1
|
Wang W, Ji L, Jing X, Zhao P, Xia Q. MicroRNA let-7 targets BmCDK1 to regulate cell proliferation and endomitosis of silk gland in the silkworm, Bombyx mori. INSECT SCIENCE 2024; 31:1026-1040. [PMID: 38053466 DOI: 10.1111/1744-7917.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/17/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023]
Abstract
MicroRNAs play critical roles in multiple developmental processes in insects. Our previous study showed that CRISPR/Cas9-mediated knock down of the microRNA let-7 in silkworms increased the size of larvae and silk glands, thereby improving the silk production capacity. In this study, we elucidate the molecular mechanism underlying of let-7 regulates growth. Identification of differentially expressed genes in response to let-7 knock down revealed enrichment of pathways associated with cell proliferation and DNA replication. let-7 dysregulation affected the cell cycle and proliferation of the Bombyx mori cell line BmN. Dual-luciferase and target site mutation assays showed that BmCDK1 is a direct target gene of let-7, with only 1 binding site on its 3'-untranslated region. RNA interference of BmCDK1 inhibited cell proliferation, but this effect was counteracted by co-transfection with let-7 antagomir. Moreover, let-7 knock down induced BmCDK1 expression and promoted cell proliferation in multiple tissues, and further induced endomitosis in the silk gland in vivo. Knock down of BmCDK1 resulted in abnormal formation of a new epidermis, and larval development was arrested at the 2nd or 3rd molt stage. Taken together, our results demonstrated that BmCDK1 is a novel target of let-7 in cell fate determination, possessing potential for improving silk yield in silkworm.
Collapse
Affiliation(s)
- Wei Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China
| | - Linshengzhe Ji
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Xinyuan Jing
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China
| |
Collapse
|
2
|
Pan W, Yao X, Lin L, Liu X, Jin P, Ma F. The Relish/miR-275/Dredd mediated negative feedback loop is crucial to restoring immune homeostasis of Drosophila Imd pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104013. [PMID: 37804878 DOI: 10.1016/j.ibmb.2023.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
The NF-κB/Relish, as a core transcription factor of Drosophila immune deficiency (Imd) pathway, activates the transcriptions of antimicrobial peptides (AMPs) to combat gram-negative bacterial infections, but its role in regulating miRNA expression during immune response has less been reported. We here describe a negative feedback loop of Imd signaling mediated by Relish/miR-275/Dredd that controls Drosophila immune homeostasis after Escherichia coli (E. coli) infection. Our results demonstrate that Relish may directly activate the transcription of miR-275 via binding to its promoter in vitro and vivo, particularly miR-275 further inhibits the expression of Dredd through binding to its 3'UTR to negatively control Drosophila Imd immune response. Remarkably, the ectopic expression of miR-275 significantly reduces Drosophila lifespan. More importantly, our work uncovers a new mechanism by which Relish can flexibly switch its role to maintain Drosophila immune response and homeostasis during infection. Collectively, our study not only reveals the functional duality of Relish in regulating immune response of Drosophila Imd pathway, but also provides a new insight into the maintenance of animal innate immune homeostasis.
Collapse
Affiliation(s)
- Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xiaolong Yao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Lu Lin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xiaoqi Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
3
|
Deng Z, Zhang Y, Li L, Xie X, Huang J, Zhang M, Ni X, Li X. A dual-luciferase reporter system for characterization of small RNA target genes in both mammalian and insect cells. INSECT SCIENCE 2022; 29:631-644. [PMID: 34232550 DOI: 10.1111/1744-7917.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNA molecules that bind to target messenger RNAs (mRNAs) and affect the stability or translational efficiency of the bound mRNAs. Single or dual-luciferase reporter systems have been successfully used to identify miRNA target genes in mammalian cells. These reporter systems, however, are not sensitive enough to verify miRNA-target gene relationships in insect cell lines because the promoters of the target luciferase (usually Renilla) used in these reporter systems are too weak to drive sufficient expression of the target luciferase in insect cells. In this study, we replaced the SV40 promoter in the psiCHECK-2 reporter vector, which is widely used with mammalian cell lines, with the HSV-TK or AC5.1 promoter to yield two new dual-luciferase reporter vectors, designated psiCHECK-2-TK and psiCHECK-2-AC5.1, respectively. Only psiCHECK-2 and psiCHECK-2-AC5.1 had suitable target (Renilla)/reference (firefly) luciferase activity ratios in mammalian (HeLa and HEK293) and insect (Sf9, S2, Helicoverpa zea fat body and ovary) cell lines, while psiCHECK-2-TK had suitable Renilla/firefly luciferase activity ratios regardless of the cell line. Moreover, psiCHECK-2-TK successfully detected the interaction between Helicoverpa armigera miRNA9a and its target, the 3'-untranslated region of heat shock protein 90, in both mammalian and H. zea cell lines, but psiCHECK-2 failed to do so in H. zea cell lines. Furthermore, psiCHECK-2-TK with the target sequence, HzMasc (H. zea Masculinizer), accurately differentiated between H. zea cell lines with or without the negative regulation factor (miRNA or piRNA) of HzMasc. These data demonstrate that psiCHECK-2-TK can be used to functionally characterize small RNA target genes in both mammalian and insect cells.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Leyao Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, Georgia, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Wu B, Ruan C, Shah AH, Li D, Li H, Ding J, Li J, Du W. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree ( Camellia oleifera). Cells 2021; 11:cells11010071. [PMID: 35011633 PMCID: PMC8750442 DOI: 10.3390/cells11010071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal value that is widely planted in southern China. However, there is no report on the identification of the miRNAs involved in lipid metabolism and seed development in the high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the key periods of oil formation and accumulation in the seeds of tea oil camellia and identified miRNA–mRNA regulatory modules involved in lipid metabolism and seed development. Sixteen small RNA libraries for four development stages of seed oil biosynthesis in high- and low-oil cultivars were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families, and 40 novel miRNAs were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 upregulated miRNAs, and 21 downregulated miRNAs. An integrated analysis of the miRNA and mRNA transcriptome sequence data revealed that 10 miRNA–mRNA regulatory modules were related to lipid metabolism; for example, the regulatory modules of ath-miR858b–MYB82/MYB3/MYB44 repressed seed oil biosynthesis, and a regulation module of csi-miR166e-5p–S-ACP-DES6 was involved in the formation and accumulation of oleic acid. A total of 23 miRNA–mRNA regulatory modules were involved in the regulation of the seed size, such as the regulatory module of hpe-miR162a_L-2–ARF19, involved in early seed development. A total of 12 miRNA–mRNA regulatory modules regulating growth and development were identified, such as the regulatory modules of han-miR156a_L+1–SPL4/SBP2, promoting early seed development. The expression changes of six miRNAs and their target genes were validated using quantitative real-time PCR, and the targeting relationship of the cpa-miR393_R-1–AFB2 regulatory module was verified by luciferase assays. These data provide important theoretical values and a scientific basis for the genetic improvement of new cultivars of tea oil camellia in the future.
Collapse
Affiliation(s)
- Bo Wu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
- Correspondence: ; Tel.: +86-411-87652536
| | - Asad Hussain Shah
- Department of Biotechnology, Faculty of Sciences, University of Kotli Azad Jammu and Kashmir, Azad Jammu and Kashmir, Kotli 11100, Pakistan;
| | - Denghui Li
- Guizhou Wulingshan Youcha Technology Innovation Research Institute Co., Ltd., Tongren 554300, China;
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Jingbin Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| |
Collapse
|
5
|
Huang J, Chen Y, Zhu J, Wang M, Tang S, Yi Y, Shen X. Bombyx mori miR-2845 represses the expression of fibroin light chain gene both in vitro and in vivo. PLoS One 2021; 16:e0261391. [PMID: 34914767 PMCID: PMC8675719 DOI: 10.1371/journal.pone.0261391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
To study the regulatory function of Bombyx mori (B. mori) miRNAs (bmo-miR) on the expression of fibroin light chain gene (BmFib-L), the 3’UTR of BmFib-L mRNA was used as the target for online prediction of miRNAs from miRBase using RNAhybrid Software, and miR-2845 was screened out. First, the expression profiles of miR-2845 and BmFib-L in larvae of the 5th instar were analyzed by Real-time quantitative PCR (RT-qPCR). Then recombinant plasmids (pcDNA3.0-pre-miR-2845 and pGL3.0-BmFib-L) were constructed to use for the expression of miR-2845 and BmFib-L 3’UTR, respectively. Cellular-level functional verification of miR-2845 on BmFib-L was carried out using multiple experimental methods (including dual luciferase reporter vectors, artificially synthesized mimics and inhibitors, and target site mutations). Finally, in vivo functional verification was performed by injecting the recombinant vector in 5th instar larvae. BmFib-L expression levels were detected using RT-qPCR in the posterior silk glands (PSG) of the injected larvae. Results showed that the expression of miR-2845 increased between the 1st and 5th day in 5th instar larvae, but began to decline on the 5th day, while the expression of the target gene BmFib-L increased sharply. This suggests that miR-2845 and BmFib-L expression levels show opposing trends, implying a negative regulatory relationship. In BmN cells, miR-2845 significantly down-regulated the expression of BmFib-L; the inhibitory effect of miR-2845 on BmFib-L was disappeared after mutation of the targeting site on 3’UTR of BmFib-L; in individuals, miR-2845 significantly down-regulated BmFib-L expression levels. Our results provide new experimental data for clarifying the molecular regulation mechanism of silk protein expression.
Collapse
Affiliation(s)
- JingYi Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - YanHua Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Juan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - MeiXian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - ShunMing Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - YongZhu Yi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - XingJia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
6
|
Qian P, Wang X, Li J, Jiang T, Tang X, Huixiang G, Shen X. Bmo-miR-2780a regulates the expression of the sericin-1 gene of Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21627. [PMID: 31701579 DOI: 10.1002/arch.21627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/31/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Silk production in Bombyx mori L. is largely determined by the expression of genes encoding fibroin and sericin. Here, we examined the regulatory function of a microRNA (miRNA) on silk gene expression using the sericin-1 gene (BmSer-1). First, we downloaded whole mature miRNAs of silkworm from miRBase and identified bmo-miR-2780a as a candidate miRNA for the regulation of BmSer-1 expression. We used semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) with stem-loop primers to investigate the expression profile of bmo-miR-2780a and its predicted target gene BmSer-1 in seven different tissues from 5th instar day-3 larvae, including head, fat body, anterior silk gland (ASG), middle silk gland (MSG), posterior silk gland (PSG), middle gut, and hemolymph. Our results showed that bmo-miR-2780a was specifically expressed in the MSG and that the expression level of BmSer-1 was significantly higher in the MSG than in other tissues. Recombinant plasmids carrying both pri-mir-2780a and Ser1-3'UTR were constructed and then used to cotransfect BmN cells. We further detected the effect of bmo-miR-2780a on Ser-1 in vivo. These results showed that the target gene was significantly decreased by miR-2780a compared with the control group (p < .05), thus indicating that bmo-miR-2780a might negatively regulate the expression of Ser-1.
Collapse
Affiliation(s)
- Ping Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Zhenjiang, Jiangsu, China
| | - Xin Wang
- Silkworm Eggs Administration Department of Jiangsu Province, Wuxi, Jiangsu, China
| | - Jiashuang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Zhenjiang, Jiangsu, China
- Department of Evolutionary & Environmental Biology, The Faculty of Natural Sciences, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Xudong Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Guan Huixiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xingjia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Wang W, Wang X, Li X, Pu Q, Luo C, Xu L, Peng X, Liu S. Genetic Manipulation of MicroRNAs in the Silk Gland of Silkworm, Bombyx Mori. Biol Proced Online 2019; 21:16. [PMID: 31427900 PMCID: PMC6694536 DOI: 10.1186/s12575-019-0102-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are a class of non-coding RNAs with important post-transcriptional regulatory functions. To reveal the function of miRNAs in vivo, the critical step is to change their expression levels in the tissues or organs. In this work, we explored the application of several important genetic techniques in altering the expression of silk gland-specific miR-274 of silkworm (Bombyx mori). Results Injection of synthesized microRNA mimics and antagomirs exerted no effect on the expression of miR-274 in the silk gland, miR-274 sponge specifically absorbed miR-274 and down-regulated its expression, transgenic overexpression of miR-274 precursor significantly up-regulated miR-274, and finally tissue-specific CRISPR/Cas9 system achieved deletion of miR-274. Conclusions A practical technical system was established for studying the functions of miRNAs in silk gland of Bombyx mori. Our research provides methodological support for the functional study of miRNAs and other noncoding RNAs in the silk gland and more organs in other species.
Collapse
Affiliation(s)
- Wei Wang
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Xinran Wang
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Xuemei Li
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Qian Pu
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Chengyi Luo
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Lili Xu
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Xinyue Peng
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Shiping Liu
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| |
Collapse
|
8
|
Chen Y, Jiang T, Tan Z, Xue P, Xu J, Tang S, Yi Y, Shen X. Bom-miR-2805 upregulates the expression of Bombyx mori fibroin light chain gene in vivo. J Cell Biochem 2019; 120:14326-14335. [PMID: 31106458 DOI: 10.1002/jcb.28538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 01/19/2023]
Abstract
MicroRNAs (miRs) are inner regulatory RNAs mainly by regulating expression of genes at the posttranscriptional level. To investigate the regulatory function of Bombyx mori (B. mori) fibroin protein genes, the mRNA 3'-untranslated region (3'-UTR) of fibroin light chain gene (BmFib-L) was used as the target and one miRNA, miR-2805 was predicted by using the Software. miR-2805 expression plasmid pcDNA3.0[ie1-egfp-pre-miR-2805-SV40] and BmFib-L 3'-UTR plasmid pGL3.0[A3-luc-Fib-L-3'-UTR-SV40] were constructed, respectively. The mentioned plasmids were cotransfected in BmN cells, and the regulatory function of miR-2805 on BmFib-L was detected by assay of dual luciferase activities, as well as synthesized mimic and inhibitor of miR-2805. The results revealed that miR-2805 significantly downregulated the expression of BmFib-L in BmN cells. To validate the function of miR-2805 in vivo, cultured silk glands or larvae were injected with solution containing pcDNA3.0[ie1-egfp-SV40], pcDNA3.0[ie1-egfp-pre-miR-2805-SV40], mimic, inhibitor respectively. BmFib-L expression was analyzed by quantitative reverse transcription polymerase chain reaction using total RNAs extracted from silk glands. The results showed that miR-2805 significantly upregulated the expression of BmFib-L in both cultured tissues and individuals. To find out how miR-2805 differentially regulates BmFib-L expression in cells and tissues or individuals, we analyzed the expression level of transcription factors (TFs) involved in expression of silk protein genes. The results showed that miR-2805 upregulated the expression of TFs BmAwh and Bmdimm. These results suggest that miR-2805 may up-regulate the expression of BmFib-L interaction with BmAwh and/or Bmdimm in vivo. These findings are beneficial to clarify the molecular mechanism of miRNAs in regulating B. mori silk protein biosynthesis.
Collapse
Affiliation(s)
- Yanhua Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tao Jiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhicheng Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Peng Xue
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Jin Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Shunming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yongzhu Yi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xingjia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
9
|
Ding J, Ruan C, Guan Y, Krishna P. Identification of microRNAs involved in lipid biosynthesis and seed size in developing sea buckthorn seeds using high-throughput sequencing. Sci Rep 2018; 8:4022. [PMID: 29507325 PMCID: PMC5838164 DOI: 10.1038/s41598-018-22464-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Sea buckthorn is a plant of medicinal and nutritional importance owing in part to the high levels of essential fatty acids, linoleic (up to 42%) and α-linolenic (up to 39%) acids in the seed oil. Sea buckthorn can produce seeds either via the sexual pathway or by apomixis. The seed development and maturation programs are critically dependent on miRNAs. To understand miRNA-mediated regulation of sea buckthorn seed development, eight small RNA libraries were constructed for deep sequencing from developing seeds of a low oil content line ‘SJ1’ and a high oil content line ‘XE3’. High-throughput sequencing identified 137 known miRNA from 27 families and 264 novel miRNAs. The potential targets of the identified miRNAs were predicted based on sequence homology. Nineteen (four known and 15 novel) and 22 (six known and 16 novel) miRNAs were found to be involved in lipid biosynthesis and seed size, respectively. An integrated analysis of mRNA and miRNA transcriptome and qRT-PCR identified some key miRNAs and their targets (miR164d-ARF2, miR168b-Δ9D, novelmiRNA-108-ACC, novelmiRNA-23-GPD1, novelmiRNA-58-DGAT1, and novelmiRNA-191-DGAT2) potentially involved in seed size and lipid biosynthesis of sea buckthorn seed. These results indicate the potential importance of miRNAs in regulating lipid biosynthesis and seed size in sea buckthorn.
Collapse
Affiliation(s)
- Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Ying Guan
- Institute of Berries, Heilongjiang Academy of Agricultural Sciences, Suiling, 152200, China
| | - Priti Krishna
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|