineatus) exposed to a sublethal acute concentration of water-accommodated fraction (WAF) of light crude oil for 48 h. RNA-Seq was performed to assess the transcriptional changes in both organs. A total of 1073 differentially expressed genes (DEGs) were detected in gills; 662 (61.69%) were upregulated, and 411 (38.30%) were downregulated whereas in liver, 515 DEGs; 306 (59.42%) were upregulated, and 209 (40.58%) were downregulated. Xenobiotic metabolism and redox metabolism, along with DNA repair mechanisms, were activated. The induction of hypoxia-regulated genes and the generalized regulation of multiple signaling pathways support the hypothesis that WAF exposition causes a hypoxia-like condition.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | | | - Alejandro Pereira-Santana
- División de Biotecnología Industrial, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco, Camino Arenero 1227, El Bajío, C.P. 45019, Zapopan, Jalisco, Mexico
| | - Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Juan Antonio Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Marcela Del Río-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97356, Sisal, Yucatán, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico.
- Laboratorio de Inmunología y Biología Molecular, CINVESTAV-IPN Unidad Mérida, Antigua carretera a Progreso Km 6., CP 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
14
|
Sherwood TA, Rodgers ML, Tarnecki AM, Wetzel DL. Characterization of the differential expressed genes and transcriptomic pathway analysis in the liver of sub-adult red drum (Sciaenops ocellatus) exposed to Deepwater Horizon chemically dispersed oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112098. [PMID: 33662787 DOI: 10.1016/j.ecoenv.2021.112098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The Deepwater Horizon blowout resulted in the second-largest quantity of chemical dispersants used as a countermeasure for an open water oil spill in the Gulf of Mexico. Of which, the efficacy of dispersant as a mitigation strategy and its toxic effects on aquatic fauna remains controversial. To enhance our understanding of potential sub-lethal effects of exposure to chemically dispersed-oil, sub-adult red drum (Sciaenops ocellatus) were continuously exposed to a Corexit 9500: DWH crude oil chemically enhanced water accommodated fraction (CEWAF) for 3-days and transcriptomic responses were assessed in the liver. Differential expressed gene (DEG) analysis demonstrated that 63 genes were significantly impacted in the CEWAF exposed fish. Of these, 37 were upregulated and 26 downregulated. The upregulated genes were primarily involved in metabolism and oxidative stress, whereas several immune genes were downregulated. Quantitative real-time RT-PCR further confirmed upregulation of cytochrome P450 and glutathione S-transferase, along with downregulation of fucolectin 2 and chemokine C-C motif ligand 20. Ingenuity Pathway Analysis (IPA) predicted 120 pathways significantly altered in the CEWAF exposed red drum. The aryl hydrocarbon receptor pathway was significantly activated, while pathways associated with immune and cellular homeostasis were primarily suppressed. The results of this study indicate that CEWAF exposure significantly affects gene expression and alters signaling of biological pathways important in detoxification, immunity, and normal cellular physiology, which can have potential consequences on organismal fitness.
Collapse
Affiliation(s)
- Tracy A Sherwood
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA.
| | - Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Andrea M Tarnecki
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Dana L Wetzel
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| |
Collapse
|
15
|
Abstract
Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| | - Christina Pasparakis
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| |
Collapse
|
16
|
Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MYD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JAJM, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human Health and Ocean Pollution. Ann Glob Health 2020; 86:151. [PMID: 33354517 PMCID: PMC7731724 DOI: 10.5334/aogh.2831] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
Collapse
Affiliation(s)
| | - John J Stegeman
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - Lora E Fleming
- European Centre for Environment and Human Health, GB
- University of Exeter Medical School, GB
| | | | - Donald M Anderson
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | | | - Nicolas Chevalier
- Université Côte d'Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | - Lilian Corra
- International Society of Doctors for the Environment (ISDE), CH
- Health and Environment of the Global Alliance on Health and Pollution (GAHP), AR
| | | | - Marie-Yasmine Dechraoui Bottein
- Intergovernmental Oceanographic Commission of UNESCO, FR
- IOC Science and Communication Centre on Harmful Algae, University of Copenhagen, DK
- Ecotoxicologie et développement durable expertise ECODD, Valbonne, FR
| | - Barbara Demeneix
- Centre National de la Recherche Scientifique, FR
- Muséum National d'Histoire Naturelle, Paris, FR
| | | | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, US
| | | | - Patrick Fénichel
- Université Côte d'Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | | | | | | | | | | | | | - Mark E Hahn
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | - Philipp Hess
- Institut Français de Recherche pour l'Exploitation des Mers, FR
| | | | | | - Jacqueline McGlade
- Institute for Global Prosperity, University College London, GB
- Strathmore University Business School, Nairobi, KE
| | | | - Adetoun Mustapha
- Nigerian Institute for Medical Research, Lagos, NG
- Imperial College London, GB
| | | | | | | | - Christopher Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, US
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, SE
| | | | | | | | | | | | - Pál Weihe
- University of the Faroe Islands and Department of Occupational Medicine and Public Health, FO
| | | | - Hervé Raps
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| | - Patrick Rampal
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| |
Collapse
|
17
|
DeBofsky A, Xie Y, Jardine TD, Hill JE, Jones PD, Giesy JP. Effects of the husky oil spill on gut microbiota of native fishes in the North Saskatchewan River, Canada. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105658. [PMID: 33099035 DOI: 10.1016/j.aquatox.2020.105658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
In July 2016, a Husky Energy pipeline spilled 225,000 L of diluted heavy crude oil, with a portion of the oil entering the North Saskatchewan River near Maidstone, SK, Canada. This event provided a unique opportunity to assess potential effects of a crude oil constituent (namely polycyclic aromatic hydrocarbons, PAHs) on a possible sensitive indicator of freshwater ecosystem health, the gut microbiota of native fishes. In summer 2017, goldeye (Hiodon alosoides), walleye (Sander vitreus), northern pike (Esox lucius), and shorthead redhorse (Moxostoma macrolepidotum) were collected at six locations upstream and downstream of the spill. Muscle and bile were collected from individual fish for quantification of PAHs and intestinal contents were collected for characterization of the microbial community of the gut. Results suggested that host species is a significant determinant of gut microbiota, with significant differences among the species across sites. Concentrations of PAHs in dorsal muscle were significantly correlated with gut community compositions of walleye, but not of the other fishes. Concentrations of PAHs in muscle were also correlated with abundances of several families of bacteria among fishes. This study represents one of the first to investigate the response of the gut microbiome of wild fishes to chemical stressors.
Collapse
Affiliation(s)
- Abigail DeBofsky
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Timothy D Jardine
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
18
|
Dodd ET, Pierce ML, Lee JSF, Poretsky RS. Influences of claywater and greenwater on the skin microbiome of cultured larval sablefish (Anoplopoma fimbria). Anim Microbiome 2020; 2:27. [PMID: 33499990 PMCID: PMC7807797 DOI: 10.1186/s42523-020-00045-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/24/2020] [Indexed: 01/13/2023] Open
Abstract
Background The skin microbiome of marine fish is thought to come from bacteria in the surrounding water during the larval stages, although it is not clear how different water conditions affect the microbial communities in the water and, in turn, the composition and development of the larval skin microbiome. In aquaculture, water conditions are especially important; claywater and greenwater are often used in larval rearing tanks to increase water turbidity. Here, we explored the effects of these water additives on microbial communities in rearing water and on the skin of first-feeding sablefish larvae using 16S rRNA gene sequencing. We evaluated three treatments: greenwater, claywater, and greenwater with a switch to claywater after 1 week. Results We observed additive-specific effects on rearing water microbial communities that coincided with the addition of larvae and rotifer feed to the tanks, such as an increase in Vibrionaceae in greenwater tanks. Additionally, microbial communities from experimental tank water, especially those in claywater, began to resemble larval skin microbiomes by the end of the experiment. The differential effects of the additives on larval sablefish skin microbiomes were largest during the first week, post-first feed. Bacteria associated with greenwater, including Vibrionaceae and Pseudoalteromonas spp., were found on larval skin a week after the switch to claywater. In addition to additive-specific effects, larval skin microbiomes also retained bacterial families likely acquired from their hatchery silos. Conclusions Our results suggest that larval sablefish skin microbiomes are most sensitive to the surrounding seawater up to 1 week following the yolk-sac stage and that claywater substituted for greenwater after 1 week post-first feed does not significantly impact skin-associated microbial communities. However, the larval skin microbiome changes over time under all experimental conditions. Furthermore, our findings suggest a potential two-way interaction between microbial communities on the host and the surrounding environment. To our knowledge, this is one of the few studies to suggest that fish might influence the microbial community of the seawater.
Collapse
Affiliation(s)
- Emily T Dodd
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607, USA
| | - Melissa L Pierce
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607, USA.
| | - Jonathan S F Lee
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7305 Beach Drive E, Port Orchard, WA, 98366, USA
| | - Rachel S Poretsky
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607, USA
| |
Collapse
|
19
|
Jones ER, Simning D, Serafin J, Sepúlveda MS, Griffitt RJ. Acute exposure to oil induces age and species-specific transcriptional responses in embryo-larval estuarine fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114325. [PMID: 32240905 DOI: 10.1016/j.envpol.2020.114325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Because oil spills frequently occur in coastal regions that serve as spawning habitat, characterizing the effects of oil in estuarine fish carries both economic and environmental importance. There is a breadth of research investigating the effects of crude oil on fish, however few studies have addressed how transcriptional responses to oil change throughout development or how these responses might be conserved across taxa. To investigate these effects, we performed RNA-seq and pathway analysis following oil exposure 1) in a single estuarine species (Cyprinodon variegatus) at three developmental time points (embryos, yolk-sack larvae, free-feeding larvae), and 2) in two ecologically similar species (C. variegatus and Fundulus grandis), immediately post-hatch (yolk-sack stage). Our results indicate that C. variegatus embryos mount a diminished transcriptional response to oil compared to later stages, and that few transcriptional responses are conserved throughout development. Pathway analysis of larval C. variegatus revealed dysregulation of similar biological processes at later larval stages, including alteration of cholesterol biosynthesis pathways, cardiac development processes, and immune functions. Our cross-species comparison showed that F. grandis exhibited a reduced transcriptional response compared to C. variegatus. Pathway analysis revealed that the two species shared similar immune and cardiac responses, however pathways related to cholesterol biosynthesis exhibited a divergent response as they were activated in C. variegatus but inhibited in F. grandis. Our results suggest that examination of larval stages may provide a more sensitive estimate of oil-impacts than examination of embryos, and challenge assumptions that ecologically comparable species respond to oil similarly.
Collapse
Affiliation(s)
- Elizabeth R Jones
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, United States; Department of Biology, Francis Marion University, United States.
| | - Danielle Simning
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, United States
| | - Jenifer Serafin
- Department of Forestry and Natural Resources, Purdue University, United States
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, United States
| |
Collapse
|
20
|
DeBofsky A, Xie Y, Grimard C, Alcaraz AJ, Brinkmann M, Hecker M, Giesy JP. Differential responses of gut microbiota of male and female fathead minnow (Pimephales promelas) to a short-term environmentally-relevant, aqueous exposure to benzo[a]pyrene. CHEMOSPHERE 2020; 252:126461. [PMID: 32213373 DOI: 10.1016/j.chemosphere.2020.126461] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 05/28/2023]
Abstract
In addition to aiding in digestion of food and uptake of nutrients, microbiota in guts of vertebrates are responsible for regulating several beneficial functions, including development of an organism and maintaining homeostasis. However, little is known about effects of exposures to chemicals on structure and function of gut microbiota of fishes. To assess effects of exposure to polycyclic aromatic hydrocarbons (PAHs) on gut microbiota, male and female fathead minnows (Pimephales promelas) were exposed to environmentally-relevant concentrations of the legacy PAH benzo[a]pyrene (BaP) in water. Measured concentrations of BaP ranged from 2.3 × 10-3 to 1.3 μg L-1. The community of microbiota in the gut were assessed by use of 16S rRNA metagenetics. Exposure to environmentally-relevant aqueous concentrations of BaP did not alter expression levels of mRNA for cyp1a1, a "classic" biomarker of exposure to BaP, but resulted in shifts in relative compositions of gut microbiota in females rather than males. Results presented here illustrate that in addition to effects on more well-studied molecular endpoints, relative compositions of the microbiota in guts of fish can also quickly respond to exposure to chemicals, which can provide additional mechanisms for adverse effects on individuals.
Collapse
Affiliation(s)
- Abigail DeBofsky
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| |
Collapse
|
21
|
Karshima SN, Karshima MN, Karaye GP, Oziegbe SD. Toxoplasma gondii infections in birds, companion, food and recreational animals in Nigeria: A systematic review and meta-analysis. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 21:100418. [PMID: 32862897 DOI: 10.1016/j.vprsr.2020.100418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023]
Abstract
Toxoplasma gondii is a protozoan pathogen of zoonotic and economic importance with a global distribution. The pathogen is associated with abortion, stillbirth, neonatal mortalities and mummification in sheep and goats which may also serve as sources of human infections. In pregnant women, the parasite undergoes intrauterine transmission to cause neonatal complications like miscarriage, chorioretinitis, hydrocephalus, cerebral calcification and foetal death. Here, we determine the prevalence and geographical distribution of T. gondii infections in Nigeria using the PRISMA protocol. Prevalence estimates (PE) and heterogeneity were determined by the random-effects model and the Cochran's Q-test respectively. Twenty-eight articles identified, reported 2311 positive cases of Toxoplasma gondii from a total of 9847 animals examined across 15 Nigerian States. Overall PE was 20.70% (95% CI: 15.05-27.78) with a range of 10.18% (95% CI: 2.66-31.98) to 94.00% (95% CI: 89.73-96.56) across sub-groups. PEs varied significantly (p < .05) across host species, with a range of 4.06% (95% CI: 2.47-6.87) to 40.65% (95% CI: 19.88-65.40). PEs in females (22.65%, 95% CI: 15.78-31.72) was significantly higher (p < .05) than that in males (18.97%, 95% CI: 12.78-27.22), while those for adult and young animals were 20.23% (95% CI: 13.42-29.33) and 18.96% (95% CI: 11.11-30.45) respectively. The majority of the studies were published from the south-western region. Toxoplasma gondii infection is prevalent among birds, companion, food and recreational animals from Nigeria. Integrated control strategies including adequate sanitation, cat movement restrictions, public enlightenment are recommended to curtail the menace of T. gondii in animals and its public health consequences in humans.
Collapse
Affiliation(s)
- Solomon Ngutor Karshima
- Department of Veterinary Public Health and Preventive Medicine, University of Jos, PMB, 2084 Jos, Nigeria.
| | - Magdalene Nguvan Karshima
- Department of Parasitology and Entomology, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria
| | - Gloria Pisha Karaye
- Department of Parasitology and Entomology, University of Jos, PMB, 2084 Jos, Nigeria
| | | |
Collapse
|
22
|
Lin F, Osachoff HL, Kennedy CJ. Physiological disturbances in juvenile sockeye salmon (Oncorhynchus nerka) exposed to the water-soluble fraction of diluted bitumen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105383. [PMID: 31924587 DOI: 10.1016/j.aquatox.2019.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Current and proposed transcontinental pipelines for the transport of diluted bitumen (dilbit) from the Canadian oil sands traverse the coastal watersheds of British Columbia, habitat essential to Pacific salmonids. To determine the potential risks posed to these keystone species, juvenile sockeye (Oncorhynchus nerka; 1+ parr) were acutely (24-96 h) or subchronically (21-42 d) exposed to 4 concentrations of the water-soluble fraction (WSF) of unweathered Cold Lake Blend dilbit (initial total PAC concentrations: 0, 13.7, 34.7 and 124.5 μg/L) in a flow-through system. Dilbit effects on iono-osmoregulation, the physiological stress response, and the immune system were assessed by both biochemical and functional assays. Hydrocarbon bioavailability was evidenced by a significant induction of liver ethoxyresorufin-O-deethylase (EROD) activity in exposed fish. Acute and subchronic exposure significantly reduced gill Na+-K+-ATPase activity and resulted in lower plasma osmolality, Cl-, and Na+ concentrations. Acute exposure to dilbit resulted in a classic physiological stress response, however at 21 d of exposure, plasma cortisol remained elevated while other measured parameters had returned to baseline values. A compromised immune system was demonstrated by a 29.5 % higher mortality in fish challenged with Vibrio (Listonella) anguillarum following dilbit exposure compared to unexposed controls. Exposure of juvenile salmonids to the WSF of dilbit (at TPAC concentrations at the ppb level) resulted in sublethal effects that included a classic physiological stress response, and alterations in iono-osmoregulatory homeostasis and immunological performance.
Collapse
Affiliation(s)
- Feng Lin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Heather L Osachoff
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
23
|
Sherwood TA, Medvecky RL, Miller CA, Tarnecki AM, Schloesser RW, Main KL, Mitchelmore CL, Wetzel DL. Nonlethal Biomarkers of Oxidative Stress in Oiled Sediment Exposed Southern Flounder ( Paralichthys lethostigma): Utility for Field-Base Monitoring Exposure and Potential Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14734-14743. [PMID: 31765146 DOI: 10.1021/acs.est.9b05930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Deepwater Horizon (DWH) blowout resulted in the deposition of toxic polycyclic aromatic hydrocarbons (PAHs), in the coastal sediments of the Gulf of Mexico. The immediate effects on an ecosystem from an oil spill are clearly recognizable, however the long-term chronic effects and recovery after a spill are still not well understood. Current methodologies for biomonitoring wild populations are invasive and mostly lethal. Here, two potential nonlethal biomonitoring tools for the assessment of PAH toxicity and induced biological alterations in the field, were identified using laboratory-validated methods. In this study, subadult southern flounder (Paralichthys lethostigma) were chronically exposed to DWH surrogate oiled sediments for 35 days; a subset of these exposed flounder were then provided a clean nonexposure period to ascertain the utility of selected biomarkers to monitor recovery post exposure. After chronic exposure, there was an increase in gene expression of cytochrome P450 1A but not glutathione S-transferase. There was also a notable imbalance of oxidants to antioxidants, measured as reduced glutathione, oxidized glutathione, and their ratio in the blood. Evidence of subsequent oxidative damage due to chronic exposure was found through lipid peroxidation and DNA damage assessments of liver, gill, and blood.
Collapse
Affiliation(s)
- Tracy A Sherwood
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Rebecca L Medvecky
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Christelle A Miller
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Andrea M Tarnecki
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Ryan W Schloesser
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Kevan L Main
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| | - Carys L Mitchelmore
- University of Maryland Center for Environmental Science , Chesapeake Biological Laboratory , 146 Williams Street , Solomons , Maryland 20688 , United States
| | - Dana L Wetzel
- Mote Marine Laboratory , 1600 Ken Thompson Parkway , Sarasota , Florida 34236 , United States
| |
Collapse
|
24
|
The effect of dietary supplementation with Clostridium butyricum on the growth performance, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). PLoS One 2019; 14:e0223428. [PMID: 31815958 PMCID: PMC6901227 DOI: 10.1371/journal.pone.0223428] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
This study was conducted to assess the effects of dietary Clostridium butyricum on the growth, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). Three hundreds of tilapia (56.21 ± 0.81 g) were divided into 5 groups and fed a diet supplemented with C. butyricum at 0, 1 x 104, 1 x 105, 1 x 106 or 1 x 107 CFU g-1 diet (denoted as CG, CB1, CB2, CB3 and CB4, respectively) for 56 days. Then 45 fish from each group were intraperitoneally injected with Streptococcus agalactiae, and the mortality was recorded for 14 days. The results showed that dietary C. butyricum significantly improved the specific growth rate (SGR) and feed intake in the CB2 group and decreased the cumulative mortality post-challenge with S. agalactiae in the CB2, CB3 and CB4 groups. The serum total antioxidant capacity and intestinal interleukin receptor-associated kinase-4 gene expression were significantly increased, and serum malondialdehyde content and diamine oxidase activity were significantly decreased in the CB1, CB2, CB3 and CB4 groups. Serum complement 3 and complement 4 concentrations and intestinal gene expression of tumour necrosis factor α, interleukin 8, and myeloid differentiation factor 88 were significantly higher in the CB2, CB3 and CB4 groups. Intestinal toll-like receptor 2 gene expression was significantly upregulated in the CB3 and CB4 groups. Dietary C. butyricum increased the diversity of the intestinal microbiota and the relative abundance of beneficial bacteria (such as Bacillus), and decreased the relative abundance of opportunistic pathogenic bacteria (such as Aeromonas) in the CB2 group. These results revealed that dietary C. butyricum at a suitable dose enhanced growth performance, elevated humoral and intestinal immunity, regulated the intestinal microbial components, and improved disease resistance in tilapia. The optimal dose was 1 x 105 CFU g-1 diet.
Collapse
|
25
|
Pasparakis C, Esbaugh AJ, Burggren W, Grosell M. Impacts of deepwater horizon oil on fish. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108558. [PMID: 31202903 DOI: 10.1016/j.cbpc.2019.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
An explosion on the Deepwater Horizon (DWH) oil rig in 2010 lead to the largest marine oil spill to occur in US history, resulting in significant impacts to the ecosystems and organisms in the Northern Gulf of Mexico (GoM). The present review sought to summarize and discuss findings from the 50+ peer-reviewed publications reporting effects of DWH oil exposure on teleost fish, and concludes that oil toxicity is a multi-target, multi-organ syndrome with substantial species-specific sensitivity differences. Of the 15 species tested with characterized exposures, 20% show effects at concentrations <1 μg l-1 while 50% display effects at <8.6 μg l-1 ΣPAH50, concentrations well within the range of reported environmental levels during the spill. Cardiotoxic effects are among the most frequently reported endpoints in DWH oil exposure studies and are thought to have significant downstream effects on fitness and survival. However, additional and possibly cardio-toxic independent impacts on sensory function and behavior are reported at very low exposure concentrations (< 1 μg l-1 ∑PAH50) and are clearly deserving of further study. Available information about modes of action leading to different categories of effects are summarized in the present review. An overview of the literature illustrates that early life stages (ELS) are approximately 1-order of magnitude more sensitive than corresponding later life stages, but also illustrates that adults can be impacted at concentrations as low as 4 μg l-1 ΣPAH50. The majority of studies exploring DWH oil toxicity in fish are performed using acute exposures (1-2 days), mid-range test temperatures (26-28 °C) and measure effects at the molecular to organismal levels, leaving a pressing need for more long-term exposures, exposures at the upper and lower levels of GoM relevant temperatures, and studies investigating population level impacts.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA.
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA
| |
Collapse
|
26
|
Walter JM, Bagi A, Pampanin DM. Insights into the Potential of the Atlantic Cod Gut Microbiome as Biomarker of Oil Contamination in the Marine Environment. Microorganisms 2019; 7:microorganisms7070209. [PMID: 31336609 PMCID: PMC6680985 DOI: 10.3390/microorganisms7070209] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Microorganisms are widespread in all environments, including in and on animal bodies. The gut microbiome has an essential influence on fish health, and is affected by several persistent and harmful organic and inorganic contaminants. Considering the shifts in gut microbiota composition observed in those studies, we hypothesized that certain microbial groups in the gut can serve as indicators of pollution. To test this hypothesis, we explored the possibility of identifying key microbial players that indicate environmental contamination. METHODS Published 16S rRNA gene amplicon sequencing data generated from the gut microbiota of Atlantic cod caught in geographically different Norwegian waters were used for bacterial diversity comparison. RESULTS Different microbiomes were identified between the northern Norway and southern Norway samples. Several bacterial genera previously identified as polycyclic aromatic hydrocarbon degraders were present only in the samples collected in the southern Norway area, suggesting fish contamination with oil-related compounds. CONCLUSIONS The results contribute to the identification of bacterial taxa present in the Atlantic cod gut that indicate fish exposure to contaminants in the marine environment.
Collapse
Affiliation(s)
- Juline M Walter
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway
| | - Andrea Bagi
- NORCE Norwegian Research Centre AS, 5008 Bergen, Norway
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway.
- NORCE Norwegian Research Centre AS, 5008 Bergen, Norway.
| |
Collapse
|
27
|
Ahmed YH, Bashir DW, Abdel-Moneam DA, Azouz RA, Galal MK. Histopathological, biochemical and molecular studies on the toxic effect of used engine oil on the health status of Oreochromis niloticus. Acta Histochem 2019; 121:563-574. [PMID: 31072619 DOI: 10.1016/j.acthis.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022]
Abstract
The accidental spilling of petroleum oils into natural water resources expose fishes in the effluent area to serious problems.. Oreochromis niloticus were used in the current study as a model to investigate the toxicity of used engine oil and to evaluate the protective role of vitamin C against this toxicity. The oil concentration used in this study was previously determined to be 0.25 ml/l by 96 h-LC50. After 21 days of engine oil exposure, haematological and biochemical analyses revealed significant reduction in RBCs counts, haemoglobin concentrations and total proteins. However, ALT, AST and glucose levels were significantly increased by the end of the experiment indicating the damaging effects of the oil on fish tissues. Oxidative stress biomarkers were also measured; liver CAT activity was significantly decreased in the oil exposed group compared to control group, while MDA levels were significantly elevated. Histopathological examination showed the presence of several alterations in hepatic and branchial tissues in exposed group compared to the control group. Significant elevations in CYP1 A1 mRNA expression levels in hepatic tissue were also detected in the group exposed to used engine oil compared to the control group. However, supplementation of fishexposed to used engine oil with vitamin Csignificantly enhance the biochemical, oxidative and histological parameters.
Collapse
Affiliation(s)
- Yasmine H Ahmed
- Department of Cytology and Histology Faculty of Vet. Med., Cairo University, Egypt
| | - Dina W Bashir
- Department of Cytology and Histology Faculty of Vet. Med., Cairo University, Egypt
| | - Dalia A Abdel-Moneam
- Department of Fish Diseases and Management Faculty of Vet. Med., Cairo University, Egypt
| | - Rehab A Azouz
- Department of Toxicology and Forensic Medicine, Faculty of Vet. Med., Cairo University, Egypt
| | - Mona K Galal
- Department of Biochemistry and Molecular Biology, Faculty of Vet. Med., Cairo University, Egypt.
| |
Collapse
|
28
|
Maekawa S, Wang PC, Chen SC. Comparative Study of Immune Reaction Against Bacterial Infection From Transcriptome Analysis. Front Immunol 2019; 10:153. [PMID: 30804945 PMCID: PMC6370674 DOI: 10.3389/fimmu.2019.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Transcriptome analysis is a powerful tool that enables a deep understanding of complicated physiological pathways, including immune responses. RNA sequencing (RNA-Seq)-based transcriptome analysis and various bioinformatics tools have also been used to study non-model animals, including aquaculture species for which reference genomes are not available. Rapid developments in these techniques have not only accelerated investigations into the process of pathogenic infection and defense strategies in fish, but also used to identify immunity-related genes in fish. These findings will contribute to fish immunotherapy for the prevention and treatment of bacterial infections through the design of more specific and effective immune stimulants, adjuvants, and vaccines. Until now, there has been little information regarding the universality and diversity of immune reactions against pathogenic infection in fish. Therefore, one of the aims of this paper is to introduce the RNA-Seq technique for examination of immune responses in pathogen-infected fish. This review also aims to highlight comparative studies of immune responses against bacteria, based on our previous findings in largemouth bass (Micropterus salmoides) against Nocardia seriolae, gray mullet (Mugil cephalus) against Lactococcus garvieae, orange-spotted grouper (Epinephelus coioides) against Vibrio harveyi, and koi carp (Cyprinus carpio) against Aeromonas sobria, using RNA-seq techniques. We demonstrated that only 39 differentially expressed genes (DEGs) were present in all species. However, the number of specific DEGs in each species was relatively higher than that of common DEGs; 493 DEGs in largemouth bass against N. seriolae, 819 DEGs in mullets against L. garvieae, 909 in groupers against V. harveyi, and 1471 in carps against A. sobria. The DEGs in different fish species were also representative of specific immune-related pathways. The results of this study will enhance our understanding of the immune responses of fish, and will aid in the development of effective vaccines, therapies, and disease-resistant strains.
Collapse
Affiliation(s)
- Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
29
|
Rodgers ML, Takeshita R, Griffitt RJ. Deepwater Horizon oil alone and in conjunction with Vibrio anguillarum exposure modulates immune response and growth in red snapper (Lutjanus campechanus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:91-99. [PMID: 30223188 DOI: 10.1016/j.aquatox.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
This study examined the impacts of Macondo oil from the Deepwater Horizon oil spill, both alone and in conjunction with exposure to the known fish pathogen Vibrio anguillarum, on the expression of five immune-related gene transcripts of red snapper (il8, il10, tnfa, il1b, and igm). In order to elucidate this impact, six different test conditions were used: one Control group (No oil/No pathogen), one Low oil/No pathogen group (tPAH50 = 0.563 μg/L), one High oil/No pathogen group (tPAH50 = 17.084 μg/L, one No oil/Pathogen group, one Low oil/Pathogen group (tPAH50 = 0.736 μg/L), and one High oil/Pathogen group (tPAH50 = 15.799 μg/L). Fish were exposed to their respective oil concentrations for one week. On day 7 of the experiment, all fish were placed into new tanks (with or without V. anguillarum) for one hour. At three time points (day 8, day 10, and day 17), fish organs were harvested and placed into RNAlater, and qPCR was run for examination of the above specific immune genes as well as cyp1a1. Our results suggest that cyp1a1 transcripts were upregulated in oil-exposed groups throughout the experiment, confirming oil exposure, and that all five immune gene transcripts were upregulated on day 8, but were generally downregulated or showed no differences from controls on days 10 and 17. Finally, both oil and pathogen exposure had impacts on growth.
Collapse
Affiliation(s)
- Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Technology, University of Southern Mississippi, Ocean Springs, MS, 39564, USA
| | - Ryan Takeshita
- Abt Associates, 1881 Ninth Street, Suite 201, Boulder, CO, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Technology, University of Southern Mississippi, Ocean Springs, MS, 39564, USA.
| |
Collapse
|
30
|
Adamovsky O, Buerger AN, Wormington AM, Ector N, Griffitt RJ, Bisesi JH, Martyniuk CJ. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2758-2775. [PMID: 30094867 DOI: 10.1002/etc.4249] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The microbiome plays an essential role in the health and onset of diseases in all animals, including humans. The microbiome has emerged as a central theme in environmental toxicology because microbes interact with the host immune system in addition to its role in chemical detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested chemicals and metabolites generated from microbial biodegradation can lead to systemic adverse effects. The present critical review dissects what we know about the impacts of environmental contaminants on the microbiome of aquatic species, with special emphasis on the gut microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts that are targets for chemical perturbation, proteins that also directly cross-talk with the microbiome. These proteins may act as molecular initiators for altered gut function, and we propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a major contributing factor to adverse apical endpoints. We present 2 case studies, nanomaterials and hydrocarbons, with special emphasis on the Deepwater Horizon oil spill, to illustrate how investigations into the microbiome can improve understanding of adverse outcomes. Lastly, we present strategies to functionally relate chemical-induced gut dysbiosis with adverse outcomes because this is required to demonstrate cause-effect relationships. Further investigations into the toxicant-microbiome relationship may prove to be a major breakthrough for improving animal and human health. Environ Toxicol Chem 2018;37:2758-2775. © 2018 SETAC.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Amanda N Buerger
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Alexis M Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Naomi Ector
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, USA
| | - Joseph H Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Wilson RE, Menning DM, Wedemeyer K, Talbot SL. A transcriptome resource for the Arctic Cod (Boreogadus saida). Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|