1
|
Sampaio IW, Tassi E, Bellani M, Benedetti F, Nenadic I, Phillips M, Piras F, Yatham L, Bianchi AM, Brambilla P, Maggioni E. A generalizable normative deep autoencoder for brain morphological anomaly detection: application to the multi-site StratiBip dataset on bipolar disorder in an external validation framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611239. [PMID: 39282436 PMCID: PMC11398360 DOI: 10.1101/2024.09.04.611239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a generalizable multivariate normative modelling framework for characterizing brain morphology, applied to bipolar disorder (BD). We employed deep autoencoders in an anomaly detection framework, combined with a confounder removal step integrating training and external validation. The model was trained with healthy control (HC) data from the human connectome project and applied to multi-site external data of HC and BD individuals. We found that brain deviating scores were greater, more heterogeneous, and with increased extreme values in the BD group, with volumes prominently from the basal ganglia, hippocampus and adjacent regions emerging as significantly deviating. Similarly, individual brain deviating maps based on modified z scores expressed higher abnormalities occurrences, but their overall spatial overlap was lower compared to HCs. Our generalizable framework enabled the identification of subject- and group-level brain normative-deviating patterns, a step forward towards the development of more effective and personalized clinical decision support systems and patient stratification in psychiatry.
Collapse
Affiliation(s)
- Inês Won Sampaio
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emma Tassi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Francesco Benedetti
- Division of Neuroscience, Unit of Psychiatry and Clinical Psychobiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Mary Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Lakshmi Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Gao S, Fan L, Yu Z, Xie X. Efficacy and safety of lurasidone for schizophrenia: A systematic review and meta‑analysis of eight short‑term, randomized, double‑blind, placebo‑controlled clinical trials. Biomed Rep 2024; 20:91. [PMID: 38682090 PMCID: PMC11046179 DOI: 10.3892/br.2024.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Lurasidone is an atypical anti-psychotic approved by the US Food and Drug Administration. It is mainly used to treat schizophrenia in adults through its antagonistic action on dopamine and 5-hydroxytryptamine receptors. The present study systematically assessed the efficacy and safety of lurasidone in the treatment of schizophrenia. Clinical, double-blind, parallel, randomized controlled trials (RCTs) of lurasidone in the treatment of schizophrenia were retrieved from PubMed\Medline, EBSCO, Embase, Cochrane Library, OVID, Web of Science and related clinical trial registration websites up to May 2023. A total of two investigators independently screened the included references and evaluated their quality. RevMan 5.3 software was used for meta-analysis of each measure outcome. The present systematic review was registered in PROSPERO (ID=CRD42018108178). A total of eight RCTs were included in the present study, including a total of 2,456 patients with schizophrenia. All eight references were randomized, double-blind and parallel control trials. All eight references were evaluated as high quality. The meta-analysis results demonstrated that there were no significant change in total Positive and Negative Syndrome Scale (PANSS) score, Clinical Global Impression of Severity (CGI-S) score and Montgomery-Asberg Depression Rating Scale (MADRS) between the 40 mg lurasidone group and the placebo group (P>0.05). However, as the dosage increased, the 80, 120 and 160 mg lurasidone groups had significant changes in total PANSS score, CGI-S score and MADRS Compared with placebo (P<0.05), although changes in MADRS in the 120 mg lurasidone group were not statistically significant (P>0.05). In terms of safety, the changes in the incidence of agitation in the 40 mg lurasidone group (P<0.05), vomiting in the 80 mg group (P<0.05) and akathisia in the 160 mg group (P<0.05) were statistically significant and there were also statistically significant changes in the incidence of akathisia, nausea, somnolence and extrapyramidal disorder among the 40, 80 and 120 mg lurasidone groups (P<0.05); No statistically significant changes in the in the incidence of other adverse reactions (P>0.05). In conclusion, existing evidence suggests that the initial dose of lurasidone for schizophrenia can be adjusted to 80 mg. As the condition aggravates, the dose can be incrementally increased to 160 mg. A dose of 160 mg lurasidone is recommended as the most efficacious and safe dose for acute schizophrenia and the risk of occurrence of akathisia, nausea, somnolence and extrapyramidal disorder is still high when lurasidone is administered at a dose of 80-120 mg. The dose should be promptly adjusted or the drug should be withdrawn if the aforementioned adverse reactions worsen. Multi-center, high-quality and long-term clinical RCTs influenced by the included references are still necessary to support the aforementioned conclusions.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, Sichuan 618000, P.R. China
| | - Ling Fan
- Department of Good Clinical Practice, Yaan People's Hospital, Yaan, Sichuan 625000, P.R. China
| | - Zhigang Yu
- Department of Pharmacy, Yaan People's Hospital, Yaan, Sichuan 625000, P.R. China
| | - Xingxing Xie
- Department of Pharmacy, Yaan People's Hospital, Yaan, Sichuan 625000, P.R. China
| |
Collapse
|
3
|
Gorrino I, Rossetti MG, Girelli F, Bellani M, Perlini C, Mattavelli G. A critical overview of emotion processing assessment in non-affective and affective psychoses. Epidemiol Psychiatr Sci 2024; 33:e8. [PMID: 38356360 PMCID: PMC10894699 DOI: 10.1017/s204579602400009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
AIMS Patients with affective and non-affective psychoses show impairments in both the identification and discrimination of facial affect, which can significantly reduce their quality of life. The aim of this commentary is to present the strengths and weaknesses of the available instruments for a more careful evaluation of different stages of emotion processing in clinical and experimental studies on patients with non-affective and affective psychoses. METHODS We reviewed the existing literature to identify different tests used to assess the ability to recognise (e.g. Ekman 60-Faces Test, Facial Emotion Identification Test and Penn Emotion Recognition Test) and to discriminate emotions (e.g. Face Emotion Discrimination Test and Emotion Differentiation Task). RESULTS The current literature revealed that few studies combine instruments to differentiate between different levels of emotion processing disorders. The lack of comprehensive instruments that integrate emotion recognition and discrimination assessments prevents a full understanding of patients' conditions. CONCLUSIONS This commentary underlines the need for a detailed evaluation of emotion processing ability in patients with non-affective and affective psychoses, to characterise the disorder at early phases from the onset of the disease and to design rehabilitation treatments.
Collapse
Affiliation(s)
- Irene Gorrino
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Maria Gloria Rossetti
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | - Francesca Girelli
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
- Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
4
|
Yao K, van der Veen T, Thygesen J, Bass N, McQuillin A. Multiple psychiatric polygenic risk scores predict associations between childhood adversity and bipolar disorder. J Affect Disord 2023; 341:137-146. [PMID: 37643680 DOI: 10.1016/j.jad.2023.08.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND It remains unclear how adverse childhood experiences (ACE) and increased genetic risk for bipolar disorder (BD) interact to influence BD symptom outcomes. Here we calculated multiple psychiatric polygenic risk scores (PRS) and used the measures of ACE to understand these gene-environment interactions. METHOD 885 BD subjects were included for analyses. BD, ADHD, MDD and SCZ PRSs were calculated using the PRS-CS-auto method. ACEs were evaluated using the Children Life Event Questionnaire (CLEQ). Participants were divided into groups based on the presence of ACE and the total number of ACEs. The associations between total ACE number, PRSs and their interactions were evaluated using multiple linear and logistic regressions. Secondary analyses were performed to evaluate the influence of ACE and PRS on sub-phenotypes of BD. RESULTS The number of ACEs increased with the ADHD PRS. BD participants who had ACEs showed an earlier age of BD onset and higher odds of having rapid cycling. Increased BD PRS was associated with increased odds of developing psychotic symptoms. Higher ADHD PRS was associated with increased odds of having rapid cycling. No prediction effect was observed from MDD and SCZ PRS. And, we found no significant interaction between ACE numbers and any of the PRSs in predicting any selected BD sub-phenotypes. LIMITATIONS The study was limited by sample size, ACE definition, and cross-sectional data collection method. CONCLUSIONS The findings consolidate the importance of considering multiple psychiatric PRSs in predicting symptom outcomes among BD patients.
Collapse
Affiliation(s)
- Kai Yao
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Tracey van der Veen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Johan Thygesen
- Institute of Health Informatics, University College London, UK
| | - Nick Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK.
| |
Collapse
|
5
|
Kathuria A, Lopez-Lengowski K, McPhie D, Cohen BM, Karmacharya R. Disease-specific differences in gene expression, mitochondrial function and mitochondria-endoplasmic reticulum interactions in iPSC-derived cerebral organoids and cortical neurons in schizophrenia and bipolar disorder. DISCOVER MENTAL HEALTH 2023; 3:8. [PMID: 36915374 PMCID: PMC9998323 DOI: 10.1007/s44192-023-00031-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/04/2023] [Indexed: 03/12/2023]
Abstract
We compared transcriptomic profiles of cerebral organoids differentiated from induced pluripotent stem cells of eight schizophrenia and eight bipolar disorder patients to identify genes that were differentially expressed in cerebral organoids between two disorders. Gene ontology analysis showed relative up-regulation in schizophrenia organoids of genes related to response to cytokines, antigen binding and clathrin-coated vesicles, while showing up-regulation in bipolar disorder of genes involved in calcium binding. Gene set enrichment analysis revealed enrichment in schizophrenia of genes involved in mitochondrial and oxidative phosphorylation while showing enrichment in bipolar disorder of genes involved in long term potentiation and neuro-transporters. We compared mitochondrial function in cerebral organoids from schizophrenia and bipolar disorder subjects and found that while schizophrenia organoids showed deficits in basal oxygen consumption rate and ATP production when compared to healthy control organoids, while bipolar disorder organoids did not show these deficits. Gene ontology analyses also revealed enrichment in bipolar disorder of genes in ion binding and regulation of transport. Experiments examining the interaction between mitochondria and endoplasmic reticulum in cortical neurons from bipolar disorder subjects showed a significantly lower number of contact sites between mitochondria and endoplasmic reticulum when compared to cortical neurons from schizophrenia patients. These results point to disease-specific deficits in mitochondrial respiration in schizophrenia and in mitochondrial-endoplasmic reticulum interactions in bipolar disorder. Supplementary Information The online version contains supplementary material available at 10.1007/s44192-023-00031-8.
Collapse
Affiliation(s)
- Annie Kathuria
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA USA
- Department of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Kara Lopez-Lengowski
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA USA
| | - Donna McPhie
- Department of Psychiatry, Harvard Medical School, Boston, MA USA
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA USA
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA USA
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA USA
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA USA
- Department of Psychiatry, Harvard Medical School, Boston, MA USA
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA USA
- Program in Neuroscience, Harvard University, Cambridge, MA USA
- Program in Chemical Biology, Harvard University, Cambridge, MA USA
- Harvard Stem Cell Institute, Cambridge, MA USA
| |
Collapse
|
6
|
Pina-Camacho L, Martinez K, Diaz-Caneja CM, Mezquida G, Cuesta MJ, Moreno C, Amoretti S, González-Pinto A, Arango C, Vieta E, Castro-Fornieles J, Lobo A, Fraguas D, Bernardo M, Janssen J, Parellada M, Madero S, Gómez-Ramiro M, Rodriguez-Toscano E, Santonja J, Zorrilla I, González-Ortega I, Fayed N, Santabárbara J, Berge D, Toll A, Nacher J, Martí GG, Sague-Vilavella M, Sanchez-Moreno J, de la Serna E, Baeza I, Saiz-Masvidal C, Contreras F, González-Blanco L, Bobes-Bascarán T, Dompablo M, Rodriguez-Jimenez R, Usall J, Butjosa A, Pomarol-Clotet E, Sarró S. Cortical thinning over two years after first-episode psychosis depends on age of onset. SCHIZOPHRENIA 2022; 8:20. [PMID: 35277520 PMCID: PMC8917180 DOI: 10.1038/s41537-021-00196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022]
Abstract
AbstractFirst-episode psychosis (FEP) patients show structural brain abnormalities at the first episode. Whether the cortical changes that follow a FEP are progressive and whether age at onset modulates these changes remains unclear. This is a multicenter MRI study in a deeply phenotyped sample of 74 FEP patients with a wide age range at onset (15–35 years) and 64 neurotypical healthy controls (HC). All participants underwent two MRI scans with a 2-year follow-up interval. We computed the longitudinal percentage of change (PC) for cortical thickness (CT), surface area (CSA) and volume (CV) for frontal, temporal, parietal and occipital lobes. We used general linear models to assess group differences in PC as a function of age at FEP. We conducted post-hoc analyses for metrics where PC differed as a function of age at onset. We found a significant age-by-diagnosis interaction effect for PC of temporal lobe CT (d = 0.54; p = 002). In a post-hoc-analysis, adolescent-onset (≤19 y) FEP showed more severe longitudinal cortical thinning in the temporal lobe than adolescent HC. We did not find this difference in adult-onset FEP compared to adult HC. Our study suggests that, in individuals with psychosis, CT changes that follow the FEP are dependent on the age at first episode, with those with an earlier onset showing more pronounced cortical thinning in the temporal lobe.
Collapse
|
7
|
Maggioni E, Brambilla P. Targeting Developmental Thalamocortical Connectivity Abnormalities for Psychosis Prediction: How Far Are We From Biomarker Identification? BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:749-751. [PMID: 35940694 DOI: 10.1016/j.bpsc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Eleonora Maggioni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Insula volumes in first-episode and chronic psychosis: A longitudinal MRI study. Schizophr Res 2022; 241:14-23. [PMID: 35074528 DOI: 10.1016/j.schres.2021.12.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alterations in insular grey matter (GM) volume has been consistently reported for affective and non-affective psychoses both in chronic and first-episode patients, ultimately suggesting that the insula might represent a good region to study in order to assess the longitudinal course of psychotic disorders. Therefore, in this longitudinal Magnetic Resonance Imaging (MRI) study, we aimed at further investigating the key role of insular volumes in psychosis. MATERIAL AND METHODS 68 First-Episode Psychosis (FEP) patients, 68 patients with Schizophrenia (SCZ), 47 Bipolar Disorder (BD) patients, and 94 Healthy Controls (HC) were enrolled and underwent a 1.5 T MRI evaluation. A subsample of 99 subjects (10 HC, 23 BD, 29 SCZ, 37 FEP) was rescanned after 2,53 ± 1,68 years. The insular cortex was manually traced and then divided into an anterior and posterior portion. Group and correlation analyses were then performed both at baseline and at follow-up. RESULTS At baseline, greater anterior and lower posterior insular GM volumes were observed in chronic patients. At follow-up, we found that FEP patients had a significant GM volume increase from baseline to follow-up, especially in the posterior insula whereas chronic patients showed a relative stability. Finally, significant negative correlations between illness severity and pharmacological treatment and insular GM volumes were observed in the whole group of psychotic patients. CONCLUSIONS The longitudinal assessment of both chronic and first-episode patients allowed us to detect a complex pattern of GM abnormalities in selective sub-portions of insular volumes, ultimately suggesting that this structure could represent a key biological marker of psychotic disorders.
Collapse
|
9
|
Brosch K, Stein F, Schmitt S, Pfarr JK, Ringwald KG, Thomas-Odenthal F, Meller T, Steinsträter O, Waltemate L, Lemke H, Meinert S, Winter A, Breuer F, Thiel K, Grotegerd D, Hahn T, Jansen A, Dannlowski U, Krug A, Nenadić I, Kircher T. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders. Mol Psychiatry 2022; 27:4234-4243. [PMID: 35840798 PMCID: PMC9718668 DOI: 10.1038/s41380-022-01687-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorder (SSD, schizophrenia, and schizoaffective disorder) overlap in symptomatology, risk factors, genetics, and other biological measures. Based on previous findings, it remains unclear what transdiagnostic regional gray matter volume (GMV) alterations exist across these disorders, and with which factors they are associated. GMV (3-T magnetic resonance imaging) was compared between healthy controls (HC; n = 110), DSM-IV-TR diagnosed MDD (n = 110), BD (n = 110), and SSD patients (n = 110), matched for age and sex. We applied a conjunction analysis to identify shared GMV alterations across the disorders. To identify potential origins of identified GMV clusters, we associated them with early and current risk and protective factors, psychopathology, and neuropsychology, applying multiple regression models. Common to all diagnoses (vs. HC), we identified GMV reductions in the left hippocampus. This cluster was associated with the neuropsychology factor working memory/executive functioning, stressful life events, and with global assessment of functioning. Differential effects between groups were present in the left and right frontal operculae and left insula, with volume variances across groups highly overlapping. Our study is the first with a large, matched, transdiagnostic sample to yield shared GMV alterations in the left hippocampus across major mental disorders. The hippocampus is a major network hub, orchestrating a range of mental functions. Our findings underscore the need for a novel stratification of mental disorders, other than categorical diagnoses.
Collapse
Affiliation(s)
- Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany. .,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany.
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Simon Schmitt
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany ,grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Kai G. Ringwald
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Florian Thomas-Odenthal
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Olaf Steinsträter
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.10253.350000 0004 1936 9756Core-Facility BrainImaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Lena Waltemate
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Alexandra Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany ,grid.10253.350000 0004 1936 9756Core-Facility BrainImaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Igor Nenadić
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
10
|
Briley PM, Liddle EB, Simmonite M, Jansen M, White TP, Balain V, Palaniyappan L, Bowtell R, Mullinger KJ, Liddle PF. Regional Brain Correlates of Beta Bursts in Health and Psychosis: A Concurrent Electroencephalography and Functional Magnetic Resonance Imaging Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1145-1156. [PMID: 33495122 PMCID: PMC8648891 DOI: 10.1016/j.bpsc.2020.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND There is emerging evidence for abnormal beta oscillations in psychosis. Beta oscillations are likely to play a key role in the coordination of sensorimotor information that is crucial to healthy mental function. Growing evidence suggests that beta oscillations typically manifest as transient beta bursts that increase in probability following a motor response, observable as post-movement beta rebound. Evidence indicates that post-movement beta rebound is attenuated in psychosis, with greater attenuation associated with greater symptom severity and impairment. Delineating the functional role of beta bursts therefore may be key to understanding the mechanisms underlying persistent psychotic illness. METHODS We used concurrent electroencephalography and functional magnetic resonance imaging to identify blood oxygen level-dependent correlates of beta bursts during the n-back working memory task and intervening rest periods in healthy control participants (n = 30) and patients with psychosis (n = 48). RESULTS During both task blocks and intervening rest periods, beta bursts phasically activated regions implicated in task-relevant content while suppressing currently tonically active regions. Patients showed attenuated post-movement beta rebound that was associated with persisting disorganization symptoms as well as impairments in cognition and role function. Patients also showed greater task-related reductions in overall beta burst rate and showed greater, more extensive, beta burst-related blood oxygen level-dependent activation. CONCLUSIONS Our evidence supports a model in which beta bursts reactivate latently maintained sensorimotor information and are dysregulated and inefficient in psychosis. We propose that abnormalities in the mechanisms by which beta bursts coordinate reactivation of contextually appropriate content can manifest as disorganization, working memory deficits, and inaccurate forward models and may underlie a core deficit associated with persisting symptoms and impairment.
Collapse
Affiliation(s)
- Paul M Briley
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom; Nottinghamshire Healthcare NHS Foundation Trust, Mapperley, Nottingham, United Kingdom
| | - Elizabeth B Liddle
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Molly Simmonite
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Marije Jansen
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Thomas P White
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Vijender Balain
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom; Burnaby Centre for Mental Health and Addictions, Burnaby, British Columbia, Canada
| | - Lena Palaniyappan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom; Department of Psychiatry, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham, United Kingdom; School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Peter F Liddle
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom.
| |
Collapse
|
11
|
Sewell MDE, Jiménez-Sánchez L, Shen X, Edmondson-Stait AJ, Green C, Adams MJ, Rifai OM, McIntosh AM, Lyall DM, Whalley HC, Lawrie SM. Associations between major psychiatric disorder polygenic risk scores and blood-based markers in UK biobank. Brain Behav Immun 2021; 97:32-41. [PMID: 34107350 DOI: 10.1016/j.bbi.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 01/08/2023] Open
Abstract
Major depressive disorder (MDD), schizophrenia (SCZ), and bipolar disorder (BD) have both shared and discrete genetic risk factors, and are associated with peripheral abnormalities. The relationships between such genetic architectures and blood-based markers are, however, unclear. We investigated relationships between polygenic risk scores (PRS) for these disorders and peripheral markers in the UK Biobank cohort. We calculated polygenic risk scores for n = 367,329 (MDD PRS), n = 366,465 (SCZ PRS), and n = 366,383 (BD PRS) UK Biobank cohort subjects. We then examined associations between disorder PRS and 58 inflammatory/immune, hematological, bone, cardiovascular, hormone, liver, renal and diabetes-associated blood markers using two generalized linear regression models: 'minimally adjusted' controlling for variables such as age and sex, and 'fully adjusted' including additional lifestyle covariates: BMI, alcohol and smoking status, and medication intake. There were 38/58 MDD PRS, 32/58 SCZ PRS, and 20/58 BD PRS-blood marker associations detected for our minimally adjusted model. Of these, 13/38 (MDD PRS), 14/32 (SCZ PRS), and 10/20 (BD PRS) associations remained significant after controlling for lifestyle factors. Many were disorder-specific, with 8/13 unique MDD PRS associations identified. Several disorder-specific associations for MDD and SCZ were immune-related, with mostly positive and negative associations identified for MDD and SCZ PRS respectively. This study suggests that MDD, SCZ and BD have both shared and distinct peripheral markers associated with disorder-specific genetic risk. The results also implicate inflammatory dysfunction in MDD and SCZ, albeit with differences in patterns between the two conditions, and enrich our understanding of potential underlying pathophysiological mechanisms in major psychiatric disorders.
Collapse
Affiliation(s)
- Michael D E Sewell
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | - Lorena Jiménez-Sánchez
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Amelia J Edmondson-Stait
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Claire Green
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Olivia M Rifai
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Donald M Lyall
- Institute of Health & Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| |
Collapse
|
12
|
Madeira N, Martins R, Valente Duarte J, Costa G, Macedo A, Castelo-Branco M. A fundamental distinction in early neural processing of implicit social interpretation in schizophrenia and bipolar disorder. NEUROIMAGE-CLINICAL 2021; 32:102836. [PMID: 34619651 PMCID: PMC8498462 DOI: 10.1016/j.nicl.2021.102836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Social cognition impairment is a key phenomenon in serious mental disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). Although genetic and neurobiological studies have suggested common neural correlates, here we hypothesized that a fundamental dissociation of social processing occurs at an early level in these conditions. METHODS Based on the hypothesis that key structures in the social brain, namely the temporoparietal junction, should present distinctive features in SCZ and BPD during low-level social judgment, we conducted a case-control study in SCZ (n = 20) and BPD (n = 20) patients and controls (n = 20), using task-based fMRI during a Theory of Mind (ToM) visual paradigm leading to interpretation of social meaning based on simple geometric figures. RESULTS We found opposite neural responses in two core ToM regions: SCZ patients showed social content-related deactivation (relative to controls and BPD) of the right supramarginal gyrus, while the opposite pattern was found in BPD; reverse patterns, relative to controls and SCZ, were found in the left posterior superior temporal gyrus, a region involved in inferring other's intentions. Receiver-operating-characteristic curve analysis showed 88% accuracy in discriminating the two clinical groups based on these neural responses. CONCLUSIONS These contrasting activation patterns of the temporoparietal junction in SCZ and BPD represent mechanistic differences of social cognitive dysfunction that may be explored as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Nuno Madeira
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; Centro Hospitalar e Universitário de Coimbra (CHUC) - Department of Psychiatry, Portugal
| | - Ricardo Martins
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - João Valente Duarte
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - Gabriel Costa
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - António Macedo
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; Centro Hospitalar e Universitário de Coimbra (CHUC) - Department of Psychiatry, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| |
Collapse
|
13
|
Altaf-Ul-Amin M, Hirose K, Nani JV, Porta LC, Tasic L, Hossain SF, Huang M, Ono N, Hayashi MAF, Kanaya S. A system biology approach based on metabolic biomarkers and protein-protein interactions for identifying pathways underlying schizophrenia and bipolar disorder. Sci Rep 2021; 11:14450. [PMID: 34262063 PMCID: PMC8280132 DOI: 10.1038/s41598-021-93653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Mental disorders (MDs), including schizophrenia (SCZ) and bipolar disorder (BD), have attracted special attention from scientists due to their high prevalence and significantly debilitating clinical features. The diagnosis of MDs is still essentially based on clinical interviews, and intensive efforts to introduce biochemical based diagnostic methods have faced several difficulties for implementation in clinics, due to the complexity and still limited knowledge in MDs. In this context, aiming for improving the knowledge in etiology and pathophysiology, many authors have reported several alterations in metabolites in MDs and other brain diseases. After potentially fishing all metabolite biomarkers reported up to now for SCZ and BD, we investigated here the proteins related to these metabolites in order to construct a protein-protein interaction (PPI) network associated with these diseases. We determined the statistically significant clusters in this PPI network and, based on these clusters, we identified 28 significant pathways for SCZ and BDs that essentially compose three groups representing three major systems, namely stress response, energy and neuron systems. By characterizing new pathways with potential to innovate the diagnosis and treatment of psychiatric diseases, the present data may also contribute to the proposal of new intervention for the treatment of still unmet aspects in MDs.
Collapse
Affiliation(s)
- Md Altaf-Ul-Amin
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Kazuhisa Hirose
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Lucas C Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Ming Huang
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Naoaki Ono
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Shigehiko Kanaya
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
14
|
Radonjić NV, Hess JL, Rovira P, Andreassen O, Buitelaar JK, Ching CRK, Franke B, Hoogman M, Jahanshad N, McDonald C, Schmaal L, Sisodiya SM, Stein DJ, van den Heuvel OA, van Erp TGM, van Rooij D, Veltman DJ, Thompson P, Faraone SV. Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Mol Psychiatry 2021; 26:2101-2110. [PMID: 33456050 PMCID: PMC8440178 DOI: 10.1038/s41380-020-01002-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Genomewide association studies have found significant genetic correlations among many neuropsychiatric disorders. In contrast, we know much less about the degree to which structural brain alterations are similar among disorders and, if so, the degree to which such similarities have a genetic etiology. From the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium, we acquired standardized mean differences (SMDs) in regional brain volume and cortical thickness between cases and controls. We had data on 41 brain regions for: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), epilepsy, major depressive disorder (MDD), obsessive compulsive disorder (OCD), and schizophrenia (SCZ). These data had been derived from 24,360 patients and 37,425 controls. The SMDs were significantly correlated between SCZ and BD, OCD, MDD, and ASD. MDD was positively correlated with BD and OCD. BD was positively correlated with OCD and negatively correlated with ADHD. These pairwise correlations among disorders were correlated with the corresponding pairwise correlations among disorders derived from genomewide association studies (r = 0.494). Our results show substantial similarities in sMRI phenotypes among neuropsychiatric disorders and suggest that these similarities are accounted for, in part, by corresponding similarities in common genetic variant architectures.
Collapse
Affiliation(s)
- Nevena V Radonjić
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jonathan L Hess
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ole Andreassen
- NORMENT-Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jan K Buitelaar
- Radboudumc, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina Del Rey, CA, USA
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Department of Neurology and Biomedical Engineering, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina Del Rey, CA, USA
| | - Carrie McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics (CMIG), University of California, San Diego, CA, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence for Youth Mental Health, Parkville, VIC, Australia
| | - Sanjay M Sisodiya
- UCL Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, University College London, London, UK
- Chalfont Centre for Epilepsy, Epilepsy Society, Bucks, UK
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Odile A van den Heuvel
- Department of Psychiatry and Department of Anatomy & Neurosciences, Amsterdam UMC/VUmc, Amsterdam, The Netherlands
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry and Department of Anatomy & Neurosciences, Amsterdam UMC/VUmc, Amsterdam, The Netherlands
| | - Paul Thompson
- Neuro Imaging Institute for Neuroimaging and Informatics, Keck School of Medicine of the University of Southern California, Marina Del Rey, CA, USA
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
15
|
Åsenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update 2021; 26:841-873. [PMID: 32790874 DOI: 10.1093/humupd/dmaa025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies in non-human mammals suggest that environmental factors can influence spermatozoal DNA methylation, and some research suggests that spermatozoal DNA methylation is also implicated in conditions such as subfertility and imprinting disorders in the offspring. Together with an increased availability of cost-effective methods of interrogating DNA methylation, this premise has led to an increasing number of studies investigating the DNA methylation landscape of human spermatozoa. However, how the human spermatozoal DNA methylome is influenced by environmental factors is still unclear, as is the role of human spermatozoal DNA methylation in subfertility and in influencing offspring health. OBJECTIVE AND RATIONALE The aim of this systematic review was to critically appraise the quality of the current body of literature on DNA methylation in human spermatozoa, summarize current knowledge and generate recommendations for future research. SEARCH METHODS A comprehensive literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the search terms 'semen' OR 'sperm' AND 'DNA methylation'. Publications from 1 January 2003 to 2 March 2020 that studied human sperm and were written in English were included. Studies that used sperm DNA methylation to develop methodologies or forensically identify semen were excluded, as were reviews, commentaries, meta-analyses or editorial texts. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria were used to objectively evaluate quality of evidence in each included publication. OUTCOMES The search identified 446 records, of which 135 were included in the systematic review. These 135 studies were divided into three groups according to area of research; 56 studies investigated the influence of spermatozoal DNA methylation on male fertility and abnormal semen parameters, 20 studies investigated spermatozoal DNA methylation in pregnancy outcomes including offspring health and 59 studies assessed the influence of environmental factors on spermatozoal DNA methylation. Findings from studies that scored as 'high' and 'moderate' quality of evidence according to GRADE criteria were summarized. We found that male subfertility and abnormal semen parameters, in particular oligozoospermia, appear to be associated with abnormal spermatozoal DNA methylation of imprinted regions. However, no specific DNA methylation signature of either subfertility or abnormal semen parameters has been convincingly replicated in genome-scale, unbiased analyses. Furthermore, although findings require independent replication, current evidence suggests that the spermatozoal DNA methylome is influenced by cigarette smoking, advanced age and environmental pollutants. Importantly however, from a clinical point of view, there is no convincing evidence that changes in spermatozoal DNA methylation influence pregnancy outcomes or offspring health. WIDER IMPLICATIONS Although it appears that the human sperm DNA methylome can be influenced by certain environmental and physiological traits, no findings have been robustly replicated between studies. We have generated a set of recommendations that would enhance the reliability and robustness of findings of future analyses of the human sperm methylome. Such studies will likely require multicentre collaborations to reach appropriate sample sizes, and should incorporate phenotype data in more complex statistical models.
Collapse
Affiliation(s)
| | - Amy F Danson
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK.,Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
16
|
Garcia-Ruiz B, de Moura MC, Muntané G, Martorell L, Bosch E, Esteller M, J Canales-Rodríguez E, Pomarol-Clotet E, Jiménez E, Vieta E, Vilella E. DDR1 methylation is associated with bipolar disorder and the isoform expression and methylation of myelin genes. Epigenomics 2021; 13:845-858. [PMID: 33942629 DOI: 10.2217/epi-2021-0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.
Collapse
Affiliation(s)
- Beatriz Garcia-Ruiz
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain
| | - Manuel Castro de Moura
- Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, 08916, Badalona, Barcelona, Catalonia, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain
| | - Elena Bosch
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, 08916, Badalona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23. 08010, Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine & Health Sciences, University of Barcelona (UB), Feixa Llarga, 08907, l'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Erick J Canales-Rodríguez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,FIDMAG Research Foundation, Germanes Hospitalàries, Av. Jordà, 8. 08035, Barcelona, Catalonia, Spain.,Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Station 11. CH-1015, Lausanne, Switzerland
| | - Edith Pomarol-Clotet
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,FIDMAG Research Foundation, Germanes Hospitalàries, Av. Jordà, 8. 08035, Barcelona, Catalonia, Spain
| | - Esther Jiménez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Bipolar & Depressive Disorders Unit, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, Villarroel, 170, 12-0. 08036, Barcelona, Catalonia, Spain
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Bipolar & Depressive Disorders Unit, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, Villarroel, 170, 12-0. 08036, Barcelona, Catalonia, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain
| |
Collapse
|
17
|
Stein F, Meller T, Brosch K, Schmitt S, Ringwald K, Pfarr JK, Meinert S, Thiel K, Lemke H, Waltemate L, Grotegerd D, Opel N, Jansen A, Nenadić I, Dannlowski U, Krug A, Kircher T. Psychopathological Syndromes Across Affective and Psychotic Disorders Correlate With Gray Matter Volumes. Schizophr Bull 2021; 47:1740-1750. [PMID: 33860786 PMCID: PMC8530386 DOI: 10.1093/schbul/sbab037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION More than a century of research on the neurobiological underpinnings of major psychiatric disorders (major depressive disorder [MDD], bipolar disorder [BD], schizophrenia [SZ], and schizoaffective disorder [SZA]) has been unable to identify diagnostic markers. An alternative approach is to study dimensional psychopathological syndromes that cut across categorical diagnoses. The aim of the current study was to identify gray matter volume (GMV) correlates of transdiagnostic symptom dimensions. METHODS We tested the association of 5 psychopathological factors with GMV using multiple regression models in a sample of N = 1069 patients meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for MDD (n = 818), BD (n = 132), and SZ/SZA (n = 119). T1-weighted brain images were acquired with 3-Tesla magnetic resonance imaging and preprocessed with CAT12. Interactions analyses (diagnosis × psychopathological factor) were performed to test whether local GMV associations were driven by DSM-IV diagnosis. We further tested syndrome specific regions of interest (ROIs). RESULTS Whole brain analysis showed a significant negative association of the positive formal thought disorder factor with GMV in the right middle frontal gyrus, the paranoid-hallucinatory syndrome in the right fusiform, and the left middle frontal gyri. ROI analyses further showed additional negative associations, including the negative syndrome with bilateral frontal opercula, positive formal thought disorder with the left amygdala-hippocampus complex, and the paranoid-hallucinatory syndrome with the left angular gyrus. None of the GMV associations interacted with DSM-IV diagnosis. CONCLUSIONS We found associations between psychopathological syndromes and regional GMV independent of diagnosis. Our findings open a new avenue for neurobiological research across disorders, using syndrome-based approaches rather than categorical diagnoses.
Collapse
Affiliation(s)
- Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany,To whom correspondence should be addressed; Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; tel: +49-6421-58-63831, fax: +49-6421-58-68939, e-mail:
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Julia Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Department of Psychiatry University of Münster, Münster, Germany
| | - Katharina Thiel
- Department of Psychiatry University of Münster, Münster, Germany
| | - Hannah Lemke
- Department of Psychiatry University of Münster, Münster, Germany
| | - Lena Waltemate
- Department of Psychiatry University of Münster, Münster, Germany
| | | | - Nils Opel
- Department of Psychiatry University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster, Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
18
|
Hanlon FM, Dodd AB, Ling JM, Shaff NA, Stephenson DD, Bustillo JR, Stromberg SF, Lin DS, Ryman SG, Mayer AR. The clinical relevance of gray matter atrophy and microstructural brain changes across the psychosis continuum. Schizophr Res 2021; 229:12-21. [PMID: 33607607 PMCID: PMC8137524 DOI: 10.1016/j.schres.2021.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/30/2020] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Patients with psychotic spectrum disorders (PSD) exhibit similar patterns of atrophy and microstructural changes that may be associated with common symptomatology (e.g., symptom burden and/or cognitive impairment). Gray matter concentration values (proxy for atrophy), fractional anisotropy (FA), mean diffusivity (MD), intracellular neurite density (Vic) and isotropic diffusion volume (Viso) measures were therefore compared in 150 PSD (schizophrenia, schizoaffective disorder, and bipolar disorder Type I) and 63 healthy controls (HC). Additional analyses evaluated whether regions showing atrophy and/or microstructure abnormalities were better explained by DSM diagnoses, symptom burden or cognitive dysfunction. PSD exhibited increased atrophy within bilateral medial temporal lobes and subcortical structures. Gray matter along the left lateral sulcus showed evidence of increased atrophy and MD. Increased MD was also observed in homotopic fronto-temporal regions, suggesting it may serve as a precursor to atrophic changes. Global cognitive dysfunction, rather than DSM diagnoses or psychotic symptom burden, was the best predictor of increased gray matter MD. Regions of decreased FA (i.e., left frontal gray and white matter) and Vic (i.e., frontal and temporal regions and along central sulcus) were also observed for PSD, but were neither spatially concurrent with atrophic regions nor associated with clinical symptoms. Evidence of expanding microstructural spaces in gray matter demonstrated the greatest spatial overlap with current and potentially future regions of atrophy, and was associated with cognitive deficits. These results suggest that this particular structural abnormality could potentially underlie global cognitive impairment that spans traditional diagnostic categories.
Collapse
Affiliation(s)
- Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - David D Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Shannon F Stromberg
- Psychiatry and Behavioral Health Clinical Program, Presbyterian Healthcare System, Albuquerque, NM 87112, USA
| | - Denise S Lin
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Sephira G Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA; Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
19
|
Delvecchio G, Maggioni E, Pigoni A, Crespo-Facorro B, Nenadić I, Benedetti F, Gaser C, Sauer H, Roiz-Santiañez R, Poletti S, Rossetti MG, Bellani M, Perlini C, Ruggeri M, Diwadkar VA, Brambilla P. Sexual Regional Dimorphism of Post-Adolescent and Middle Age Brain Maturation. A Multi-center 3T MRI Study. Front Aging Neurosci 2021; 13:622054. [PMID: 33613268 PMCID: PMC7892767 DOI: 10.3389/fnagi.2021.622054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Sex-related differences are tied into neurodevelopmental and lifespan processes, beginning early in the perinatal and developmental phases and continue into adulthood. The present study was designed to investigate sexual dimorphism of changes in gray matter (GM) volume in post-adolescence, with a focus on early and middle-adulthood using a structural magnetic resonance imaging (MRI) dataset of healthy controls from the European Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT). Three hundred and seventy three subjects underwent a 3.0 T MRI session across four European Centers. Age by sex effects on GM volumes were investigated using voxel-based morphometry (VBM) and the Automated Anatomical Labeling atlas regions (ROI). Females and males showed overlapping and non-overlapping patterns of GM volume changes during aging. Overlapping age-related changes emerged in bilateral frontal and temporal cortices, insula and thalamus. Both VBM and ROI analyses revealed non-overlapping changes in multiple regions, including cerebellum and vermis, bilateral mid frontal, mid occipital cortices, left inferior temporal and precentral gyri. These findings highlight the importance of accounting for sex differences in cross-sectional analyses, not only in the study of normative changes, but particularly in the context of psychiatric and neurologic disorders, wherein sex effects may be confounded with disease-related changes.
Collapse
Affiliation(s)
- Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Pigoni
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - B Crespo-Facorro
- Department of Psychiatry, University Hospital Virgen del Rocío, IBiS, University of Sevilla, Sevilla, Spain.,CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital - UKGM, Marburg, Germany
| | - Francesco Benedetti
- Division of Neuroscience, Unit of Psychiatry and Clinical Psychobiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Christian Gaser
- Department of Psychiatry, University Hospital Jena, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry, University Hospital Jena, Jena, Germany
| | - Roberto Roiz-Santiañez
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain.,Department of Psychiatry, School of Medicine, University Hospital Marqués de Valdecilla, University of Cantabria-IDIVAL, Santander, Spain
| | - Sara Poletti
- Division of Neuroscience, Unit of Psychiatry and Clinical Psychobiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria G Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Mirella Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
20
|
Stoyanov D, Aryutova K, Kandilarova S, Paunova R, Arabadzhiev Z, Todeva-Radneva A, Kostianev S, Borgwardt S. Diagnostic Task Specific Activations in Functional MRI and Aberrant Connectivity of Insula with Middle Frontal Gyrus Can Inform the Differential Diagnosis of Psychosis. Diagnostics (Basel) 2021; 11:95. [PMID: 33435624 PMCID: PMC7827259 DOI: 10.3390/diagnostics11010095] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
We constructed a novel design integrating the administration of a clinical self-assessment scale with simultaneous acquisition of functional Magnetic Resonance Imaging (fMRI), aiming at cross-validation between psychopathology evaluation and neuroimaging techniques. We hypothesized that areas demonstrating differential activation in two groups of patients (the first group exhibiting paranoid delusions in the context of paranoid schizophrenia-SCH-and second group with a depressive episode in the context of major depressive disorder or bipolar disorder-DEP) will have distinct connectivity patterns and structural differences. Fifty-one patients with SCH (n = 25) or DEP (n = 26) were scanned with three different MRI sequences: a structural and two functional sequences-resting-state and task-related fMRI (the stimuli represent items from a paranoid-depressive self-evaluation scale). While no significant differences were found in gray matter volumes, we were able to discriminate between the two clinical entities by identifying two significant clusters of activations in the SCH group-the left Precuneus (PreCu) extending to the left Posterior Cingulate Cortex (PCC) and the right Angular Gyrus (AG). Additionally, the effective connectivity of the middle frontal gyrus (MFG), a part of the Dorsolateral Prefrontal Cortex (DLPFC) to the Anterior Insula (AI), demonstrated a significant difference between the two groups with inhibitory connection demonstrated only in SCH. The observed activations of PreCu, PCC, and AG (involved in the Default Mode Network DMN) might be indirect evidence of the inhibitory connection from the DLPFC to AI, interfering with the balancing function of the insula as the dynamic switch in the DMN. The findings of our current study might suggest that the connectivity from DLPFC to the anterior insula can be interpreted as evidence for the presence of an aberrant network that leads to behavioral abnormalities, the manifestation of which depends on the direction of influence. The reduced effective connectivity from the AI to the DLPFC is manifested as depressive symptoms, and the inhibitory effect from the DLPFC to the AI is reflected in the paranoid symptoms of schizophrenia.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria; (K.A.); (S.K.); (R.P.); (Z.A.); (A.T.-R.)
| | - Katrin Aryutova
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria; (K.A.); (S.K.); (R.P.); (Z.A.); (A.T.-R.)
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria; (K.A.); (S.K.); (R.P.); (Z.A.); (A.T.-R.)
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria; (K.A.); (S.K.); (R.P.); (Z.A.); (A.T.-R.)
| | - Zlatoslav Arabadzhiev
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria; (K.A.); (S.K.); (R.P.); (Z.A.); (A.T.-R.)
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria; (K.A.); (S.K.); (R.P.); (Z.A.); (A.T.-R.)
| | - Stefan Kostianev
- Department of Pathophysiology, and Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Stefan Borgwardt
- Klinik für Psychiatrie und Psychotherapie, Universität zu Lübeck, 23538 Lübeck, Germany;
- Department of Psychiatry, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
21
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
22
|
Zhou C, Xue C, Chen J, Amdanee N, Tang X, Zhang H, Zhang F, Zhang X, Zhang C. Altered Functional Connectivity of the Nucleus Accumbens Network Between Deficit and Non-deficit Schizophrenia. Front Psychiatry 2021; 12:704631. [PMID: 34658949 PMCID: PMC8514672 DOI: 10.3389/fpsyt.2021.704631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Deficit schizophrenia (DS), which is marked by stable negative symptoms, is regarded as a homogeneous subgroup of schizophrenia. While DS patients have structurally altered nucleus accumbens (NAcc) compared to non-deficit schizophrenia (NDS) patients and healthy individuals, the investigation of NAcc functional connectivity (FC) with negative symptoms and neurocognition could provide insights into the pathophysiology of schizophrenia. 58 DS, 93 NDS, and 113 healthy controls (HCs) underwent resting-state functional magnetic resonance (rsfMRI). The right and left NAcc were respectively used as seed points to construct the functional NAcc network in whole-brain FC analysis. ANCOVA compared the differences in NAcc network FC and partial correlation analysis explored the relationships between altered FC of NAcc, negative symptoms and neurocognition. Compared to HCs, both DS and NDS patients showed decreased FC between the left NAcc (LNAcc) and bilateral middle cingulate gyrus, and between the right NAcc (RNAcc) and right middle frontal gyrus (RMFG), as well as increased FC between bilateral NAcc and bilateral lingual gyrus. Moreover, the FC between the LNAcc and bilateral calcarine gyrus (CAL) was lower in the DS group compared to NDS patients. Correlation analysis indicated that FC value of LNAcc-CAL was negatively correlated to negative symptoms. Furthermore, aberrant FC values within the NAcc network were correlated with severity of clinical symptoms and neurocognitive impairments in DS and NDS patients. This study demonstrated abnormal patterns of FC in the NAcc network between DS and NDS. The presence of altered LNAcc-CAL FC might be involved in the pathogenesis of negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Nousayhah Amdanee
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Subei People's Hospital of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Fuquan Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Caiyi Zhang
- Department of Psychiatry, Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Comparing VBM and ROI analyses for detection of gray matter abnormalities in patients with bipolar disorder using MRI. MIDDLE EAST CURRENT PSYCHIATRY 2020. [DOI: 10.1186/s43045-020-00076-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
With the increasing efforts to a better understanding of psychiatric diseases, detection of brain morphological alterations is necessary. This study compared two methods—voxel-based morphometry (VBM) and region of interest (ROI) analyses—to identify significant gray matter changes of patients with bipolar disorder type I (BP I).
Results
The VBM findings suggested gray matter reductions in the left precentral gyrus and right precuneus of the patients compared to healthy subjects (α = 0.0005, uncorrected). However, no regions reached the level of significance in ROI analysis using the three atlases, i.e., hammers, lpba40, and neuromorphometrics atlases (α = 0.0005).
Conclusion
It can be concluded that VBM analysis seems to be more sensitive to partial changes in this study. If ROI analysis is employed in studies to detect structural brain alterations between groups, it is highly recommended to use VBM analysis besides.
Collapse
|
24
|
Steullet P. Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis. Schizophr Res 2020; 226:147-157. [PMID: 31147286 DOI: 10.1016/j.schres.2019.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Identification of reliable biomarkers of prognosis in subjects with high risk to psychosis is an essential step to improve care and treatment of this population of help-seekers. Longitudinal studies highlight some clinical criteria, cognitive deficits, patterns of gray matter alterations and profiles of blood metabolites that provide some levels of prediction regarding the conversion to psychosis. Further effort is warranted to validate these results and implement these types of approaches in clinical settings. Such biomarkers may however fall short in entangling the biological mechanisms underlying the disease progression, an essential step in the development of novel therapies. Circuit-based approaches, which map on well-identified cerebral functions, could meet these needs. Converging evidence indicates that thalamus abnormalities are central to schizophrenia pathophysiology, contributing to clinical symptoms, cognitive and sensory deficits. This review highlights the various thalamus-related anomalies reported in individuals with genetic risks and in the different phases of the disorder, from prodromal to chronic stages. Several anomalies are potent endophenotypes, while others exist in clinical high-risk subjects and worsen in those who convert to full psychosis. Aberrant functional coupling between thalamus and cortex, low glutamate content and readouts from resting EEG carry predictive values for transition to psychosis or functional outcome. In this context, thalamus-related anomalies represent a valuable entry point to tackle circuit-based alterations associated with the emergence of psychosis. This review also proposes that longitudinal surveys of neuroimaging, EEG readouts associated with circuits encompassing the mediodorsal, pulvinar in high-risk individuals could unveil biological mechanisms contributing to this psychiatric disorder.
Collapse
Affiliation(s)
- Pascal Steullet
- Center of Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
25
|
Alemán-Gómez Y, Najdenovska E, Roine T, Fartaria MJ, Canales-Rodríguez EJ, Rovó Z, Hagmann P, Conus P, Do KQ, Klauser P, Steullet P, Baumann PS, Bach Cuadra M. Partial-volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia. Hum Brain Mapp 2020; 41:4041-4061. [PMID: 33448519 PMCID: PMC7469814 DOI: 10.1002/hbm.25108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial‐volume‐based over probabilistic‐based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex‐matched healthy subjects. Six tissue segmentation approaches were employed to obtain the gray matter concentration/probability images. The statistical tests were applied at three different anatomical scales: whole thalamus, thalamic subregions and voxel‐wise. The results suggest that the partial volume model estimation of gray matter is more sensitive to detect atrophies within the thalamus of patients with psychosis. However all the methods detected gray matter deficit in the pulvinar, particularly in early stages of psychosis. This study demonstrates also that the gray matter decrease varies nonlinearly with age and between nuclei. While a gray matter loss was found in the pulvinar of patients in both stages of psychosis, reduced gray matter in the mediodorsal was only observed in early psychosis subjects. Finally, our analyses point to alterations in a sub‐region comprising the lateral posterior and ventral posterior nuclei. The obtained results reinforce the hypothesis that thalamic gray matter assessment is more reliable when the tissues segmentation method takes into account the partial volume effect.
Collapse
Affiliation(s)
- Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland
| | - Elena Najdenovska
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Timo Roine
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland
| | - Mário João Fartaria
- Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Erick J Canales-Rodríguez
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,FIDMAG Germanes Hospitalàries Research Foundation, Sant Boi de Llobregat, Barcelona, Spain
| | - Zita Rovó
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Service of General Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
26
|
Kim J, Cho H, Kim J, Kim A, Kang Y, Kang W, Choi KW, Ham BJ, Han KM, Tae WS. Changes in cortical thickness and volume of cerebellar subregions in patients with bipolar disorders. J Affect Disord 2020; 271:74-80. [PMID: 32479334 DOI: 10.1016/j.jad.2020.03.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Numerous studies have suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). We aimed to investigate differences in the volume and cortical thickness of the cerebellar subregions between patients with BD and healthy controls (HCs). METHODS Ninety patients with BD and one hundred sixty-six HCs participated in this study and underwent T1-weighted structural magnetic resonance imaging. We analyzed the volume and cortical thickness of each cerebellar hemisphere divided into 12 subregions using T1-weighted images of participants. One-way analysis of covariance was used to evaluate differences between the groups, with age, sex, medication, and total intracranial cavity volume used as covariates. RESULTS The BD group had significantly increased cortical thickness of the cerebellum in all cerebellar subregions compared to the HC group. The cortical thicknesses of the whole cerebellum and each hemisphere were also significantly thicker in the BD group than in the HC group. The volume of the left lobule IX was significantly lower in patients with BD than in HCs, whereas no significant differences in the volumes were observed in the other subregions. LIMITATIONS Our cross-sectional design cannot provide a causal relationship between the increased cortical thickness of the cerebellum and the risk of BD. CONCLUSIONS We observed widespread and significant cortical thickening in all the cerebellar subregions. Our results provide evidence for the involvement of the cerebellum in BD. Further studies are required to integrate neurobiological evidence and structural brain imaging to elucidate the pathophysiology of BD.
Collapse
Affiliation(s)
- Jooyeon Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heejoon Cho
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jinha Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Woo Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Lee DK, Lee H, Park K, Joh E, Kim CE, Ryu S. Common gray and white matter abnormalities in schizophrenia and bipolar disorder. PLoS One 2020; 15:e0232826. [PMID: 32379845 PMCID: PMC7205291 DOI: 10.1371/journal.pone.0232826] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate abnormalities in the gray matter and white matter (GM and WM, respectively) that are shared between schizophrenia (SZ) and bipolar disorder (BD). We used 3T-magnetic resonance imaging to examine patients with SZ, BD, or healthy control (HC) subjects (aged 20–50 years, N = 65 in each group). We generated modulated GM maps through voxel-based morphometry (VBM) for T1-weighted images and skeletonized fractional anisotropy, mean diffusion, and radial diffusivity maps through tract-based special statistics (TBSS) methods for diffusion tensor imaging (DTI) data. These data were analyzed using a generalized linear model with pairwise comparisons between groups with a family-wise error corrected P < 0.017. The VBM analysis revealed widespread decreases in GM volume in SZ compared to HC, but patients with BD showed GM volume deficits limited to the right thalamus and left insular lobe. The TBSS analysis showed alterations of DTI parameters in widespread WM tracts both in SZ and BD patients compared to HC. The two disorders had WM alterations in the corpus callosum, superior longitudinal fasciculus, internal capsule, external capsule, posterior thalamic radiation, and fornix. However, we observed no differences in GM volume or WM integrity between SZ and BD. The study results suggest that GM volume deficits in the thalamus and insular lobe along with widespread disruptions of WM integrity might be the common neural mechanisms underlying the pathologies of SZ and BD.
Collapse
Affiliation(s)
- Dong-Kyun Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyeongrae Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Kyeongwoo Park
- Department of Clinical Psychology, National Center for Mental Health, Seoul, Republic of Korea
| | - Euwon Joh
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Chul-Eung Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Delvecchio G, Maggioni E, Squarcina L, Arighi A, Galimberti D, Scarpini E, Bellani M, Brambilla P. A Critical Review on Structural Neuroimaging Studies in BD: a Transdiagnostic Perspective from Psychosis to Fronto-Temporal Dementia. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00204-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Madeira N, Duarte JV, Martins R, Costa GN, Macedo A, Castelo-Branco M. Morphometry and gyrification in bipolar disorder and schizophrenia: A comparative MRI study. NEUROIMAGE-CLINICAL 2020; 26:102220. [PMID: 32146321 PMCID: PMC7063231 DOI: 10.1016/j.nicl.2020.102220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Increased right globus pallidus is a consistent marker in schizophrenia (SCZ). Left supramarginal gyrification increases in bipolar disorder (BPD) in contrast with SCZ. Gyrification analysis may help distinguish early phases of BPD and SCZ.
Schizophrenia is believed to be a neurodevelopmental disease with high heritability. Differential diagnosis is often challenging, especially in early phases, namely with other psychotic disorders or even mood disorders. such as bipolar disorder with psychotic symptoms. Key pathophysiological changes separating these two classical psychoses remain poorly understood, and current evidence favors a more dimensional than categorical differentiation between schizophrenia and bipolar disorder. While established biomarkers like cortical thickness and grey matter volume are heavily influenced by post-onset changes and thus provide limited possibility of accessing early pathologies, gyrification is assumed to be more specifically determined by genetic and early developmental factors. The aim of our study was to compare both classical and novel morphometric features in these two archetypal psychiatric disorders. We included 20 schizophrenia patients, 20 bipolar disorder patients and 20 age- and gender-matched healthy controls. Data analyses were performed with CAT12/SPM12 applying general linear models for four morphometric measures: gyrification and cortical thickness (surface-based morphometry), and whole-brain grey matter/grey matter volume (voxel-based morphometry - VBM). Group effects were tested using age and gender as covariates (and total intracranial volume for VBM). Voxel-based morphometry analysis revealed a schizophrenia vs. control group effect on regional grey matter volume (p < 0.05, familywise error correction) in the right globus pallidus. There was no group effect on white matter volume when correcting for multiple comparisons neither on cortical thickness. Gyrification changes in clinical samples were found in the left supramarginal gyrus (BA40) – increased and reduced gyrification, respectively, in BPD and SCZ patients - and in the right inferior frontal gyrus (BA47), with a reduction in gyrification of the SCZ group when compared with controls. The joint analysis of different morphometric features, namely measures such as gyrification, provides a promising strategy for the elucidation of distinct phenotypes in psychiatric disorders. Different morphological change patterns, highlighting specific disease trajectories, could potentially generate neuroimaging-derived biomarkers, helping to discriminate schizophrenia from bipolar disorder in early phases, such as first-episode psychosis patients.
Collapse
Affiliation(s)
- Nuno Madeira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - Gabriel Nascimento Costa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - António Macedo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, Portugal; Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
30
|
Madre M, Canales-Rodríguez EJ, Fuentes-Claramonte P, Alonso-Lana S, Salgado-Pineda P, Guerrero-Pedraza A, Moro N, Bosque C, Gomar JJ, Ortíz-Gil J, Goikolea JM, Bonnin CM, Vieta E, Sarró S, Maristany T, McKenna PJ, Salvador R, Pomarol-Clotet E. Structural abnormality in schizophrenia versus bipolar disorder: A whole brain cortical thickness, surface area, volume and gyrification analyses. Neuroimage Clin 2019; 25:102131. [PMID: 31911343 PMCID: PMC6948361 DOI: 10.1016/j.nicl.2019.102131] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The profiles of cortical abnormalities in schizophrenia and bipolar disorder, and how far they resemble each other, have only been studied to a limited extent. The aim of this study was to identify and compare the changes in cortical morphology associated with these pathologies. METHODS A total of 384 subjects, including 128 patients with schizophrenia, 128 patients with bipolar disorder and 127 sex-age-matched healthy subjects, were examined using cortical surface-based morphology. Four cortical structural measures were studied: cortical volume (CV), cortical thickness (CT), surface area (SA) and gyrification index (GI). Group comparisons for each separate cortical measure were conducted. RESULTS At a threshold of P = 0.05 corrected, both patient groups showed significant widespread CV and CT reductions in similar areas compared to healthy subjects. However, the changes in schizophrenia were more pronounced. While CV decrease in bipolar disorder was exclusively explained by cortical thinning, in schizophrenia it was driven by changes in CT and partially by SA. Reduced GI was only found in schizophrenia. The direct comparison between both disorders showed significant reductions in all measures in patients with schizophrenia. CONCLUSIONS Cortical volume and cortical thickness deficits are shared between patients with schizophrenia and bipolar disorder, suggesting that both pathologies may be affected by similar environmental and neurodegenerative factors. However, the exclusive alteration in schizophrenia of metrics related to the geometry and curvature of the brain cortical surface (SA, GI) suggests that this group is influenced by additional neurodevelopmental and genetic factors.
Collapse
Affiliation(s)
- Mercè Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain.
| | - Erick J Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Silvia Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | | | - Noemí Moro
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Clara Bosque
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; The Litwin-Zucker Alzheimer's Research Center, NY, USA
| | - Jordi Ortíz-Gil
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital General de Granollers, Granollers, Catalonia, Spain
| | - José M Goikolea
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Caterina M Bonnin
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Fundació de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Peter J McKenna
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
31
|
Palaniyappan L, Deshpande G, Lanka P, Rangaprakash D, Iwabuchi S, Francis S, Liddle PF. Effective connectivity within a triple network brain system discriminates schizophrenia spectrum disorders from psychotic bipolar disorder at the single-subject level. Schizophr Res 2019; 214:24-33. [PMID: 29398207 DOI: 10.1016/j.schres.2018.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Schizophrenia spectrum disorders (SSD) and psychotic bipolar disorder share a number of genetic and neurobiological features, despite a divergence in clinical course and outcome trajectories. We studied the diagnostic classification potential that can be achieved on the basis of the structure and connectivity within a triple network system (the default mode, salience and central executive network) in patients with SSD and psychotic bipolar disorder. METHODS Directed static connectivity and its dynamic variance was estimated among 8 nodes of the three large-scale networks. Multivariate autoregressive models of deconvolved resting state functional magnetic resonance imaging time series were obtained from 57 patients (38 with SSD and 19 with bipolar disorder and psychosis). We used 2/3 of the patients for training and validation of the classifier and the remaining 1/3 as an independent hold-out test data for performance estimation. RESULTS A high level of discrimination between bipolar disorder with psychosis and SSD (combined balanced accuracy = 96.2%; class accuracies 100% for bipolar and 92.3% for SSD) was achieved when effective connectivity and morphometry of the triple network nodes was combined with symptom scores. Patients with SSD were discriminated from patients with bipolar disorder and psychosis as showing higher clinical severity of disorganization and higher variability in the effective connectivity between salience and executive networks. CONCLUSIONS Our results support the view that the study of network-level connectivity patterns can not only clarify the pathophysiology of SSD but also provide a measure of excellent clinical utility to identify discrete diagnostic/prognostic groups among individuals with psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada.
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA.
| | - Pradyumna Lanka
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - D Rangaprakash
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarina Iwabuchi
- Centre for Translational Neuroimaging, Division of Psychiatry & Applied Psychology, Institute of Mental Health, University of Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield MR Centre, University of Nottingham, UK
| | - Peter F Liddle
- Centre for Translational Neuroimaging, Division of Psychiatry & Applied Psychology, Institute of Mental Health, University of Nottingham, UK
| |
Collapse
|
32
|
Delvecchio G, Pigoni A, Bauer IE, Soares JC, Brambilla P. Disease-discordant twin structural MRI studies on affective disorders. Neurosci Biobehav Rev 2019; 108:459-471. [PMID: 31790709 DOI: 10.1016/j.neubiorev.2019.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging (MRI) studies have identified neural structures implicated in the pathophysiology of mood disorders, especially bipolar disorder (BD) and major depressive disorder (MDD). However, the role of genetic and environmental influences on such brain deficits is still unclear. In this context, the present review summarizes the current evidence from structural MRI and Diffusion Tensor Imaging (DTI) studies on twin samples concordant or discordant for BD or MDD, with the aim of clarifying the role of genetic and environmental risk factors on brain alterations. Although the results showed a complex interplay between gene and environment in affective disorders, the evidence seem to underline that both genetic and environmental risk factors have an impact on brain areas and vulnerability to MDD and BD. However, the precise mechanism of action and the interaction between these factors still needs to be unveiled. Therefore, future larger studies on concordant or discordant twins should be encouraged, because this population provides a unique opportunity to probe separately genetic and environmental markers of disease vulnerability.
Collapse
Affiliation(s)
- G Delvecchio
- University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - A Pigoni
- University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy
| | - I E Bauer
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - J C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - P Brambilla
- University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy.
| |
Collapse
|
33
|
In Vitro Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of PCDH15 and RELN. eNeuro 2019; 6:ENEURO.0403-18.2019. [PMID: 31540999 PMCID: PMC6800292 DOI: 10.1523/eneuro.0403-18.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BP) and schizophrenia (SCZ) are major psychiatric disorders, but the molecular mechanisms underlying the complicated pathologies of these disorders remain unclear. It is difficult to establish adequate in vitro models for pathological analysis because of the heterogeneity of these disorders. In the present study, to recapitulate the pathologies of these disorders in vitro, we established in vitro models by differentiating mature neurons from human induced pluripotent stem cells (hiPSCs) derived from BP and SCZ patient with contributive copy number variations, as follows: two BP patients with PCDH15 deletion and one SCZ patient with RELN deletion. Glutamatergic neurons and GABAergic neurons were induced from hiPSCs under optimized conditions. Both types of induced neurons from both hiPSCs exhibited similar phenotypes of MAP2 (microtubule-associated protein 2)-positive dendrite shortening and decreasing synapse numbers. Additionally, we analyzed isogenic PCDH15- or RELN-deleted cells. The dendrite and synapse phenotypes of isogenic neurons were partially similar to those of patient-derived neurons. These results suggest that the observed phenotypes are general phenotypes of psychiatric disorders, and our in vitro models using hiPSC-based technology may be suitable for analysis of the pathologies of psychiatric disorders.
Collapse
|
34
|
Chaudhury A, Ramana BV. Schizophrenia and bipolar disorders: The Toxoplasma connection. Trop Parasitol 2019; 9:71-76. [PMID: 31579659 PMCID: PMC6767789 DOI: 10.4103/tp.tp_28_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2019] [Indexed: 12/16/2022] Open
Abstract
The infectious etiology of psychiatric illnesses has remained an unexplored area till recently. During the past two decades, numerous studies from multiple angles have tried to link chronic toxoplasmosis with schizophrenia and bipolar disorders, among others. Most of the evidence has come from serological studies in the patient population, but other facets have also been explored. This review examines the various areas from which a causal link has been deduced and includes: (a) serological studies, (b) effect of maternal toxoplasmosis on children, (c) neurotransmitter studies, (d) parasite localization in the brain, (e) role of cytokines, and (f) psychotherapy and its effect on Toxoplasma. However, multiple factors may play a role in the etiopathogenesis of psychiatric illnesses, and chronic Toxoplasma infection may be considered an important risk factor for the genesis and symptomatology of schizophrenia and bipolar disorders.
Collapse
Affiliation(s)
- Abhijit Chaudhury
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences and Sri Padmavathi Medical College (Women), Tirupati, Andhra Pradesh, India
| | - B V Ramana
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences and Sri Padmavathi Medical College (Women), Tirupati, Andhra Pradesh, India
| |
Collapse
|
35
|
Squarcina L, Dagnew TM, Rivolta MW, Bellani M, Sassi R, Brambilla P. Automated cortical thickness and skewness feature selection in bipolar disorder using a semi-supervised learning method. J Affect Disord 2019; 256:416-423. [PMID: 31229930 DOI: 10.1016/j.jad.2019.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar disorder (BD) broadly affects brain structure, in particular areas involved in emotion processing and cognition. In the last years, the psychiatric field's interest in machine learning approaches has been steadily growing, thanks to the potentiality of automatically discriminating patients from healthy controls. METHODS In this work, we employed cortical thickness of 58 regions of interest obtained from magnetic resonance imaging scans of 41 BD patients and 34 healthy controls, to automatically identify the regions which are mostly involved with the disease. We used a semi-supervised method, addressing the criticisms on supervised methods, related to the fact that the diagnosis is not unaffected by uncertainty. RESULTS Our results confirm findings in previous studies, with a classification accuracy of about 75% when mean thickness and skewness of up to five regions are considered. We obtained that the parietal lobe and some areas in the temporal sulcus were the regions which were the most involved with BD. LIMITATIONS The major limitation of our work is the limited size or our dataset, but in line with other recent machine learning works in the field. Moreover, we considered chronic patients, whose brain characteristics may thus be affected. CONCLUSIONS The automatic selection of the brain regions most involved in BD may be of great importance when dealing with the pathogenesis of the disorder. Our method selected regions which are known to be involved with BD, indicating that damage to the identified areas can be considered as a marker of disease.
Collapse
Affiliation(s)
- L Squarcina
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| | - T M Dagnew
- Department of Computer Science, University of Milan, Milan, Italy.
| | - M W Rivolta
- Department of Computer Science, University of Milan, Milan, Italy
| | - M Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy
| | - R Sassi
- Department of Computer Science, University of Milan, Milan, Italy
| | - P Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
37
|
Sorella S, Lapomarda G, Messina I, Frederickson JJ, Siugzdaite R, Job R, Grecucci A. Testing the expanded continuum hypothesis of schizophrenia and bipolar disorder. Neural and psychological evidence for shared and distinct mechanisms. Neuroimage Clin 2019; 23:101854. [PMID: 31121524 PMCID: PMC6529770 DOI: 10.1016/j.nicl.2019.101854] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Despite the traditional view of Schizophrenia (SZ) and Bipolar disorder (BD) as separate diagnostic categories, the validity of such a categorical approach is challenging. In recent years, the hypothesis of a continuum between Schizophrenia (SZ) and Bipolar disorder (BD), postulating a common pathophysiologic mechanism, has been proposed. Although appealing, this unifying hypothesis may be too simplistic when looking at cognitive and affective differences these patients display. In this paper, we aim to test an expanded version of the continuum hypothesis according to which the continuum extends over three clusters: the psychotic, the cognitive, and the affective. We applied an innovative approach known as Source-based Morphometry (SBM) to the structural images of 46 individuals diagnosed with SZ, 46 with BD and 66 healthy controls (HC). We also analyzed the psychological profiles of the three groups using cognitive, affective, and clinical tests. At a neural level, we found evidence for a shared psychotic core in a distributed network involving portions of the medial parietal and temporo-occipital areas, as well as parts of the cerebellum and the middle frontal gyrus. We also found evidence of a cognitive core more compromised in SZ, including alterations in a fronto-parietal circuit, and mild evidence of an affective core more compromised in BD, including portions of the temporal and occipital lobes, cerebellum, and frontal gyrus. Such differences were confirmed by the psychological profiles, with SZ patients more impaired in cognitive tests, while BD in affective ones. On the bases of these results we put forward an expanded view of the continuum hypothesis, according to which a common psychotic core exists between SZ and BD patients complemented by two separate cognitive and affective cores that are both impaired in the two patients' groups, although to different degrees.
Collapse
Affiliation(s)
- Sara Sorella
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | - Gaia Lapomarda
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | | | | | - Roma Siugzdaite
- Department of Experimental Psychology, Faculty of Psychological and Pedagogical Sciences, Ghent University, Ghent, Belgium.
| | - Remo Job
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| |
Collapse
|
38
|
Lu X, Zhong Y, Ma Z, Wu Y, Fox PT, Zhang N, Wang C. Structural imaging biomarkers for bipolar disorder: Meta-analyses of whole-brain voxel-based morphometry studies. Depress Anxiety 2019; 36:353-364. [PMID: 30475436 DOI: 10.1002/da.22866] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a common and destructive psychiatric illness worldwide. Although it is known that BD is associated with morphological abnormalities of the brain, the regions implicated in BD remain unclear. Therefore, we aimed to update current knowledge on potential structural imaging biomarkers of BD. METHODS Studies published up to January 31, 2018, were identified by a comprehensive literature search of PubMed, EBSCO, and BrainMap voxel-based morphometry (VBM) database. Whole-brain VBM studies that examined gray matter (GM) abnormalities of group comparisons between BD and healthy controls (HC) and reported results as coordinates in a standard reference space were included. Different meta-analyses were performed by activation likelihood estimation (ALE) algorithm. RESULTS A total of 46 studies with 56 experiments, including 1720 subjects and 268 foci were included. Seven different meta-analyses were calculated separately across experiments reporting decreased or increased GM volume among BD, BDΙ, BD-adults, and BD-youths groups. Fifteen regions of significantly different GM volume between four groups and HC were identified. There were extensive GM deficits in the prefrontal and temporal cortex, and enlargements in the putamen, cingulate cortex, and precuneus. CONCLUSIONS The results revealed that the thinning of prefrontal cortex was a key region in the pathophysiology of BD. The enlargement of the cingulate cortex may be implicated in a compensatory mechanism. It underscored important differences between BD-adults and BD-youths and specific biomarkers of three subgroups.
Collapse
Affiliation(s)
- Xin Lu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zijuan Ma
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Wu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peter T Fox
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,South Texas Veterans Healthcare System, University of Texas Health San Antonio, San Antonio, United States.,Research Imaging Institute, University of Texas Health San Antonio, San Antonio, United States
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Su JH, Thomas FT, Kasoff WS, Tourdias T, Choi EY, Rutt BK, Saranathan M. Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. Neuroimage 2019; 194:272-282. [PMID: 30894331 DOI: 10.1016/j.neuroimage.2019.03.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/10/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022] Open
Abstract
The thalamus and its nuclei are largely indistinguishable on standard T1 or T2 weighted MRI. While diffusion tensor imaging based methods have been proposed to segment the thalamic nuclei based on the angular orientation of the principal diffusion tensor, these are based on echo planar imaging which is inherently limited in spatial resolution and suffers from distortion. We present a multi-atlas segmentation technique based on white-matter-nulled MP-RAGE imaging that segments the thalamus into 12 nuclei with computation times on the order of 10 min on a desktop PC; we call this method THOMAS (THalamus Optimized Multi Atlas Segmentation). THOMAS was rigorously evaluated on 7T MRI data acquired from healthy volunteers and patients with multiple sclerosis by comparing against manual segmentations delineated by a neuroradiologist, guided by the Morel atlas. Segmentation accuracy was very high, with uniformly high Dice indices: at least 0.85 for large nuclei like the pulvinar and mediodorsal nuclei and at least 0.7 even for small structures such as the habenular, centromedian, and lateral and medial geniculate nuclei. Volume similarity indices ranged from 0.82 for the smaller nuclei to 0.97 for the larger nuclei. Volumetry revealed that the volumes of the right anteroventral, right ventral posterior lateral, and both right and left pulvinar nuclei were significantly lower in MS patients compared to controls, after adjusting for age, sex and intracranial volume. Lastly, we evaluated the potential of this method for targeting the Vim nucleus for deep brain surgery and focused ultrasound thalamotomy by overlaying the Vim nucleus segmented from pre-operative data on post-operative data. The locations of the ablated region and active DBS contact corresponded well with the segmented Vim nucleus. Our fast, direct structural MRI based segmentation method opens the door for MRI guided intra-operative procedures like thalamotomy and asleep DBS electrode placement as well as for accurate quantification of thalamic nuclear volumes to follow progression of neurological disorders.
Collapse
Affiliation(s)
- Jason H Su
- Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Francis T Thomas
- Electrical & Computer Engineering, University of Arizona, Tucson, AZ, USA
| | - Willard S Kasoff
- Division of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Thomas Tourdias
- Service de Neuroimagerie Diagnostique et Thérapeutique, Université de Bordeaux, Bordeaux, France
| | | | - Brian K Rutt
- Radiology, Stanford University, Stanford, CA, USA
| | - Manojkumar Saranathan
- Electrical & Computer Engineering, University of Arizona, Tucson, AZ, USA; Medical Imaging, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
40
|
Ashton MM, Dean OM, Walker AJ, Bortolasci CC, Ng CH, Hopwood M, Harvey BH, Möller M, McGrath JJ, Marx W, Turner A, Dodd S, Scott JG, Khoo JP, Walder K, Sarris J, Berk M. The Therapeutic Potential of Mangosteen Pericarp as an Adjunctive Therapy for Bipolar Disorder and Schizophrenia. Front Psychiatry 2019; 10:115. [PMID: 30918489 PMCID: PMC6424889 DOI: 10.3389/fpsyt.2019.00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
New treatments are urgently needed for serious mental illnesses including bipolar disorder and schizophrenia. This review proposes that Garcinia mangostana Linn. (mangosteen) pericarp is a possible adjunctive therapeutic agent for these disorders. Research to date demonstrates that neurobiological properties of the mangosteen pericarp are well aligned with the current understanding of the pathophysiology of bipolar disorder and schizophrenia. Mangosteen pericarp has antioxidant, putative neuroprotective, anti-inflammatory, and putative mitochondrial enhancing properties, with animal studies demonstrating favorable pharmacotherapeutic benefits with respect to these disorders. This review summarizes evidence of its properties and supports the case for future studies to assess the utility of mangosteen pericarp as an adjunctive treatment option for mood and psychotic disorders.
Collapse
Affiliation(s)
- Melanie M. Ashton
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Olivia M. Dean
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Adam J. Walker
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Malcolm Hopwood
- Professorial Psychiatry Unit, Albert Road Clinic, University of Melbourne, Melbourne, VIC, Australia
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), North West University, Potchefstroom, South Africa
| | - John J. McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - James G. Scott
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Metro North Mental Health, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jon-Paul Khoo
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen Youth Health Research Centre, Parkville, VIC, Australia
| |
Collapse
|
41
|
Marotta G, Delvecchio G, Pigoni A, Mandolini G, Ciappolino V, Oldani L, Madonna D, Grottaroli M, Altamura AC, Brambilla P. The metabolic basis of psychosis in bipolar disorder: A positron emission tomography study. Bipolar Disord 2019; 21:151-158. [PMID: 30506616 DOI: 10.1111/bdi.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Psychotic symptoms are a common feature in bipolar disorder (BD), especially during manic phases, and are associated with a more severe course of illness. However, not all bipolar subjects experience psychosis during the course of their illness, and this difference often guides assessment and pharmacological treatment. The aim of the present study is to elucidate, for the first time, the FDG uptake dysfunctions associated with psychosis in BD patients with and without a history of past psychotic symptoms, through a positron emission tomography (PET) approach. METHODS Fifty BD patients with lifetime psychotic symptoms, 40 BD patients without lifetime psychotic symptoms and 27 healthy controls (HC) were recruited and underwent an 18F-FDG-PET session. RESULTS Compared to HC, BD subjects shared common FDG uptake deficits in several brain areas, including insula, inferior temporal gyrus and middle occipital gyrus. Moreover, we found that BD patients with a history of past psychotic symptoms had a unique FDG uptake alteration in the right fusiform gyrus compared to both BD patients without lifetime psychotic symptoms and HC (all P < 0.01, cFWE corrected). CONCLUSIONS Overall, our results suggest that FDG uptake alterations in brain regions involved in emotion regulation are a key feature of BD, regardless the presence of past psychosis. Finally, we demonstrated that the FDG uptake reduction in fusiform gyrus is associated with the presence of past psychotic symptoms in BD, ultimately leading towards the idea that the fusiform gyrus might be considered a putative biomarker of psychosis.
Collapse
Affiliation(s)
- Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Scientific Institute, IRCCS E. Medea, Pordenone, Italy
| | - Alessandro Pigoni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianmario Mandolini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Domenico Madonna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marika Grottaroli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Carlo Altamura
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Psychiatry and Behavioural Sciences, UT Houston Medical School, Houston, TX, USA
| |
Collapse
|
42
|
Development of Neuroimaging-Based Biomarkers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:159-195. [PMID: 31705495 DOI: 10.1007/978-981-32-9721-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of accumulating neuroimaging data with emphasis on translational potential. The subject will be described in the context of three disease states, i.e., schizophrenia, bipolar disorder, and major depressive disorder, and for three clinical goals, i.e., disease risk assessment, subtyping, and treatment decision.
Collapse
|