1
|
Mohsen F, Al-Saadi B, Abdi N, Khan S, Shah Z. Artificial Intelligence-Based Methods for Precision Cardiovascular Medicine. J Pers Med 2023; 13:1268. [PMID: 37623518 PMCID: PMC10455092 DOI: 10.3390/jpm13081268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 08/26/2023] Open
Abstract
Precision medicine has the potential to revolutionize the way cardiovascular diseases are diagnosed, predicted, and treated by tailoring treatment strategies to the individual characteristics of each patient. Artificial intelligence (AI) has recently emerged as a promising tool for improving the accuracy and efficiency of precision cardiovascular medicine. In this scoping review, we aimed to identify and summarize the current state of the literature on the use of AI in precision cardiovascular medicine. A comprehensive search of electronic databases, including Scopes, Google Scholar, and PubMed, was conducted to identify relevant studies. After applying inclusion and exclusion criteria, a total of 28 studies were included in the review. We found that AI is being increasingly applied in various areas of cardiovascular medicine, including the diagnosis, prognosis of cardiovascular diseases, risk prediction and stratification, and treatment planning. As a result, most of these studies focused on prediction (50%), followed by diagnosis (21%), phenotyping (14%), and risk stratification (14%). A variety of machine learning models were utilized in these studies, with logistic regression being the most used (36%), followed by random forest (32%), support vector machine (25%), and deep learning models such as neural networks (18%). Other models, such as hierarchical clustering (11%), Cox regression (11%), and natural language processing (4%), were also utilized. The data sources used in these studies included electronic health records (79%), imaging data (43%), and omics data (4%). We found that AI is being increasingly applied in various areas of cardiovascular medicine, including the diagnosis, prognosis of cardiovascular diseases, risk prediction and stratification, and treatment planning. The results of the review showed that AI has the potential to improve the performance of cardiovascular disease diagnosis and prognosis, as well as to identify individuals at high risk of developing cardiovascular diseases. However, further research is needed to fully evaluate the clinical utility and effectiveness of AI-based approaches in precision cardiovascular medicine. Overall, our review provided a comprehensive overview of the current state of knowledge in the field of AI-based methods for precision cardiovascular medicine and offered new insights for researchers interested in this research area.
Collapse
Affiliation(s)
| | | | | | | | - Zubair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
2
|
Garatachea N, Pueyo E, Eijsvogels TM. Prevention of Sudden Death in Sports: A Global and Multidisciplinary Observatory for Scientific Research and Knowledge Transfer (PREMUBID). Rev Cardiovasc Med 2023; 24:12. [PMID: 39076883 PMCID: PMC11270393 DOI: 10.31083/j.rcm2401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 07/31/2024] Open
Abstract
Background The health benefits of sports and exercise training are well known. However, an acute bout of exercise transiently increases the risk of sudden cardiac death (SCD). To minimize the cardiovascular risks of exercise, more insight into the prevention and causes of SCD is needed. Methods The observatory for the prevention of sudden death in sports, PREMUBID, was created with the aim of fostering research to assess the benefits and risks of exercise at different volumes and intensities and to get insight into the underlying mechanisms of potentially cardiac (mal) adaptations. Results The observatory gathers researchers from a wide range of disciplines working at institutions in Europe and North America. The guiding principles of PREMUBID are to broaden the understanding of SCD in sports, strengthening collaborative research across the globe, and to develop, implement and evaluate robust pre-participation screening and emergency care strategies to further reduce the number of fatal cardiac events in sport events. During the inaugural meeting of the observatory, members and affiliated researchers discussed possibilities to initiate collaborative research projects and to exchange staff and students to share information and practices to prevent SCD. The final goal is to translate the obtained knowledge to understandable messages for the general population and healthcare workers to ensure that the population at large benefits from it. Conclusions The PREMUBID consortium aims to produce novel knowledge and insights in SCD prevention, in order to maximize the health benefits associated with acute and long-term exercise training.
Collapse
Affiliation(s)
- Nuria Garatachea
- Growth, Exercise, NUtrition and Development (GENUD) Research Group, University of Zaragoza, 50009 Zaragoza, Spain
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), University of Zaragoza, 22002 Huesca, Spain
- Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Thijs M.H. Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
3
|
The role of β-adrenergic stimulation in QT interval adaptation to heart rate during stress test. PLoS One 2023; 18:e0280901. [PMID: 36701349 PMCID: PMC9879473 DOI: 10.1371/journal.pone.0280901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
The adaptation lag of the QT interval after heart rate (HR) has been proposed as an arrhythmic risk marker. Most studies have quantified the QT adaptation lag in response to abrupt, step-like changes in HR induced by atrial pacing, in response to tilt test or during ambulatory recordings. Recent studies have introduced novel methods to quantify the QT adaptation lag to gradual, ramp-like HR changes in stress tests by evaluating the differences between the measured QT series and an estimated, memoryless QT series obtained from the instantaneous HR. These studies have observed the QT adaptation lag to progressively reduce when approaching the stress peak, with the underlying mechanisms being still unclear. This study analyzes the contribution of β-adrenergic stimulation to QT interval rate adaptation in response to gradual, ramp-like HR changes. We first quantify the QT adaptation lag in Coronary Artery Disease (CAD) patients undergoing stress test. To uncover the involved mechanisms, we use biophysically detailed computational models coupling descriptions of human ventricular electrophysiology and β-adrenergic signaling, from which we simulate ventricular action potentials and ECG signals. We characterize the adaptation of the simulated QT interval in response to the HR time series measured from each of the analyzed CAD patients. We show that, when the simulated ventricular tissue is subjected to a time-varying β-adrenergic stimulation pattern, with higher stimulation levels close to the stress peak, the simulated QT interval presents adaptation lags during exercise that are more similar to those measured from the patients than when subjected to constant β-adrenergic stimulation. During stress test recovery, constant and time-varying β-adrenergic stimulation patterns render similar adaptation lags, which are generally shorter than during exercise, in agreement with results from the patients. In conclusion, our findings support the role of time-varying β-adrenergic stimulation in contributing to QT interval adaptation to gradually increasing HR changes as those seen during the exercise phase of a stress test.
Collapse
|
4
|
Ramírez J, van Duijvenboden S, Young WJ, Tinker A, Lambiase PD, Orini M, Munroe PB. Prediction of Coronary Artery Disease and Major Adverse Cardiovascular Events Using Clinical and Genetic Risk Scores for Cardiovascular Risk Factors. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003441. [PMID: 35861959 PMCID: PMC9584057 DOI: 10.1161/circgen.121.003441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) and major adverse cardiovascular events (MACE) are the leading causes of death in the general population, but risk stratification remains suboptimal. CAD genetic risk scores (GRSs) predict risk independently from clinical tools, like QRISK3. We assessed the added value of GRSs for a variety of cardiovascular traits (CV GRSs) for predicting CAD and MACE and tested their early-life screening potential by comparing against the CAD GRS only. METHODS We used data from 379 581 participants in the UK Biobank without known cardiovascular conditions (follow-up, 11.3 years; 3.3% CAD cases and 5.2% MACE cases). In a training subset (50%) we built 3 scores: QRISK3; QRISK3 and an established CAD GRS; and QRISK3, the CAD GRS and the CV GRSs. In an independent subset (50%), we evaluated each score's performance using the concordance index, odds ratio and net reclassification index. We then repeated the analyses without considering QRISK3. RESULTS For CAD, the combination of QRISK3 and the CAD GRS had a better performance than QRISK3 alone (concordance index, 0.766 versus 0.753; odds ratio, 5.47 versus 4.82; net reclassification index, 7.7%). Adding the CV GRSs did not significantly improve risk stratification. When only looking at genetic information, the combination of CV GRSs and the CAD GRS had a better performance than the CAD GRS alone (concordance index, 0.637 versus 0.625; odds ratio, 2.17 versus 2.07; net reclassification index, 3.3%). Similar results were obtained for MACE. CONCLUSIONS In individuals without known cardiovascular disease, the inclusion of CV GRSs to a clinical tool and an established CAD GRS does not improve CAD or MACE risk stratification. However, their combination only with the CAD GRS increases prediction performance indicating potential use in early-life screening before the advanced development of conventional cardiovascular risk factors.
Collapse
Affiliation(s)
- Julia Ramírez
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- Electronic Engineering and Communications Department, Aragon Institute of Engineering Research, University of Zaragoza, Spain and CIBER's Bioengineering, Biomaterials and Nanomedicine, Spain. (J.R.)
| | - Stefan van Duijvenboden
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- Institute of Cardiovascular Science, University College London, London, United Kingdom (S.v.D., P.D.L., M.O.)
| | - William J. Young
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom (W.J.Y., P.D.L., M.O.)
| | - Andrew Tinker
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T., P.B.M.)
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom (S.v.D., P.D.L., M.O.)
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom (W.J.Y., P.D.L., M.O.)
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom (S.v.D., P.D.L., M.O.)
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom (W.J.Y., P.D.L., M.O.)
| | - Patricia B. Munroe
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T., P.B.M.)
| |
Collapse
|
5
|
Ramírez J, Kiviniemi A, van Duijvenboden S, Tinker A, Lambiase PD, Junttila J, Perkiömäki JS, Huikuri HV, Orini M, Munroe PB. ECG T-Wave Morphologic Variations Predict Ventricular Arrhythmic Risk in Low- and Moderate-Risk Populations. J Am Heart Assoc 2022; 11:e025897. [PMID: 36036209 PMCID: PMC9496440 DOI: 10.1161/jaha.121.025897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Early identification of individuals at risk of sudden cardiac death (SCD) remains a major challenge. The ECG is a simple, common test, with potential for large-scale application. We developed and tested the predictive value of a novel index quantifying T-wave morphologic variations with respect to a normal reference (TMV), which only requires one beat and a single-lead ECG. Methods and Results We obtained reference T-wave morphologies from 23 962 participants in the UK Biobank study. With Cox models, we determined the association between TMV and life-threatening ventricular arrhythmia in an independent data set from UK Biobank study without a history of cardiovascular events (N=51 794; median follow-up of 122 months) and SCD in patients with coronary artery disease from ARTEMIS (N=1872; median follow-up of 60 months). In UK Biobank study, 220 (0.4%) individuals developed life-threatening ventricular arrhythmias. TMV was significantly associated with life-threatening ventricular arrhythmias (hazard ratio [HR] of 1.13 per SD increase [95% CI, 1.03-1.24]; P=0.009). In ARTEMIS, 34 (1.8%) individuals reached the primary end point. Patients with TMV ≥5 had an HR for SCD of 2.86 (95% CI, 1.40-5.84; P=0.004) with respect to those with TMV <5, independently from QRS duration, corrected QT interval, and left ventricular ejection fraction. TMV was not significantly associated with death from a cause other than SCD. Conclusions TMV identifies individuals at life-threatening ventricular arrhythmia and SCD risk using a single-beat single-lead ECG, enabling inexpensive, quick, and safe risk assessment in large populations.
Collapse
Affiliation(s)
- Julia Ramírez
- Clinical Pharmacology and Precision Medicine William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London United Kingdom.,Aragon Institute of Engineering Research University of Zaragoza Zaragoza Spain.,Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina Zaragoza Spain
| | - Antti Kiviniemi
- Research Unit of Internal Medicine Medical Research Center Oulu, University of Oulu and Oulu University Hospital Oulu Finland
| | - Stefan van Duijvenboden
- Clinical Pharmacology and Precision Medicine William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London United Kingdom.,Institute of Cardiovascular Science University College London London United Kingdom
| | - Andrew Tinker
- Clinical Pharmacology and Precision Medicine William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London United Kingdom.,National Institute for Health and Care Research Barts Cardiovascular Biomedical Research Centre Barts and The London School of Medicine and Dentistry, Queen Mary University of London London United Kingdom
| | - Pier D Lambiase
- Institute of Cardiovascular Science University College London London United Kingdom.,Barts Heart Centre St Bartholomew's Hospital London United Kingdom
| | - Juhani Junttila
- Research Unit of Internal Medicine Medical Research Center Oulu, University of Oulu and Oulu University Hospital Oulu Finland
| | - Juha S Perkiömäki
- Research Unit of Internal Medicine Medical Research Center Oulu, University of Oulu and Oulu University Hospital Oulu Finland
| | - Heikki V Huikuri
- Research Unit of Internal Medicine Medical Research Center Oulu, University of Oulu and Oulu University Hospital Oulu Finland
| | - Michele Orini
- Institute of Cardiovascular Science University College London London United Kingdom.,Barts Heart Centre St Bartholomew's Hospital London United Kingdom
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London United Kingdom.,National Institute for Health and Care Research Barts Cardiovascular Biomedical Research Centre Barts and The London School of Medicine and Dentistry, Queen Mary University of London London United Kingdom
| |
Collapse
|
6
|
Gordeeva M, Serdiukova I, Krasichkov A, Parmon E. Electrocardiographic Patterns of Depolarization Abnormalities Help to Identify Reduced Left Ventricular Ejection Fraction. Diagnostics (Basel) 2022; 12:diagnostics12082020. [PMID: 36010370 PMCID: PMC9407124 DOI: 10.3390/diagnostics12082020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to investigate the relationship between a decrease in the left ventricular ejection fraction (EF) and traditional ECG signs associated with structural changes of the myocardium (pathological Q wave, ventricular arrhythmias) and relatively new and poorly understood (fragmented QRS complex (fQRS), early repolarization pattern (ERP)) and evaluate their significance for identifying patients with mildly reduced EF (mrEF). The study included 148 patients who were treated and examined at the Almazov Medical Research Center. FQRS, ERP, pathological Q wave, and premature ventricular contractions (PVC) were described in the analysis of the ECG, and the results of echocardiography and statistical data were analyzed: Fisher’s test and chi-square, correlation analysis, and ROC analysis. According to the level of EF, patients were divided into three groups: group 1—patients with low EF (lEF) (less than 40%), group 2—patients with mildly reduced EF (mrEF) (40–49%); group 3—patients with preserved EF (pEF) (more than 50%). In the first group (EF), fQRS was registered in 16 (51.6%) patients, in the mrEF in 16 (18.2%). Pathological Q wave was detected in lEF in 20 (65%), in mrEF in 10 (35%), 15 (18%), in pEF in 15 (18%). The fQRS has been found to be more important in identifying patients with mrEF. In lEF in 2 (6.5%) patients, in mrEF in 2 (6.9%), in pEF in 11 (12.5%). There was no relationship between ERP, the amount of PVC, and the presence of ventricular tachycardia with EF. FQRS is significantly more common occurred with a decrease in EF and may be a marker of a mrEF. Thus, fQRS is associated with mrEF and pay close attention in routine clinical practice to identify patients at high risk of developing systolic dysfunction.
Collapse
Affiliation(s)
- Maria Gordeeva
- Federal State Budgetary Institution “Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation, 197341 Saint Petersburg, Russia
- Radio Engineering Systems Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Irina Serdiukova
- Radio Engineering Systems Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Correspondence:
| | - Alexander Krasichkov
- Radio Engineering Systems Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Elena Parmon
- Federal State Budgetary Institution “Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation, 197341 Saint Petersburg, Russia
| |
Collapse
|
7
|
Gregers MCT, Schou M, Jensen MT, Jensen J, Petrie MC, Vilsbøll T, Goetze JP, Rossing P, Jørgensen PG. Diagnostic and prognostic value of the electrocardiogram in stable outpatients with type 2 diabetes. SCAND CARDIOVASC J 2022; 56:256-263. [DOI: 10.1080/14017431.2022.2095435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Magnus T. Jensen
- Department of Cardiology, Copenhagen University Hospital Amager, Hvidovre, Denmark
- William Harvey Research Institute, NIHR Barts Biomedical Centre, Queen Mary University London, London, UK
| | - Jesper Jensen
- Department of Cardiology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Mark C. Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tina Vilsbøll
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Peter Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Rossing
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Palacios S, Cygankiewicz I, Bayés de Luna A, Pueyo E, Martínez JP. Periodic repolarization dynamics as predictor of risk for sudden cardiac death in chronic heart failure patients. Sci Rep 2021; 11:20546. [PMID: 34654872 PMCID: PMC8519935 DOI: 10.1038/s41598-021-99861-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
The two most common modes of death among chronic heart failure (CHF) patients are sudden cardiac death (SCD) and pump failure death (PFD). Periodic repolarization dynamics (PRD) quantifies low-frequency oscillations in the T wave vector of the electrocardiogram (ECG) and has been postulated to reflect sympathetic modulation of ventricular repolarization. This study aims to evaluate the prognostic value of PRD to predict SCD and PFD in a population of CHF patients. 20-min high-resolution (1000 Hz) ECG recordings from 569 CHF patients were analyzed. Patients were divided into two groups, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {PRD}^+$$\end{document}PRD+ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {PRD}^-$$\end{document}PRD-, corresponding to PRD values above and below the optimum cutoff point of PRD in the study population. Univariate Cox regression analysis showed that SCD risk in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {PRD}^+$$\end{document}PRD+ group was double the risk in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {PRD}^-$$\end{document}PRD- group [hazard ratio (95% CI) 2.001 (1.127–3.554), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {p}<0.05$$\end{document}p<0.05]. The combination of PRD with other Holter-based ECG indices, such as turbulence slope (TS) and index of average alternans (IAA), improved SCD prediction by identifying groups of patients at high SCD risk. PFD could be predicted by PRD only when combined with TS [hazard ratio 2.758 (1.572–4.838), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {p}<0.001$$\end{document}p<0.001]. In conclusion, the combination of PRD with IAA and TS can be used to stratify the risk for SCD and PFD, respectively, in CHF patients.
Collapse
Affiliation(s)
- Saúl Palacios
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.
| | - Iwona Cygankiewicz
- Department of Electrocardiology, Medical University of Lodz, Lodz, Poland
| | - Antoni Bayés de Luna
- Cardiovascular Research Foundation, Cardiovascular ICCC-Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Esther Pueyo
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Juan Pablo Martínez
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
9
|
Hernández-Vicente A, Hernando D, Vicente-Rodríguez G, Bailón R, Garatachea N, Pueyo E. ECG Ventricular Repolarization Dynamics during Exercise: Temporal Profile, Relation to Heart Rate Variability and Effects of Age and Physical Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9497. [PMID: 34574421 PMCID: PMC8469015 DOI: 10.3390/ijerph18189497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Periodic repolarization dynamics (PRD) is a novel electrocardiographic marker of cardiac repolarization instability with powerful risk stratification capacity for total mortality and sudden cardiac death. Here, we use a time-frequency analysis approach to continuously quantify PRD at rest and during exercise, assess its dependence on heart rate variability (HRV) and characterize the effects of age (young adults/middle-aged adults/older adults), body mass index (non-overweight/overweight) and cardiorespiratory fitness level (fit/unfit). Sixty-six male volunteers performed an exercise test. RR and dT variabilities (RRV, dTV), as well as the fraction of dT variability unrelated to RR variability, were computed based on time-frequency representations. The instantaneous LF power of dT (PdTV), representing the same concept as PRD, and of its RRV-unrelated component (PdTVuRRV) were quantified. dT angle was found to mostly oscillate in the LF band. Overall, 50-70% of PdTV was linearly unrelated to RRV. The onset of exercise caused a sudden increase in PdTV and PdTVuRRV, which returned to pre-exercise levels during recovery. Clustering analysis identified a group of overweight and unfit individuals with significantly higher PdTV and PdTVuRRV values at rest than the rest of the population. Our findings shed new light on the temporal profile of PRD during exercise, its relationship to HRV and the differences in PRD between subjects according to phenotypic characteristics.
Collapse
Affiliation(s)
- Adrián Hernández-Vicente
- Growth, Exercise, NUtrition and Development (GENUD) Research Group, University of Zaragoza, 50009 Zaragoza, Spain; (G.V.-R.); (N.G.)
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), University of Zaragoza, 22002 Huesca, Spain
- Red española de Investigación en Ejercicio Físico y Salud en Poblaciones Especiales (EXERNET), 50009 Zaragoza, Spain
| | - David Hernando
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (D.H.); (R.B.); (E.P.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Germán Vicente-Rodríguez
- Growth, Exercise, NUtrition and Development (GENUD) Research Group, University of Zaragoza, 50009 Zaragoza, Spain; (G.V.-R.); (N.G.)
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), University of Zaragoza, 22002 Huesca, Spain
- Red española de Investigación en Ejercicio Físico y Salud en Poblaciones Especiales (EXERNET), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBER-Obn), 28029 Madrid, Spain
- Instituto Agroalimentario de Aragón -IA2- CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (D.H.); (R.B.); (E.P.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Nuria Garatachea
- Growth, Exercise, NUtrition and Development (GENUD) Research Group, University of Zaragoza, 50009 Zaragoza, Spain; (G.V.-R.); (N.G.)
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), University of Zaragoza, 22002 Huesca, Spain
- Red española de Investigación en Ejercicio Físico y Salud en Poblaciones Especiales (EXERNET), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBER-Obn), 28029 Madrid, Spain
- Instituto Agroalimentario de Aragón -IA2- CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (D.H.); (R.B.); (E.P.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
10
|
Dong Y, Shi Y, Wang J, Dan Q, Gao L, Zhao C, Mu Y, Liu M, Yin C, Wu R, Liu Y, Li Y, Wang X. Development and Validation of a Risk Prediction Model for Ventricular Arrhythmia in Elderly Patients with Coronary Heart Disease. Cardiol Res Pract 2021; 2021:2283018. [PMID: 34285814 PMCID: PMC8275423 DOI: 10.1155/2021/2283018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sudden cardiac death is a leading cause of death from coronary heart disease (CHD). The risk of sudden cardiac death (SCD) increases with age, and sudden arrhythmic death remains a major cause of mortality in elderly individuals, especially ventricular arrhythmias (VA). We developed a risk prediction model by combining ECG and other clinical noninvasive indexes including biomarkers and echocardiology for VA in elderly patients with CHD. METHOD In the retrospective study, a total of 2231 consecutive elderly patients (≥60 years old) with CHD hospitalized were investigated, and finally 1983 patients were enrolled as the model group. The occurrence of VA within 12 months was mainly collected. Study parameters included clinical characteristics (age, gender, height, weight, BMI, and past medical history), ECG indexes (QTcd, Tp-e/QT, and HRV indexes), biomarker indexes (NT-proBNP, Myo, cTnT, CK-MB, CRP, K+, and Ca2+), and echocardiology indexes. In the respective study, 406 elderly patients (≥60 years old) with CHD were included as the verification group to verify the model in terms of differentiation and calibration. RESULTS In the multiparameter model, seven independent predictors were selected: LVEF, LAV, HLP, QTcd, sex, Tp-e/QT, and age. Increased HLP, Tp-e/QT, QTcd, age, and LAV were risk factors (RR > 1), while female and increased LVEF were protective factors (RR < 1). This model can well predict the occurrence of VA in elderly patients with CHD (for model group, AUC: 0.721, 95% CI: 0.669∼0.772; for verification group, AUC: 0.73, 95% CI: 0.648∼0.818; Hosmer-Lemeshow χ 2 = 13.541, P=0.095). After adjusting the predictors, it was found that the combination of clinical indexes and ECG indexes could predict VA more efficiently than using clinical indexes alone. CONCLUSIONS LVEF, LAV, QTcd, Tp-e/QT, gender, age, and HLP were independent predictors of VA risk in elderly patients with CHD. Among these factors, the echocardiology indexes LVEF and LAV had the greatest influence on the predictive efficiency of the model, followed by ECG indexes, QTcd and Tp-e/QT. After verification, the model had a good degree of differentiation and calibration, which can provide a certain reference for clinical prediction of the VA occurrence in elderly patients with CHD.
Collapse
Affiliation(s)
- Ying Dong
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yajun Shi
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinli Wang
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qing Dan
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ling Gao
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chenghui Zhao
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Mu
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Miao Liu
- Graduate School of Chinese PLA General Hospital, Beijing, China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Rilige Wu
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yuqi Liu
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xueping Wang
- Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Palmieri F, Gomis P, Ruiz JE, Ferreira D, Martín-Yebra A, Pueyo E, Martínez JP, Ramírez J, Laguna P. ECG-based monitoring of blood potassium concentration: Periodic versus principal component as lead transformation for biomarker robustness. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ramírez J, van Duijvenboden S, Young WJ, Orini M, Jones AR, Lambiase PD, Munroe PB, Tinker A. Analysing electrocardiographic traits and predicting cardiac risk in UK biobank. JRSM Cardiovasc Dis 2021; 10:20480040211023664. [PMID: 34211707 PMCID: PMC8202245 DOI: 10.1177/20480040211023664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The electrocardiogram (ECG) is a commonly used clinical tool that reflects cardiac excitability and disease. Many parameters are can be measured and with the improvement of methodology can now be quantified in an automated fashion, with accuracy and at scale. Furthermore, these measurements can be heritable and thus genome wide association studies inform the underpinning biological mechanisms. In this review we describe how we have used the resources in UK Biobank to undertake such work. In particular, we focus on a substudy uniquely describing the response to exercise performed at scale with accompanying genetic information.
Collapse
Affiliation(s)
- Julia Ramírez
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Stefan van Duijvenboden
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - William J Young
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Michele Orini
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Aled R Jones
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Blesius V, Schölzel C, Ernst G, Dominik A. HRT assessment reviewed: a systematic review of heart rate turbulence methodology. Physiol Meas 2020; 41:08TR01. [PMID: 32485688 DOI: 10.1088/1361-6579/ab98b3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart rate turbulence (HRT) is a biphasic reaction to a ventricular premature contraction (VPC) mainly mediated by the baroreflex. It can be used for risk stratification in different disease patterns. Despite existing standards there is a lot of variation in terms of measuring and calculating HRT, which complicates research and application. OBJECTIVE This systematic review outlines and evaluates the methodological spectrum of HRT research, especially filtering criteria, parameter calculation and thresholds. APPROACH The analysis includes all research papers written in English that have been published before 12.10.2018, are listed on PubMed and involve calculation of HRT parameter values. MAIN RESULTS HRT assessment is still being performed in various ways and important specifications of the methodology are not given in many articles. Nevertheless, some suggestions regarding HRT methodology can be made: a normalised turbulence slope should be used to uncouple the parameter from heart rate and frequency of extrasystoles. Filtering criteria as formerly reviewed in the guidelines should be met and mentioned. The minimal number of VPC snippets (VPCSs) as well as new cut-off values for different risks need to be further evaluated. Most importantly, the exact and complete methodology must be described to ensure reproducibility and comparability. SIGNIFICANCE Methodical variation hinders comparability of research and medical application. Our continuing questions help to further standardise the measurement and calculation of HRT and increase its value for medical risk stratification.
Collapse
|
14
|
Piccirillo G, Moscucci F, Bertani G, Lospinuso I, Mastropietri F, Fabietti M, Sabatino T, Zaccagnini G, Crapanzano D, Di Diego I, Corrao A, Rossi P, Magrì D. Short-Period Temporal Dispersion Repolarization Markers Predict 30-Days Mortality in Decompensated Heart Failure. J Clin Med 2020; 9:E1879. [PMID: 32560151 PMCID: PMC7356287 DOI: 10.3390/jcm9061879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Electrocardiographic (ECG) markers of the temporal dispersion of the myocardial repolarization phase have been shown able to identify chronic heart failure (CHF) patients at high mortality risk. The present prospective single-center study sought to investigate in a well-characterized cohort of decompensated heart failure (HF) patients the ability of short-term myocardial temporal dispersion ECG variables in predicting the 30-day mortality, as well as their relationship with N-terminal Pro Brain Natriuretic Peptide (NT-proBNP) plasmatic values. METHOD One hundred and thirteen subjects (male: 59, 67.8%) with decompensated CHF underwent 5 min of ECG recording, via a mobile phone. We obtained QT end (QTe), QT peak (QTp) and T peak to T end (Te) and calculated the mean, standard deviation (SD), and normalized index (VN). RESULTS Death occurred for 27 subjects (24%) within 30 days after admission. Most of the repolarization indexes (QTe mean (p < 0.05), QTeSD (p < 0.01), QTpSD (p < 0.05), mean Te (p < 0.05), TeSD (p < 0.001) QTeVN (p < 0.05) and TeVN (p < 0.01)) were significantly higher in those CHF patients with the highest NT-proBNP (>75th percentile). In all the ECG data, only TeSD was significantly and positively related to the NT-proBNP levels (r: 0.471; p < 0.001). In the receiver operating characteristic (ROC) analysis, the highest accuracy for 30-day mortality was found for QTeSD (area under curve, AUC: 0.705, p < 0.01) and mean Te (AUC: 0.680, p < 0.01), whereas for the NT-proBNP values higher than the 75th percentile, the highest accuracy was found for TeSD (AUC: 0.736, p < 0.001) and QTeSD (AUC: 0.696, p < 0.01). CONCLUSION Both mean Te and TeSD could be considered as reliable markers of worsening HF and of 30-day mortality. Although larger and possibly interventional studies are needed to confirm our preliminary finding, these non-invasive and transmissible ECG parameters could be helpful in the remote monitoring of advanced HF patients and, possibly, in their clinical management. (ClinicalTrials.gov number, NCT04127162).
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Federica Moscucci
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Gaetano Bertani
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Ilaria Lospinuso
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Fabiola Mastropietri
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Marcella Fabietti
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Teresa Sabatino
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Giulia Zaccagnini
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Davide Crapanzano
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Ilaria Di Diego
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Andrea Corrao
- Anestesiologiche e Cardiovascolari, Dipartimento di Scienze Cliniche Internistiche, Policlinico Umberto I, La Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (G.B.); (I.L.); (F.M.); (M.F.); (T.S.); (G.Z.); (D.C.); (I.D.D.); (A.C.)
| | - Pietro Rossi
- Cardiology Division, Arrhythmology Unit, S. Giovanni Calibita, Isola Tiberina, 00186 Rome, Italy;
| | - Damiano Magrì
- Dipartimento di Medicina Clinica e Molecolare, S. Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
15
|
Abstract
This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The movements of Na+, K+, and Ca2+ via cell membranes produce various currents that provoke AP, determining the cardiac cycle and heart function. A specific channel has its own type of gate, and it is opening and closing under specific transmembrane voltage, ionic, or metabolic conditions. APs of sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells determine the pacemaker activity (depolarization phase 4) of the heart, leading to the surface manifestation, registration, and evaluation of ECG waves in both animal models and humans. AP and ECG changes are key factors in arrhythmogenesis, and the analysis of these changes serve for the clarification of the mechanisms of antiarrhythmic drugs. The classification of antiarrhythmic drugs may be based on their electrophysiological properties emphasizing the connection between basic electrophysiological activities and antiarrhythmic properties. The review also summarizes some important mechanisms of ventricular arrhythmias in the ischemic/reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.
Collapse
Affiliation(s)
- Arpad Tosaki
- Department of Pharmacology, School of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Evaluating risk prediction models for adults with heart failure: A systematic literature review. PLoS One 2020; 15:e0224135. [PMID: 31940350 PMCID: PMC6961879 DOI: 10.1371/journal.pone.0224135] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background The ability to predict risk allows healthcare providers to propose which patients might benefit most from certain therapies, and is relevant to payers’ demands to justify clinical and economic value. To understand the robustness of risk prediction models for heart failure (HF), we conducted a systematic literature review to (1) identify HF risk-prediction models, (2) assess statistical approach and extent of validation, (3) identify common variables, and (4) assess risk of bias (ROB). Methods Literature databases were searched from March 2013 to May 2018 to identify risk prediction models conducted in an out-of-hospital setting in adults with HF. Distinct risk prediction variables were ranked according to outcomes assessed and incorporation into the studies. ROB was assessed using Prediction model Risk Of Bias ASsessment Tool (PROBAST). Results Of 4720 non-duplicated citations, 40 risk-prediction publications were deemed relevant. Within the 40 publications, 58 models assessed 55 (co)primary outcomes, including all-cause mortality (n = 17), cardiovascular death (n = 9), HF hospitalizations (n = 15), and composite endpoints (n = 14). Few publications reported detail on handling missing data (n = 11; 28%). The discriminatory ability for predicting all-cause mortality, cardiovascular death, and composite endpoints was generally better than for HF hospitalization. 105 distinct predictor variables were identified. Predictors included in >5 publications were: N-terminal prohormone brain-natriuretic peptide, creatinine, blood urea nitrogen, systolic blood pressure, sodium, NYHA class, left ventricular ejection fraction, heart rate, and characteristics including male sex, diabetes, age, and BMI. Only 11/58 (19%) models had overall low ROB, based on our application of PROBAST. In total, 26/58 (45%) models discussed internal validation, and 14/58 (24%) external validation. Conclusions The majority of the 58 identified risk-prediction models for HF present particular concerns according to ROB assessment, mainly due to lack of validation and calibration. The potential utility of novel approaches such as machine learning tools is yet to be determined. Registration number The SLR was registered in Prospero (ID: CRD42018100709).
Collapse
|
17
|
The risk and prevention of sudden death in patients with heart failure with reduced ejection fraction. Curr Opin Cardiol 2020; 35:138-144. [PMID: 31895241 DOI: 10.1097/hco.0000000000000710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Patients with heart failure are at increased risk of sudden cardiac death. The methods to predict patients at high risk of sudden cardiac death in heart failure are neither sensitive nor specific; both overestimating risk in those with ejection fractions less than 35% and not identifying those at risk with ejection fractions greater than 35%. RECENT FINDINGS The absolute risk of sudden cardiac death in patients with heart failure have decreased over the past 20 years. New novel tools are being developed and tested to identify those at higher risk of sudden cardiac death. Reduction in the risk of sudden cardiac death has been achieved with the use of beta-blockers, spironolactone, sacubitril-valsartan, cardiac resynchronization and implantable cardioverter defibrillators. SUMMARY The use of contemporary treatments for patients with heart failure can reduce the risk of sudden cardiac death, but research is required to identify those at highest risk.
Collapse
|
18
|
Palacios S, Caiani EG, Landreani F, Martínez JP, Pueyo E. Long-Term Microgravity Exposure Increases ECG Repolarization Instability Manifested by Low-Frequency Oscillations of T-Wave Vector. Front Physiol 2019; 10:1510. [PMID: 31920714 PMCID: PMC6928004 DOI: 10.3389/fphys.2019.01510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
Ventricular arrhythmias and sudden cardiac death during long-term space missions are a major concern for space agencies. Long-duration spaceflight and its ground-based analog head-down bed rest (HDBR) have been reported to markedly alter autonomic and cardiac functioning, particularly affecting ventricular repolarization of the electrocardiogram (ECG). In this study, novel methods are developed, departing from previously published methodologies, to quantify the index of Periodic Repolarization Dynamics (PRD), an arrhythmic risk marker that characterizes sympathetically-mediated low-frequency oscillations in the T-wave vector. PRD is evaluated in ECGs from 42 volunteers at rest and during an orthostatic tilt table test recorded before and after 60-day –6° HDBR. Our results indicate that tilt test, on top of enhancing sympathetic regulation of heart rate, notably increases PRD, both before and after HDBR, thus supporting previous evidence on PRD being an indicator of sympathetic modulation of ventricular repolarization. Importantly, long-term microgravity exposure is shown to lead to significant increases in PRD, both when evaluated at rest and, even more notably, in response to tilt test. The extent of microgravity-induced changes in PRD has been associated with arrhythmic risk in prior studies. An exercise-based, but not a nutrition-based, countermeasure is able to partially reverse microgravity-induced effects on PRD. In conclusion, long-term exposure to microgravity conditions leads to elevated low-frequency oscillations of ventricular repolarization, which are potentiated following sympathetic stimulation and are related to increased risk for repolarization instabilities and arrhythmias. Tested countermeasures are only partially effective in counteracting microgravity effects.
Collapse
Affiliation(s)
- Saúl Palacios
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Enrico G Caiani
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Federica Landreani
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Juan Pablo Martínez
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Esther Pueyo
- BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|
19
|
Belikova J, Lizogub V, Kuzminets A, Lavrenchuk I. Normalization of heart rate variability with taurine and meldonium complex in post-infarction patients with type 2 diabetes mellitus. J Med Life 2019; 12:290-295. [PMID: 31666833 PMCID: PMC6814880 DOI: 10.25122/jml-2019-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study is to scrutiny the Dynamics of heart rate variability (HRV) in patients with PICS with 2nd type DM against the background of Taurine (TN) and meldonium (ME). The results of the investigations prove the decrease of the oxidative stress, which is basis of DACN, under the influence of sulfur-containing amino acid taurine (TN), and meldonium (ME) — a competitive inhibitor of gamma-butyrobetaine hydroxylase. Biochemical mechanisms of synergistic action of ME and TN are also described. The results of the studies of 98 patients with PICS and concomitant 2nd type diabetes mellitus were analyzed. They were distributed by simple randomization method into two groups, comparable according to age and sex: the main group (MG) (n = 68): and group of comparison (GoC) (n = 30). HRV was evaluated twice daily at the Cardiosense HMEGG system: at baseline and after 12 weeks of treatment. For the assessment of HRV the frequency and spectral parameters were used. While evaluating the different methods of treatment, their influence on the range of spectral and time indices of HRV was determined (p = 0.001 by the criterion of Kruskall-Wallis). It was learned that the combined application of ME and TN gives a statistically significant (p <0.01) increase of SDNN, HF at night, pNN — on 50% by day (p <0.01, p <0.001 and p <0.01 respectively), and statistically significant decrease in LF at night, compared to GHG.
Collapse
Affiliation(s)
- Juliia Belikova
- Department of Internal Medicine No 4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Victor Lizogub
- Department of Internal Medicine No 4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Andrii Kuzminets
- Department of the Therapy, Infectious Disease and Dermatology Postgraduate Education, Bogomolets National Medical University, Kyiv, Ukraine
| | - Iryna Lavrenchuk
- Department of the Therapy, Infectious Disease and Dermatology Postgraduate Education, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
20
|
Ramírez J, van Duijvenboden S, Aung N, Laguna P, Pueyo E, Tinker A, Lambiase PD, Orini M, Munroe PB. Cardiovascular Predictive Value and Genetic Basis of Ventricular Repolarization Dynamics. Circ Arrhythm Electrophysiol 2019; 12:e007549. [PMID: 31607149 DOI: 10.1161/circep.119.007549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Early prediction of cardiovascular risk in the general population remains an important issue. The T-wave morphology restitution (TMR), an ECG marker quantifying ventricular repolarization dynamics, is strongly associated with cardiovascular mortality in patients with heart failure. Our aim was to evaluate the cardiovascular prognostic value of TMR in a UK middle-aged population and identify any genetic contribution. METHODS We analyzed ECG recordings from 55 222 individuals from a UK middle-aged population undergoing an exercise stress test in UK Biobank (UKB). TMR was used to measure ventricular repolarization dynamics, exposed in this cohort by exercise (TMR during exercise, TMRex) and recovery from exercise (TMR during recovery, TMRrec). The primary end point was cardiovascular events; secondary end points were all-cause mortality, ventricular arrhythmias, and atrial fibrillation with median follow-up of 7 years. Genome-wide association studies for TMRex and TMRrec were performed, and genetic risk scores were derived and tested for association in independent samples from the full UKB cohort (N=360 631). RESULTS A total of 1743 (3.2%) individuals in UKB who underwent the exercise stress test had a cardiovascular event, and TMRrec was significantly associated with cardiovascular events (hazard ratio, 1.11; P=5×10-7), independent of clinical variables and other ECG markers. TMRrec was also associated with all-cause mortality (hazard ratio, 1.10) and ventricular arrhythmias (hazard ratio, 1.16). We identified 12 genetic loci in total for TMRex and TMRrec, of which 9 are associated with another ECG marker. Individuals in the top 20% of the TMRrec genetic risk score were significantly more likely to have a cardiovascular event in the full UKB cohort (18 997, 5.3%) than individuals in the bottom 20% (hazard ratio, 1.07; P=6×10-3). CONCLUSIONS TMR and TMR genetic risk scores are significantly associated with cardiovascular risk in a UK middle-aged population, supporting the hypothesis that increased spatio-temporal heterogeneity of ventricular repolarization is a substrate for cardiovascular risk and the validity of TMR as a cardiovascular risk predictor.
Collapse
Affiliation(s)
- Julia Ramírez
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (J.R., S.v.D., A.T., M.O., P.B.M.), Queen Mary University of London, United Kingdom.,Institute of Cardiovascular Science, University College London, United Kingdom (J.R., S.v.D., P.D.L., M.O.)
| | - Stefan van Duijvenboden
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (J.R., S.v.D., A.T., M.O., P.B.M.), Queen Mary University of London, United Kingdom.,Institute of Cardiovascular Science, University College London, United Kingdom (J.R., S.v.D., P.D.L., M.O.)
| | - Nay Aung
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute (N.A.), Queen Mary University of London, United Kingdom.,Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (N.A., P.D.L.)
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group, Aragón Institute of Engineering Research, IIS Aragón, University of Zaragoza, Spain (P.L., E.P.).,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain (P.L., E.P.)
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group, Aragón Institute of Engineering Research, IIS Aragón, University of Zaragoza, Spain (P.L., E.P.).,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain (P.L., E.P.)
| | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (J.R., S.v.D., A.T., M.O., P.B.M.), Queen Mary University of London, United Kingdom.,National Institute of Health Research Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry (A.T., P.B.M.), Queen Mary University of London, United Kingdom
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, United Kingdom (J.R., S.v.D., P.D.L., M.O.).,Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (N.A., P.D.L.)
| | - Michele Orini
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (J.R., S.v.D., A.T., M.O., P.B.M.), Queen Mary University of London, United Kingdom.,Institute of Cardiovascular Science, University College London, United Kingdom (J.R., S.v.D., P.D.L., M.O.)
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (J.R., S.v.D., A.T., M.O., P.B.M.), Queen Mary University of London, United Kingdom.,National Institute of Health Research Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry (A.T., P.B.M.), Queen Mary University of London, United Kingdom
| |
Collapse
|
21
|
Orini M, Graham AJ, Martinez-Naharro A, Andrews CM, de Marvao A, Statton B, Cook SA, O'Regan DP, Hawkins PN, Rudy Y, Fontana M, Lambiase PD. Noninvasive Mapping of the Electrophysiological Substrate in Cardiac Amyloidosis and Its Relationship to Structural Abnormalities. J Am Heart Assoc 2019; 8:e012097. [PMID: 31496332 PMCID: PMC6818012 DOI: 10.1161/jaha.119.012097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The relationship between structural pathology and electrophysiological substrate in cardiac amyloidosis is unclear. Differences between light‐chain (AL) and transthyretin (ATTR) cardiac amyloidosis may have prognostic implications. Methods and Results ECG imaging and cardiac magnetic resonance studies were conducted in 21 cardiac amyloidosis patients (11 AL and 10 ATTR). Healthy volunteers were included as controls. With respect to ATTR, AL patients had lower amyloid volume (51.0/37.7 versus 73.7/16.4 mL, P=0.04), lower myocardial cell volume (42.6/19.1 versus 58.5/17.2 mL, P=0.021), and higher T1 (1172/64 versus 1109/80 ms, P=0.022) and T2 (53.4/2.9 versus 50.0/3.1 ms, P=0.003). ECG imaging revealed differences between cardiac amyloidosis and control patients in virtually all conduction‐repolarization parameters. With respect to ATTR, AL patients had lower epicardial signal amplitude (1.07/0.46 versus 1.83/1.26 mV, P=0.026), greater epicardial signal fractionation (P=0.019), and slightly higher dispersion of repolarization (187.6/65 versus 158.3/40 ms, P=0.062). No significant difference between AL and ATTR patients was found using the standard 12‐lead ECG. T1 correlated with epicardial signal amplitude (cc=−0.78), and extracellular volume with epicardial signal fractionation (cc=0.48) and repolarization time (cc=0.43). Univariate models based on single features from both cardiac magnetic resonance and ECG imaging classified AL and ATTR patients with an accuracy of 70% to 80%. Conclusions In this exploratory study cardiac amyloidosis was associated with ventricular conduction and repolarization abnormalities, which were more pronounced in AL than in ATTR. Combined ECG imaging–cardiac magnetic resonance analysis supports the hypothesis that additional mechanisms beyond infiltration may contribute to myocardial damage in AL amyloidosis. Further studies are needed to assess the clinical impact of this approach.
Collapse
Affiliation(s)
- Michele Orini
- Barts Heart Centre Barts Health NHS Trust London United Kingdom.,Institute of Cardiovascular Science University College London London United Kingdom
| | - Adam J Graham
- Barts Heart Centre Barts Health NHS Trust London United Kingdom
| | | | - Christopher M Andrews
- Cardiac Bioelectricity and Arrhythmia Center Washington University in St Louis St. Louis MO
| | - Antonio de Marvao
- MRC London Institute of Medical Sciences Imperial College London London United Kingdom
| | - Ben Statton
- MRC London Institute of Medical Sciences Imperial College London London United Kingdom
| | - Stuart A Cook
- MRC London Institute of Medical Sciences Imperial College London London United Kingdom
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences Imperial College London London United Kingdom
| | - Philip N Hawkins
- The Royal Free Hospital UCL Hospitals Trust London United Kingdom
| | - Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center Washington University in St Louis St. Louis MO
| | - Marianna Fontana
- The Royal Free Hospital UCL Hospitals Trust London United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre Barts Health NHS Trust London United Kingdom.,Institute of Cardiovascular Science University College London London United Kingdom
| |
Collapse
|
22
|
Hasanpour Dehkordi A, Sarokhani D, Ghafari M, Mikelani M, Mahmoodnia L. Effect of Palliative Care on Quality of Life and Survival after Cardiopulmonary Resuscitation: A Systematic Review. Int J Prev Med 2019; 10:147. [PMID: 31579159 PMCID: PMC6767805 DOI: 10.4103/ijpvm.ijpvm_191_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022] Open
Abstract
Background: Cardiac and respiratory arrest is reversible through immediate cardiopulmonary resuscitation (CPR). However, survival after CPR is very low for various reasons. This systematic review study was conducted to assess the effect of palliative care on quality of life and survival after CPR. Methods: In the present meta-analysis and systematic review study, two researchers independently searched Google Scholar and MagIran, MedLib, IranMedex, SID, and PubMed for articles published during 1994–2016 and containing a number of relevant keywords and their Medical Subject Headings (MeSH) combinations. A total of 156 articles were initially extracted. Results: The success of initial resuscitation was reported to be much higher than the success of secondary resuscitation (survival until discharge). Moreover, the early detection of cardiac arrest, a high-quality CPR, immediate defibrillation, and effective postresuscitation care improved short- and long-term outcomes in these patients and significantly affected their quality of life after CPR. Most survivors of CPR can have a reasonable quality of life if they are given proper follow-up and persistent treatment. Conclusions: Concerns about the low quality of life after CPR are therefore not a worthy reason to end the efforts taken for the victims of cardiac arrest. More comprehensive education programs and facilities are required for the resuscitation of patients and the provision of post-CPR intensive care.
Collapse
Affiliation(s)
- Ali Hasanpour Dehkordi
- Social Determinants of Health Research Center, School of Allied Medical Scinces, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Diana Sarokhani
- Psychosocial Injuries Research Center, Ilam University of Medical Science, Ilam, Iran
| | - Mahin Ghafari
- Department of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Mikelani
- Department of Radiology, Tehran University of Medical Science, Tehran, Iran
| | - Leila Mahmoodnia
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
23
|
A bio-clinical approach for prediction of sudden cardiac death in outpatients with heart failure: The ST2-SCD score. Int J Cardiol 2019; 293:148-152. [PMID: 31155333 DOI: 10.1016/j.ijcard.2019.05.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sudden cardiac death (SCD) is one of the main modes of death in heart failure (HF) patients and its prediction remains a real challenge. Our aim was to assess the incidence of SCD at 5 years HF contemporary managed outpatients, and to find a simple prediction model for SCD. METHODS SCD was considered any unexpected death, witnessed or not, occurring in a previously stable patient with no evidence of worsening HF or any other cause of death. A competing risk strategy was adopted using the Fine-Gray method of Cox regressions analyses that considered other causes of death as the competing event. RESULTS The derivation cohort included 744 consecutive outpatients (72% men, age 67.9 ± 12.2 years, left ventricular ejection fraction [LVEF] 36% ± 14). During follow-up, 312 deaths occurred, 40 SCDs (5.4%). Age, haemoglobin, eGFR, HF duration, high-sensitivity troponin T, NTproBNP, and ST2 were associated with SCD in univariate analyses; HF duration (p = 0.006), eGFR (p < 0.001), LVEF <45% (p = 0.03), and ST2 (p = 0.006) remained in multivariable analysis. A predictive score (ST2-SCD) including dichotomous variables (ST2 > 45, LVEF <45%, HF duration >3 years, eGFR < 55, age ≥ 60 years and male sex) provided a Harrell's C-statistic of 0.82 (0.76-0.89)), reaching 0.87 (0.80-0.95) in the validation cohort (n = 149). CONCLUSIONS In contemporary managed HF, SCD occurred in 5.4% of outpatients, accounting for 12.8% of all deaths at 5 years. Of the 3 studied biomarkers, only ST2 remained independently associated with SCD. A model containing age, sex, ST2, eGFR, LVEF, and HF duration reasonably predicted 5-years risk of SCD.
Collapse
|
24
|
van Duijvenboden S, Hanson B, Child N, Lambiase PD, Rinaldi CA, Jaswinder G, Taggart P, Orini M. Pulse Arrival Time and Pulse Interval as Accurate Markers to Detect Mechanical Alternans. Ann Biomed Eng 2019; 47:1291-1299. [PMID: 30756263 PMCID: PMC6453876 DOI: 10.1007/s10439-019-02221-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/28/2019] [Indexed: 11/10/2022]
Abstract
Mechanical alternans (MA) is a powerful predictor of adverse prognosis in patients with heart failure and cardiomyopathy, but its use remains limited due to the need of invasive continuous arterial pressure recordings. This study aims to assess novel cardiovascular correlates of MA in the intact human heart to facilitate affordable and non-invasive detection of MA and advance our understanding of the underlying pathophysiology. Arterial pressure, respiration, and ECG were recorded in 12 subjects with healthy ventricles during voluntarily controlled breathing at different respiratory rate, before and after administration of beta-blockers. MA was induced by ventricular pacing. A total of 67 recordings lasting approximately 90 s each were analyzed. Mechanical alternans (MA) was measured in the systolic blood pressure. We studied cardiovascular correlates of MA, including maximum pressure rise during systole (dPdtmax), pulse arrival time (PAT), pulse wave interval (PI), RR interval (RRI), ECG QRS complexes and T-waves. MA was detected in 30% of the analyzed recordings. Beta-blockade significantly reduced MA prevalence (from 50 to 11%, p < 0.05). Binary classification showed that MA was detected by alternans in dPdtmax (100% sens, 96% spec), PAT (100% sens, 81% spec) and PI (80% sens, 81% spec). Alternans in PAT and in PI also showed high degree of temporal synchronization with MA (80 ± 33 and 73 ± 40%, respectively). These data suggest that cardiac contractility is a primary factor in the establishment of MA. Our findings show that MA was highly correlated with invasive measurements of PAT and PI. Since PAT and PI can be estimated using non-invasive technologies, these markers could potentially enable affordable MA detection for risk-prediction.
Collapse
Affiliation(s)
- Stefan van Duijvenboden
- Institute of Cardiovascular Science, University College London, London, UK.
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, London, UK
| | - Nick Child
- Department of Cardiology, Guy's and St. Thomas's Hospital, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomews Hospital, London, UK
| | | | - Gill Jaswinder
- Department of Cardiology, Guy's and St. Thomas's Hospital, London, UK
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, UK
| | - Michele Orini
- Department of Mechanical Engineering, University College London, London, UK
- Barts Heart Centre, St Bartholomews Hospital, London, UK
| |
Collapse
|
25
|
Narayan SM, Wang PJ, Daubert JP. New Concepts in Sudden Cardiac Arrest to Address an Intractable Epidemic: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73:70-88. [PMID: 30621954 PMCID: PMC6398445 DOI: 10.1016/j.jacc.2018.09.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/28/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022]
Abstract
Sudden cardiac arrest (SCA) is one of the largest causes of mortality globally, with an out-of-hospital survival below 10% despite intense research. This document outlines challenges in addressing the epidemic of SCA, along the framework of respond, understand and predict, and prevent. Response could be improved by technology-assisted orchestration of community responder systems, access to automated external defibrillators, and innovations to match resuscitation resources to victims in place and time. Efforts to understand and predict SCA may be enhanced by refining taxonomy along phenotypical and pathophysiological "axes of risk," extending beyond cardiovascular pathology to identify less heterogeneous cohorts, facilitated by open-data platforms and analytics including machine learning to integrate discoveries across disciplines. Prevention of SCA must integrate these concepts, recognizing that all members of society are stakeholders. Ultimately, solutions to the public health challenge of SCA will require greater awareness, societal debate and focused public policy.
Collapse
Affiliation(s)
- Sanjiv M Narayan
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, California.
| | - Paul J Wang
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, California
| | - James P Daubert
- Department of Medicine, Division of Cardiology, Duke University, Durham, North Carolina
| |
Collapse
|
26
|
Besleaga T, Badiani S, Lloyd G, Toschi N, Canichella A, Demosthenous A, Lambiase PD, Orini M. Non-Invasive Detection of Mechanical Alternans Utilizing Photoplethysmography. IEEE J Biomed Health Inform 2018; 23:2409-2416. [PMID: 30475736 DOI: 10.1109/jbhi.2018.2882550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND SIGNIFICANCE Mechanical alternans (MA) is a biomarker associated with mortality and life-threatening arrhythmias in heart failure patients. Despite showing prognostic value, its use is limited by the requirement of measuring the continuous blood pressure (BP), which is costly and impractical. OBJECTIVE To develop and test, for the first time, non-invasive MA surrogates based on photoplethysmography (PPG). METHODS Continuous BP and PPG were recorded during clinical procedures and tests in 35 patients. MA was induced either by ventricular pacing (Group A, N = 19) or exercise (Group B, N = 16). MA was categorized as sustained or intermittent if MA episodes were observed in at least 20 or between 12 and 20 consecutive beats, respectively. Eight features characterizing the pulse morphology were derived from the PPG, and MA surrogates were evaluated. RESULTS Sustained alternans was observed in 9 patients (47%) from Group A, whereas intermittent alternans was observed in 13 patients (68%) from Group A and in 10 patients (63%) from Group B. The PPG-based MA surrogate showing the highest accuracy, V'M, was based on the maximum of the first derivative of the PPG pulse. It detected both sustained and intermittent MA with 100% sensitivity and 100% specificity in Group A and intermittent MA with 100% sensitivity and 83% specificity in Group B. Furthermore, the magnitudes of MA and its PPG-based surrogate were linearly correlated (R2 = 0.83, p < 0.001). CONCLUSION MA can be accurately identified non-invasively through PPG analysis. This may have important clinical implications for risk stratification and remote monitoring.
Collapse
|
27
|
Yamada S, Yoshihisa A, Sato Y, Sato T, Kamioka M, Kaneshiro T, Oikawa M, Kobayashi A, Suzuki H, Ishida T, Takeishi Y. Utility of heart rate turbulence and T-wave alternans to assess risk for readmission and cardiac death in hospitalized heart failure patients. J Cardiovasc Electrophysiol 2018; 29:1257-1264. [PMID: 29777559 DOI: 10.1111/jce.13639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Heart failure (HF) patients have a higher risk of recurrent HF and cardiac death, and electrical remodeling is considered to be an important factor for HF progression. The present study aimed to validate the utility of electrocardiogram and Holter monitoring for the risk stratification of HF patients. METHODS Our study comprised 215 patients (144 males, mean age 62 years) who had been hospitalized due to acute decompensated HF. Electrocardiogram (QRS duration and QTc interval) and 24-hour Holter monitoring (heart rate variability, heart rate turbulence, and T-wave alternans [TWA]) were performed in stable condition before discharge. The clinical characteristics and outcomes were then investigated. RESULTS During a median follow-up period of 2.7 years, there were 83 (38.6%) cardiac events (rehospitalization due to worsening HF [n = 51] or cardiac death [n = 32]). The patients with cardiac events had a lower turbulence slope (TS) and higher TWA compared to those without cardiac events (TS, 3.0 ± 5.5 ms/RR vs. 5.3 ± 5.6 ms/RR, P = 0.001; TWA, 66.1 ± 19.6 μV vs. 54.7 ± 15.1 μV, P < 0.001). Univariable analysis showed that TS, TWA, QRS duration, and QTc interval were associated with cardiac events (P = 0.004, P < 0.001, P = 0.037, and P = 0.024, respectively), while the multivariable analysis after the adjustment of multiple confounders showed that TS and TWA were independent predictive factors of cardiac events with a hazard ratio of 0.936 and 1.015 (95% confidence interval [CI]: 0.860-0.974, P = 0.006; and 95% CI: 1.003-1.027, P = 0.016), respectively. CONCLUSION The measurement of TS and TWA is useful for assessing risk for rehospitalization and cardiac death in HF patients.
Collapse
Affiliation(s)
- Shinya Yamada
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Yu Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takamasa Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masashi Kamioka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Kaneshiro
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Arrhythmia and Cardiac Pacing, Fukushima Medical University, Fukushima, Japan
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Kobayashi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hitoshi Suzuki
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
28
|
Jansen C, Al-Kassou B, Lehmann J, Pohlmann A, Chang J, Praktiknjo M, Nickenig G, Strassburg CP, Schrickel JW, Andrié R, Linhart M, Trebicka J. Severe abnormal Heart Rate Turbulence Onset is associated with deterioration of liver cirrhosis. PLoS One 2018; 13:e0195631. [PMID: 29634776 PMCID: PMC5892926 DOI: 10.1371/journal.pone.0195631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background In patients with liver cirrhosis, cardiac dysfunction is frequent and is associated with increased morbidity and mortality. Cardiac dysfunction in cirrhosis seems to be linked to autonomic dysfunction. This study investigates the role of autonomic dysfunction assessed by Heart Rate Turbulence (HRT) analyses in patients with liver cirrhosis. Methods and patients Inclusion criteria was (1) diagnosis of cirrhosis by clinical, imaging or biopsy and (2) evaluation by standard 12-lead-ECG and 24h holter monitoring and (3) at least 3 premature ventricular contractions. The exclusion criterion was presence of cardiac diseases, independent of liver cirrhosis. Biochemical parameters were analysed using standard methods. HRT was assessed using Turbulence onset (TO) and slope (TS). The endpoint was deterioration of liver cirrhosis defined as increased MELD and readmission for complications of liver cirrhosis. Results Out of 122 cirrhotic patients, 82 patients (63% male) with median Child score of 6 (range 5–12) and median MELD score of 10 (range 6–32) were included. Increasing Child score, INR and decreasing albumin were correlated with TO. In addition, decompensated patients with ascites showed more abnormal TO and TS. During the observation period, patients with more abnormal TO showed significantly higher rate of rising MELD Score at 6 months (p = 0.03). Nevertheless, at least in our collective HRT-parameters were not independent predictors of deterioration of cirrhosis. Conclusion Parameters of HRT are closely associated with deterioration of cirrhosis and might be helpful in its prediction.
Collapse
Affiliation(s)
- Christian Jansen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Baravan Al-Kassou
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jennifer Lehmann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Johannes Chang
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Georg Nickenig
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | | | - Jan W. Schrickel
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - René Andrié
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Markus Linhart
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
- Cardiology Department, Hospital Clínic, Barcelona, Spain
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G, Ruberto M, Biondi A, Cascio O, Bertozzi G, Pisanelli D, Maglietta F, Messina A, Mollica MP, Salerno M. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY) 2018; 10:166-177. [PMID: 29476045 PMCID: PMC5842851 DOI: 10.18632/aging.101386] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
Sudden cardiac death (SCD) represents about 25% of deaths in clinical cardiology. The identification of risk factors for SCD is the philosopher's stone of cardiology and the identification of non-invasive markers of risk of SCD remains one of the most important goals for the scientific community.The aim of this review is to analyze the state of the art around the heart rate variability (HRV) as a predictor factor for SCD.HRV is probably the most analyzed index in cardiovascular risk stratification technical literature, therefore an important number of models and methods have been developed.Nowadays, low HRV has been shown to be independently predictive of increased mortality in post- myocardial infarction patients, heart failure patients, in contrast with the data of the general population.Contrariwise, the relationship between HRV and SCD has received scarce attention in low-risk cohorts. Furthermore, in general population the attributable risk is modest and the cost/benefit ratio is not always convenient.The HRV evaluation could become an important tool for health status in risks population, even though the use of HRV alone for risk stratification of SCD is limited and further studies are needed.
Collapse
Affiliation(s)
- Francesco Sessa
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
- Equal contribution
| | - Valenzano Anna
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
- Equal contribution
| | - Giovanni Messina
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| | - Giuseppe Cibelli
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| | - Vincenzo Monda
- Università degli Studi di Napoli Federico II, Department of Experimental Medicine, Naples, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero-Universitaria, Foggia, Italy
| | - Maria Ruberto
- CRD Center, Santa Maria del Pozzo, Somma Vesuviana (NA), Italy
| | - Antonio Biondi
- University of Catania, Department of Surgery, Catania, Italy
| | - Orazio Cascio
- University of Catania, Department of Anatomy, Catania, Italy
| | - Giuseppe Bertozzi
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| | - Daniela Pisanelli
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| | - Francesca Maglietta
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| | - Antonietta Messina
- Università degli Studi di Napoli Federico II, Department of Experimental Medicine, Naples, Italy
| | - Maria P. Mollica
- Università degli Studi di Napoli Federico II, Department of Experimental Medicine, Naples, Italy
| | - Monica Salerno
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| |
Collapse
|
30
|
Ayesta A, Martínez-Sellés H, Bayés de Luna A, Martínez-Sellés M. Prediction of sudden death in elderly patients with heart failure. J Geriatr Cardiol 2018; 15:185-192. [PMID: 29662512 PMCID: PMC5895958 DOI: 10.11909/j.issn.1671-5411.2018.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
Most heart failure (HF) related mortality is due to sudden cardiac death (SCD) and worsening HF, particularly in the case of reduced ejection fraction. Predicting and preventing SCD is an important goal but most works include no or few patients with advanced age, and the prevention of SCD in elderly patients with HF is still controversial. A recent reduction in the annual rate of SCD has been recently described but it is not clear if this is also true in advanced age patients. Age is associated with SCD, although physicians frequently have the perception that elderly patients with HF die mainly of pump failure, underestimating the importance of SCD. Other clinical variables that have been associated to SCD are symptoms, New York Heart Association functional class, ischemic cause, and comorbidities (chronic obstructive pulmonary disease, renal dysfunction and diabetes). Some test results that should also be considered are left ventricular ejection fraction and diameters, natriuretic peptides, non-sustained ventricular tachycardias and autonomic abnormalities. The combination of all these markers is probably the best option to predict SCD. Different risk scores have been described and, although there are no specific ones for elderly populations, most include age as a risk predictor and some were developed in populations with mean age > 65 years. Finally, it is important to stress that these scores should be able to predict any type of SCD as, although most are due to tachyarrhythmias, bradyarrhythmias also play a role, particularly in the case of the elderly.
Collapse
Affiliation(s)
- Ana Ayesta
- Cardiology Department, Hospital Universitario del Sureste, Arganda del Rey, Madrid, Spain
| | | | | | - Manuel Martínez-Sellés
- Universidad Complutense, Madrid, Spain
- Cardiology Department, Hospital General Universitario Gregorio Marañón, CIVERCV, Universidad Europea, Madrid, Spain
| |
Collapse
|