1
|
Chen G, Zou J, He Q, Xia S, Xiao Q, Du R, Zhou S, Zhang C, Wang N, Feng Y. The Role of Non-Coding RNAs in Regulating Cachexia Muscle Atrophy. Cells 2024; 13:1620. [PMID: 39404384 PMCID: PMC11482569 DOI: 10.3390/cells13191620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Cachexia is a late consequence of various diseases that is characterized by systemic muscle loss, with or without fat loss, leading to significant mortality. Multiple signaling pathways and molecules that increase catabolism, decrease anabolism, and interfere with muscle regeneration are activated. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in cachexia muscle atrophy. This review mainly provides the mechanisms of specific ncRNAs to regulate muscle loss during cachexia and discusses the role of ncRNAs in cachectic biomarkers and novel therapeutic strategies that could offer new insights for clinical practice.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Jiayi Zou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (Q.H.)
| | - Qianhua He
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (Q.H.)
| | - Shuyi Xia
- Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Qili Xiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Q.X.); (S.Z.)
| | - Ruoxi Du
- Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Shengmei Zhou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Q.X.); (S.Z.)
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| |
Collapse
|
2
|
García-Pérez I, Duran BOS, Dal-Pai-Silva M, Garcia de la serrana D. Exploring the Integrated Role of miRNAs and lncRNAs in Regulating the Transcriptional Response to Amino Acids and Insulin-like Growth Factor 1 in Gilthead Sea Bream ( Sparus aurata) Myoblasts. Int J Mol Sci 2024; 25:3894. [PMID: 38612703 PMCID: PMC11011856 DOI: 10.3390/ijms25073894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| |
Collapse
|
3
|
Mareco EA, de la Serrana DG, de Paula TG, Zanella BTT, da Silva Duran BO, Salomão RAS, de Almeida Fantinatti BE, de Oliveira VHG, Dos Santos VB, Carvalho RF, Dal-Pai-Silva M. Transcriptomic insight into the hybridization mechanism of the Tambacu, a hybrid from Colossoma macropomum (Tambaqui) and Piaractus mesopotamicus (Pacu). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101041. [PMID: 36442404 DOI: 10.1016/j.cbd.2022.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Interspecific hybrids are highly complex organisms, especially considering aspects related to the organization of genetic material. The diversity of possibilities created by the genetic combination between different species makes it difficult to establish a large-scale analysis methodology. An example of this complexity is Tambacu, an interspecific hybrid of Colossoma macropomum (Tambaqui) and Piaractus mesopotamicus (Pacu). Either genotype represents an essential role in South American aquaculture. However, despite this importance, the genetic information for these genotypes is still highly scarce in specialized databases. Using RNA-Seq analysis, we characterized the transcriptome of white muscle from Pacu, Tambaqui, and their interspecific hybrid (Tambacu). The sequencing process allowed us to obtain a significant number of reads (approximately 53 billion short reads). A total of annotated contigs were 37,285, 96,738, and 158,709 for Pacu, Tambaqui, and Tambacu. After that, we performed a comparative analysis of the transcriptome of the three genotypes, where we evaluated the differential expression (Tambacu vs Pacu = 11,156, and Tambacu vs Tambaqui = 876) profile of the transcript and the degree of similarity between the nucleotide sequences between the genotypes. We assessed the intensity and pattern of expression across genotypes using differential expression information. Clusterization analysis showed a closer relationship between Tambaqui and Tambacu. Furthermore, digital differential expression analysis selected some target genes related to essential cellular processes to evaluate and validate the expression through the RT-qPCR. The RT-qPCR analysis demonstrated significantly (p < 0.05) elevated expression of the mafbx, foxo1a, and rgcc genes in the hybrid compared to the parents. Likewise, we can observe genes significantly more expressed in Pacu (mtco1 and mylpfa) and mtco2 in Tambaqui. Our results showed that the phenotype presented by Tambacu might be associated with changes in the gene expression profile and not necessarily with an increase in gene variability. Thus, the molecular mechanisms underlying these "hybrid effects" may be related to additive and, in some cases, dominant regulatory interactions between parental alleles that act directly on gene regulation in the hybrid transcripts.
Collapse
Affiliation(s)
- Edson Assunção Mareco
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil; Biology Department, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil.
| | - Daniel Garcia de la Serrana
- Cell Biology, Physiology, and Immunology Department, School of Biology, University of Barcelona, 643 08028 Barcelona, Catalonia, Spain
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | - Victor Hugo Garcia de Oliveira
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil
| | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
4
|
Cao Q, Zhang H, Li T, He L, Zong J, Shan H, Huang L, Zhang Y, Liu H, Jiang J. Profiling miRNAs of Teleost Fish in Responses to Environmental Stress: A Review. BIOLOGY 2023; 12:biology12030388. [PMID: 36979079 PMCID: PMC10045198 DOI: 10.3390/biology12030388] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
miRNAs are a class of endogenous and evolutionarily conserved noncoding short RNA molecules that post-transcriptionally regulate gene expression through sequence-specific interactions with mRNAs and are capable of controlling gene expression by binding to miRNA targets and interfering with the final protein output. The miRNAs of teleost were firstly reported in zebrafish development, but there are recent studies on the characteristics and functions of miRNAs in fish, especially when compared with mammals. Environmental factors including salinity, oxygen concentration, temperature, feed, pH, environmental chemicals and seawater metal elements may affect the transcriptional and posttranscriptional regulators of miRNAs, contributing to nearly all biological processes. The survival of aquatic fish is constantly challenged by the changes in these environmental factors. Environmental factors can influence miRNA expression, the functions of miRNAs and their target mRNAs. Progress of available information is reported on the environmental effects of the identified miRNAs, miRNA targets and the use of miRNAs in fish.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- MARBEC, University Montpellier, CNRS, IFREMER, IRD, 34090 Montpellier, France
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| | - Hailong Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lishi Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| |
Collapse
|
5
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
6
|
Li X, Wang S, Zhang M, Jiang H, Qian Y, Wang R, Li M. Comprehensive analysis of metabolomics on flesh quality of yellow catfish ( Pelteobagrus fulvidraco) fed plant-based protein diet. Front Nutr 2023; 10:1166393. [PMID: 37125039 PMCID: PMC10140373 DOI: 10.3389/fnut.2023.1166393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Background To investigate the mechanism of plant protein components on nutritional value, growth performance, flesh quality, flavor, and proliferation of myocytes of yellow catfish (Pelteobagrus fulvidraco). Methods A total of 540 yellow catfish were randomly allotted into six experimental groups with three replicates and fed six different diets for 8 weeks. Results and Conclusions The replacement of fish meal with cottonseed meal (CM), sesame meal (SEM), and corn gluten meal (CGM) in the diet significantly reduced growth performance, crude protein, and crude lipid, but the flesh texture (hardness and chewiness) was observably increased. Moreover, the flavor-related amino acid (glutamic acid, glycine, and proline) contents in the CM, SEM, and CGM groups of yellow catfish muscle were significantly increased compared with the fish meal group. The results of metabolomics showed that soybean meal (SBM), peanut meal (PM), CM, SEM, and CGM mainly regulated muscle protein biosynthesis by the variations in the content of vitamin B6, proline, glutamic acid, phenylalanine, and tyrosine in muscle, respectively. In addition, Pearson correlation analysis suggested that the increased glutamic acid content and the decreased tyrosine content were significantly correlated with the inhibition of myocyte proliferation genes. This study provides necessary insights into the mechanism of plant proteins on the dynamic changes of muscle protein, flesh quality, and myocyte proliferation in yellow catfish.
Collapse
Affiliation(s)
- Xue Li
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Ming Li,
| |
Collapse
|
7
|
Perez ÉS, Cury SS, Zanella BTT, Carvalho RF, Duran BOS, Dal-Pai-Silva M. Identification of Novel Genes Associated with Fish Skeletal Muscle Adaptation during Fasting and Refeeding Based on a Meta-Analysis. Genes (Basel) 2022; 13:genes13122378. [PMID: 36553644 PMCID: PMC9778430 DOI: 10.3390/genes13122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The regulation of the fish phenotype and muscle growth is influenced by fasting and refeeding periods, which occur in nature and are commonly applied in fish farming. However, the regulators associated with the muscle responses to these manipulations of food availability have not been fully characterized. We aimed to identify novel genes associated with fish skeletal muscle adaptation during fasting and refeeding based on a meta-analysis. Genes related to translational and proliferative machinery were investigated in pacus (Piaractus mesopotamicus) subjected to fasting (four and fifteen days) and refeeding (six hours, three and fifteen days). Our results showed that different fasting and refeeding periods modulate the expression of the genes mtor, rps27a, eef1a2, and cdkn1a. These alterations can indicate the possible protection of the muscle phenotype, in addition to adaptive responses that prioritize energy and substrate savings over cell division, a process regulated by ccnd1. Our study reveals the potential of meta-analysis for the identification of muscle growth regulators and provides new information on muscle responses to fasting and refeeding in fish that are of economic importance to aquaculture.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Federal University of Goias (UFG), Goiania 74690-900, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
- Correspondence: ; Tel.: +55-(14)-3880-0470
| |
Collapse
|
8
|
Zhang C, Zhang S, Liu M, Wang Y, Wang D, Xu S. Screening and identification of miRNAs regulating Tbx4/5 genes of Pampus argenteus. PeerJ 2022; 10:e14300. [PMID: 36312751 PMCID: PMC9610670 DOI: 10.7717/peerj.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Background Silver pomfret (Pampus argenteus) is one of the most widely distributed and economically important pelagic fish species. However, an unique morphological feature of P. argenteus is the loss of pelvic fins, which can increase the energy requirement during food capture to some extent and is therefore not conducive to artificial culture. Tbx4/5 genes are highly conserved regulatory factors that regulate limb development in vertebrates and are in turn regulated by microRNAs (miRNAs). However, the miRNAs that directly regulate the Tbx4/5 genes in P. argenteus remain to be elucidated. Methods The Tbx4/5 genes of P. argenteus were first cloned, and the small RNA transcriptomes were sequenced by high-throughput sequencing during the critical period of the fin development at days 1, 7, and 13 of hatching. The miRNAs regulating the Tbx4/5 genes of P. argenteus were subsequently predicted by bioinformatics analysis, and the related miRNAs were verified in vitro using a dual fluorescence reporter system. Results A total of 662 miRNAs were identified, of which 257 were known miRNAs and 405 were novel miRNAs were identified. Compared to day 1, 182 miRNAs were differentially expressed (DE) on day 7, of which 77 and 105 miRNAs were downregulated and upregulated, respectively, while 278 miRNAs were DE on day 13, of which 136 and 142 miRNAs were downregulated and upregulated, respectively. Compared to day 13, four miRNAs were DE on day 7, of which three miRNAs were downregulated and one miRNA was upregulated. The results of hierarchical clustering of the miRNAs revealed that the DE genes were inversely expressed between days 1 and 7, and between days 1 and 13 of larval development, indicating that the larvae were in the peak stage of differentiation. However, the number of DE genes between days 7 and 13 of larval development was relatively small, suggesting the initiation of development. The potential target genes of the DE miRNAs were subsequently predicted, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of target genes were performed. The results suggested that the DE miRNAs were involved in growth, development, and signal transduction pathways, of which the Wnt and Fgfs signaling pathways are known to play important roles in the growth and development of fins. The results of dual fluorescence reporter assays demonstrated that miR-102, miR-301c, and miR-589 had a significant negative regulatory effect on the 3'-UTR of the Tbx4 gene, while miR-187, miR-201, miR-219, and miR-460 had a significant negative regulatory effect on the 3'-UTR of the Tbx5 gene. Altogether, the findings indicated that miRNAs play an important role in regulating the growth and development of pelvic fins in P. argenteus. This study provides a reference for elucidating the interactions between the miRNAs and target genes of P. argenteus in future studies.
Collapse
Affiliation(s)
| | | | | | - Yajun Wang
- Ningbo University, Zhejiang, China,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, China
| | | | - Shanliang Xu
- Ningbo University, Zhejiang, China,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Sugasawa T, Komine R, Manevich L, Tamai S, Takekoshi K, Kanki Y. Gene Expression Profile Provides Novel Insights of Fasting-Refeeding Response in Zebrafish Skeletal Muscle. Nutrients 2022; 14:nu14112239. [PMID: 35684038 PMCID: PMC9182819 DOI: 10.3390/nu14112239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, fasting has been spotlighted from a healthcare perspective. However, the de-tailed biological mechanisms and significance by which the effects of fasting confer health benefits are not yet clear. Due to certain advantages of the zebrafish as a vertebrate model, it is widely utilized in biological studies. However, the biological responses to nutrient metabolism within zebrafish skeletal muscles have not yet been amply reported. Therefore, we aimed to reveal a gene expression profile in zebrafish skeletal muscles in response to fasting-refeeding. Accordingly, mRNA-sequencing and bioinformatics analysis were performed to examine comprehensive gene expression changes in skeletal muscle tissues during fasting-refeeding. Our results produced a novel set of nutrition-related genes under a fasting-refeeding protocol. Moreover, we found that five genes were dramatically upregulated in each fasting (for 24 h) and refeeding (after 3 h), exhibiting a rapid response to the provided conditional changes. The assessment of the gene length revealed that the gene set whose expression was elevated only after 3 h of refeeding had a shorter length, suggesting that nutrition-related gene function is associated with gene length. Taken together, our results from the bioinformatics analyses provide new insights into biological mechanisms induced by fasting-refeeding conditions within zebrafish skeletal muscle.
Collapse
Affiliation(s)
- Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; (T.S.); (S.T.)
- Department of Sports Medicine Analysis, Open Facility Network Office, Organization for Open Facility Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan;
| | - Ritsuko Komine
- Department of Sports Medicine Analysis, Open Facility Network Office, Organization for Open Facility Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan;
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Lev Manevich
- Experimental Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan;
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Shinsuke Tamai
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; (T.S.); (S.T.)
- Department of Sport Science and Research, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo 115-0056, Japan
| | - Kazuhiro Takekoshi
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; (T.S.); (S.T.)
- Correspondence: (K.T.); (Y.K.); Tel.: +81-29-853-3209 (K.T. & Y.K.)
| | - Yasuharu Kanki
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; (T.S.); (S.T.)
- Department of Sports Medicine Analysis, Open Facility Network Office, Organization for Open Facility Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan;
- Correspondence: (K.T.); (Y.K.); Tel.: +81-29-853-3209 (K.T. & Y.K.)
| |
Collapse
|
10
|
Lu Q, Gong Y, Xi L, Liu Y, Xu W, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Xie S, Han D. Feed Restriction Alleviates Chronic Thermal Stress-Induced Liver Oxidation and Damages via Reducing Lipid Accumulation in Channel Catfish (Ictalurus punctatus). Antioxidants (Basel) 2022; 11:antiox11050980. [PMID: 35624844 PMCID: PMC9138062 DOI: 10.3390/antiox11050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023] Open
Abstract
Caloric restriction is known to suppress oxidative stress in organ systems. However, whether caloric/feed restriction alleviates chronic thermal stress in aquatic animals remains unknown. Here, we set up three feeding rations: 3% BW (3% body weight/day), 2.5% BW (restricted feeding, 2.5% body weight/day) and 2% BW (high restricted feeding, 2% body weight/day), to investigate the effects and mechanism of feed restriction on improving chronic heat-induced (27 to 31 °C) liver peroxidation and damages in channel catfish (Ictalurus punctatus). The results showed that, compared to 3% BW, both 2.5% BW and 2% BW significantly reduced the liver expressions of hsc70, hsp70 and hsp90, but only 2.5% BW did not reduce the growth performance of channel catfish. The 2.5% BW and 2% BW also reduced the lipid deposition (TG) and improved the antioxidant capacity (CAT, SOD, GSH and T-AOC) in the liver of channel catfish. The heat-induced stress response (plasma glucose, cortisol and NO) and peroxidation (ROS and MDA) were also suppressed by either 2.5% BW or 2% BW. Moreover, 2.5% BW or 2% BW overtly alleviated liver inflammation and damages by reducing endoplasmic reticulum (ER) stress (BIP and Calnexin) and cell apoptosis (BAX, Caspase 3 and Caspase 9) in the liver of channel catfish. In conclusion, 2.5% body weight/day is recommended to improve the antioxidant capacity and liver health of channel catfish during the summer season, as it alleviates liver peroxidation and damages via suppressing lipid accumulation under chronic thermal stress.
Collapse
Affiliation(s)
- Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
11
|
Amino Acids and IGF1 Regulation of Fish Muscle Growth Revealed by Transcriptome and microRNAome Integrative Analyses of Pacu ( Piaractus mesopotamicus) Myotubes. Int J Mol Sci 2022; 23:ijms23031180. [PMID: 35163102 PMCID: PMC8835699 DOI: 10.3390/ijms23031180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Amino acids (AA) and IGF1 have been demonstrated to play essential roles in protein synthesis and fish muscle growth. The myoblast cell culture is useful for studying muscle regulation, and omics data have contributed enormously to understanding its molecular biology. However, to our knowledge, no study has performed the large-scale sequencing of fish-cultured muscle cells stimulated with pro-growth signals. In this work, we obtained the transcriptome and microRNAome of pacu (Piaractus mesopotamicus)-cultured myotubes treated with AA or IGF1. We identified 1228 and 534 genes differentially expressed by AA and IGF1. An enrichment analysis showed that AA treatment induced chromosomal changes, mitosis, and muscle differentiation, while IGF1 modulated IGF/PI3K signaling, metabolic alteration, and matrix structure. In addition, potential molecular markers were similarly modulated by both treatments. Muscle-miRNAs (miR-1, -133, -206 and -499) were up-regulated, especially in AA samples, and we identified molecular networks with omics integration. Two pairs of genes and miRNAs demonstrated a high-level relationship, and involvement in myogenesis and muscle growth: marcksb and miR-29b in AA, and mmp14b and miR-338-5p in IGF1. Our work helps to elucidate fish muscle physiology and metabolism, highlights potential molecular markers, and creates a perspective for improvements in aquaculture and in in vitro meat production.
Collapse
|
12
|
Degree of piRNA sharing and Piwi gene expression in the skeletal muscle of Piaractus mesopotamicus (pacu), Colossoma macropomum (tambaqui), and the hybrid tambacu. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111120. [PMID: 34822974 DOI: 10.1016/j.cbpa.2021.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
PiRNAs are a class of small noncoding RNAs that, in their mature form, bind to Piwi proteins to repress transposable element activity. Besides their role in gametogenesis and genome integrity, recent evidence indicates their action in non-germinative tissues. We performed a global analysis of piRNA and Piwi gene expression in the skeletal muscle of juveniles pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum), and the hybrid tambacu to evaluate the degree of piRNA sharing among these three genotypes. Total RNA was sequenced and analyzed using specific parameters of piRNAs by bioinformatics tools. piRNA and Piwi gene expression was analyzed by RT-qPCR. We detected 24 piRNA clusters common to the three genotypes, with eight shared between pacu and tambacu, three between pacu and tambaqui, and five between tambaqui and tambacu; seven, five, and four clusters were unique to pacu, tambacu, and tambaqui, respectively. Genomic localization and fold change values showed two clusters and 100 piRNAs shared among the three genotypes. The gene expression of four piRNAs was evaluated to validate our bioinformatics results. piRNAs from cluster 17 were higher in tambacu than pacu and piRNAs from cluster 18 were more highly expressed in tambacu than tambaqui and pacu. In addition, the expression of Piwis 1 and 2 was higher in tambacu and tambaqui than pacu. Our results open an important window to investigate whether these small noncoding RNAs benefit the hybrid in terms of faster growth and offer a new perspective on the function of piRNAs and Piwis in fish skeletal muscle.
Collapse
|
13
|
Duran BOS, Garcia de la serrana D, Zanella BTT, Perez ES, Mareco EA, Santos VB, Carvalho RF, Dal-Pai-Silva M. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth. PLoS One 2021; 16:e0255006. [PMID: 34293047 PMCID: PMC8297816 DOI: 10.1371/journal.pone.0255006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350–320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus—Ostariophysi) and Nile tilapias (Oreochromis niloticus—Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
Collapse
Affiliation(s)
- Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Erika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
14
|
Fantinatti BEA, Perez ES, Zanella BTT, Valente JS, de Paula TG, Mareco EA, Carvalho RF, Piazza S, Denti MA, Dal-Pai-Silva M. Integrative microRNAome analysis of skeletal muscle of Colossoma macropomum (tambaqui), Piaractus mesopotamicus (pacu), and the hybrid tambacu, based on next-generation sequencing data. BMC Genomics 2021; 22:237. [PMID: 33823787 PMCID: PMC8022549 DOI: 10.1186/s12864-021-07513-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu) are good fish species for aquaculture. The tambacu, individuals originating from the induced hybridization of the female tambaqui with the male pacu, present rapid growth and robustness, characteristics which have made the tambacu a good choice for Brazilian fish farms. Here, we used small RNA sequencing to examine global miRNA expression in the genotypes pacu (PC), tambaqui (TQ), and hybrid tambacu (TC), (Juveniles, n = 5 per genotype), to better understand the relationship between tambacu and its parental species, and also to clarify the mechanisms involved in tambacu muscle growth and maintenance based on miRNAs expression. Results Regarding differentially expressed (DE) miRNAs between the three genotypes, we observed 8 upregulated and 7 downregulated miRNAs considering TC vs. PC; 14 miRNAs were upregulated and 10 were downregulated considering TC vs. TQ, and 15 miRNAs upregulated and 9 were downregulated considering PC vs. TQ. The majority of the miRNAs showed specific regulation for each genotype pair, and no miRNA were shared between the 3 genotype pairs, in both up- and down-regulated miRNAs. Considering only the miRNAs with validated target genes, we observed the miRNAs miR-144-3p, miR-138-5p, miR-206-3p, and miR-499-5p. GO enrichment analysis showed that the main target genes for these miRNAs were grouped in pathways related to oxygen homeostasis, blood vessel modulation, and oxidative metabolism. Conclusions Our global miRNA analysis provided interesting DE miRNAs in the skeletal muscle of pacu, tambaqui, and the hybrid tambacu. In addition, in the hybrid tambacu, we identified some miRNAs controlling important molecular muscle markers that could be relevant for the farming maximization. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07513-5.
Collapse
Affiliation(s)
- Bruno E A Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil.,Ninth of July University - UNINOVE, Bauru, Sao Paulo, Brazil.,Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Bruna T T Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Jéssica S Valente
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Tassiana G de Paula
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Edson A Mareco
- University of Western Sao Paulo - UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil.
| |
Collapse
|
15
|
Zanella BTT, Magiore IC, Duran BOS, Pereira GG, Vicente IST, Carvalho PLPF, Salomão RAS, Mareco EA, Carvalho RF, de Paula TG, Barros MM, Dal-Pai-Silva M. Ascorbic Acid Supplementation Improves Skeletal Muscle Growth in Pacu ( Piaractus mesopotamicus) Juveniles: In Vivo and In Vitro Studies. Int J Mol Sci 2021; 22:2995. [PMID: 33804272 PMCID: PMC7998472 DOI: 10.3390/ijms22062995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
In fish, fasting leads to loss of muscle mass. This condition triggers oxidative stress, and therefore, antioxidants can be an alternative to muscle recovery. We investigated the effects of antioxidant ascorbic acid (AA) on the morphology, antioxidant enzyme activity, and gene expression in the skeletal muscle of pacu (Piaractus mesopotamicus) following fasting, using in vitro and in vivo strategies. Isolated muscle cells of the pacu were subjected to 72 h of nutrient restriction, followed by 24 h of incubation with nutrients or nutrients and AA (200 µM). Fish were fasted for 15 days, followed by 6 h and 15 and 30 days of refeeding with 100, 200, and 400 mg/kg of AA supplementation. AA addition increased cell diameter and the expression of anabolic and cell proliferation genes in vitro. In vivo, 400 mg/kg of AA increased anabolic and proliferative genes expression at 6 h of refeeding, the fiber diameter and the expression of genes related to cell proliferation at 15 days, and the expression of catabolic and oxidative metabolism genes at 30 days. Catalase activity remained low in the higher supplementation group. In conclusion, AA directly affected the isolated muscle cells, and the higher AA supplementation positively influenced muscle growth after fasting.
Collapse
Affiliation(s)
- Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Isabele Cristina Magiore
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Goiás, Brazil;
| | - Guilherme Gutierrez Pereira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Igor Simões Tiagua Vicente
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Pedro Luiz Pucci Figueiredo Carvalho
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Rondinelle Artur Simões Salomão
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente 19050-680, São Paulo, Brazil; (R.A.S.S.); (E.A.M.)
| | - Edson Assunção Mareco
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente 19050-680, São Paulo, Brazil; (R.A.S.S.); (E.A.M.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Margarida Maria Barros
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| |
Collapse
|
16
|
Li W, Ge J, Xie J, Yang J, Chen J, He T. LncRNA TUG1 Promotes Hepatocellular Carcinoma Migration and Invasion Via Targeting miR-137/AKT2 Axis. Cancer Biother Radiopharm 2020; 36:850-862. [PMID: 32589479 DOI: 10.1089/cbr.2019.3297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: The current study aimed to investigate the effects of TUG1 on the migration and invasion of hepatoma cells. Materials and Methods: The expressions of TUG1, miR-137, and AKT2 were detected in hepatoma tissues and cells by performing quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The correlations among TUG1, miR-137, and AKT2 were predicted by bioinformatics analysis and confirmed by dual-luciferase reporter assay, and Pearson test was performed to analyze their relevance. The effects of TUG1, miR-137, and AKT2 on viability, migration, and invasion of transfected hepatoma cells were detected by CCK-8, wound scratch, and Transwell. Epithelial-mesenchymal transition (EMT)-related protein levels were determined by western blot and qRT-PCR. Results: TUG1 was highly expressed in hepatoma tissues and cells. Silencing TUG1 expression inhibited the viability, migration, and invasion of hepatoma cells. TUG1 targeted miR-137 and the two was negatively correlated, and silencing TUG1 expression inhibited the effects of low-expressed miR-137 on promoting proliferation, migration, and invasion of hepatoma cells. AKT2 was predicted to be the target gene for miR-137, and the two were negatively correlated. Moreover, inhibiting miR-137 expression promoted the expression of MMP2, MMP9, and N-cadherin and inhibited E-cadherin expression, while silencing TUG1 expression reversed the effects of low-expressed miR-137 on EMT-related protein levels. Conclusion: LncRNA TUG1 promotes hepatocellular carcinoma migration and invasion through targeting miR-137/AKT2 axis.
Collapse
Affiliation(s)
- Wei Li
- Department of Vascular Intervention, Jingmen No.2 People's Hospital, Jingmen, China
| | - Jinzhao Ge
- Department of Interventional Medicine, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Jinju Xie
- Department of Vascular Intervention, Jingmen No.2 People's Hospital, Jingmen, China
| | - Jidong Yang
- Department of Vascular Intervention, Jingmen No.2 People's Hospital, Jingmen, China
| | - Jin'e Chen
- Department of Vascular Intervention, Jingmen No.2 People's Hospital, Jingmen, China
| | - Tao He
- Department of Interventional Medicine, The Second People's Hospital of Huaihua, Huaihua, China
| |
Collapse
|
17
|
Alami-Durante H, Cluzeaud M, Bazin D, Vachot C, Kaushik S. Variable impacts of L-arginine or L-NAME during early life on molecular and cellular markers of muscle growth mechanisms in rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110652. [DOI: 10.1016/j.cbpa.2020.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
|
18
|
da Silva-Gomes RN, Gabriel Kuniyoshi ML, Oliveira da Silva Duran B, Thomazini Zanella BT, Paccielli Freire P, Gutierrez de Paula T, de Almeida Fantinatti BE, Simões Salomão RA, Carvalho RF, Delazari Santos L, Dal-Pai-Silva M. Prolonged fasting followed by refeeding modifies proteome profile and parvalbumin expression in the fast-twitch muscle of pacu (Piaractus mesopotamicus). PLoS One 2019; 14:e0225864. [PMID: 31856193 PMCID: PMC6922423 DOI: 10.1371/journal.pone.0225864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Here, we analyzed the fast-twitch muscle of juvenile Piaractus mesopotamicus (pacu) submitted to prolonged fasting (30d) and refeeding (6h, 24h, 48h and 30d). We measured the relative rate of weight and length increase (RRIlength and RRIweight), performed shotgun proteomic analysis and did Western blotting for PVALB after 30d of fasting and 30d of refeeding. We assessed the gene expression of igf-1, mafbx and pvalb after 30d of fasting and after 6h, 24h, 48h and 30d of refeeding. We performed a bioinformatic analysis to predict miRNAs that possibly control parvalbumin expression. After fasting, RRIlength, RRIweight and igf-1 expression decreased, while the mafbx expression increased, which suggest that prolonged fasting caused muscle atrophy. After 6h and 24h of refeeding, mafbx was not changed and igf-1 was downregulated, while after 48h of refeeding mafbx was downregulated and igf-1 was not changed. After 30d of refeeding, RRIlength and RRIweight were increased and igf-1 and mafbx expression were not changed. Proteomic analysis identified 99 proteins after 30d of fasting and 71 proteins after 30d of refeeding, of which 23 and 17, respectively, were differentially expressed. Most of these differentially expressed proteins were related to cytoskeleton, muscle contraction, and metabolism. Among these, parvalbumin (PVALB) was selected for further validation. The analysis showed that pvalb mRNA was downregulated after 6h and 24h of refeeding, but was not changed after 30d of fasting or 48h and 30d of refeeding. The Western blotting confirmed that PVALB protein was downregulated after 30d of fasting and 30d of refeeding. The downregulation of the protein and the unchanged expression of the mRNA after 30d of fasting and 30d of refeeding suggest a post-transcriptional regulation of PVALB. Our miRNA analysis predicted 444 unique miRNAs that may target pvalb. In conclusion, muscle atrophy and partial compensatory growth caused by prolonged fasting followed by refeeding affected the muscle proteome and PVALB expression.
Collapse
Affiliation(s)
- Rafaela Nunes da Silva-Gomes
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maria Laura Gabriel Kuniyoshi
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Tassiana Gutierrez de Paula
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucilene Delazari Santos
- Center for the Studies of Venoms and Venomous Animals (CEVAP)/ Graduate Program in Tropical Diseases (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Yong-Quan Ng G, Yang-Wei Fann D, Jo DG, Sobey CG, Arumugam TV. Dietary Restriction and Epigenetics: Part I. CONDITIONING MEDICINE 2019; 2:284-299. [PMID: 32039345 PMCID: PMC7007115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Biological aging occurs concomitantly with chronological aging and is commonly burdened by the development of age-related conditions, such as neurodegenerative, cardiovascular, and a myriad of metabolic diseases. With a current global shift in disease epidemiology associated with aging and the resultant social, economic, and healthcare burdens faced by many countries, the need to achieve successful aging has fueled efforts to address this problem. Aging is a complex biological phenomenon that has confounded much of the historical research effort to understand it, with still limited knowledge of the underlying molecular mechanisms. Interestingly, dietary restriction (DR) is one intervention that produces anti-aging effects from simple organisms to mammals. Research into DR has revealed robust systemic effects that can result in attenuation of age-related diseases via a myriad of molecular mechanisms. Given that numerous age-associated diseases are often polygenic and affect individuals differently, it is possible that they are confounded by interactions between environmental influences and the genome, a process termed 'epigenetics'. In part one of the review, we summarize the different variants of DR regimens and their corresponding mechanism(s) and resultant effects, as well as in-depth analysis of current knowledge of the epigenetic landscape.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Christopher G. Sobey
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
20
|
Revealing liver specific microRNAs linked with carbohydrate metabolism of farmed carp, Labeo rohita (Hamilton, 1822). Genomics 2019; 112:32-44. [PMID: 31325488 DOI: 10.1016/j.ygeno.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
The role of microRNA in gene regulation during developmental biology has been well depicted in several organisms. The present study was performed to investigate miRNAs role in the liver tissues during carbohydrate metabolism and their targets in the farmed carp rohu, Labeo rohita, which is economically important species in aquaculture. Using Illumina-HiSeq technology, a total of 22,612,316; 44,316,046 and 13,338,434 clean reads were obtained from three small-RNA libraries. We have identified 138 conserved and 161 novel miRNAs and studies revealed that miR-22, miR-122, miR-365, miR-200, and miR-146 are involved in carbohydrate metabolism. Further analysis depicted mature miRNA and their predicted target sites in genes that were involved in developmental biology, cellular activities, transportation, etc. This is the first report of the presence of miRNAs in liver tissue of rohu and their comparative profile linked with metabolism serves as a vital resource as a biomarker.
Collapse
|
21
|
Proteomic analysis of the fast-twitch muscle of pacu (Piaractus mesopotamicus) after prolonged fasting and compensatory growth. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:321-332. [PMID: 31048267 DOI: 10.1016/j.cbd.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022]
Abstract
Protocols that improve growth performance in fish while assuring product quality are important for aquaculture. Fasting followed by refeeding may promote compensatory growth, thus optimizing growth performance. During fasting and refeeding, fast-twitch muscle, which comprises most of fish fillet, undergoes intense plasticity. In this work, we studied the proteome of pacu (Piaractus mesopotamicus) fast-twitch muscle after 30 days of fasting (D30), 30 days of refeeding (D60) and 60 days of refeeding (D90) with two-dimensional electrophoresis, mass spectrometry and bioinformatics. Body mass, growth rate and muscle histology were also assessed. At D30, fish presented muscle catabolism and decreased growth. Proteomic analysis showed that metabolism proteins were the most affected, up and downregulated. Cytoskeleton and amino acid biosynthesis proteins were downregulated, while nuclear and regulatory proteins were upregulated. At D60, fish showed accelerated growth, despite the body mass not completely recovering. Metabolism proteins were still the most affected. Amino acid biosynthesis proteins became upregulated, while cytoskeleton proteins remained downregulated. At D90, the fish presented total compensatory growth. Many metabolic proteins were up or downregulated. Few cytoskeleton proteins remained differentially expressed. Amino acid biosynthesis proteins were mostly upregulated, but less than at D60. Prolonged fasting followed by refeeding also led to the regulation of possible meat quality biomarkers, such as antioxidant enzymes. This fact suggests possible consequences of this protocol on fish meat quality. Our work also enriches our knowledge on proteomic changes during muscle plasticity that occur during fasting and refeeding diet protocols.
Collapse
|
22
|
Carnevali O, Giorgini E, Canuti D, Mylonas CC, Forner-Piquer I, Maradonna F. Diets contaminated with Bisphenol A and Di-isononyl phtalate modify skeletal muscle composition: A new target for environmental pollutant action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:250-259. [PMID: 30577020 DOI: 10.1016/j.scitotenv.2018.12.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/02/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
In the last years, an increasing number of studies reported that food pollution represents a significant route of exposure to environmental toxicants, able to cause mild to severe food illnesses and health problems, including hormonal and metabolic diseases. Pollutants can accumulate in organisms and biomagnify along the food web, finally targeting top consumers causing health and economic problems. In this study, adults of gilthead sea bream, Sparus aurata, were fed with diets contaminated with Bisphenol A (BPA) (4 and 4000 μg BPA kg-1 bw day-1) and Di-isononyl phthalate (DiNP) (15 and 1500 μg DiNP kg-1 bw day-1), to evaluate the effects of the contamination on the muscle macromolecular composition and alterations of its texture. The analysis conducted in the muscle using infrared microspectroscopy, molecular biology and biochemical assays, showed, in fish fed BPA contaminated diets, a decrease of unsaturated lipids and an increase of triglycerides and saturated alkyl chains. Conversely, in fish fed DiNP, a decrease of lipid content, caused by a reduction of both saturated and unsaturated chains and triglycerides was measured. Protein content was decreased by both xenobiotics evidencing a novel macromolecular target affected by these environmental contaminants. In addition, in all treated groups, proteins resulted more phosphorylated than in controls. Calpain and cathepsin levels, orchestrating protein turnover, were deregulated by both xenobiotics, evidencing alterations of muscle composition and texture. In conclusion, the results obtained suggest the ability of BPA and DiNP to modify the muscle macromolecular building, advising this tissue as a target of Endocrine-Disrupting Chemicals (EDCs) and providing a set of biomarkers as possible monitoring endpoints to develop novel OEDC test guidelines.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Debora Canuti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy.
| |
Collapse
|
23
|
Muscle transcriptome resource for growth, lipid metabolism and immune system in Hilsa shad, Tenualosa ilisha. Genes Genomics 2018; 41:1-15. [PMID: 30196475 DOI: 10.1007/s13258-018-0732-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
The information on the genes involved in muscle growth, lipid metabolism and immune systems would help to understand the mechanisms during the spawning migration in Hilsa shad, which in turn would be useful in its future domestication process. The primary objective of this study was to generate the transcriptome profile of its muscle through RNA seq. The total RNA was isolated and library was prepared from muscle tissue of Tenualosa ilisha, which was collected from Padma River at Farakka, India. The prepared library was then sequenced by Illumina HiSeq platform, HiSeq 2000, using paired-end strategy. A total of 8.68 GB of pair-end reads of muscle transcriptome was generated, and 43,384,267 pair-end reads were assembled into 3,04,233 contigs, of which 23.99% of assembled contigs has length ≥ 150 bp. The total GO terms were categorised into cellular component, molecular function and biological process through PANTHER database. Fifty-three genes related to muscle growth were identified and genes in different pathways were: 75 in PI3/AKT, 46 in mTOR, 76 in MAPK signalling, 24 in Janus kinase-signal transducer and activator of transcription, 45 in AMPK and 27 in cGMP pathways. This study also mined the genes involved in lipid metabolism, in which glycerophospholipid metabolism contained highest number of genes (32) and four were found to be involved in fatty acid biosynthesis. There were 58 immune related genes found, in which 31 were under innate and 27 under adaptive immunity. The present study included a large genomic resource of T. ilisha muscle generated through RNAseq, which revealed the essential dataset for our understanding of regulatory processes, specifically during the seasonal spawning migration. As Hilsa is a slow growing fish, the genes identified for muscle growth provided the basic information to study myogenesis. In addition, genes identified for lipid metabolism and immune system would provide resources for lipid synthesis and understanding of Hilsa defense mechanisms, respectively.
Collapse
|
24
|
Api M, Bonfanti E, Lombardo F, Pignalosa P, Hardiman G, Carnevali O. Effects of age on growth in Atlantic bluefin tuna (Thunnus thynnus). Gen Comp Endocrinol 2018; 265:64-70. [PMID: 29339181 DOI: 10.1016/j.ygcen.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Atlantic Bluefin Tuna Thunnus thynnus (ABFT) is considered one of the most important socio-economic species but there is a lack of information on the physiological and molecular processes regulating its growth and metabolism. In the present study, we focused on key molecules involved in growth process. The aim of the present study was to associate molecular markers related to growth with canonical procedures like morphological measurements such as curved fork length (CFL) and round weight (RWT). The ABFT specimens (n = 41) were organized into three different groups A, B and C according to their age. The molecular analysis of liver samples revealed that igf1, igf1r and mTOR genes, involved in growth process, were differentially expressed in relation to the age of the fish. In addition, during the analyzed period, faster growth was evident from 5 to 8 years of age, after that, the growth rate decreased in terms of length yet increased in terms of adipose tissue storage, as supported by the higher fat content in the liver. These results are useful in expanding basic knowledge about the metabolic system of ABFT and provide new knowledge for the aquaculture industry.
Collapse
Affiliation(s)
- Martina Api
- Department of Life and Environmental Sciences (DiSVA)-Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Erica Bonfanti
- Department of Life and Environmental Sciences (DiSVA)-Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Lombardo
- Department of Life and Environmental Sciences (DiSVA)-Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Gary Hardiman
- Center for Genomic Medicine, Bioinformatics, Departments of Medicine & Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA; Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Oliana Carnevali
- Department of Life and Environmental Sciences (DiSVA)-Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
25
|
Herkenhoff ME, Oliveira AC, Nachtigall PG, Costa JM, Campos VF, Hilsdorf AWS, Pinhal D. Fishing Into the MicroRNA Transcriptome. Front Genet 2018; 9:88. [PMID: 29616080 PMCID: PMC5868305 DOI: 10.3389/fgene.2018.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/02/2018] [Indexed: 01/18/2023] Open
Abstract
In the last decade, several studies have been focused on revealing the microRNA (miRNA) repertoire and determining their functions in farm animals such as poultry, pigs, cattle, and fish. These small non-protein coding RNA molecules (18-25 nucleotides) are capable of controlling gene expression by binding to messenger RNA (mRNA) targets, thus interfering in the final protein output. MiRNAs have been recognized as the main regulators of biological features of economic interest, including body growth, muscle development, fat deposition, and immunology, among other highly valuable traits, in aquatic livestock. Currently, the miRNA repertoire of some farmed fish species has been identified and characterized, bringing insights about miRNA functions, and novel perspectives for improving health and productivity. In this review, we summarize the current advances in miRNA research by examining available data on Neotropical and other key species exploited by fisheries and in aquaculture worldwide and discuss how future studies on Neotropical fish could benefit from this knowledge. We also make a horizontal comparison of major results and discuss forefront strategies for miRNA manipulation in aquaculture focusing on forward-looking ideas for forthcoming research.
Collapse
Affiliation(s)
- Marcos E. Herkenhoff
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| | - Arthur C. Oliveira
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| | - Pedro G. Nachtigall
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| | - Juliana M. Costa
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| | - Vinicius F. Campos
- Laboratory of Structural Genomics (GenEstrut), Graduate Program of Biotechnology, Technology Developmental Center, Federal University of Pelotas, Pelotas, Brazil
| | | | - Danillo Pinhal
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| |
Collapse
|
26
|
Effect of caloric restriction and subsequent re-alimentation on oxidative stress in the liver of Hu sheep ram lambs. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|