1
|
Hamdan S, Wasling P, Lind A. High-resolution HLA sequencing and hypocretin receptor 2 autoantibodies in narcolepsy type 1 and type 2. Int J Immunogenet 2024; 51:310-318. [PMID: 38898624 DOI: 10.1111/iji.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Narcolepsy is a sleep disorder caused by an apparent degeneration of orexin/hypocretin neurons in the lateral hypothalamic area and a subsequent decrease in orexin/hypocretin levels in the cerebrospinal fluid. Narcolepsy is classified into type 1 (NT1) and type 2 (NT2). While genetic associations in the human leukocyte antigen (HLA) region and candidate autoantibodies have been investigated in NT1 to imply an autoimmune origin, less is known about the pathogenesis in NT2. Twenty-six NT1 and 15 NT2 patients were included, together with control groups of 24 idiopathic hypersomnia (IH) patients and 778 general population participants. High-resolution sequencing was used to determine the alleles, the extended haplotypes, and the genotypes of HLA-DRB3, -DRB4, -DRB5, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1. Radiobinding assay was used to determine autoantibodies against hypocretin receptor 2 (anti-HCRTR2 autoantibodies). NT1 was associated with HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01 (odds ratio [OR]: 9.15; p = 8.31 × 10-4) and HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB4*01:03:01, -DRB1*04:01:01, -DQA1*03:02//03:03:01, -DQB1*03:01:01 (OR: 23.61; p = 1.58 × 10-4) genotypes. Lower orexin/hypocretin levels were reported in the NT2 subgroup (n = 5) that was associated with the extended HLA-DQB1*06:02:01 haplotype (p = .001). Anti-HCRTR2 autoantibody levels were not different between study groups (p = .8524). We confirmed the previous association of NT1 with HLA-DQB1*06:02:01 extended genotypes. A subgroup of NT2 patients with intermediate orexin/hypocretin levels and association with HLA-DQB1*06:02:01 was identified, indicating a possible overlap between the two distinct narcolepsy subtypes, NT1 and NT2. Low anti-HCRTR2 autoantibody levels suggest that these receptors might not function as autoimmune targets in either NT1 or NT2.
Collapse
Affiliation(s)
- Samia Hamdan
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexander Lind
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| |
Collapse
|
2
|
Tran TTT, Nguyen THN, Dauvilliers Y, Liblau R, Nguyen XH. Absence of specific autoantibodies in patients with narcolepsy type 1 as indicated by an unbiased random peptide-displayed phage screening. PLoS One 2024; 19:e0297625. [PMID: 38442093 PMCID: PMC10914298 DOI: 10.1371/journal.pone.0297625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/10/2024] [Indexed: 03/07/2024] Open
Abstract
Narcolepsy type 1 (NT1) is an enigmatic sleep disorder characterized by the selective loss of neurons producing orexin (also named hypocretin) in the lateral hypothalamus. Although NT1 is believed to be an autoimmune disease, the orexinergic neuron-specific antigens targeted by the pathogenic immune response remain elusive. In this study, we evaluated the differential binding capacity of various peptides to serum immunoglobin G from patients with NT1 and other hypersomnolence complaints (OHCs). These peptides were selected using an unbiased phage display technology or based on their significant presence in the serum of NT1 patients as identified from previous studies. Although the subtractive biopanning strategy successfully enriched phage clones with high reactivity against NT1 serum IgG, the 101 randomly selected individual phage clones could not differentiate the sera from NT1 and OHC. Compared to the OHC control group, serum from several NT1 patients exhibited increased reactivity to the 12-mer peptides derived from TRBV7, BCL-6, NRXN1, RXRG, HCRT, and RTN4 proteins, although not statistically significant. Collectively, employing both unbiased and targeted methodologies, we were unable to detect the presence of specific autoantibodies in our NT1 patient cohort. This further supports the hypothesis that the autoimmune response in NT1 patients likely stems primarily from T cell-mediated immunity rather than humoral immunity.
Collapse
Affiliation(s)
- Thi-Tuyet Trinh Tran
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Thi-Hong Nhung Nguyen
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Yves Dauvilliers
- Department of Neurology, Sleep-Wake Disorder Center, CHU Montpellier, Montpellier, France
| | - Roland Liblau
- Department of Inflammatory Diseases of the Central Nervous System: Mechanisms and Therapies, Toulouse Institute for Infection and Inflammatory Diseases, University of Toulouse, Toulouse, France
| | - Xuan-Hung Nguyen
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
- College of Health Sciences, VinUnivesity, Hanoi, Vietnam
| |
Collapse
|
3
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Characterization of T cell receptors reactive to HCRT NH2, pHA 273-287, and NP 17-31 in control and narcolepsy patients. Proc Natl Acad Sci U S A 2022; 119:e2205797119. [PMID: 35914171 PMCID: PMC9371724 DOI: 10.1073/pnas.2205797119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Narcolepsy type 1 (NT1), a disorder caused by hypocretin/orexin (HCRT) cell loss, is associated with human leukocyte antigen (HLA)-DQ0602 (98%) and T cell receptor (TCR) polymorphisms. Increased CD4+ T cell reactivity to HCRT, especially DQ0602-presented amidated C-terminal HCRT (HCRTNH2), has been reported, and homology with pHA273-287 flu antigens from pandemic 2009 H1N1, an established trigger of the disease, suggests molecular mimicry. In this work, we extended DQ0602 tetramer and dextramer data to 77 cases and 44 controls, replicating our prior finding and testing 709 TCRs in Jurkat 76 T cells for functional activation. We found that fewer TCRs isolated with HCRTNH2 (∼11%) versus pHA273-287 or NP17-31 antigens (∼50%) were activated by their ligand. Single-cell characterization did not reveal phenotype differences in influenza versus HCRTNH2-reactive T cells, and analysis of TCR CDR3αβ sequences showed TCR clustering by responses to antigens but no cross-peptide class reactivity. Our results do not support the existence of molecular mimicry between HCRT and pHA273-287 or NP17-31.
Collapse
|
5
|
COVID-19 and Central Nervous System Hypersomnias. CURRENT SLEEP MEDICINE REPORTS 2022; 8:42-49. [PMID: 35911079 PMCID: PMC9309232 DOI: 10.1007/s40675-022-00226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 11/06/2022]
Abstract
Purpose of review Central nervous system (CNS) hypersomnias can be triggered by external factors, such as infection or as a response to vaccination. The 2019 coronavirus disease (COVID-19) pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to a worldwide effort to quickly develop a vaccine to contain the pandemic and reduce morbidity and mortality. This narrative review is focused on the literature published in the past 2 years and provides an update on current knowledge in respect of the triggering of CNS hypersomnias by infection per se, vaccination, and circadian rhythm alterations caused by social isolation, lockdown, and quarantine. Recent findings At present, there is no consensus on the association between hypersomnias and COVID-19 vaccination or infection per se; however, the data suggest that there has been an increase in excessive daytime sleepiness due to vaccination, but only for a short duration. Kleine Levin syndrome, hypersomnia, excessive daytime sleepiness, and narcolepsy were aggravated and exacerbated in some case reports in the literature. Both increased and decreased sleep duration and improved and worsened sleep quality were described. In all age groups, delayed sleep time was frequent in studies of patients with hypersomnolence. Summary The hypothesis that there is a pathophysiological mechanism by which the virus, vaccination, and the effects of quarantine aggravate hypersomnias is discussed in this review.
Collapse
|
6
|
Bernard-Valnet R, Frieser D, Nguyen XH, Khajavi L, Quériault C, Arthaud S, Melzi S, Fusade-Boyer M, Masson F, Zytnicki M, Saoudi A, Dauvilliers Y, Peyron C, Bauer J, Liblau RS. Influenza vaccination induces autoimmunity against orexinergic neurons in a mouse model for narcolepsy. Brain 2022; 145:2018-2030. [PMID: 35552381 DOI: 10.1093/brain/awab455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Narcolepsy with cataplexy or narcolepsy type 1 is a disabling chronic sleep disorder resulting from the destruction of orexinergic neurons in the hypothalamus. The tight association of narcolepsy with HLA-DQB1*06:02 strongly suggest an autoimmune origin to this disease. Furthermore, converging epidemiological studies have identified an increased incidence for narcolepsy in Europe following Pandemrix® vaccination against the 2009-2010 pandemic 'influenza' virus strain. The potential immunological link between the Pandemrix® vaccination and narcolepsy remains, however, unknown. Deciphering these mechanisms may reveal pathways potentially at play in most cases of narcolepsy. Here, we developed a mouse model allowing to track and study the T-cell response against 'influenza' virus haemagglutinin, which was selectively expressed in the orexinergic neurons as a new self-antigen. Pandemrix® vaccination in this mouse model resulted in hypothalamic inflammation and selective destruction of orexin-producing neurons. Further investigations on the relative contribution of T-cell subsets in this process revealed that haemagglutinin-specific CD4 T cells were necessary for the development of hypothalamic inflammation, but insufficient for killing orexinergic neurons. Conversely, haemagglutinin-specific CD8 T cells could not initiate inflammation but were the effectors of the destruction of orexinergic neurons. Additional studies revealed pathways potentially involved in the disease process. Notably, the interferon-γ pathway was proven essential, as interferon-γ-deficient CD8 T cells were unable to elicit the loss of orexinergic neurons. Our work demonstrates that an immunopathological process mimicking narcolepsy can be elicited by immune cross-reactivity between a vaccine antigen and a neuronal self-antigen. This process relies on a synergy between autoreactive CD4 and CD8 T cells for disease development. This work furthers our understanding of the mechanisms and pathways potentially involved in the development of a neurological side effect due to a vaccine and, likely, to narcolepsy in general.
Collapse
Affiliation(s)
- Raphaël Bernard-Valnet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Service of Neurology, Clinical Neurosciences Department, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - David Frieser
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System, Hanoi, Vietnam
| | - Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Clémence Quériault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Sébastien Arthaud
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | - Silvia Melzi
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | | | - Frederick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Matthias Zytnicki
- Unité de Mathématiques et Informatique Appliquées, INRAE, Castanet-Tolosan, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, INSERM U1061, Montpellier, France
| | - Christelle Peyron
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Department of Immunology, Toulouse University Hospitals, Toulouse, France
| |
Collapse
|
7
|
Latorre D, Federica S, Bassetti CLA, Kallweit U. Narcolepsy: a model interaction between immune system, nervous system, and sleep-wake regulation. Semin Immunopathol 2022; 44:611-623. [PMID: 35445831 PMCID: PMC9519713 DOI: 10.1007/s00281-022-00933-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a rare chronic neurological disorder characterized by an irresistible excessive daytime sleepiness and cataplexy. The disease is considered to be the result of the selective disruption of neuronal cells in the lateral hypothalamus expressing the neuropeptide hypocretin, which controls the sleep-wake cycle. Diagnosis and management of narcolepsy represent still a substantial medical challenge due to the large heterogeneity in the clinical manifestation of the disease as well as to the lack of understanding of the underlying pathophysiological mechanisms. However, significant advances have been made in the last years, thus opening new perspective in the field. This review describes the current knowledge of clinical presentation and pathology of narcolepsy as well as the existing diagnostic criteria and therapeutic intervention for the disease management. Recent evidence on the potential immune-mediated mechanisms that may underpin the disease establishment and progression are also highlighted.
Collapse
Affiliation(s)
| | - Sallusto Federica
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, Institute of Immunology, University Witten/Herdecke, Witten, Germany.,Center for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany
| |
Collapse
|
8
|
Luo G, Yogeshwar S, Lin L, Mignot EJM. T cell reactivity to regulatory factor X4 in type 1 narcolepsy. Sci Rep 2021; 11:7841. [PMID: 33837283 PMCID: PMC8035403 DOI: 10.1038/s41598-021-87481-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 11/11/2022] Open
Abstract
Type 1 narcolepsy is strongly (98%) associated with human leukocyte antigen (HLA) class II DQA1*01:02/DQB1*06:02 (DQ0602) and highly associated with T cell receptor (TCR) alpha locus polymorphism as well as other immune regulatory loci. Increased incidence of narcolepsy was detected following the 2009 H1N1 pandemic and linked to Pandemrix vaccination, strongly supporting that narcolepsy is an autoimmune disorder. Although recent results suggest CD4+ T cell reactivity to neuropeptide hypocretin/orexin and cross-reactive flu peptide is involved, identification of other autoantigens has remained elusive. Here we study whether autoimmunity directed against Regulatory Factor X4 (RFX4), a protein co-localized with hypocretin, is involved in some cases of narcolepsy. Studying human serum, we found that autoantibodies against RFX4 were rare. Using RFX4 peptides bound to DQ0602 tetramers, antigen RFX4-86, -95, and -60 specific human CD4+ T cells were detected in 4/10 patients and 2 unaffected siblings, but not in others. Following culture with each cognate peptide, enriched autoreactive TCRαβ clones were isolated by single-cell sorting and TCR sequenced. Homologous clones bearing TRBV4-2 and recognizing RFX4-86 in patients and one twin control of patient were identified. These results suggest the involvement of RFX4 CD4+ T cell autoreactivity in some cases of narcolepsy, but also in healthy donors.
Collapse
Affiliation(s)
- Guo Luo
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Selina Yogeshwar
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Biosciences, Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Emmanuel Jean-Marie Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Giannoccaro MP, Liguori R, Plazzi G, Pizza F. Reviewing the Clinical Implications of Treating Narcolepsy as an Autoimmune Disorder. Nat Sci Sleep 2021; 13:557-577. [PMID: 34007229 PMCID: PMC8123964 DOI: 10.2147/nss.s275931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a lifelong sleep disorder, primarily characterized clinically by excessive daytime sleepiness and cataplexy and pathologically by the loss of hypocretinergic neurons in the lateral hypothalamus. Despite being a rare disorder, the NT1-related burden for patients and society is relevant due to the early onset and chronic nature of this condition. Although the etiology of narcolepsy is still unknown, mounting evidence supports a central role of autoimmunity. To date, no cure is available for this disorder and current treatment is symptomatic. Based on the hypothesis of the autoimmune etiology of this disease, immunotherapy could possibly represent a valid therapeutic option. However, contrasting and limited results have been provided so far. This review discusses the evidence supporting the use of immunotherapy in narcolepsy, the outcomes obtained so far, current issues and future directions.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Ambati A, Luo G, Pradhan E, Louis J, Lin L, Leib RD, Ollila HM, Poiret T, Adams C, Mignot E. Mass Spectrometric Characterization of Narcolepsy-Associated Pandemic 2009 Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8040630. [PMID: 33142956 PMCID: PMC7712488 DOI: 10.3390/vaccines8040630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
The onset of narcolepsy, an irreversible sleep disorder, has been associated with 2009 influenza pandemic (pH1N1) infections in China, and with ASO3-adjuvanted pH1N1 vaccinations using Pandemrix in Europe. Intriguingly, however, the increased incidence was only observed following vaccination with Pandemrix but not Arepanrix in Canada. In this study, the mutational burden of actual vaccine lots of Pandemrix (n = 6) and Arepanrix (n = 5) sourced from Canada, and Northern Europe were characterized by mass spectrometry. The four most abundant influenza proteins across both vaccines were nucleoprotein NP, hemagglutinin HA, matrix protein M1, with the exception that Pandemrix harbored a significantly increased proportion of neuraminidase NA (7.5%) as compared to Arepanrix (2.6%). Most significantly, 17 motifs in HA, NP, and M1 harbored mutations, which significantly differed in Pandemrix versus Arepanrix. Among these, a 6-fold higher deamidation of HA146 (p.Asn146Asp) in Arepanrix was found relative to Pandemrix, while NP257 (p.Thr257Ala) and NP424 (p.Thr424Ile) were increased in Pandemrix. DQ0602 binding and tetramer analysis with mutated epitopes were conducted in Pandemrix-vaccinated cases versus controls but were unremarkable. Pandemrix harbored lower mutational burden than Arepanrix, indicating higher similarity to wild-type 2009 pH1N1, which could explain differences in narcolepsy susceptibility amongst the vaccines.
Collapse
Affiliation(s)
- Aditya Ambati
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Guo Luo
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Elora Pradhan
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Jacob Louis
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Ling Lin
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Ryan D. Leib
- Stanford Mass Spectrometry Core, 333 Campus Drive, Mudd 175, Stanford University, Stanford, CA 94305, USA; (R.D.L.); (C.A.)
| | - Hanna Maria Ollila
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Thomas Poiret
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden;
| | - Christopher Adams
- Stanford Mass Spectrometry Core, 333 Campus Drive, Mudd 175, Stanford University, Stanford, CA 94305, USA; (R.D.L.); (C.A.)
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
- Correspondence:
| |
Collapse
|
11
|
Affiliation(s)
| | - Steve Black
- Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
12
|
Melén K, Jalkanen P, Kukkonen JP, Partinen M, Nohynek H, Vuorela A, Vaarala O, Freitag TL, Meri S, Julkunen I. No evidence of autoimmunity to human OX 1 or OX 2 orexin receptors in Pandemrix-vaccinated narcoleptic children. J Transl Autoimmun 2020; 3:100055. [PMID: 32743535 PMCID: PMC7388359 DOI: 10.1016/j.jtauto.2020.100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Narcolepsy type 1, likely an immune-mediated disease, is characterized by excessive daytime sleepiness and cataplexy. The disease is strongly associated with human leukocyte antigen (HLA) DQB1∗06:02. A significant increase in the incidence of childhood and adolescent narcolepsy was observed after a vaccination campaign with AS03-adjuvanted Pandemrix influenza vaccine in Nordic and several other countries in 2010 and 2011. Previously, it has been suggested that a surface-exposed region of influenza A nucleoprotein, a structural component of the Pandemrix vaccine, shares amino acid residues with the first extracellular domain of the human OX2 orexin/hypocretin receptor eliciting the development of autoantibodies. Here, we analyzed, whether H1N1pdm09 infection or Pandemrix vaccination contributed to the development of autoantibodies to the orexin precursor protein or the OX1 or OX2 receptors. The analysis was based on the presence or absence of autoantibody responses against analyzed proteins. Entire OX1 and OX2 receptors or just their extracellular N-termini were transiently expressed in HuH7 cells to determine specific antibody responses in human sera. Based on our immunofluorescence analysis, none of the 56 Pandemrix-vaccinated narcoleptic patients, 28 patients who suffered from a laboratory-confirmed H1N1pdm09 infection or 19 Pandemrix-vaccinated controls showed specific autoantibody responses to prepro-orexin, orexin receptors or the isolated extracellular N-termini of orexin receptors. We also did not find any evidence for cell-mediated immunity against the N-terminal epitopes of OX2. Our findings do not support the hypothesis that the surface-exposed region of the influenza nucleoprotein A would elicit the development of an immune response against orexin receptors. No evidence of humoral immunity against human OX1 or OX2 orexin receptors. No cross-reactive antibodies between influenza virus NP and orexin receptors. No evidence for cell-mediated immunity against the N-terminal epitopes of OX2.
Collapse
Affiliation(s)
- Krister Melén
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00300, Helsinki, Finland
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jyrki P Kukkonen
- Department of Physiology and Department of Pharmacology, Institute of Biomedicine, Faculty of Medicine and Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Centre Helsinki and Medicum, Faculty of Medicine, University of Helsinki, Finland
| | - Hanna Nohynek
- Infectious Disease Control and Vaccination Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Arja Vuorela
- Reseach Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki
| | - Outi Vaarala
- Reseach Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki
| | - Tobias L Freitag
- Department of Bacteriology and Immunology and Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Turku University Hospital, Clinical Microbiology, Kiinamyllynkatu 10, 20520, Turku, Finland
| |
Collapse
|
13
|
Kornum BR. Narcolepsy type 1: what have we learned from immunology? Sleep 2020; 43:5813740. [DOI: 10.1093/sleep/zsaa055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Abstract
Narcolepsy type 1 is hypothesized to be an autoimmune disease targeting the hypocretin/orexin neurons in the hypothalamus. Ample genetic and epidemiological evidence points in the direction of a pathogenesis involving the immune system, but this is not considered proof of autoimmunity. In fact, it remains a matter of debate how to prove that a given disease is indeed an autoimmune disease. In this review, a set of commonly used criteria for autoimmunity is described and applied to narcolepsy type 1. In favor of the autoimmune hypothesis are data showing that in narcolepsy type 1 a specific adaptive immune response is directed to hypocretin/orexin neurons. Autoreactive T cells and autoantibodies have been detected in blood samples from patients, but it remains to be seen if these T cells or antibodies are in fact present in the hypothalamus. It is also unclear if the autoreactive T cells and/or autoantibodies can transfer the disease to healthy individuals or animals or if immunization with the proposed autoantigens can induce the disease in animal models. Most importantly, it is still controversial whether suppression of the autoimmune response can prevent disease progression. In conclusion, narcolepsy type 1 does still not fully meet the criteria for being classified as a genuine autoimmune disease, but more and more results are pointing in that direction.
Collapse
Affiliation(s)
- Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Kępińska AP, Iyegbe CO, Vernon AC, Yolken R, Murray RM, Pollak TA. Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Front Psychiatry 2020; 11:72. [PMID: 32174851 PMCID: PMC7054463 DOI: 10.3389/fpsyt.2020.00072] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Associations between influenza infection and psychosis have been reported since the eighteenth century, with acute "psychoses of influenza" documented during multiple pandemics. In the late 20th century, reports of a season-of-birth effect in schizophrenia were supported by large-scale ecological and sero-epidemiological studies suggesting that maternal influenza infection increases the risk of psychosis in offspring. We examine the evidence for the association between influenza infection and schizophrenia risk, before reviewing possible mechanisms via which this risk may be conferred. Maternal immune activation models implicate placental dysfunction, disruption of cytokine networks, and subsequent microglial activation as potentially important pathogenic processes. More recent neuroimmunological advances focusing on neuronal autoimmunity following infection provide the basis for a model of infection-induced psychosis, potentially implicating autoimmunity to schizophrenia-relevant protein targets including the N-methyl-D-aspartate receptor. Finally, we outline areas for future research and relevant experimental approaches and consider whether the current evidence provides a basis for the rational development of strategies to prevent schizophrenia.
Collapse
Affiliation(s)
- Adrianna P. Kępińska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Conrad O. Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins Medical Center, Baltimore, MD, United States
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas A. Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Lind A, Eriksson D, Akel O, Ramelius A, Palm L, Lernmark Å, Kämpe O, Elding Larsson H, Landegren N. Screening for autoantibody targets in post-vaccination narcolepsy using proteome arrays. Scand J Immunol 2020; 91:e12864. [PMID: 32056243 DOI: 10.1111/sji.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder caused by a specific loss of hypocretin-producing neurons. The incidence of NT1 increased in Sweden, Finland and Norway following Pandemrix®-vaccination, initiated to prevent the 2009 influenza pandemic. The pathogenesis of NT1 is poorly understood, and causal links to vaccination are yet to be clarified. The strong association with Human leukocyte antigen (HLA) DQB1*06:02 suggests an autoimmune pathogenesis, but proposed autoantigens remain controversial. We used a two-step approach to identify autoantigens in patients that acquired NT1 after Pandemrix®-vaccination. Using arrays of more than 9000 full-length human proteins, we screened the sera of 10 patients and 24 healthy subjects for autoantibodies. Identified candidate antigens were expressed in vitro to enable validation studies with radiobinding assays (RBA). The validation cohort included NT1 patients (n = 39), their first-degree relatives (FDR) (n = 66), population controls (n = 188), and disease controls representing multiple sclerosis (n = 100) and FDR to type 1 diabetes patients (n = 41). Reactivity towards previously suggested NT1 autoantigen candidates including Tribbles homolog 2, Prostaglandin D2 receptor, Hypocretin receptor 2 and α-MSH/proopiomelanocortin was not replicated in the protein array screen. By comparing case to control signals, three novel candidate autoantigens were identified in the protein array screen; LOC401464, PARP3 and FAM63B. However, the RBA did not confirm elevated reactivity towards either of these proteins. In summary, three putative autoantigens in NT1 were identified by protein array screening. Autoantibodies against these candidates could not be verified with independent methods. Further studies are warranted to identify hypothetical autoantigens related to the pathogenesis of Pandemrix®-induced NT1.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Omar Akel
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Anita Ramelius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Lars Palm
- Section for Paediatric Neurology, Department of Paediatrics, Skåne University Hospital SUS, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Olle Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Nils Landegren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| |
Collapse
|
16
|
Giannoccaro MP, Sallemi G, Liguori R, Plazzi G, Pizza F. Immunotherapy in Narcolepsy. Curr Treat Options Neurol 2020; 22:2. [PMID: 31997035 DOI: 10.1007/s11940-020-0609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Narcolepsy type 1 (NT1) is a chronic and disabling sleep disorder due to the loss of hypocretinergic neurons in the lateral hypothalamus pathophysiologically linked to an autoimmune process. Current treatment is symptomatic, and no cure is available to date. Immunotherapy is considered a promising future therapeutic option, and this review discusses the rationale for immunotherapy in narcolepsy, current evidences of its effects, outcome measures, and future directions. RECENT FINDINGS A limited number of case reports and uncontrolled small case series have reported the effect of different immunotherapies in patients with NT1. These studies were mainly based on the use of intravenous immunoglobulin (IVig), followed by corticosteroids, plasmapheresis, and monoclonal antibodies. Although initial reports showed an improvement of symptoms, particularly when patients were treated close to disease onset, other observations have not confirmed these results. Inadequate timing of treatment, placebo effects, and spontaneous improvement due to the natural disease course can account for these contrasting findings. Moreover, clear endpoints and standardized outcome measures have not been used and are currently missing in the pediatric population. On the basis of the available data, there are no enough evidences to support the use of immunotherapy in NT1. Randomized, controlled studies using clear endpoints and new outcome measures are needed to achieve a definitive answer about the usefulness of these treatments in narcolepsy.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giombattista Sallemi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy. .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
17
|
In vivo clonal expansion and phenotypes of hypocretin-specific CD4 + T cells in narcolepsy patients and controls. Nat Commun 2019; 10:5247. [PMID: 31748512 PMCID: PMC6868281 DOI: 10.1038/s41467-019-13234-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
Individuals with narcolepsy suffer from abnormal sleep patterns due to loss of neurons that uniquely supply hypocretin (HCRT). Previous studies found associations of narcolepsy with the human leukocyte antigen (HLA)-DQ6 allele and T-cell receptor α (TRA) J24 gene segment and also suggested that in vitro-stimulated T cells can target HCRT. Here, we present evidence of in vivo expansion of DQ6-HCRT tetramer+/TRAJ24+/CD4+ T cells in DQ6+ individuals with and without narcolepsy. We identify related TRAJ24+ TCRαβ clonotypes encoded by identical α/β gene regions from two patients and two controls. TRAJ24-G allele+ clonotypes only expand in the two patients, whereas a TRAJ24-C allele+ clonotype expands in a control. A representative tetramer+/G-allele+ TCR shows signaling reactivity to the epitope HCRT87–97. Clonally expanded G-allele+ T cells exhibit an unconventional effector phenotype. Our analysis of in vivo expansion of HCRT-reactive TRAJ24+ cells opens an avenue for further investigation of the autoimmune contribution to narcolepsy development. T cells from narcolepsy patients were recently reported to recognize hypocretin, a wakefulness-promoting neurohormone, suggesting autoimmune origin of the disease. Here the authors show that hypocretin-specific T cells expand both in healthy controls and in narcolepsy patients, and identify preliminary features that may distinguish them.
Collapse
|
18
|
Narcolepsy and Pandemic Influenza Vaccination: What We Need to Know to be Ready for the Next Pandemic. Pediatr Infect Dis J 2019; 38:873-876. [PMID: 31306400 DOI: 10.1097/inf.0000000000002398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
After the initial identification of the H1N1 pandemic influenza strain in Mexico in April 2009 and its subsequent global spread, several monovalent influenza vaccines were developed as part of the pandemic response. Three of these vaccines, Pandemrix, Arepanrix and Focetria were adjuvanted. One of these, the AS03-adjuvanted Pandemrix vaccine, was primarily used in Europe. Following widespread Pandemrix vaccine administration in Scandinavia, an increased risk of narcolepsy was noted in observational studies. Subsequently, this increased risk was also reported in other European countries as well. In contrast, studies from Canada of a similar AS03-adjuvanted vaccine, Arepanrix, did not demonstrate a similar increased risk of narcolepsy. No studies have identified an increased risk of narcolepsy following the MF59-adjuvanted Focetria vaccine. For many potential pandemic influenza strains, adjuvants might be required to solicit a protective immune response. Thus, it is critical that we understand the nature of the association between adjuvanted vaccine receipt and narcolepsy. Here, we present a potential hypothesis for narcolepsy seen during the 2009 H1N1 pandemic in AS03-adjuvanted influenza vaccine recipients.
Collapse
|
19
|
Wallenius M, Lind A, Akel O, Karlsson E, Svensson M, Arvidsson E, Ramelius A, Törn C, Palm L, Lernmark Å, Elding Larsson H. Autoantibodies in Pandemrix ®-induced narcolepsy: Nine candidate autoantigens fail the conformational autoantibody test. Autoimmunity 2019; 52:185-191. [PMID: 31328572 DOI: 10.1080/08916934.2019.1643843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Study objectives: Narcolepsy type 1 (NT1) is a chronic sleep disorder characterized by loss of hypocretin-producing neurons. Increased NT1 incidence was observed in Sweden following mass-vaccination with Pandemrix®. Genetic association to HLA DQB1*06:02 implies an autoimmune origin, but target autoantigen remains unknown. Candidate autoantigens for NT1 have previously been identified in solid-phase immunoassays, while autoantibodies against conformation-dependent epitopes are better detected in radiobinding assays. The aims are to determine autoantibody levels against nine candidate autoantigens representing (1) proteins of the hypocretin transmitter system; Preprohypocretin (ppHypocretin), Hypocretin peptides 1 and 2 (HCRT1 and HCRT2) and Hypocretin receptor 2 (HCRTR2); (2) proteins previously associated with NT1; Tribbles homologue 2 (TRIB2), Pro-opiomelanocortin/alpha-melanocyte-stimulating-hormone (POMC/α-MSH) and Prostaglandin D2 Receptor DP1 (DP1); (3) proteins suggested as autoantigens for multiple sclerosis (another HLA DQB1*06:02-associated neurological disease); ATP-dependent Inwardly Rectifying Potassium Channel Kir4.1 (KIR4.1) and Calcium-activated chloride channel Anoctamin 2 (ANO2). Methods: Serum from post-Pandemrix® NT1 patients (n = 31) and their healthy first-degree relatives (n = 66) were tested for autoantibody levels in radiobinding assays separating autoantibody bound from free labelled antigen with Protein A-Sepharose. 125I-labelled HCRT1 and HCRT2 were commercially available while 35S-methionine-labelled ppHypocretin, HCRTR2, TRIB2, α-MSH/POMC, DP1, KIR4.1 or ANO2 was prepared by in vitro transcription translation of respective cDNA. In-house standards were used to express data in arbitrary Units/ml (U/ml). Results: All radiolabelled autoantigens were detected in a concentration-dependent manner by respective standard sera. Levels of autoantibodies in the NT1 patients did not differ from healthy first-degree relatives in any of the nine candidate autoantigens. Conclusions: None of the nine labelled proteins proposed to be autoantigens were detected in the radiobinding assays for conformation-dependent autoantibodies. The results emphasise the need of further studies to identify autoantigen(s) and clarify the mechanisms in Pandemrix®-induced NT1.
Collapse
Affiliation(s)
- Madeleine Wallenius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Alexander Lind
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Omar Akel
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Emma Karlsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Markus Svensson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Elin Arvidsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Anita Ramelius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Carina Törn
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Lars Palm
- Section for Paediatric Neurology, Department of Paediatrics, Skåne University Hospital SUS , Malmö , Sweden
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| |
Collapse
|
20
|
Update on narcolepsy. J Neurol 2019; 266:1809-1815. [DOI: 10.1007/s00415-019-09310-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
|
21
|
Luo G, Lin L, Jacob L, Bonvalet M, Ambati A, Plazzi G, Pizza F, Leib R, Adams CM, Partinen M, Jean-Marie Mignot E. Correction: Absence of anti-hypocretin receptor 2 autoantibodies in post pandemrix narcolepsy cases. PLoS One 2019; 14:e0214340. [PMID: 30921380 PMCID: PMC6438471 DOI: 10.1371/journal.pone.0214340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0187305.].
Collapse
|
22
|
Abstract
Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep-wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andrew Cogswell
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Igor J Koralnik
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Abstract
This work shows that the amidated terminal ends of the secreted hypocretin (HCRT) peptides (HCRTNH2) are autoantigens in type 1 narcolepsy, an autoimmune disorder targeting HCRT neurons. The autoimmune process is usually initiated by influenza A flu infections, and a particular piece of the hemagglutinin (HA) flu protein of the pandemic 2009 H1N1 strain was identified as a likely trigger. This HA epitope has homology with HCRTNH2 and T cells cross-reactive to both epitopes are involved in the autoimmune process by molecular mimicry. Genes associated with narcolepsy mark the particular HLA heterodimer (DQ0602) involved in presentation of these antigens and modulate expression of the specific T cell receptor segments (TRAJ24 and TRBV4-2) involved in T cell receptor recognition of these antigens, suggesting causality. Type 1 narcolepsy (T1N) is caused by hypocretin/orexin (HCRT) neuronal loss. Association with the HLA DQB1*06:02/DQA1*01:02 (98% vs. 25%) heterodimer (DQ0602), T cell receptors (TCR) and other immune loci suggest autoimmunity but autoantigens are unknown. Onset is seasonal and associated with influenza A, notably pandemic 2009 H1N1 (pH1N1) infection and vaccination (Pandemrix). Peptides derived from HCRT and influenza A, including pH1N1, were screened for DQ0602 binding and presence of cognate DQ0602 tetramer-peptide–specific CD4+ T cells tested in 35 T1N cases and 22 DQ0602 controls. Higher reactivity to influenza pHA273–287 (pH1N1 specific), PR8 (H1N1 pre-2009 and H2N2)-specific NP17–31 and C-amidated but not native version of HCRT54–66 and HCRT86–97 (HCRTNH2) were observed in T1N. Single-cell TCR sequencing revealed sharing of CDR3β TRBV4-2-CASSQETQGRNYGYTF in HCRTNH2 and pHA273–287-tetramers, suggesting molecular mimicry. This public CDR3β uses TRBV4-2, a segment modulated by T1N-associated SNP rs1008599, suggesting causality. TCR-α/β CDR3 motifs of HCRT54–66-NH2 and HCRT86–97-NH2 tetramers were extensively shared: notably public CDR3α, TRAV2-CAVETDSWGKLQF-TRAJ24, that uses TRAJ24, a chain modulated by T1N-associated SNPs rs1154155 and rs1483979. TCR-α/β CDR3 sequences found in pHA273–287, NP17–31, and HCRTNH2 tetramer-positive CD4+ cells were also retrieved in single INF-γ–secreting CD4+ sorted cells stimulated with Pandemrix, independently confirming these results. Our results provide evidence for autoimmunity and molecular mimicry with flu antigens modulated by genetic components in the pathophysiology of T1N.
Collapse
|
24
|
Zhou F, Trieu MC, Davies R, Cox RJ. Improving influenza vaccines: challenges to effective implementation. Curr Opin Immunol 2018; 53:88-95. [DOI: 10.1016/j.coi.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
|
25
|
Abstract
PURPOSE OF REVIEW After the connection between AS03-adjuvanted pandemic H1N1 vaccine Pandemrix and narcolepsy was recognized in 2010, research on narcolepsy has been more intensive than ever before. The purpose of this review is to provide the reader with current concepts and recent findings on the Pandemrix-associated narcolepsy. RECENT FINDINGS After the Pandemrix vaccination campaign in 2009-2010, the risk of narcolepsy was increased 5- to 14-fold in children and adolescents and 2- to 7-fold in adults. According to observational studies, the risk of narcolepsy was elevated for 2 years after the Pandemrix vaccination. Some confounding factors and potential diagnostic biases may influence the observed narcolepsy risk in some studies, but it is unlikely that they would explain the clearly increased incidence in all the countries where Pandemrix was used. An increased risk of narcolepsy after natural H1N1 infection was reported from China, where pandemic influenza vaccination was not used. There is more and more evidence that narcolepsy is an autoimmune disease. All Pandemrix-associated narcolepsy cases have been positive for HLA class II DQB1*06:02 and novel predisposing genetic factors directly linking to the immune system have been identified. Even though recent studies have identified autoantibodies against multiple neuronal structures and other host proteins and peptides, no specific autoantigens that would explain the disease mechanism in narcolepsy have been identified thus far. There was a marked increase in the incidence of narcolepsy after Pandemrix vaccination, especially in adolescents, but also in young adults and younger children. All vaccine-related cases were of narcolepsy type 1 characterized by hypocretin deficiency in the central nervous system. The disease phenotype and the severity of symptoms varied considerably in children and adolescents suffering from Pandemrix-associated narcolepsy, but they were indistinguishable from the symptoms of idiopathic narcolepsy. Narcolepsy type 1 is most likely an autoimmune disease, but the mechanisms have remained elusive.
Collapse
|