1
|
Rey JA, Spanick KG, Cabral G, Rivera-Santiago IN, Nagaraja TN, Brown SL, Ewing JR, Sarntinoranont M. Heterogeneous Mechanical Stress and Interstitial Fluid Flow Predictions Derived from DCE-MRI for Rat U251N Orthotopic Gliomas. Ann Biomed Eng 2024; 52:3053-3066. [PMID: 39048699 DOI: 10.1007/s10439-024-03569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Mechanical stress and fluid flow influence glioma cell phenotype in vitro, but measuring these quantities in vivo continues to be challenging. The purpose of this study was to predict these quantities in vivo, thus providing insight into glioma physiology and potential mechanical biomarkers that may improve glioma detection, diagnosis, and treatment. Image-based finite element models of human U251N orthotopic glioma in athymic rats were developed to predict structural stress and interstitial flow in and around each animal's tumor. In addition to accounting for structural stress caused by tumor growth, our approach has the advantage of capturing fluid pressure-induced structural stress, which was informed by in vivo interstitial fluid pressure (IFP) measurements. Because gliomas and the brain are soft, elevated IFP contributed substantially to tumor structural stress, even inverting this stress from compressive to tensile in the most compliant cases. The combination of tumor growth and elevated IFP resulted in a concentration of structural stress near the tumor boundary where it has the greatest potential to influence cell proliferation and invasion. MRI-derived anatomical geometries and tissue property distributions resulted in heterogeneous interstitial fluid flow with local maxima near cerebrospinal fluid spaces, which may promote tumor invasion and hinder drug delivery. In addition, predicted structural stress and interstitial flow varied markedly between irradiated and radiation-naïve animals. Our modeling suggests that relative to tumors in stiffer tissues, gliomas experience unusual mechanical conditions with potentially important biological (e.g., proliferation and invasion) and clinical consequences (e.g., drug delivery and treatment monitoring).
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Isabel N Rivera-Santiago
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | - Tavarekere N Nagaraja
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Stephen L Brown
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Shamul JG, Wang Z, Gong H, Ou W, White AM, Moniz-Garcia DP, Gu S, Clyne AM, Quiñones-Hinojosa A, He X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2024:10.1038/s41551-024-01250-2. [PMID: 39304761 DOI: 10.1038/s41551-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
In vitro models of the human blood-brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer's disease, Parkinson's disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10-20 dyne cm-2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.
Collapse
Affiliation(s)
- James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhiyuan Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hyeyeon Gong
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | | | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
3
|
Alcaide D, Alric B, Cacheux J, Nakano S, Doi K, Shinohara M, Kondo M, Bancaud A, Matsunaga YT. Laminin and hyaluronan supplementation of collagen hydrogels enhances endothelial function and tight junction expression on three-dimensional cylindrical microvessel-on-a-chip. Biochem Biophys Res Commun 2024; 724:150234. [PMID: 38865812 DOI: 10.1016/j.bbrc.2024.150234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Vasculature-on-chip (VoC) models have become a prominent tool in the study of microvasculature functions because of their cost-effective and ethical production process. These models typically use a hydrogel in which the three-dimensional (3D) microvascular structure is embedded. Thus, VoCs are directly impacted by the physical and chemical cues of the supporting hydrogel. Endothelial cell (EC) response in VoCs is critical, especially in organ-specific vasculature models, in which ECs exhibit specific traits and behaviors that vary between organs. Many studies customize the stimuli ECs perceive in different ways; however, customizing the hydrogel composition accordingly to the target organ's extracellular matrix (ECM), which we believe has great potential, has been rarely investigated. We explored this approach to organ-specific VoCs by fabricating microvessels (MVs) with either human umbilical vein ECs or human brain microvascular ECs in a 3D cylindrical VoC using a collagen hydrogel alone or one supplemented with laminin and hyaluronan, components found in the brain ECM. We characterized the physical properties of these hydrogels and analyzed the barrier properties of the MVs. Barrier function and tight junction (ZO-1) expression improved with the addition of laminin and hyaluronan in the composite hydrogel.
Collapse
Affiliation(s)
- Daniel Alcaide
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Baptiste Alric
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Jean Cacheux
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan; Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, 31037, Toulouse, France
| | - Shizuka Nakano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Makoto Kondo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Aurelien Bancaud
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan; LAAS-CNRS, CNRS UPR8001, 7 Avenue du Colonel Roche, 31400, Toulouse, France.
| | - Yukiko T Matsunaga
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan.
| |
Collapse
|
4
|
Stewart DC, Brisson BK, Yen WK, Liu Y, Wang C, Ruthel G, Gullberg D, Mauck RL, Maden M, Han L, Volk SW. Type III Collagen Regulates Matrix Architecture and Mechanosensing during Wound Healing. J Invest Dermatol 2024:S0022-202X(24)02078-5. [PMID: 39236902 DOI: 10.1016/j.jid.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Postnatal cutaneous wound healing is characterized by development of a collagen-rich scar lacking the architecture and functional integrity of unwounded tissue. Directing cell behaviors to efficiently heal wounds while minimizing scar formation remains a major wound management goal. In this study, we demonstrate type III collagen (COL3) as a critical regulator of re-epithelialization and scar formation during healing of COL3-enriched, regenerative (Acomys), scar-permissive (CD-1 Mus and wild-type Col3B6/B6 mice) and COL3-deficient, scar-promoting (Col3F/F, a murine conditional knockdown model) cutaneous wound models. We define a scar-permissive fibrillar collagen architecture signature characterized by elongated and anisotropically aligned collagen fibers that is dose-dependently suppressed by COL3. Furthermore, loss of COL3 alters how cells interpret their microenvironment-their mechanoperception-such that COL3-deficient cells display mechanically active phenotypes in the absence of increased microenvironmental stiffness through the upregulation and engagement of the profibrotic integrin α11. Further understanding COL3's role in regulating matrix architecture and mechanoresponses may inform clinical strategies that harness proregenerative mechanisms.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Becky K Brisson
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William K Yen
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchen Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald Gullberg
- The Department of Biomedicine, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Malcolm Maden
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Susan W Volk
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Skambath I, Kren J, Kuppler P, Buschschlueter S, Bonsanto MM. An attempt to identify brain tumour tissue in neurosurgery by mechanical indentation measurements. Acta Neurochir (Wien) 2024; 166:343. [PMID: 39167233 PMCID: PMC11339078 DOI: 10.1007/s00701-024-06218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The intraoperative differentiation between tumour tissue, healthy brain tissue, and any sensitive structure of the central nervous system is carried out in modern neurosurgery using various multimodal technologies such as neuronavigation, fluorescent dyes, intraoperative ultrasound or the use of intraoperative MRI, but also the haptic experience of the neurosurgeon. Supporting the surgeon by developing instruments with integrated haptics could provide a further objective dimension in the intraoperative recognition of healthy and diseased tissue. METHODS In this study, we describe intraoperative mechanical indentation measurements of human brain tissue samples of different tumours taken during neurosurgical operation and measured directly in the operating theatre, in a time frame of maximum five minutes. We present an overview of the Young's modulus for the different brain tumour entities and potentially differentiation between them. RESULTS We examined 238 samples of 75 tumour removals. Neither a clear distinction of tumour tissue against healthy brain tissue, nor differentiation of different tumour entities was possible on solely the Young's modulus. Correlation between the stiffness grading of the surgeon and our measurements could be found. CONCLUSION The mechanical behaviour of brain tumours given by the measured Young's modulus corresponds well to the stiffness assessment of the neurosurgeon and can be a great tool for further information on mechanical characteristics of brain tumour tissue. Nevertheless, our findings imply that the information gained through indentation is limited.
Collapse
Affiliation(s)
- Isabelle Skambath
- Department of Neurosurgery, UKSH, University of Luebeck, Luebeck, Germany.
| | - Jessica Kren
- Department of Neurosurgery, UKSH, University of Luebeck, Luebeck, Germany
| | - Patrick Kuppler
- Department of Neurosurgery, UKSH, University of Luebeck, Luebeck, Germany
| | | | | |
Collapse
|
6
|
Wei R, Zhou J, Bui B, Liu X. Glioma actively orchestrate a self-advantageous extracellular matrix to promote recurrence and progression. BMC Cancer 2024; 24:974. [PMID: 39118096 PMCID: PMC11308147 DOI: 10.1186/s12885-024-12751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The intricate interplay between cancer cells and their surrounding microenvironment has emerged as a critical factor driving the aggressive progression of various malignancies, including gliomas. Among the various components of this dynamic microenvironment, the extracellular matrix (ECM) holds particular significance. Gliomas, intrinsic brain tumors that originate from neuroglial progenitor cells, have the remarkable ability to actively reform the ECM, reshaping the structural and biochemical landscape to their advantage. This phenomenon underscores the adaptability and aggressiveness of gliomas, and highlights the intricate crosstalk between tumor cells and their surrounding matrix.In this review, we delve into how glioma actively regulates glioma ECM to organize a favorable microenvironment for its survival, invasion, progression and therapy resistance. By unraveling the intricacies of glioma-induced ECM remodeling, we gain valuable insights into potential therapeutic strategies aimed at disrupting this symbiotic relationship and curbing the relentless advance of gliomas within the brain.
Collapse
Affiliation(s)
- Ruolun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jiasheng Zhou
- Medical Laboratory Science, Nantong University, Nantong, Jiangsu, China
| | - Brandon Bui
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Human Biology, Stanford University, Stanford, CA, USA
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Biehl C, Thiesse-Kraul AC, Stötzel S, Alzubi S, Biehl L, Mülke M, Heiss C, El Khassawna T. Ballistic Gels in Experimental Fracture Setting. Gels 2024; 10:461. [PMID: 39057484 PMCID: PMC11276132 DOI: 10.3390/gels10070461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Biomechanical tests typically involve bending, compression, or shear stress, while fall tests are less common. The main challenge in performing fall tests is the non-reproducible directionality of bone when tested with soft tissue. Upon removal of the soft tissue, the explanted bone's resistance to impact diminishes. Therefore, ballistic gels can fix specimens in reproducible directions and simulate periosteal soft tissue. However, the use of ballistic gels in biomechanical studies is neither standardized nor widespread. This study aimed to optimize a ballistic gel consistency that mimics the upper thigh muscle in sheep. Our results suggest a standardized and flexible evaluation method by embedding samples in ballistic gel. Compression tests were conducted using cylindrical pieces of gluteal muscle from sheep. Various compositions of agarose and gelatin mixtures were tested to achieve a muscle-like consistency. The muscle-equivalent ballistic gel was found to consist of 29.5% gelatin and 0.35% agarose. Bones remained stable within the ballistic gel setup after freeze-thaw cycles between -20 °C and +20 °C. This method reduces the variability caused by muscle and improves storage quality, allowing for tests to be conducted under consistent conditionsBallistic gels of agarose and gelatin are suitable for bone fracture models. They have muscle-like strength, fix fractures simultaneously, are inexpensive to produce, and can be stored to allow repeated measurements of the same object with changing questions.
Collapse
Affiliation(s)
- Christoph Biehl
- Department of Trauma, Hand and Reconstructive Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (M.M.)
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany (T.E.K.)
| | - Ann-Cathrin Thiesse-Kraul
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany (T.E.K.)
| | - Sabine Stötzel
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany (T.E.K.)
| | - Salsabel Alzubi
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany (T.E.K.)
| | - Lotta Biehl
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany
| | - Matthias Mülke
- Department of Trauma, Hand and Reconstructive Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (M.M.)
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany (T.E.K.)
| | - Christian Heiss
- Department of Trauma, Hand and Reconstructive Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (M.M.)
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany (T.E.K.)
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany (T.E.K.)
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
8
|
Kondapaneni RV, Gurung SK, Nakod PS, Goodarzi K, Yakati V, Lenart NA, Rao SS. Glioblastoma mechanobiology at multiple length scales. BIOMATERIALS ADVANCES 2024; 160:213860. [PMID: 38640876 DOI: 10.1016/j.bioadv.2024.213860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Glioblastoma multiforme (GBM), a primary brain cancer, is one of the most aggressive forms of human cancer, with a very low patient survival rate. A characteristic feature of GBM is the diffuse infiltration of tumor cells into the surrounding brain extracellular matrix (ECM) that provide biophysical, topographical, and biochemical cues. In particular, ECM stiffness and composition is known to play a key role in controlling various GBM cell behaviors including proliferation, migration, invasion, as well as the stem-like state and response to chemotherapies. In this review, we discuss the mechanical characteristics of the GBM microenvironment at multiple length scales, and how biomaterial scaffolds such as polymeric hydrogels, and fibers, as well as microfluidic chip-based platforms have been employed as tissue mimetic models to study GBM mechanobiology. We also highlight how such tissue mimetic models can impact the field of GBM mechanobiology.
Collapse
Affiliation(s)
- Raghu Vamsi Kondapaneni
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Sumiran Kumar Gurung
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Pinaki S Nakod
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Kasra Goodarzi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Venu Yakati
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Nicholas A Lenart
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
9
|
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, Abrahante Lloréns JE, Moertel CL, Yim H, Odde DJ, Saydam N, Saydam O. The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas. Int J Mol Sci 2024; 25:4416. [PMID: 38674001 PMCID: PMC11050316 DOI: 10.3390/ijms25084416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Collapse
Affiliation(s)
- Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Charles S. Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Eunjae Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Riley Manning
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Christopher L. Moertel
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Hyungshin Yim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| |
Collapse
|
10
|
Regan K, LeBourdais R, Banerji R, Zhang S, Muhvich J, Zheng S, Nia HT. Multiscale elasticity mapping of biological samples in 3D at optical resolution. Acta Biomater 2024; 176:250-266. [PMID: 38160857 PMCID: PMC10922809 DOI: 10.1016/j.actbio.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The mechanical properties of biological tissues have emerged as an integral determinant of tissue function in health and disease. Nonetheless, characterizing the elasticity of biological samples in 3D and at high resolution remains challenging. Here, we present a µElastography platform: a scalable elastography system that maps the elastic properties of tissues from cellular to organ scales. The platform leverages the use of a biocompatible, thermo-responsive hydrogel to deliver compressive stress to a biological sample and track its resulting deformation. By surrounding the specimen with a reference hydrogel of known Young's modulus, we are able to map the absolute values of elastic properties in biological samples. We validate the experimental and computational components of the platform using a hydrogel phantom and verify the system's ability to detect internal mechanical heterogeneities. We then apply the platform to map the elasticity of multicellular spheroids and the murine lymph node. With these applications, we demonstrate the platform's ability to map tissue elasticity at internal planes of interest, as well as capture mechanical heterogeneities neglected by most macroscale characterization techniques. The µElastography platform, designed to be implementable in any biology lab with access to 3D microscopy (e.g., confocal, multiphoton, or optical coherence microscopy), will provide the capability to characterize the mechanical properties of biological samples to labs across the large community of biological sciences by eliminating the need of specialized instruments such as atomic force microscopy. STATEMENT OF SIGNIFICANCE: Understanding the elasticity of biological tissues is of great importance, but characterizing these properties typically requires highly specialized equipment. Utilizing stimulus-responsive hydrogels, we present a scalable, hydrogel-based elastography method that uses readily available reagents and imaging modalities to generate resolved maps of internal elasticity within biomaterials and biological samples at optical resolution. This new approach is capable of detecting internal stiffness heterogeneities within the 3D bulk of samples and is highly scalable across both imaging modalities and biological length scales. Thus, it will have significant impact on the measurement capabilities of labs studying engineered biomaterials, mechanobiology, disease progression, and tissue engineering and development.
Collapse
Affiliation(s)
- Kathryn Regan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Robert LeBourdais
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Rohin Banerji
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Kren J, Skambath I, Kuppler P, Buschschlüter S, Detrez N, Burhan S, Huber R, Brinkmann R, Bonsanto MM. Mechanical characteristics of glioblastoma and peritumoral tumor-free human brain tissue. Acta Neurochir (Wien) 2024; 166:102. [PMID: 38396016 PMCID: PMC10891200 DOI: 10.1007/s00701-024-06009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The diagnosis of brain tumor is a serious event for the affected patient. Surgical resection is a crucial part in the treatment of brain tumors. However, the distinction between tumor and brain tissue can be difficult, even for experienced neurosurgeons. This is especially true in the case of gliomas. In this project we examined whether the biomechanical parameters elasticity and stress relaxation behavior are suitable as additional differentiation criteria between tumorous (glioblastoma multiforme; glioblastoma, IDH-wildtype; GBM) and non-tumorous, peritumoral tissue. METHODS Indentation measurements were used to examine non-tumorous human brain tissue and GBM samples for the biomechanical properties of elasticity and stress-relaxation behavior. The results of these measurements were then used in a classification algorithm (Logistic Regression) to distinguish between tumor and non-tumor. RESULTS Differences could be found in elasticity spread and relaxation behavior between tumorous and non-tumorous tissue. Classification was successful with a sensitivity/recall of 83% (sd = 12%) and a precision of 85% (sd = 9%) for detecting tumorous tissue. CONCLUSION The findings imply that the data on mechanical characteristics, with particular attention to stress relaxation behavior, can serve as an extra element in differentiating tumorous brain tissue from non-tumorous brain tissue.
Collapse
Affiliation(s)
- Jessica Kren
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Luebeck, Germany.
| | - Isabelle Skambath
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Patrick Kuppler
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Luebeck, Germany
| | | | - Nicolas Detrez
- Medizinisches Laserzentrum Lübeck GmbH, Luebeck, Germany
| | - Sazgar Burhan
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | - Ralf Brinkmann
- Medizinisches Laserzentrum Lübeck GmbH, Luebeck, Germany
| | - Matteo Mario Bonsanto
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
12
|
Kasper M, Cydis M, Afridi A, Smadi BM, Li Y, Charlier A, Barnes BE, Hohn J, Cline MJ, Carver W, Matthews M, Savin D, Rinaldi-Ramos CM, Schmidt CE. Development of a bioactive tunable hyaluronic-protein bioconjugate hydrogel for tissue regenerative applications. J Mater Chem B 2023; 11:7663-7674. [PMID: 37458393 PMCID: PMC10528782 DOI: 10.1039/d2tb02766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Every year, there are approximately 500 000 peripheral nerve injury (PNI) procedures due to trauma in the US alone. Autologous and acellular nerve grafts are among current clinical repair options; however, they are limited largely by the high costs associated with donor nerve tissue harvesting and implant processing, respectively. Therefore, there is a clinical need for an off-the-shelf nerve graft that can recapitulate the native microenvironment of the nerve. In our previous work, we created a hydrogel scaffold that incorporates mechanical and biological cues that mimic the peripheral nerve microenvironment using chemically modified hyaluronic acid (HA). However, with our previous work, the degradation profile and cell adhesivity was not ideal for tissue regeneration, in particular, peripheral nerve regeneration. To improve our previous hydrogel, HA was conjugated with fibrinogen using Michael-addition to assist in cell adhesion and hydrogel degradability. The addition of the fibrinogen linker was found to contribute to faster scaffold degradation via active enzymatic breakdown, compared to HA alone. Additionally, cell count and metabolic activity was significantly higher on HA conjugated fibrinogen compared previous hydrogel formulations. This manuscript discusses the various techniques deployed to characterize our new modified HA fibrinogen chemistry physically, mechanically, and biologically. This work addresses the aforementioned concerns by incorporating controllable degradability and increased cell adhesivity while maintaining incorporation of hyaluronic acid, paving the pathway for use in a variety of applications as a multi-purpose tissue engineering platform.
Collapse
Affiliation(s)
- Mary Kasper
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - Madison Cydis
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - Abdullah Afridi
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Bassam M Smadi
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - Yuan Li
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - Alban Charlier
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Brooke E Barnes
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Julia Hohn
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Michael J Cline
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | - Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Michael Matthews
- Department of Chemical Engineering, University of South Carolina, Columbia, USA
| | - Daniel Savin
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Carlos M Rinaldi-Ramos
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | - Christine E Schmidt
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| |
Collapse
|
13
|
Exton J, Higgins JMG, Chen J. Acute brain slice elastic modulus decreases over time. Sci Rep 2023; 13:12826. [PMID: 37550376 PMCID: PMC10406937 DOI: 10.1038/s41598-023-40074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
A common benchmark in the brain tissue mechanics literature is that the properties of acute brain slices should be measured within 8 h of the experimental animal being sacrificed. The core assumption is that-since there is no substantial protein degradation during this time-there will be no change to elastic modulus. This assumption overlooks the possibility of other effects (such as osmotic swelling) that may influence the mechanical properties of the tissue. To achieve consistent and accurate analysis of brain mechanics, it is important to account for or mitigate these effects. Using atomic force microscopy (AFM), tissue hydration and volume measurements, we find that acute brain slices in oxygenated artificial cerebrospinal fluid (aCSF) with a standard osmolarity of 300 mOsm/l experience rapid swelling, softening, and increases in hydration within the first 2 hours after slicing. Reductions in elastic modulus can be partly mitigated by addition of chondroitinase ABC enzyme (CHABC). Increasing aCSF osmolarity to 400 mOsm/l does not prevent softening but may hasten equilibration of samples to a point where measurements of relative elastic modulus are consistent across experiments.
Collapse
Affiliation(s)
- John Exton
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
14
|
Pontes B, Mendes FA. Mechanical Properties of Glioblastoma: Perspectives for YAP/TAZ Signaling Pathway and Beyond. Diseases 2023; 11:86. [PMID: 37366874 DOI: 10.3390/diseases11020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Glioblastoma is a highly aggressive brain tumor with a poor prognosis. Recent studies have suggested that mechanobiology, the study of how physical forces influence cellular behavior, plays an important role in glioblastoma progression. Several signaling pathways, molecules, and effectors, such as focal adhesions, stretch-activated ion channels, or membrane tension variations, have been studied in this regard. Also investigated are YAP/TAZ, downstream effectors of the Hippo pathway, which is a key regulator of cell proliferation and differentiation. In glioblastoma, YAP/TAZ have been shown to promote tumor growth and invasion by regulating genes involved in cell adhesion, migration, and extracellular matrix remodeling. YAP/TAZ can be activated by mechanical cues such as cell stiffness, matrix rigidity, and cell shape changes, which are all altered in the tumor microenvironment. Furthermore, YAP/TAZ have been shown to crosstalk with other signaling pathways, such as AKT, mTOR, and WNT, which are dysregulated in glioblastoma. Thus, understanding the role of mechanobiology and YAP/TAZ in glioblastoma progression could provide new insights into the development of novel therapeutic strategies. Targeting YAP/TAZ and mechanotransduction pathways in glioblastoma may offer a promising approach to treating this deadly disease.
Collapse
Affiliation(s)
- Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Fabio A Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
15
|
Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, Nekounam H, Mahmoodi N. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater Today Bio 2023; 20:100614. [PMID: 37008830 PMCID: PMC10050787 DOI: 10.1016/j.mtbio.2023.100614] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, 2 Royal College Street, London, UK
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Vince J, Lewis A, Stride E. High-Speed Imaging of Microsphere Transport by Cavitation Activity in a Tissue-Mimicking Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1415-1421. [PMID: 36931999 DOI: 10.1016/j.ultrasmedbio.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Ultrasound-mediated cavitation has been harnessed to improve the delivery of various therapeutics, including the extravasation of small molecule drugs and nanoparticles (<1 µm) into soft tissue. This study investigated whether cavitation could also enhance the extravasation of larger (>10 µm) therapeutic particles, representative of radio- or chemo-embolic particles, in a tissue-mimicking phantom. METHODS High-speed (103-106 frames/s) optical imaging was used to observe the motion of glass microspheres with diameters of 15-32 or 105-107 µm in an agar phantom under exposure to high-intensity focused ultrasound (0.5 MHz) at a range of peak negative pressures (1.9-2.8 MPa) in the presence of SonoVue microbubbles. RESULTS In contrast to the microstreaming reported to be responsible for nanoparticle transport, the formation and translation of bubble clouds were found to be primarily responsible for the motion of glass microspheres. The bubble clouds were seen both to create channels in the phantom and to travel along them under the action of primary acoustic radiation force, either propelling or entraining microspheres with them. Collisions between microspheres were also seen to promote cloud formation and cavitation activity. CONCLUSION Ultrasound-mediated cavitation can promote the transport of solid microparticles in tissue-mimicking material. Further work is needed to understand the influence of tissue mechanical properties and ultrasound exposure parameters on the extent and uniformity of particle distribution that can be achieved.
Collapse
Affiliation(s)
- Jonathan Vince
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Andrew Lewis
- Alchemed Bioscience Consulting Ltd., Stable Cottage, Farnham, Surrey, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Yen CH, Lai YC, Wu KA. Morphological instability of solid tumors in a nutrient-deficient environment. Phys Rev E 2023; 107:054405. [PMID: 37329102 DOI: 10.1103/physreve.107.054405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/24/2023] [Indexed: 06/18/2023]
Abstract
A phenomenological reaction-diffusion model that includes a nutrient-regulated growth rate of tumor cells is proposed to investigate the morphological instability of solid tumors during the avascular growth. We find that the surface instability could be induced more easily when tumor cells are placed in a harsher nutrient-deficient environment, while the instability is suppressed for tumor cells in a nutrient-rich environment due to the nutrient-regulated proliferation. In addition, the surface instability is shown to be influenced by the growth moving speed of tumor rims. Our analysis reveals that a larger growth movement of the tumor front results in a closer proximity of tumor cells to a nutrient-rich region, which tends to inhibit the surface instability. A nourished length that represents the proximity is defined to illustrate its close relation to the surface instability.
Collapse
Affiliation(s)
- Chien-Han Yen
- Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan
| | - Yi-Chieh Lai
- Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan
| | - Kuo-An Wu
- Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan
| |
Collapse
|
18
|
Prakash R, Yamamoto KK, Oca SR, Ross W, Codd PJ. Brain-Mimicking Phantom for Photoablation and Visualization. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2023; 2023:10.1109/ismr57123.2023.10130243. [PMID: 37274088 PMCID: PMC10237535 DOI: 10.1109/ismr57123.2023.10130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While the use of tissue-mimicking (TM) phantoms has been ubiquitous in surgical robotics, the translation of technology from laboratory experiments to equivalent intraoperative tissue conditions has been a challenge. The increasing use of lasers for surgical tumor resection has introduced the need to develop a modular, low-cost, functionally relevant TM phantom to model the complex laser-tissue interaction. In this paper, a TM phantom with mechanically and thermally similar properties as human brain tissue suited for photoablation studies and subsequent visualization is developed. The proposed study demonstrates the tuned phantom response to laser ablation for fixed laser power, time, and angle. Additionally, the ablated crater profile is visualized using optical coherence tomography (OCT), enabling high-resolution surface profile generation.
Collapse
Affiliation(s)
- Ravi Prakash
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Kent K. Yamamoto
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Siobhan R. Oca
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Weston Ross
- Department of Neurosurgery, Duke University School of Medicine
| | - Patrick J. Codd
- Department of Mechanical Engineering and Materials Science, Duke University
- Department of Neurosurgery, Duke University School of Medicine
| |
Collapse
|
19
|
Ferraro R, Guido S, Caserta S, Tassieri M. Compressional stress stiffening & softening of soft hydrogels - how to avoid artefacts in their rheological characterisation. SOFT MATTER 2023; 19:2053-2057. [PMID: 36866743 DOI: 10.1039/d3sm00077j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels have been successfully employed as analogues of the extracellular matrix to study biological processes such as cells' migration, growth, adhesion and differentiation. These are governed by many factors, including the mechanical properties of hydrogels; yet, a one-to-one correlation between the viscoelastic properties of gels and cell fate is still missing from literature. In this work we provide experimental evidence supporting a possible explanation for the persistence of this knowledge gap. In particular, we have employed common tissues' surrogates such as polyacrylamide and agarose gels to elucidate a potential pitfall occurring when performing rheological characterisations of soft-materials. The issue is related to (i) the normal force applied to the samples prior to performing the rheological measurements, which may easily drive the outcomes of the investigation outside the materials' linear viscoelastic regime, especially when tests are performed with (ii) geometrical tools having unbefitting dimensions (i.e., too small). We corroborate that biomimetic hydrogels can show either compressional stress softening or stiffening, and we provide a simple solution to quench these undesired phenomena, which would likely lead to potentially misleading conclusions if they were not mitigated by a good practice in performing rheological measurements, as elucidated in this work.
Collapse
Affiliation(s)
- Rosalia Ferraro
- DICMaPI, The University of Naples Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via Gaetano Salvatore, 486, 80131 Naples, Italy
| | - Stefano Guido
- DICMaPI, The University of Naples Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via Gaetano Salvatore, 486, 80131 Naples, Italy
| | - Sergio Caserta
- DICMaPI, The University of Naples Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via Gaetano Salvatore, 486, 80131 Naples, Italy
| | - Manlio Tassieri
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
20
|
Williams LN, Sharma A, Liao J. Structure and Mechanics of Native and Decellularized Porcine Cranial Dura Mater. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
21
|
Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment. Proc Natl Acad Sci U S A 2023; 120:e2209260120. [PMID: 36574668 PMCID: PMC9910605 DOI: 10.1073/pnas.2209260120] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanoparticles (NPs) are confronted with limited and disappointing delivery efficiency in tumors clinically. The tumor extracellular matrix (ECM), whose physical traits have recently been recognized as new hallmarks of cancer, forms a main steric obstacle for NP diffusion, yet the role of tumor ECM physical traits in NP diffusion remains largely unexplored. Here, we characterized the physical properties of clinical gastric tumor samples and observed limited distribution of NPs in decellularized tumor tissues. We also performed molecular dynamics simulations and in vitro hydrogel experiments through single-particle tracking to investigate the diffusion mechanism of NPs and understand the influence of tumor ECM physical properties on NP diffusion both individually and collectively. Furthermore, we developed an estimation matrix model with evaluation scores of NP diffusion efficiency through comprehensive analyses of the data. Thus, beyond finding that loose and soft ECM with aligned structure contribute to efficient diffusion, we now have a systemic model to predict NP diffusion efficiency based on ECM physical traits and provide critical guidance for personalized tumor diagnosis and treatment.
Collapse
|
22
|
Zakaria MA, Aziz J, Rajab NF, Chua EW, Masre SF. Tissue Rigidity Increased during Carcinogenesis of NTCU-Induced Lung Squamous Cell Carcinoma In Vivo. Biomedicines 2022; 10:biomedicines10102382. [PMID: 36289644 PMCID: PMC9598693 DOI: 10.3390/biomedicines10102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
Increased tissue rigidity is an emerging hallmark of cancer as it plays a critical role in promoting cancer growth. However, the field lacks a defined characterization of tissue rigidity in dual-stage carcinogenesis of lung squamous cell carcinoma (SCC) in vivo. Pre-malignant and malignant lung SCC was developed in BALB/c mice using N-nitroso-tris-chloroethylurea (NTCU). Picro sirius red staining and atomic force microscopy were performed to measure collagen content and collagen (diameter and rigidity), respectively. Then, the expression of tenascin C (TNC) protein was determined using immunohistochemistry staining. Briefly, all tissue rigidity parameters were found to be increased in the Cancer group as compared with the Vehicle group. Importantly, collagen content (33.63 ± 2.39%) and TNC expression (7.97 ± 2.04%) were found to be significantly higher (p < 0.05) in the Malignant Cancer group, as compared with the collagen content (18.08 ± 1.75%) and TNC expression (0.45 ± 0.53%) in the Pre-malignant Cancer group, indicating increased tissue rigidity during carcinogenesis of lung SCC. Overall, tissue rigidity of lung SCC was suggested to be increased during carcinogenesis as indicated by the overexpression of collagen and TNC protein, which may warrant further research as novel therapeutic targets to treat lung SCC effectively.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Jazli Aziz
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nor Fadilah Rajab
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Siti Fathiah Masre
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +60-137-442-907
| |
Collapse
|
23
|
Bhusal A, Dogan E, Nieto D, Mousavi Shaegh SA, Cecen B, Miri AK. 3D Bioprinted Hydrogel Microfluidic Devices for Parallel Drug Screening. ACS APPLIED BIO MATERIALS 2022; 5:4480-4492. [PMID: 36037061 PMCID: PMC11375967 DOI: 10.1021/acsabm.2c00578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conventional high-throughput screening (HTS) platforms suffer from the need for large cell volumes, high reagent consumption, significant assembly cost, and handling efforts. The assembly of three-dimensional (3D) bioprinted hydrogel-based microfluidic chips within platforms can address these problems. We present a continuous and seamless manufacturing approach to create a bioprinted microfluidic chips with a circular pattern scalable toward HTS platforms. Digital light processing 3D bioprinting is used to tune the local permeability of our chip, made of polyethylene glycol diacrylate and cell-laden gelatin methacryloyl, for creating predefined gradients of biochemical properties. We measured the flow-induced physical characteristics, the mass transport of drug agents, and the biological features of the proposed chip. We measured reactive oxygen species from the encapsulated cells through an integrated process and showed the capacity of the hydrogel-based chip for creating drug/agent gradients. This work introduces a chip design based on a hydrogel that can be changed and could be used for modern HTS platforms such as in vitro organoids.
Collapse
Affiliation(s)
- Anant Bhusal
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Elvan Dogan
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, New Jersey 07102, United States
| | - Daniel Nieto
- Department Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, Netherlands
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, P.O. Box 9187145785, Mashhad 9187145785, Iran
- Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Sciences, P.O. Box 91735451, Mashhad 91735451, Iran
| | - Berivan Cecen
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Amir K Miri
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, New Jersey 07102, United States
| |
Collapse
|
24
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
25
|
Coupling solid and fluid stresses with brain tumour growth and white matter tract deformations in a neuroimaging-informed model. Biomech Model Mechanobiol 2022; 21:1483-1509. [PMID: 35908096 PMCID: PMC9626445 DOI: 10.1007/s10237-022-01602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
Brain tumours are among the deadliest types of cancer, since they display a strong ability to invade the surrounding tissues and an extensive resistance to common therapeutic treatments. It is therefore important to reproduce the heterogeneity of brain microstructure through mathematical and computational models, that can provide powerful instruments to investigate cancer progression. However, only a few models include a proper mechanical and constitutive description of brain tissue, which instead may be relevant to predict the progression of the pathology and to analyse the reorganization of healthy tissues occurring during tumour growth and, possibly, after surgical resection. Motivated by the need to enrich the description of brain cancer growth through mechanics, in this paper we present a mathematical multiphase model that explicitly includes brain hyperelasticity. We find that our mechanical description allows to evaluate the impact of the growing tumour mass on the surrounding healthy tissue, quantifying the displacements, deformations, and stresses induced by its proliferation. At the same time, the knowledge of the mechanical variables may be used to model the stress-induced inhibition of growth, as well as to properly modify the preferential directions of white matter tracts as a consequence of deformations caused by the tumour. Finally, the simulations of our model are implemented in a personalized framework, which allows to incorporate the realistic brain geometry, the patient-specific diffusion and permeability tensors reconstructed from imaging data and to modify them as a consequence of the mechanical deformation due to cancer growth.
Collapse
|
26
|
Nanomechanical and Morphological AFM Mapping of Normal Tissues and Tumors on Live Brain Slices Using Specially Designed Embedding Matrix and Laser-Shaped Cantilevers. Biomedicines 2022; 10:biomedicines10071742. [PMID: 35885046 PMCID: PMC9313344 DOI: 10.3390/biomedicines10071742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cell and tissue nanomechanics has been intriguingly introduced into biomedical research, not only complementing traditional immunophenotyping and molecular analysis, but also bringing unexpected new insights for clinical diagnostics and bioengineering. However, despite the progress in the study of individual cells in culture by atomic force microscopy (AFM), its application for mapping live tissues has a number of technical limitations. Here, we elaborate a new technique to study live slices of normal brain tissue and tumors by combining morphological and nanomechanical AFM mapping in high throughput scanning mode, in contrast to the typically utilized force spectroscopy mode based on single-point probe application. This became possible due to the combined use of an appropriate embedding matrix for vibratomy and originally modified AFM probes. The embedding matrix composition was carefully developed by regulating the amounts of agar and collagen I to reach optimal viscoelastic properties for obtaining high-quality live slices that meet AFM requirements. AFM tips were rounded by irradiating them with focused nanosecond laser pulses, while the resulting tip morphology was verified by scanning electron microscopy. Live slices preparation and AFM investigation take only 55 min and could be combined with a vital cell tracer analysis or immunostaining, thus making it promising for biomedical research and clinical diagnostics.
Collapse
|
27
|
Thomson H, Yang S, Cochran S. Machine learning-enabled quantitative ultrasound techniques for tissue differentiation. J Med Ultrason (2001) 2022; 49:517-528. [PMID: 35840774 DOI: 10.1007/s10396-022-01230-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Quantitative ultrasound (QUS) infers properties about tissue microstructure from backscattered radio-frequency ultrasound data. This paper describes how to implement the most practical QUS parameters using an ultrasound research system for tissue differentiation. METHODS This study first validated chicken liver and gizzard muscle as suitable acoustic phantoms for human brain and brain tumour tissues via measurement of the speed of sound and acoustic attenuation. A total of thirteen QUS parameters were estimated from twelve samples, each using data obtained with a transducer with a frequency of 5-11 MHz. Spectral parameters, i.e., effective scatterer diameter and acoustic concentration, were calculated from the backscattered power spectrum of the tissue, and echo envelope statistics were estimated by modelling the scattering inside the tissue as a homodyned K-distribution, yielding the scatterer clustering parameter α and the structure parameter κ. Standard deviation and higher-order moments were calculated from the echogenicity value assigned in conventional B-mode images. RESULTS The k-nearest neighbours algorithm was used to combine those parameters, which achieved 94.5% accuracy and 0.933 F1-score. CONCLUSION We were able to generate classification parametric images in near-real-time speed as a potential diagnostic tool in the operating room for the possible use for human brain tissue characterisation.
Collapse
Affiliation(s)
- Hannah Thomson
- Centre for Medical and Industrial Ultrasonics, University of Glasgow, University Avenue, Glasgow, UK.
| | - Shufan Yang
- Centre for Medical and Industrial Ultrasonics, University of Glasgow, University Avenue, Glasgow, UK.,School of Computing, Edinburgh Napier University, Merchiston Campus, Edinburgh, UK
| | - Sandy Cochran
- Centre for Medical and Industrial Ultrasonics, University of Glasgow, University Avenue, Glasgow, UK
| |
Collapse
|
28
|
Bruns J, Egan T, Mercier P, Zustiak SP. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Acta Biomater 2022; 163:400-414. [PMID: 35659918 DOI: 10.1016/j.actbio.2022.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) is the deadliest brain tumor for which there is no cure. Bioengineered GBM models, such as hydrogel-encapsulated spheroids, that capture both cell-cell and cell-matrix interactions could facilitate testing of much needed therapies. Elucidation of specific microenvironment properties on spheroid responsiveness to therapeutics would enhance the usefulness of GBM models as predictive drug screening platforms. Here, GBM spheroids consisting of U87 or patient-derived GBM cells were encapsulated in soft (∼1 kPa), stiff (∼7 kPa), and dual-stiffness polyethylene glycol-based hydrogels, with GBM spheroids seeded at the stiffness interface. Spheroids were cultured for 7 days and examined for viability, size, invasion, laminin expression, hypoxia, proliferation, and response to the chemotherapeutic temozolomide (TMZ). We noted excellent cell viability in all hydrogels, and higher infiltration in soft compared to stiff hydrogels for U87 spheroids. In dual gels spheroids mostly infiltrated away from the stiffness interface with minimal crossing over it and some individual cell migration along the interface. U87 spheroids were equally responsive to TMZ in the soft and stiff hydrogels, but cell viability in the spheroid periphery was higher than the core for stiff hydrogels whereas the opposite was true for soft hydrogels. HIF1A expression was higher in the core of spheroids in the stiff hydrogels, while there was no difference in cell proliferation between spheroids in the stiff vs soft hydrogels. Patient-derived GBM spheroids did not show stiffness-dependent drug responses. U87 cells showed similar laminin expression in soft and stiff hydrogels with higher expression in the spheroid periphery compared to the core. Our results indicate that microenvironment stiffness needs to be considered in bioengineered GBM models including those designed for use in drug screening applications. STATEMENT OF SIGNIFICANCE: Recent work on tumor models engineered for use in drug screening has highlighted the potential of hydrogel-encapsulated spheroids as a simple, yet effective platform that show drug responses similar to native tumors. It has also been shown that substrate stiffness, in vivo and in vitro, affects cancer cell responses to drugs. This is particularly important for glioblastoma (GBM), the deadliest brain cancer, as GBM cells invade by following the stiffer brain structures such as white matter tracks and the perivascular niche. Invading cells have also been associated with higher resistance to chemotherapy. Here we developed GBM spheroid models using soft, stiff and dual-stiffness hydrogels to explore the connection between substrate stiffness, spheroid invasion and drug responsiveness in a controlled environment.
Collapse
Affiliation(s)
- Joseph Bruns
- Department of Biomedical Engineering, School of Engineering, Saint Louis University, St Louis, MO, USA
| | - Terrance Egan
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St Louis, MO, USA
| | - Philippe Mercier
- Department of Neurosurgery, School of Medicine, Saint Louis University, St Louis, MO, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, School of Engineering, Saint Louis University, St Louis, MO, USA.
| |
Collapse
|
29
|
Khoonkari M, Liang D, Kamperman M, Kruyt FAE, van Rijn P. Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics 2022; 14:pharmaceutics14051031. [PMID: 35631616 PMCID: PMC9145282 DOI: 10.3390/pharmaceutics14051031] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
The biology and physics underlying glioblastoma is not yet completely understood, resulting in the limited efficacy of current clinical therapy. Recent studies have indicated the importance of mechanical stress on the development and malignancy of cancer. Various types of mechanical stress activate adaptive tumor cell responses that include alterations in the extracellular matrix (ECM) which have an impact on tumor malignancy. In this review, we describe and discuss the current knowledge of the effects of ECM alterations and mechanical stress on GBM aggressiveness. Gradual changes in the brain ECM have been connected to the biological and physical alterations of GBM cells. For example, increased expression of several ECM components such as glycosaminoglycans (GAGs), hyaluronic acid (HA), proteoglycans and fibrous proteins result in stiffening of the brain ECM, which alters inter- and intracellular signaling activity. Several mechanosensing signaling pathways have been identified that orchestrate adaptive responses, such as Hippo/YAP, CD44, and actin skeleton signaling, which remodel the cytoskeleton and affect cellular properties such as cell–cell/ECM interactions, growth, and migration/invasion of GBM cells. In vitro, hydrogels are used as a model to mimic the stiffening of the brain ECM and reconstruct its mechanics, which we also discuss. Overall, we provide an overview of the tumor microenvironmental landscape of GBM with a focus on ECM stiffening and its associated adaptive cellular signaling pathways and their possible therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Frank A. E. Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Correspondence: (F.A.E.K.); (P.v.R.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (F.A.E.K.); (P.v.R.)
| |
Collapse
|
30
|
Zheng X, Sun Y, Li H, Li N, Zhang X, Lin JM. Biomimetic multifactor stimulation method for analyzing the synergism of matrix stiffness and inorganic polyphosphates on cellular behaviors. Talanta 2022; 241:123222. [DOI: 10.1016/j.talanta.2022.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 11/16/2022]
|
31
|
Cepeda S, García-García S, Arrese I, Velasco-Casares M, Sarabia R. Advantages and Limitations of Intraoperative Ultrasound Strain Elastography Applied in Brain Tumor Surgery: A Single-Center Experience. Oper Neurosurg (Hagerstown) 2022; 22:305-314. [DOI: 10.1227/ons.0000000000000122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
|
32
|
Bousalis D, McCrary MW, Vaughn N, Hlavac N, Evering A, Kolli S, Song YH, Morley C, Angelini T, Schmidt CE. Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. J Biomed Mater Res A 2022; 110:595-611. [PMID: 34590403 PMCID: PMC8742792 DOI: 10.1002/jbm.a.37312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Damage to the nervous system can result in loss of sensory and motor function, paralysis, or even death. To facilitate neural regeneration and functional recovery, researchers have employed biomaterials strategies to address both peripheral and central nervous system injuries. Injectable hydrogels that recapitulate native nerve extracellular matrix are especially promising for neural tissue engineering because they offer more flexibility for minimally invasive applications and provide a growth-permissive substrate for neural cell types. Here, we explore the development of injectable hydrogels derived from decellularized rat peripheral nerves (referred to as "injectable peripheral nerve [iPN] hydrogels"), which are processed using a newly developed sodium deoxycholate and DNase (SDD) decellularization method. We assess the gelation kinetics, mechanical properties, cell bioactivity, and drug release kinetics of the iPN hydrogels. The iPN hydrogels thermally gel when exposed to 37°C in under 20 min and have mechanical properties similar to neural tissue. The hydrogels demonstrate in vitro biocompatibility through support of Schwann cell viability and metabolic activity. Additionally, iPN hydrogels promote greater astrocyte spreading compared to collagen I hydrogels. Finally, the iPN is a promising delivery vehicle of drug-loaded microparticles for a combinatorial approach to neural injury therapies.
Collapse
Affiliation(s)
- Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Michaela W. McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Natalie Vaughn
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Ashley Evering
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Shruti Kolli
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL,Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR
| | - Cameron Morley
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
33
|
Paradiso F, Lenna S, Gazze SA, Garcia Parra J, Murphy K, Margarit L, Gonzalez D, Francis L, Taraballi F. Mechanomimetic 3D Scaffolds as a Humanized In Vitro Model for Ovarian Cancer. Cells 2022; 11:824. [PMID: 35269446 PMCID: PMC8909508 DOI: 10.3390/cells11050824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The mechanical homeostasis of tissues can be altered in response to trauma or disease, such as cancer, resulting in altered mechanotransduction pathways that have been shown to impact tumor development, progression, and the efficacy of therapeutic approaches. Specifically, ovarian cancer progression is parallel to an increase in tissue stiffness and fibrosis. With in vivo models proving difficult to study, tying tissue mechanics to altered cellular and molecular properties necessitate advanced, tunable, in vitro 3D models able to mimic normal and tumor mechanic features. First, we characterized normal human ovary and high-grade serous (HGSC) ovarian cancer tissue stiffness to precisely mimic their mechanical features on collagen I-based sponge scaffolds, soft (NS) and stiff (MS), respectively. We utilized three ovarian cancer cell lines (OVCAR-3, Caov-3, and SKOV3) to evaluate changes in viability, morphology, proliferation, and sensitivity to doxorubicin and liposomal doxorubicin treatment in response to a mechanically different microenvironment. High substrate stiffness promoted the proliferation of Caov-3 and SKOV3 cells without changing their morphology, and upregulated mechanosensors YAP/TAZ only in SKOV3 cells. After 7 days in culture, both OVCAR3 and SKOV3 decreased the MS scaffold storage modulus (stiffness), suggesting a link between cell proliferation and the softening of the matrix. Finally, high matrix stiffness resulted in higher OVCAR-3 and SKOV3 cell cytotoxicity in response to doxorubicin. This study demonstrates the promise of biomimetic porous scaffolds for effective inclusion of mechanical parameters in 3D cancer modeling. Furthermore, this work establishes the use of porous scaffolds for studying ovarian cancer cells response to mechanical changes in the microenvironment and as a meaningful platform from which to investigate chemoresistance and drug response.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| | - S. Andrea Gazze
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Jezabel Garcia Parra
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Kate Murphy
- Department of Pathology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK;
| | - Lavinia Margarit
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Lewis Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| |
Collapse
|
34
|
Pang S, Kapur A, Zhou K, Anastasiadis P, Ballirano N, Kim AJ, Winkles JA, Woodworth GF, Huang H. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1826. [PMID: 35735205 PMCID: PMC9540339 DOI: 10.1002/wnan.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anshika Kapur
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Pavlos Anastasiadis
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Nicholas Ballirano
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anthony J. Kim
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Jeffrey A. Winkles
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Graeme F. Woodworth
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
35
|
Chang S, Handwerker J, Giannico GA, Chang SS, Bowden AK. Birefringent tissue-mimicking phantom for polarization-sensitive optical coherence tomography imaging. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210279SSR. [PMID: 35064658 PMCID: PMC8781524 DOI: 10.1117/1.jbo.27.7.074711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Tissue birefringence is an important parameter to consider when designing realistic, tissue-mimicking phantoms. Options for suitable birefringent materials that can be used to accurately represent tissue scattering are limited. AIM To introduce a method of fabricating birefringent tissue phantoms with a commonly used material-polydimethylsiloxane (PDMS)-for imaging with polarization-sensitive optical coherence tomography (PS-OCT). APPROACH Stretch-induced birefringence was characterized in PDMS phantoms made with varying curing ratios, and the resulting phantom birefringence values were compared with those of biological tissues. RESULTS We showed that, with induced birefringence levels up to 2.1 × 10 - 4, PDMS can be used to resemble the birefringence levels in weakly birefringent tissues. We demonstrated the use of PDMS in the development of phantoms to mimic the normal and diseased bladder wall layers, which can be differentiated by their birefringence levels. CONCLUSIONS PDMS allows accurate control of tissue scattering and thickness, and it exhibits controllable birefringent properties. The use of PDMS as a birefringent phantom material can be extended to other birefringence imaging systems beyond PS-OCT and to mimic other organs.
Collapse
Affiliation(s)
- Shuang Chang
- Vanderbilt University, Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Jessica Handwerker
- Vanderbilt University, Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Giovanna A. Giannico
- Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee, United States
| | - Sam S. Chang
- Vanderbilt University Medical Center, Department of Urology, Nashville, Tennessee, United States
| | - Audrey K. Bowden
- Vanderbilt University, Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| |
Collapse
|
36
|
DePalma TJ, Sivakumar H, Skardal A. Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Adv Drug Deliv Rev 2022; 180:114067. [PMID: 34822927 PMCID: PMC10560581 DOI: 10.1016/j.addr.2021.114067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
In recent years, many research groups have begun to utilize bioengineered in vitro models of cancer to study mechanisms of disease progression, test drug candidates, and develop platforms to advance personalized drug treatment options. Due to advances in cell and tissue engineering over the last few decades, there are now a myriad of tools that can be used to create such in vitro systems. In this review, we describe the considerations one must take when developing model systems that accurately mimic the in vivo tumor microenvironment (TME) and can be used to answer specific scientific questions. We will summarize the importance of cell sourcing in models with one or multiple cell types and outline the importance of choosing biomaterials that accurately mimic the native extracellular matrix (ECM) of the tumor or tissue that is being modeled. We then provide examples of how these two components can be used in concert in a variety of model form factors and conclude by discussing how biofabrication techniques such as bioprinting and organ-on-a-chip fabrication can be used to create highly reproducible complex in vitro models. Since this topic has a broad range of applications, we use the final section of the review to dive deeper into one type of cancer, glioblastoma, to illustrate how these components come together to further our knowledge of cancer biology and move us closer to developing novel drugs and systems that improve patient outcomes.
Collapse
Affiliation(s)
- Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Spartacus V, Shojaeizadeh M, Raffault V, Shoults J, Van Wieren K, Sparrey CJ. In vivo soft tissue compressive properties of the human hand. PLoS One 2021; 16:e0261008. [PMID: 34898632 PMCID: PMC8668133 DOI: 10.1371/journal.pone.0261008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Background/Purpose Falls onto outstretched hands are the second most common sports injury and one of the leading causes of upper extremity injury. Injury risk and severity depends on forces being transmitted through the palmar surface to the upper extremity. Although the magnitude and distribution of forces depend on the soft tissue response of the palm, the in vivo properties of palmar tissue have not been characterized. The purpose of this study was to characterize the large deformation palmar soft tissue properties. Methods In vivo dynamic indentations were conducted on 15 young adults (21–29 years) to quantify the soft tissue characteristics of over the trapezium. The effects of loading rate, joint position, tissue thickness and sex on soft tissue responses were assessed. Results Energy absorbed by the soft tissue and peak force were affected by loading rate and joint angle. Energy absorbed was 1.7–2.8 times higher and the peak force was 2–2.75 times higher at high rate loading than quasistatic rates. Males had greater energy absorbed than females but not at all wrist positions. Damping characteristics were the highest in the group with the thickest soft tissue while damping characteristics were the lowest in group with the thinnest soft tissues. Conclusion Palmar tissue response changes with joint position, loading rate, sex, and tissue thickness. Accurately capturing these tissue responses is important for developing effective simulations of fall and injury biomechanics and assessing the effectiveness of injury prevention strategies.
Collapse
Affiliation(s)
- Victoria Spartacus
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- * E-mail:
| | - Maedeh Shojaeizadeh
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - Vincent Raffault
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - James Shoults
- Science Technical Center, Simon Fraser University, Burnaby, BC, Canada
| | - Ken Van Wieren
- Science Technical Center, Simon Fraser University, Burnaby, BC, Canada
| | - Carolyn J. Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Kasper M, Ellenbogen B, Hardy R, Cydis M, Mojica-Santiago J, Afridi A, Spearman BS, Singh I, Kuliasha CA, Atkinson E, Otto KJ, Judy JW, Rinaldi-Ramos C, Schmidt CE. Development of a magnetically aligned regenerative tissue-engineered electronic nerve interface for peripheral nerve applications. Biomaterials 2021; 279:121212. [PMID: 34717196 PMCID: PMC9036633 DOI: 10.1016/j.biomaterials.2021.121212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023]
Abstract
Peripheral nerve injuries can be debilitating to motor and sensory function, with severe cases often resulting in complete limb amputation. Over the past two decades, prosthetic limb technology has rapidly advanced to provide users with crude motor control of up to 20° of freedom; however, the nerve-interfacing technology required to provide high movement selectivity has not progressed at the same rate. The work presented here focuses on the development of a magnetically aligned regenerative tissue-engineered electronic nerve interface (MARTEENI) that combines polyimide "threads" encapsulated within a magnetically aligned hydrogel scaffold. The technology exploits tissue-engineered strategies to address concerns over traditional peripheral nerve interfaces including poor axonal sampling through the nerve and rigid substrates. A magnetically templated hydrogel is used to physically support the polyimide threads while also promoting regeneration in close proximity to the electrode sites on the polyimide. This work demonstrates the utility of magnetic templating for use in tuning the mechanical properties of hydrogel scaffolds to match the stiffness of native nerve tissue while providing an aligned substrate for Schwann cell migration in vitro. MARTEENI devices were fabricated and implanted within a 5-mm-long rat sciatic-nerve transection model to assess regeneration at 6 and 12 weeks. MARTEENI devices do not disrupt tissue remodeling and show axon densities equivalent to fresh tissue controls around the polyimide substrates. Devices are observed to have attenuated foreign-body responses around the polyimide threads. It is expected that future studies with functional MARTEENI devices will be able to record and stimulate single axons with high selectivity and low stimulation regimes.
Collapse
Affiliation(s)
- Mary Kasper
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Bret Ellenbogen
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Ryan Hardy
- Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Dr., P.O. Box 116400, Gainesville, FL, 32611, USA
| | - Madison Cydis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Jorge Mojica-Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Abdullah Afridi
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Benjamin S Spearman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Ishita Singh
- Department of Chemical Engineering, University of Florida, 1030 Center Dr., P.O. Box 116005, Gainesville, FL, 32611, USA
| | - Cary A Kuliasha
- Department of Electrical and Computer Engineering, University of Florida, 968 Center Dr., Gainesville, FL, 32611, USA
| | - Eric Atkinson
- Department of Neuroscience, 1149 Newell Dr. L1-100, P.O. Box 100244, University of Florida, Gainesville, FL, 32610, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA; Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Dr., P.O. Box 116400, Gainesville, FL, 32611, USA; Department of Electrical and Computer Engineering, University of Florida, 968 Center Dr., Gainesville, FL, 32611, USA; Department of Neuroscience, 1149 Newell Dr. L1-100, P.O. Box 100244, University of Florida, Gainesville, FL, 32610, USA; Department of Neurology, 1149 Newell Dr. L3-100, P.O. Box 100236, University of Florida, Gainesville, FL, 32610, USA
| | - Jack W Judy
- Department of Electrical and Computer Engineering, University of Florida, 968 Center Dr., Gainesville, FL, 32611, USA
| | - Carlos Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA; Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA.
| |
Collapse
|
39
|
Darvishi V, Navidbakhsh M, Amanpour S. Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. HEAT AND MASS TRANSFER = WARME- UND STOFFUBERTRAGUNG 2021; 58:1029-1039. [PMID: 34848928 PMCID: PMC8624640 DOI: 10.1007/s00231-021-03161-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/22/2021] [Indexed: 05/11/2023]
Abstract
In this study, a more precise and cost-effective method is used for studying the drug delivery and distribution of magnetic nanoparticles in fluid hyperthermia cancer treatment, and numerical methods are employed to determine the effect of blood circulation on heat transfer and estimate the success of cancer treatment. A combination of numerical, analytical, and experimental researches is being conducted, which illustrates the essential role of numerical methods in medical and biomedical science. Magnetic NanoParticles' distribution and effects of infusion rate on the treatment are also discussed by considering the real distribution of MNPs. To increase accuracy and reduce costs in the in-vitro section, direct cutting and image processing methods are used instead of MRI. Based on the results of this section, with a tenfold increase in the infusion rate (4 μl/min to 40 μl/min), the penetration depth increases by 1 mm, which represents a nearly 17 percent increase. Concentrations of MNPs also decrease significantly at higher infusion rates. The simulations of heat transfer reveal that maximum temperatures occur at the lowest infusion rate (1.25 μl/min), and blood flow also has a significant effect on heat transfer. With an increase in the infusion rate, necrosis tissue recedes from the tumor center and approaches the border between the tumor and healthy tissue. Results also show that, in lower MNPs' concentrations, higher infusion rates result in better treatment even though minimum infusion rates are suggested to be the best rates to facilitate distribution and treatment.
Collapse
Affiliation(s)
- Vahid Darvishi
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Mahdi Navidbakhsh
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Saeid Amanpour
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Mojra A, Hooman K. Viscoelastic parameters of invasive breast cancer in correlation with porous structure and elemental analysis data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 212:106482. [PMID: 34736165 DOI: 10.1016/j.cmpb.2021.106482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Invasive ductal carcinoma (IDC) is the most common and aggressive type of breast cancer. As many clinical diagnoses are concerned with the tumor behavior at the compression, the IDC characterization using a compression test is performed in the present study. In the field of tissue characterization, most of the previous studies have focused on healthy and cancerous breast tissues at the cellular level; however, characterization of cancerous tissue at the tissue level has been under-represented, which is the target of the present study. METHODS Throughout this article, 18 IDC samples are tested using a ramp-relaxation test. The strain rate in the ramp phase is similar for all samples, whereas the strain level is set at 2,4 and 6%. The experimental stress-time data is interpolated by a viscoelastic model. Two relaxation times, as well as the instantaneous and long-term shear moduli, are calculated for each specimen. RESULTS The results show that the long-term and instantaneous shear moduli vary in the range of 0.31-17.03 kPa and 6.03-55.13 kPa, respectively. Our assessment of the viscoelastic parameters is accompanied by observing structural images of the IDCs and inspecting their elemental composition. It is concluded that IDCs with lower Magnesium to Calcium ratio (Mg:Ca) have smaller shear modulus and longer relaxation time, with a p-value of 0.001 and 0.01 for the correlation between Mg:Ca and long-term shear modulus, and Mg:Ca and early relaxation time. CONCLUSIONS Our identification of the IDC viscoelastic parameters can contribute to the IDC inspection at the tissue level. The results also provide useful information for modeling of breast cancer.
Collapse
Affiliation(s)
- Afsaneh Mojra
- Department of Mechanical Engineering, K. N. Toosi University of Technology, 15 Pardis St., Tehran 1991943344, Iran.
| | - Kamel Hooman
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
41
|
A vascularized tumoroid model for human glioblastoma angiogenesis. Sci Rep 2021; 11:19550. [PMID: 34599235 PMCID: PMC8486855 DOI: 10.1038/s41598-021-98911-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) angiogenesis is critical for tumor growth and recurrence, making it a compelling therapeutic target. Here, a disease-relevant, vascularized tumoroid in vitro model with stem-like features and stromal surrounds is reported. The model is used to recapitulate how individual components of the GBM’s complex brain microenvironment such as hypoxia, vasculature-related stromal cells and growth factors support GBM angiogenesis. It is scalable, tractable, cost-effective and can be used with biologically-derived or biomimetic matrices. Patient-derived primary GBM cells are found to closely participate in blood vessel formation in contrast to a GBM cell line containing differentiated cells. Exogenous growth factors amplify this effect under normoxia but not at hypoxia suggesting that a significant amount of growth factors is already being produced under hypoxic conditions. Under hypoxia, primary GBM cells strongly co-localize with umbilical vein endothelial cells to form sprouting vascular networks, which has been reported to occur in vivo. These findings demonstrate that our 3D tumoroid in vitro model exhibits biomimetic attributes that may permit its use as a preclinical model in studying microenvironment cues of tumor angiogenesis.
Collapse
|
42
|
Chen J, Lee H, Schmitt P, Choy CJ, Miller DM, Williams BJ, Bearer EL, Frieboes HB. Bioengineered Models to Study Microenvironmental Regulation of Glioblastoma Metabolism. J Neuropathol Exp Neurol 2021; 80:1012–1023. [PMID: 34524448 DOI: 10.1093/jnen/nlab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite extensive research and aggressive therapies, glioblastoma (GBM) remains a central nervous system malignancy with poor prognosis. The varied histopathology of GBM suggests a landscape of differing microenvironments and clonal expansions, which may influence metabolism, driving tumor progression. Indeed, GBM metabolic plasticity in response to differing nutrient supply within these microenvironments has emerged as a key driver of aggressiveness. Additionally, emergent biophysical and biochemical interactions in the tumor microenvironment (TME) are offering new perspectives on GBM metabolism. Perivascular and hypoxic niches exert crucial roles in tumor maintenance and progression, facilitating metabolic relationships between stromal and tumor cells. Alterations in extracellular matrix and its biophysical characteristics, such as rigidity and topography, regulate GBM metabolism through mechanotransductive mechanisms. This review highlights insights gained from deployment of bioengineering models, including engineered cell culture and mathematical models, to study the microenvironmental regulation of GBM metabolism. Bioengineered approaches building upon histopathology measurements may uncover potential therapeutic strategies that target both TME-dependent mechanotransductive and biomolecular drivers of metabolism to tackle this challenging disease. Longer term, a concerted effort integrating in vitro and in silico models predictive of patient therapy response may offer a powerful advance toward tailoring of treatment to patient-specific GBM characteristics.
Collapse
Affiliation(s)
- Joseph Chen
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Hyunchul Lee
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Philipp Schmitt
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Caleb J Choy
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Donald M Miller
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Brian J Williams
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Elaine L Bearer
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Hermann B Frieboes
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| |
Collapse
|
43
|
Sun B. The mechanics of fibrillar collagen extracellular matrix. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100515. [PMID: 34485951 PMCID: PMC8415638 DOI: 10.1016/j.xcrp.2021.100515] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
As a major component of the human body, the extracellular matrix (ECM) is a complex biopolymer network. The ECM not only hosts a plethora of biochemical interactions but also defines the physical microenvironment of cells. The physical properties of the ECM, such as its geometry and mechanics, are critical to physiological processes and diseases such as morphogenesis, wound healing, and cancer. This review provides a brief introduction to the recent progress in understanding the mechanics of ECM for researchers who are interested in learning about this relatively new subject of biophysics. This review covers the mechanics of a single ECM fiber (nanometer scale), the micromechanics of ECM (micrometer scale), and bulk rheology (greater than millimeter scale). Representative experimental measurements and basic theoretical models are introduced side by side. After discussing the physics of ECM mechanics, the review concludes by commenting on the role of ECM mechanics in healthy and tumorigenic tissues and the open questions that call for future studies at the interface of fundamental physics, engineering, and medical sciences.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| |
Collapse
|
44
|
Rey JA, Ewing JR, Sarntinoranont M. A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity. Biomech Model Mechanobiol 2021; 20:1981-2000. [PMID: 34363553 DOI: 10.1007/s10237-021-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
A biphasic computational model of a growing, vascularized glioma within brain tissue was developed to account for unique features of gliomas, including soft surrounding brain tissue, their low stiffness relative to brain tissue, and a lack of draining lymphatics. This model is the first to couple nonlinear tissue deformation with porosity and tissue hydraulic conductivity to study the mechanical interaction of leaky vasculature and solid growth in an embedded glioma. The present model showed that leaky vasculature and elevated interstitial fluid pressure produce tensile stress within the tumor in opposition to the compressive stress produced by tumor growth. This tensile effect was more pronounced in softer tissue and resulted in a compressive stress concentration at the tumor rim that increased when tumor was softer than host. Aside from generating solid stress, fluid pressure-driven tissue deformation decreased the effective stiffness of the tumor while growth increased it, potentially leading to elevated stiffness in the tumor rim. A novel prediction of reduced porosity at the tumor rim was corroborated by direct comparison with estimates from our in vivo imaging studies. Antiangiogenic and radiation therapy were simulated by varying vascular leakiness and tissue hydraulic conductivity. These led to greater solid compression and interstitial pressure in the tumor, respectively, the former of which may promote tumor infiltration of the host. Our findings suggest that vascular leakiness has an important influence on in vivo solid stress, stiffness, and porosity fields in gliomas given their unique mechanical microenvironment.
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
45
|
Bizanti A, Chandrashekar P, Steward R. Culturing astrocytes on substrates that mimic brain tumors promotes enhanced mechanical forces. Exp Cell Res 2021; 406:112751. [PMID: 34363813 DOI: 10.1016/j.yexcr.2021.112751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
Astrocytes are essential to brain homeostasis and their dysfunction can have devastating consequences on human quality of life. Such deleterious effects are generally due in part to changes that occur at the cellular level, which may be biochemical or biomechanical in nature. One biomechanical change that can occur is a change in tissue stiffness. Brain tumors are generally associated with increased brain tissue stiffness, but the impact increased tissue stiffness has on astrocyte biomechanical behavior is poorly understood. Therefore, in this study we cultured human astrocytes on flexible substrates with stiffness that mimicked the healthy human brain (1 kPa), meningioma (4 kPa), and glioma (11 kPa) and investigated astrocyte biomechanical behavior by measuring cell-substrate tractions, strain energies, cell-cell intercellular stresses, and cellular velocities. In general, tractions, intercellular stresses, and strain energy was observed to increase as a function of increased substrate stiffness, while cell velocities were observed to decrease with increased substrate stiffness. We believe this study will be of great importance to the fields of brain pathology and brain physiology.
Collapse
Affiliation(s)
- Ariege Bizanti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Priyanka Chandrashekar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Robert Steward
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
46
|
Ozkaya E, Triolo ER, Rezayaraghi F, Abderezaei J, Meinhold W, Hong K, Alipour A, Kennedy P, Fleysher L, Ueda J, Balchandani P, Eriten M, Johnson CL, Yang Y, Kurt M. Brain-mimicking phantom for biomechanical validation of motion sensitive MR imaging techniques. J Mech Behav Biomed Mater 2021; 122:104680. [PMID: 34271404 DOI: 10.1016/j.jmbbm.2021.104680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Motion sensitive MR imaging techniques allow for the non-invasive evaluation of biological tissues by using different excitation schemes, including physiological/intrinsic motions caused by cardiac pulsation or respiration, and vibrations caused by an external actuator. The mechanical biomarkers extracted through these imaging techniques have been shown to hold diagnostic value for various neurological disorders and conditions. Amplified MRI (aMRI), a cardiac gated imaging technique, can help track and quantify low frequency intrinsic motion of the brain. As for high frequency actuation, the mechanical response of brain tissue can be measured by applying external high frequency actuation in combination with a motion sensitive MR imaging sequence called Magnetic Resonance Elastography (MRE). Due to the frequency-dependent behavior of brain mechanics, there is a need to develop brain phantom models that can mimic the broadband mechanical response of the brain in order to validate motion-sensitive MR imaging techniques. Here, we have designed a novel phantom test setup that enables both the low and high frequency responses of a brain-mimicking phantom to be captured, allowing for both aMRI and MRE imaging techniques to be applied on the same phantom model. This setup combines two different vibration sources: a pneumatic actuator, for low frequency/intrinsic motion (1 Hz) for use in aMRI, and a piezoelectric actuator for high frequency actuation (30-60 Hz) for use in MRE. Our results show that in MRE experiments performed from 30 Hz through 60 Hz, propagating shear waves attenuate faster at higher driving frequencies, consistent with results in the literature. Furthermore, actuator coupling has a substantial effect on wave amplitude, with weaker coupling causing lower amplitude wave field images, specifically shown in the top-surface shear loading configuration. For intrinsic actuation, our results indicate that aMRI linearly amplifies motion up to at least an amplification factor of 9 for instances of both visible and sub-voxel motion, validated by varying power levels of pneumatic actuation (40%-80% power) under MR, and through video analysis outside the MRI scanner room. While this investigation used a homogeneous brain-mimicking phantom, our setup can be used to study the mechanics of non-homogeneous phantom configurations with bio-interfaces in the future.
Collapse
Affiliation(s)
- E Ozkaya
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - E R Triolo
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - F Rezayaraghi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - J Abderezaei
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - W Meinhold
- The George W. Woodruff of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - K Hong
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - A Alipour
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - P Kennedy
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - L Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - J Ueda
- The George W. Woodruff of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - P Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - M Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - C L Johnson
- Department of Biomedical Engineering, University of Deleware, Newark, DE, 19716, USA
| | - Y Yang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - M Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
47
|
Application of micro-computer tomography and inverse finite element analysis for characterizing the visco-hyperelastic response of bulk liver tissue using indentation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
In-vitro mechanical indentation experimentation is performed on bulk liver tissue of lamb to characterize its nonlinear material behaviour. The material response is characterized by a visco-hyperelastic material model by the use of 2-dimensional inverse finite element (FE) analysis. The time-dependent behaviour is characterized by the viscoelastic model represented by a 4-parameter Prony series, whereas the large deformations are modelled using the hyperelastic Neo-Hookean model. The shear response described by the initial and final shear moduli and the corresponding Prony series parameters are optimized using ANSYS with the Root Mean Square (RMS) error being the objective function. Optimized material properties are validated using experimental results obtained under different loading histories. To study the efficacy of a 2D model, a three dimensional (3D) model of the specimen is developed using Micro-CT of the specimen. The initial elastic modulus of the lamb liver obtained was found to 13.5 kPa for 5% indentation depth at a loading rate of 1 mm/sec for 1-cycle. These properties are able to predict the response at 8.33% depth and a loading rate of 5 mm/sec at multiple cycles with reasonable accuracy.
Article highlights
The visco-hyperelastic model accurately models the large displacement as well as the time-dependent behaviour of the bulk liver tissue.
Mapped meshing of the 3D FE model saves computational time and captures localized displacement in an accurate manner.
The 2D axisymmetric model while predicting the force response of the bulk tissue, cannot predict the localized deformations.
Collapse
|
48
|
Marhuenda E, Fabre C, Zhang C, Martin-Fernandez M, Iskratsch T, Saleh A, Bauchet L, Cambedouzou J, Hugnot JP, Duffau H, Dennis JW, Cornu D, Bakalara N. Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J Exp Clin Cancer Res 2021; 40:139. [PMID: 33894774 PMCID: PMC8067292 DOI: 10.1186/s13046-021-01925-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Glioblastomas stem-like cells (GSCs) by invading the brain parenchyma, remains after resection and radiotherapy and the tumoral microenvironment become stiffer. GSC invasion is reported as stiffness sensitive and associated with altered N-glycosylation pattern. Glycocalyx thickness modulates integrins mechanosensing, but details remain elusive and glycosylation enzymes involved are unknown. Here, we studied the association between matrix stiffness modulation, GSC migration and MGAT5 induced N-glycosylation in fibrillar 3D context. METHOD To mimic the extracellular matrix fibrillar microenvironments, we designed 3D-ex-polyacrylonitrile nanofibers scaffolds (NFS) with adjustable stiffnesses by loading multiwall carbon nanotubes (MWCNT). GSCs neurosphere were plated on NFSs, allowing GSCs migration and MGAT5 was deleted using CRISPR-Cas9. RESULTS We found that migration of GSCs was maximum at 166 kPa. Migration rate was correlated with cell shape, expression and maturation of focal adhesion (FA), Epithelial to Mesenchymal Transition (EMT) proteins and (β1,6) branched N-glycan binding, galectin-3. Mutation of MGAT5 in GSC inhibited N-glycans (β1-6) branching, suppressed the stiffness dependence of migration on 166 kPa NFS as well as the associated FA and EMT protein expression. CONCLUSION MGAT5 catalysing multibranched N-glycans is a critical regulators of stiffness induced invasion and GSCs mechanotransduction, underpinning MGAT5 as a serious target to treat cancer.
Collapse
Affiliation(s)
- Emilie Marhuenda
- Institut des Neurosciences de Montpellier (INM) U-1051, University of Montpellier, 80 rue Augustin Fliche, Hôpital Saint-Eloi, 34091, Montpellier, Cedex 5, France.
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France.
| | - Christine Fabre
- Institut des Neurosciences de Montpellier (INM) U-1051, University of Montpellier, 80 rue Augustin Fliche, Hôpital Saint-Eloi, 34091, Montpellier, Cedex 5, France
- École nationale supérieure de chimie de Montpellier, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France
| | - Cunjie Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Martà Martin-Fernandez
- Institut Charles Coulomb, UMR 5221, University of Montpellier, CNRS, Montpellier, France
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Ali Saleh
- Institut des Neurosciences de Montpellier (INM) U-1051, University of Montpellier, 80 rue Augustin Fliche, Hôpital Saint-Eloi, 34091, Montpellier, Cedex 5, France
| | - Luc Bauchet
- Institut des Neurosciences de Montpellier (INM) U-1051, University of Montpellier, 80 rue Augustin Fliche, Hôpital Saint-Eloi, 34091, Montpellier, Cedex 5, France
| | - Julien Cambedouzou
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
- École nationale supérieure de chimie de Montpellier, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France
| | - Jean-Philippe Hugnot
- Institut des Neurosciences de Montpellier (INM) U-1051, University of Montpellier, 80 rue Augustin Fliche, Hôpital Saint-Eloi, 34091, Montpellier, Cedex 5, France
| | - Hugues Duffau
- Institut des Neurosciences de Montpellier (INM) U-1051, University of Montpellier, 80 rue Augustin Fliche, Hôpital Saint-Eloi, 34091, Montpellier, Cedex 5, France
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France.
- École nationale supérieure de chimie de Montpellier, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France.
| | - Norbert Bakalara
- Institut des Neurosciences de Montpellier (INM) U-1051, University of Montpellier, 80 rue Augustin Fliche, Hôpital Saint-Eloi, 34091, Montpellier, Cedex 5, France.
- École nationale supérieure de chimie de Montpellier, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France.
| |
Collapse
|
49
|
Kulwatno J, Gearhart J, Gong X, Herzog N, Getzin M, Skobe M, Mills KL. Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint. Integr Biol (Camb) 2021; 13:1-16. [PMID: 33443535 DOI: 10.1093/intbio/zyaa024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 01/18/2023]
Abstract
Tumor emboli-aggregates of tumor cells within vessels-pose a clinical challenge as they are associated with increased metastasis and tumor recurrence. When growing within a vessel, tumor emboli are subject to a unique mechanical constraint provided by the tubular geometry of the vessel. Current models of tumor emboli use unconstrained multicellular tumor spheroids, which neglect this mechanical interplay. Here, we modeled a lymphatic vessel as a 200 μm-diameter channel in either a stiff or soft, bioinert agarose matrix to create a vessel-like constraint model (VLCM), and we modeled colon or breast cancer tumor emboli with aggregates of HCT116 or SUM149PT cells, respectively. The stiff matrix VLCM constrained the tumor emboli to the cylindrical channel, which led to continuous growth of the emboli, in contrast to the growth rate reduction that unconstrained spheroids exhibit. Emboli morphology in the soft matrix VLCM, however, was dependent on the magnitude of mechanical mismatch between the matrix and the cell aggregates. In general, when the elastic modulus of the matrix of the VLCM was greater than the emboli (EVLCM/Eemb > 1), the emboli were constrained to grow within the channel, and when the elastic modulus of the matrix was less than the emboli (0 < EVLCM/Eemb < 1), the emboli bulged into the matrix. Due to a large difference in myosin II expression between the cell lines, we hypothesized that tumor cell aggregate stiffness is an indicator of cellular force-generating capability. Inhibitors of myosin-related force generation decreased the elastic modulus and/or increased the stress relaxation of the tumor cell aggregates, effectively increasing the mechanical mismatch. The increased mechanical mismatch after drug treatment was correlated with increased confinement of tumor emboli growth along the channel, which may translate to increased tumor burden due to the increased tumor volume within the diffusion distance of nutrients and oxygen.
Collapse
Affiliation(s)
- Jonathan Kulwatno
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jamie Gearhart
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xiangyu Gong
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Nora Herzog
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Matthew Getzin
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mihaela Skobe
- Department of Oncological Sciences & Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen L Mills
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
50
|
Winkler-Schwartz A, Yilmaz R, Tran DH, Gueziri HE, Ying B, Tuznik M, Fonov V, Collins L, Rudko DA, Li J, Debergue P, Pazos V, Del Maestro R. Creating a Comprehensive Research Platform for Surgical Technique and Operative Outcome in Primary Brain Tumor Neurosurgery. World Neurosurg 2020; 144:e62-e71. [DOI: 10.1016/j.wneu.2020.07.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
|