1
|
Das AM, Ballhausen D, Haas D, Häberle J, Hagedorn T, Janson‐Mutsaerts C, Janzen N, Sander J, Freisinger P, Karall D, Meyer U, Mönch E, Morlot S, Rosenbaum‐Fabian S, Scholl‐Bürgi S, vom Dahl S, Weinhold N, Zeman J, Lange K. Diagnosis, treatment, management and monitoring of patients with tyrosinaemia type 1: Consensus group recommendations from the German-speaking countries. J Inherit Metab Dis 2025; 48:e12824. [PMID: 39676394 PMCID: PMC11647197 DOI: 10.1002/jimd.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Hepatorenal tyrosinaemia (HT1) is an autosomal recessive disorder of tyrosine degradation resulting in hepatic and renal dysfunction, neurological sequelae may occur in some patients. The use of nitisinone (NTBC) has revolutionised treatment and outcome of this disorder. NTBC has to be combined with a low protein diet. While NTBC modulates the disease course in HT1 patients, several issues are open. Optimal dosage, doses per day, therapeutic range of NTBC concentration, mode of protein restriction and biomarkers are not well defined. HCC and neurocognitive deficits are long-term sequelae. Early diagnosis and treatment are essential to minimise the risk for these complications. Clinical guidance for management of HT1-patients is required. Randomised clinical studies are difficult in the presence of therapeutic options. We discussed these issues in a consensus group of 10 paediatricians, 1 adult hepatologist, 1 geneticist, 2 dieticians, 2 newborn screening specialists with experience in HT1, 1 psychologist and 2 representatives of a patient group from the German-speaking countries (DACH). Recommendations were based on scientific literature and expert opinion, also taking into account recent experience with newborn screening. There was strong consensus that newborn screening using succinylacetone (SA) and early treatment are essential for a good outcome. The dose of NTBC should be as low as possible without losing metabolic control. This has to be accompanied by a low protein diet, in some patients a simplified diet without calculation of protein intake. Specific education and psychosocial support are recommended. Indications for liver transplantation were defined. Monitoring shall include clinical findings, levels of SA, tyrosine, phenylalanine and NTBC in (dried) blood.
Collapse
Affiliation(s)
- Anibh M. Das
- Hannover Medical School, Department of PaediatricsHannoverGermany
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman‐Mother‐Child DepartmentLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Dorothea Haas
- Medical Faculty, Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Tobias Hagedorn
- German Patients Association for PKU and Allied Metabolic Disorders, Deutsche Interessengemeinschaft Phenylketonurie und verwandte angeborene Stoffwechselstörungen (DIG PKU) e.VFürthGermany
| | - Cecilia Janson‐Mutsaerts
- German Patients Association for PKU and Allied Metabolic Disorders, Deutsche Interessengemeinschaft Phenylketonurie und verwandte angeborene Stoffwechselstörungen (DIG PKU) e.VFürthGermany
| | - Nils Janzen
- Metabolic Screening LaboratoryScreening‐Labor HannoverHannoverGermany
- Hannover Medical School, Department of Clinical ChemistryHannoverGermany
| | - Johannes Sander
- Metabolic Screening LaboratoryScreening‐Labor HannoverHannoverGermany
| | - Peter Freisinger
- Department of PaediatricsKlinik für Kinder‐ und Jugendmedizin, Kreiskliniken ReutlingenReutlingenGermany
| | - Daniela Karall
- Clinic for Paediatrics, Division of Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Uta Meyer
- Hannover Medical School, Department of PaediatricsHannoverGermany
| | | | - Susanne Morlot
- Department of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Stefanie Rosenbaum‐Fabian
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of MedicineMedical Centre‐University of FreiburgFreiburgGermany
| | - Sabine Scholl‐Bürgi
- Clinic for Paediatrics, Division of Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Stephan vom Dahl
- Clinic for Gastroenterology, Hepatology and InfectiologyUniversity Clinic DüsseldorfDüsseldorfGermany
| | - Natalie Weinhold
- Department of PaediatricsCharité University hospitalBerlinGermany
| | - Jiri Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, General Faculty Hospital and First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Karin Lange
- Department of Medical PsychologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
2
|
Hereditary Tyrosinemia Type 1 Mice under Continuous Nitisinone Treatment Display Remnants of an Uncorrected Liver Disease Phenotype. Genes (Basel) 2023; 14:genes14030693. [PMID: 36980965 PMCID: PMC10047938 DOI: 10.3390/genes14030693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC). Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme, rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1 patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye, blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in molecular pathways associated to the development and progression of HT1-driven liver disease that remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic disorder reference disease with non-hepatic manifestations. The differentially expressed genes were enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC development was identified that was differentially regulated in HT1 vs. AKU mouse livers under NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1 but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC.
Collapse
|
3
|
van Vliet K, van Ginkel WG, Jahja R, Daly A, MacDonald A, Santra S, De Laet C, Goyens PJ, Vara R, Rahman Y, Cassiman D, Eyskens F, Timmer C, Mumford N, Gissen P, Bierau J, van Hasselt PM, Wilcox G, Morris AAM, Jameson EA, de la Parra A, Arias C, Garcia MI, Cornejo V, Bosch AM, Hollak CEM, Rubio‐Gozalbo ME, Brouwers MCGJ, Hofstede FC, de Vries MC, Janssen MCH, van der Ploeg AT, Langendonk JG, Huijbregts SCJ, van Spronsen FJ. Neurocognitive outcome and mental health in children with tyrosinemia type 1 and phenylketonuria: A comparison between two genetic disorders affecting the same metabolic pathway. J Inherit Metab Dis 2022; 45:952-962. [PMID: 35722880 PMCID: PMC9540223 DOI: 10.1002/jimd.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022]
Abstract
Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.
Collapse
Affiliation(s)
- Kimber van Vliet
- Division of Metabolic DiseasesUniversity of Groningen, University Medical Center Groningen, Beatrix Children's HospitalGroningenThe Netherlands
| | - Willem G. van Ginkel
- Division of Metabolic DiseasesUniversity of Groningen, University Medical Center Groningen, Beatrix Children's HospitalGroningenThe Netherlands
| | - Rianne Jahja
- Division of Metabolic DiseasesUniversity of Groningen, University Medical Center Groningen, Beatrix Children's HospitalGroningenThe Netherlands
| | - Anne Daly
- Birmingham Children's HospitalBirminghamUK
| | | | | | - Corinne De Laet
- Hôpital Universitaire des Enfants Reine FabiolaUniversité Libre de BruxellesBrusselsBelgium
| | - Philippe J. Goyens
- Hôpital Universitaire des Enfants Reine FabiolaUniversité Libre de BruxellesBrusselsBelgium
| | | | | | - David Cassiman
- University Hospital Gasthuisberg, University of LeuvenLeuvenBelgium
| | - Francois Eyskens
- Kon. Mathilde Moeder‐ en KindcentrumUniversity Hospital of AntwerpAntwerpBelgium
| | | | - Nicky Mumford
- NIHR Great Ormond Street Hospital Biomedical Research CentreUniversity College LondonLondonUK
| | - Paul Gissen
- NIHR Great Ormond Street Hospital Biomedical Research CentreUniversity College LondonLondonUK
| | - Jörgen Bierau
- Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Peter M. van Hasselt
- Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Gisela Wilcox
- School of Medical Sciences, Faculty of Biology Medicine & HealthUniversity of ManchesterManchesterUK
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS TrustSalfordUK
| | - Andrew A. M. Morris
- Willink Metabolic Unit, Manchester Centre for Genomic MedicineManchester University Hospitals NHS Foundation Trust, St Mary's HospitalManchesterUK
| | - Elisabeth A. Jameson
- Willink Metabolic Unit, Manchester Centre for Genomic MedicineManchester University Hospitals NHS Foundation Trust, St Mary's HospitalManchesterUK
| | - Alicia de la Parra
- Laboratory of Genetics and Metabolic Disease (LABGEM), Institute of Nutrition and Food Technology (INTA)University of ChileSantiagoChile
| | - Carolina Arias
- Laboratory of Genetics and Metabolic Disease (LABGEM), Institute of Nutrition and Food Technology (INTA)University of ChileSantiagoChile
| | - Maria I. Garcia
- Laboratory of Genetics and Metabolic Disease (LABGEM), Institute of Nutrition and Food Technology (INTA)University of ChileSantiagoChile
| | - Veronica Cornejo
- Laboratory of Genetics and Metabolic Disease (LABGEM), Institute of Nutrition and Food Technology (INTA)University of ChileSantiagoChile
| | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Carla E. M. Hollak
- Department of Internal MedicineDivision of Endocrinology and Metabolism, Amsterdam UMC ‐ Location AMCAmsterdamThe Netherlands
| | - M. Estela Rubio‐Gozalbo
- Departments of Pediatrics and Laboratory Genetic Metabolic DiseasesMaastricht University Medical HospitalMaastrichtThe Netherlands
| | - Martijn C. G. J. Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic DiseaseMaastricht University Medical CentreMaastrichtThe Netherlands
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Floris C. Hofstede
- Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | | | - Ans T. van der Ploeg
- Departments of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Janneke G. Langendonk
- Department of Internal medicine, Center for Lysosomal and Metabolic Diseases, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Stephan C. J. Huijbregts
- University of Leiden, Clinical Child and Adolescent Studies: Neurodevelopmental DisordersLeidenThe Netherlands
| | - Francjan J. van Spronsen
- Division of Metabolic DiseasesUniversity of Groningen, University Medical Center Groningen, Beatrix Children's HospitalGroningenThe Netherlands
| |
Collapse
|
4
|
Bärhold F, Meyer U, Neugebauer AK, Thimm EM, Lier D, Rosenbaum-Fabian S, Och U, Fekete A, Möslinger D, Rohde C, Beblo S, Hochuli M, Bogovic N, Korpel V, vom Dahl S, Mayorandan S, Fischer A, Freisinger P, Dokoupil K, Heddrich-Ellerbrok M, Jörg-Streller M, van Teeffelen-Heithoff A, Lahl J, Das AM. Hepatorenal Tyrosinaemia: Impact of a Simplified Diet on Metabolic Control and Clinical Outcome. Nutrients 2020; 13:nu13010134. [PMID: 33396520 PMCID: PMC7824011 DOI: 10.3390/nu13010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Tyrosinaemia type 1 is a rare inherited metabolic disease caused by an enzyme defect in the tyrosine degradation pathway. It is treated using nitisinone and a low-protein diet. In a workshop in 2013, a group of nutritional specialists from Germany, Switzerland and Austria agreed to advocate a simplified low-protein diet and to allow more natural protein intake in patients with tyrosinaemia type 1. This retrospective study evaluates the recommendations made at different treatment centers and their impact on clinical symptoms and metabolic control. Methods: For this multicenter study, questionnaires were sent to nine participating treatment centers to collect data on the general therapeutic approach and data of 47 individual patients treated by those centers. Results: Dietary simplification allocating food to 3 categories led to increased tyrosine and phenylalanine blood concentrations without weighing food. Phenylalanine levels were significantly higher in comparison to a strict dietary regimen whereas tyrosine levels in plasma did not change. Non-inferiority was shown for the simplification and liberalization of the diet. Compliance with dietary recommendations was higher using the simplified diet in comparison to the stricter approach. Age correlates negatively with compliance. Conclusions: Simplification of the diet with increased natural protein intake based on three categories of food may be implemented in the diet of patients with tyrosinaemia type 1 without significantly altering metabolic control. Patient compliance is strongly influencing tyrosine blood concentrations. A subsequent prospective study with a larger sample size is necessary to get a better insight into the effect of dietary recommendations on metabolic control.
Collapse
Affiliation(s)
- Friederike Bärhold
- Department of Paediatrics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.B.); (U.M.); (S.M.)
| | - Uta Meyer
- Department of Paediatrics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.B.); (U.M.); (S.M.)
| | - Anne-Kathrin Neugebauer
- Klinik für Allgemeine Pädiatrie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (A.-K.N.); (E.M.T.)
| | - Eva Maria Thimm
- Klinik für Allgemeine Pädiatrie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (A.-K.N.); (E.M.T.)
| | - Dinah Lier
- Klinik für Kinder- und Jugendmedizin, Stoffwechselzentrum, Klinikum am Steinenberg, Steinenbergstraße 31, 72764 Reutlingen, Germany; (D.L.); (A.F.); (P.F.)
| | - Stefanie Rosenbaum-Fabian
- Zentrum für Kinder- u. Jugendmedizin, Universitätsklinikum Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany;
| | - Ulrike Och
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; (U.O.); (A.v.T.-H.)
| | - Anna Fekete
- Kinder- und Jugendheilkunde, AKH Universitätsklinikum Wien, Währinger Gürtel 18-20, 1090 Wien, Austria; (A.F.); (D.M.)
| | - Dorothea Möslinger
- Kinder- und Jugendheilkunde, AKH Universitätsklinikum Wien, Währinger Gürtel 18-20, 1090 Wien, Austria; (A.F.); (D.M.)
| | - Carmen Rohde
- Universitätsklinik für Kinder und Jugendliche, Universitätsklinikum Leipzig, Liebigstraße 20 a, 04103 Leipzig, Germany; (C.R.); (S.B.)
| | - Skadi Beblo
- Universitätsklinik für Kinder und Jugendliche, Universitätsklinikum Leipzig, Liebigstraße 20 a, 04103 Leipzig, Germany; (C.R.); (S.B.)
| | - Michel Hochuli
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Rämistraße 100, 8091 Zürich, Switzerland;
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism Inselspital Bern, University Hospital and University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Nina Bogovic
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.B.); (V.K.); (S.v.D.)
| | - Vanessa Korpel
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.B.); (V.K.); (S.v.D.)
| | - Stephan vom Dahl
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.B.); (V.K.); (S.v.D.)
| | - Sebene Mayorandan
- Department of Paediatrics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.B.); (U.M.); (S.M.)
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; (U.O.); (A.v.T.-H.)
| | - Aleksandra Fischer
- Klinik für Kinder- und Jugendmedizin, Stoffwechselzentrum, Klinikum am Steinenberg, Steinenbergstraße 31, 72764 Reutlingen, Germany; (D.L.); (A.F.); (P.F.)
| | - Peter Freisinger
- Klinik für Kinder- und Jugendmedizin, Stoffwechselzentrum, Klinikum am Steinenberg, Steinenbergstraße 31, 72764 Reutlingen, Germany; (D.L.); (A.F.); (P.F.)
| | - Katharina Dokoupil
- Dr. von Haunersches Kinderspital, Lindwurmstraße 4, 80337 München, Germany;
| | - Margret Heddrich-Ellerbrok
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Monika Jörg-Streller
- Department für Kinder- und Jugendheilkunde, Medizinische Universität Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Agnes van Teeffelen-Heithoff
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; (U.O.); (A.v.T.-H.)
| | - Janina Lahl
- Nutricia GmbH, Metabolics Expert Centre, Am Hauptbahnhof 18, 60329 Frankfurt, Germany;
| | - Anibh Martin Das
- Department of Paediatrics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.B.); (U.M.); (S.M.)
- Correspondence: ; Tel.: +49-511-532-3220; Fax: +49-511-532-18516
| |
Collapse
|
5
|
van Vliet K, van Ginkel WG, van Dam E, de Blaauw P, Koehorst M, Kingma HA, van Spronsen FJ, Heiner-Fokkema MR. Dried blood spot versus venous blood sampling for phenylalanine and tyrosine. Orphanet J Rare Dis 2020; 15:82. [PMID: 32245393 PMCID: PMC7118958 DOI: 10.1186/s13023-020-1343-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND This study investigated the agreement between various dried blood spot (DBS) and venous blood sample measurements of phenylalanine and tyrosine concentrations in Phenylketonuria (PKU) and Tyrosinemia type 1 (TT1) patients. STUDY DESIGN Phenylalanine and tyrosine concentrations were studied in 45 PKU/TT1 patients in plasma from venous blood in lithium heparin (LH) and EDTA tubes; venous blood from LH and EDTA tubes on a DBS card; venous blood directly on a DBS card; and capillary blood on a DBS card. Plasma was analyzed with an amino acid analyzer and DBS were analyzed with liquid chromatography-mass spectrometry. Agreement between different methods was assessed using Passing and Bablok fit and Bland Altman analyses. RESULTS In general, phenylalanine concentrations in LH plasma were comparable to capillary DBS, whereas tyrosine concentrations were slightly higher in LH plasma (constant bias of 6.4 μmol/L). However, in the low phenylalanine range, most samples had higher phenylalanine concentrations in DBS compared to LH plasma. Remarkably, phenylalanine and tyrosine in EDTA plasma were higher compared to all other samples (slopes ranging from 7 to 12%). No differences were observed when comparing capillary DBS to other DBS. CONCLUSIONS Overall agreement between plasma and DBS is good. However, bias is specimen- (LH vs EDTA), and possibly concentration- (low phenylalanine) dependent. Because of the overall good agreement, we recommend the use of a DBS-plasma correction factor for DBS measurement. Each laboratory should determine their own factor dependent on filter card type, extraction and calibration protocols taking the LH plasma values as gold standard.
Collapse
Affiliation(s)
- Kimber van Vliet
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Wiggert G van Ginkel
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Esther van Dam
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Pim de Blaauw
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, P.O. Box 30.001, 9700 RB, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, P.O. Box 30.001, 9700 RB, The Netherlands
| | - Hermi A Kingma
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, P.O. Box 30.001, 9700 RB, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, P.O. Box 30.001, 9700 RB, The Netherlands.
| |
Collapse
|
6
|
van Ginkel WG, Rodenburg IL, Harding CO, Hollak CEM, Heiner-Fokkema MR, van Spronsen FJ. Long-Term Outcomes and Practical Considerations in the Pharmacological Management of Tyrosinemia Type 1. Paediatr Drugs 2019; 21:413-426. [PMID: 31667718 PMCID: PMC6885500 DOI: 10.1007/s40272-019-00364-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in tyrosine catabolism. TT1 is clinically characterized by acute liver failure, development of hepatocellular carcinoma, renal and neurological problems, and consequently an extremely poor outcome. This review showed that the introduction of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) in 1992 has revolutionized the outcome of TT1 patients, especially when started pre-clinically. If started early, NTBC can prevent liver failure, renal problems, and neurological attacks and decrease the risk for hepatocellular carcinoma. NTBC has been shown to be safe and well tolerated, although the long-term effectiveness of treatment with NTBC needs to be awaited. The high tyrosine concentrations caused by treatment with NTBC could result in ophthalmological and skin problems and requires life-long dietary restriction of tyrosine and its precursor phenylalanine, which could be strenuous to adhere to. In addition, neurocognitive problems have been reported since the introduction of NTBC, with hypothesized but as yet unproven pathophysiological mechanisms. Further research should be done to investigate the possible relationship between important clinical outcomes and blood concentrations of biochemical parameters such as phenylalanine, tyrosine, succinylacetone, and NTBC, and to develop clear guidelines for treatment and follow-up with reliable measurements. This all in order to ultimately improve the combined NTBC and dietary treatment and limit possible complications such as hepatocellular carcinoma development, neurocognitive problems, and impaired quality of life.
Collapse
Affiliation(s)
- Willem G van Ginkel
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Iris L Rodenburg
- Department of Dietetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Carla E M Hollak
- Deparment of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Francjan J van Spronsen
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
7
|
van Ginkel WG, van Reemst HE, Kienstra NS, Daly A, Rodenburg IL, MacDonald A, Burgerhof JG, de Blaauw P, van de Krogt J, Santra S, Heiner-Fokkema MR, van Spronsen FJ. The Effect of Various Doses of Phenylalanine Supplementation on Blood Phenylalanine and Tyrosine Concentrations in Tyrosinemia Type 1 Patients. Nutrients 2019; 11:nu11112816. [PMID: 31752110 PMCID: PMC6893509 DOI: 10.3390/nu11112816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
Tyrosinemia type 1 (TT1) treatment with 2-(2-nitro-4-trifluormethyl-benzyl)-1,3-cyclohexanedione (NTBC) and a phenylalanine-tyrosine restricted diet is associated with low phenylalanine concentrations. Phenylalanine supplementation is prescribed without comprehensive consideration about its effect on metabolic control. We investigated the effect of phenylalanine supplementation on bloodspot phenylalanine, tyrosine, NTBC and succinylacetone. Eleven TT1 patients received 0, 20 and 40 mg/kg/day phenylalanine supplementation with the phenylalanine-tyrosine free L-amino acid supplements. Bloodspots were collected before breakfast, midday and evening meal. Differences between study periods, sample times and days within a study period were studied using (generalized) linear mixed model analyses. Twenty and 40 mg/kg/day phenylalanine supplementation prevented daytime phenylalanine decreases (p = 0.05) and most low phenylalanine concentrations, while tyrosine concentrations increased (p < 0.001). Furthermore, NTBC and succinylacetone concentrations did not differ between study periods. To conclude, 20 mg/kg/day phenylalanine supplementation can prevent most low phenylalanine concentrations without increasing tyrosine to concentrations above the target range or influencing NTBC and succinylacetone concentrations, while 40 mg/kg/day increased tyrosine concentrations to values above the targeted range. Additionally, this study showed that the effect of phenylalanine supplementation, and a possible phenylalanine deficiency, should be assessed using pre-midday meal blood samples that could be combined with an overnight fasted sample when in doubt.
Collapse
Affiliation(s)
- Willem G. van Ginkel
- Department of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (W.G.v.G.); (H.E.v.R.); (N.S.K.)
| | - Hannah E. van Reemst
- Department of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (W.G.v.G.); (H.E.v.R.); (N.S.K.)
| | - Nienke S. Kienstra
- Department of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (W.G.v.G.); (H.E.v.R.); (N.S.K.)
| | - Anne Daly
- Department of Metabolic Diseases, Birmingham Children’s Hospital, Birmingham B4 6NH, UK; (A.D.); (A.M.); (S.S.)
| | - Iris L. Rodenburg
- Department of Dietetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Anita MacDonald
- Department of Metabolic Diseases, Birmingham Children’s Hospital, Birmingham B4 6NH, UK; (A.D.); (A.M.); (S.S.)
| | - Johannes G.M. Burgerhof
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Pim de Blaauw
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (P.d.B.); (J.v.d.K.); (M.R.H.-F.)
| | - Jennifer van de Krogt
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (P.d.B.); (J.v.d.K.); (M.R.H.-F.)
| | - Saikat Santra
- Department of Metabolic Diseases, Birmingham Children’s Hospital, Birmingham B4 6NH, UK; (A.D.); (A.M.); (S.S.)
| | - M. Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (P.d.B.); (J.v.d.K.); (M.R.H.-F.)
| | - Francjan J. van Spronsen
- Department of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (W.G.v.G.); (H.E.v.R.); (N.S.K.)
- Correspondence: ; Tel.: +31-(0)361-4147
| |
Collapse
|
8
|
Blood and Brain Biochemistry and Behaviour in NTBC and Dietary Treated Tyrosinemia Type 1 Mice. Nutrients 2019; 11:nu11102486. [PMID: 31623189 PMCID: PMC6836052 DOI: 10.3390/nu11102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in the tyrosine degradation pathway. Neurocognitive deficiencies have been described in TT1 patients, that have, among others, been related to changes in plasma large neutral amino acids (LNAA) that could result in changes in brain LNAA and neurotransmitter concentrations. Therefore, this project aimed to investigate plasma and brain LNAA, brain neurotransmitter concentrations and behavior in C57 Bl/6 fumarylacetoacetate hydrolase deficient (FAH−/−) mice treated with 2-(2-nitro-4-trifluoromethylbenoyl)-1,3-cyclohexanedione (NTBC) and/or diet and wild-type mice. Plasma and brain tyrosine concentrations were clearly increased in all NTBC treated animals, even with diet (p < 0.001). Plasma and brain phenylalanine concentrations tended to be lower in all FAH−/− mice. Other brain LNAA, were often slightly lower in NTBC treated FAH−/− mice. Brain neurotransmitter concentrations were usually within a normal range, although serotonin was negatively correlated with brain tyrosine concentrations (p < 0.001). No clear behavioral differences between the different groups of mice could be found. To conclude, this is the first study measuring plasma and brain biochemistry in FAH−/− mice. Clear changes in plasma and brain LNAA have been shown. Further research should be done to relate the biochemical changes to neurocognitive impairments in TT1 patients.
Collapse
|