1
|
Li B, Deng S, Jiang H, Zhu W, Zhuo B, Du Y, Meng Z. The mechanistic effects of acupuncture in rodent neurodegenerative disease models: a literature review. Front Neurosci 2024; 18:1323555. [PMID: 38500484 PMCID: PMC10944972 DOI: 10.3389/fnins.2024.1323555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Neurodegenerative diseases refer to a battery of medical conditions that affect the survival and function of neurons in the brain, which are mainly presented with progressive loss of cognitive and/or motor function. Acupuncture showed benign effects in improving neurological deficits, especially on movement and cognitive function impairment. Here, we reviewed the therapeutic mechanisms of acupuncture at the neural circuit level in movement and cognition disorders, summarizing the influence of acupuncture in the dopaminergic system, glutamatergic system, γ-amino butyric acid-ergic (GABAergic) system, serotonergic system, cholinergic system, and glial cells at the circuit and synaptic levels. These findings can provide targets for clinical treatment and perspectives for further studies.
Collapse
Affiliation(s)
- Boxuan Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shizhe Deng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hailun Jiang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bifang Zhuo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Du
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihong Meng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Lamanna J, Ferro M, Spadini S, Racchetti G, Malgaroli A. The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome. Behav Sci (Basel) 2023; 13:668. [PMID: 37622808 PMCID: PMC10451670 DOI: 10.3390/bs13080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Tourette Syndrome (TS) is a high-incidence multifactorial neuropsychiatric disorder characterized by motor and vocal tics co-occurring with several diverse comorbidities, including obsessive-compulsive disorder and attention-deficit hyperactivity disorder. The origin of TS is multifactorial, with strong genetic, perinatal, and immunological influences. Although almost all neurotransmettitorial systems have been implicated in TS pathophysiology, a comprehensive neurophysiological model explaining the dynamics of expression and inhibition of tics is still lacking. The genesis and maintenance of motor and non-motor aspects of TS are thought to arise from functional and/or structural modifications of the basal ganglia and related circuitry. This complex wiring involves several cortical and subcortical structures whose concerted activity controls the selection of the most appropriate reflexive and habitual motor, cognitive and emotional actions. Importantly, striatal circuits exhibit bidirectional forms of synaptic plasticity that differ in many respects from hippocampal and neocortical plasticity, including sensitivity to metaplastic molecules such as dopamine. Here, we review the available evidence about structural and functional anomalies in neural circuits which have been found in TS patients. Finally, considering what is known in the field of striatal plasticity, we discuss the role of exuberant plasticity in TS, including the prospect of future pharmacological and neuromodulation avenues.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Psychology, Sigmund Freud University, 20143 Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132 Milan, Italy
| | - Gabriella Racchetti
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
3
|
Asp AJ, Chintaluru Y, Hillan S, Lujan JL. Targeted neuroplasticity in spatiotemporally patterned invasive neuromodulation therapies for improving clinical outcomes. Front Neuroinform 2023; 17:1150157. [PMID: 37035718 PMCID: PMC10080034 DOI: 10.3389/fninf.2023.1150157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Anders J. Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yaswanth Chintaluru
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Neurology and Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | - Sydney Hillan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
The Sapap3 -/- mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours. Transl Psychiatry 2023; 13:26. [PMID: 36717540 PMCID: PMC9886949 DOI: 10.1038/s41398-023-02323-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/30/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Symptom comorbidity is present amongst neuropsychiatric disorders with repetitive behaviours, complicating clinical diagnosis and impeding appropriate treatments. This is of particular importance for obsessive-compulsive disorder (OCD) and Tourette syndrome. Here, we meticulously analysed the behaviour of Sapap3 knockout mice, the recent rodent model predominantly used to study compulsive-like behaviours, and found that its behaviour is more complex than originally and persistently described. Indeed, we detected previously unreported elements of distinct pathologically repetitive behaviours, which do not form part of rodent syntactic cephalo-caudal self-grooming. These repetitive behaviours include sudden, rapid body and head/body twitches, resembling tic-like movements. We also observed that another type of repetitive behaviour, aberrant hindpaw scratching, might be responsible for the flagship-like skin lesions of this mouse model. In order to characterise the symptomatological nature of observed repetitive behaviours, we pharmacologically challenged these phenotypes by systemic aripiprazole administration, a first-line treatment for tic-like symptoms in Tourette syndrome and trichotillomania. A single treatment of aripiprazole significantly reduced the number of head/body twitches, scratching, and single-phase grooming, but not syntactic grooming events. These observations are in line with the high comorbidity of tic- and compulsive-like symptoms in Tourette, OCD and trichotillomania patients.
Collapse
|
5
|
Benefits of a ketogenic diet on repetitive motor behavior in mice. Behav Brain Res 2022; 422:113748. [PMID: 35038463 DOI: 10.1016/j.bbr.2022.113748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
Repetitive motor behaviors are repetitive and invariant movements with no apparent function, and are common in several neurological and neurodevelopmental disorders, including autism spectrum disorders (ASD). However, the neuropathology associated with the expression of these abnormal stereotypic movements is not well understood, and effective treatments are lacking. The ketogenic diet (KD) has been used for almost a century to treat intractable epilepsy and, more recently, disorders associated with inflexibility of behavioral routines. Here, we show a novel application for KD to reduce an abnormal repetitive circling behavior in a rodent model. We then explore potential mediation through the striatum, as dysregulation of cortico-basal ganglia circuitry has previously been implicated in repetitive motor behavior. In Experiments 1 and 2, adult FVB mice were assessed for levels of repetitive circling across a 3-week baseline period. Mice were then switched to KD and repetitive circling was assessed for an additional 3 weeks. In Experiment 1, time on KD was associated with reduced repetitive behavior. In Experiment 2, we replicated these benefits of KD and assessed dendritic spine density in the striatum as one potential mechanism for reducing repetitive behavior, which yielded no differences. In Experiment 3, adult female circling mice were given a single administration of a dopamine D2 receptor antagonist (L-741,646) that was associated with reduced repetitive behavior over time. Future research will explore the relationship between KD and dopamine within basal ganglia nuclei that may be influencing the benefits of KD on repetitive behavior.
Collapse
|
6
|
Lin L, Lan Y, Zhu H, Yu L, Wu S, Wan W, Shu Y, Xiang H, Hou T, Zhang H, Ma Y, Su W, Li M. Effects of Chemogenetic Inhibition of D1 or D2 Receptor-Containing Neurons of the Substantia Nigra and Striatum in Mice With Tourette Syndrome. Front Mol Neurosci 2021; 14:779436. [PMID: 34955745 PMCID: PMC8696039 DOI: 10.3389/fnmol.2021.779436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
As tourette syndrome (TS) is a common neurobehavioral disorder, the primary symptoms of which include behavioral stereotypies. Dysfunction of the substantia nigra-striatum network could be the main pathogenesis of TS, which is closely associated with dopamine (DA) and its receptors. TS is often resistant to conventional treatments. Therefore, it is necessary to investigate the neurobiological mechanisms underlying its pathogenesis. In this study, we investigated whether chemogenetic activation or inhibition of dopaminergic D1 receptor (D1R)- or D2 receptor (D2R)-containing neurons in the substantia nigra pars compacta (SNpc) or dorsal striatum (dSTR) affected the stereotyped behavior and motor functions of TS mice. Intraperitoneal injection of 3,3'-iminodipropionitrile (IDPN) was used to induce TS in mice. Stereotyped behavior test and open-field, rotarod, and grip strength tests were performed to evaluate stereotyped behavior and motor functions, respectively. Immunofluorescence labeling was used to detect the co-labeling of virus fluorescence and D1R or D2R. We found that chemogenetic inhibition of D1R- or D2R-containing neurons in the SNpc and dSTR alleviated behavioral stereotypies and motor functions in TS mice. Chemogenetic activation of D1R-containing neurons in the dSTR aggravated behavioral stereotypies and motor functions in vehicle-treated mice, but neither was aggravated in TS mice. In conclusion, chemogenetic inhibition of D1R- or D2R-containing neurons in the SNpc and dSTR alleviated behavioral stereotypies of TS, providing a new treatment target for TS. Moreover, the activation of D1R-containing neurons in the dSTR may contribute to the pathogenesis of TS, which can be chosen as a more precise target for treatment.
Collapse
Affiliation(s)
- Lixue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Rehabilitation, Wuhan No.1 Hospital, Wuhan, China
| | - Yuye Lan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Institute of Clinical Medicine, Zhanjiang Central People's Hospital, Zhanjiang, China
| | - Lingling Yu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyixuan Wan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongchun Xiang
- Department of Acupuncture and Moxibustion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ma
- Department of Rehabilitation, Wuhan No.1 Hospital, Wuhan, China
| | - Wen Su
- Department of Pediatrics, Wuhan No.1 Hospital, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Association of Prenatal Maternal Anemia with Tics and Tourette's Syndrome in Offspring. J Pers Med 2021; 11:jpm11101038. [PMID: 34683179 PMCID: PMC8541066 DOI: 10.3390/jpm11101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Iron deficiency anemia (IDA) accounts for most of the anemia in pregnancy, and iron is essential for neurodevelopment. Tics and Tourette’s syndrome (TS) are neurodevelopmental disorders that manifest in childhood. A few studies reported an inconclusive association between iron deficiency and tics in children. No study has investigated the relationship between prenatal maternal anemia and tics in children. We aimed to assess the relationship between prenatal anemia exposure and the incidence of tics or TS in offspring. We linked the Taiwan National Health Insurance Research Database to the Maternal and Child Health Database for the analysis and identified 153,854 children with prenatal anemia exposure and 2,014,619 children without prenatal anemia exposure from 2004 to 2016 and followed them through 2017. Cox regression models were applied to compare the risk of tics or TS between the exposed and nonexposed groups. Among the exposed group, 37,832 were exposed at ≤12 weeks of gestational age (GA) and 116,022 at >12 weeks of GA. We observed an increased risk of tics and TS in those exposed at ≤12 weeks compared with the nonexposed group (adjusted hazard ratio (aHR) = 1.23, 95% confidence interval (CI): 1.12–1.34). The result remained consistent after adjusting for birth year, sex, birth order, maternal age, low-income levels, gestational age, birth weight, and alcohol use and smoking during pregnancy (aHR = 1.16, CI: 1.04–1.28). Fetuses exposed to maternal anemia at ≤12 weeks of GA are at high risk of tics or TS. However, this effect was attenuated to insignificance in the sibling comparison. Our study highlights the importance of detection of anemia during pregnancy and proper timing of iron supplementation.
Collapse
|
8
|
Lagière M, Bosc M, Whitestone S, Benazzouz A, Chagraoui A, Millan MJ, De Deurwaerdère P. A Subset of Purposeless Oral Movements Triggered by Dopaminergic Agonists Is Modulated by 5-HT 2C Receptors in Rats: Implication of the Subthalamic Nucleus. Int J Mol Sci 2020; 21:ijms21228509. [PMID: 33198169 PMCID: PMC7698107 DOI: 10.3390/ijms21228509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic medication for Parkinson’s disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03–0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2–0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the “hyperdirect” (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.
Collapse
Affiliation(s)
- Mélanie Lagière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Marion Bosc
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Sara Whitestone
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
| | - Abdelhamid Benazzouz
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, 76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Mark J. Millan
- Institut de Recherche Servier, Center for Therapeutic Innovation in Neuropsychiatry, Croissy/Seine, 78290 Paris, France;
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Correspondence: ; Tel.: +33-(0)-557-57-12-90
| |
Collapse
|
9
|
Addabbo F, Baglioni V, Schrag A, Schwarz MJ, Dietrich A, Hoekstra PJ, Martino D, Buttiglione M. Anti-dopamine D2 receptor antibodies in chronic tic disorders. Dev Med Child Neurol 2020; 62:1205-1212. [PMID: 32644201 DOI: 10.1111/dmcn.14613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
AIM To investigate the association between circulating anti-dopamine D2 receptor (D2R) autoantibodies and the exacerbation of tics in children with chronic tic disorders (CTDs). METHOD One hundred and thirty-seven children with CTDs (108 males, 29 females; mean age [SD] 10y 0mo [2y 7mo], range 4-16y) were recruited over 18 months. Patients were assessed at baseline, at tic exacerbation, and at 2 months after exacerbation. Serum anti-D2R antibodies were evaluated using a cell-based assay and blinded immunofluorescence microscopy scoring was performed by two raters. The association between visit type and presence of anti-D2R antibodies was measured with McNemar's test and repeated-measure logistic regression models, adjusting for potential demographic and clinical confounders. RESULTS At exacerbation, 11 (8%) participants became anti-D2R-positive ('early peri-exacerbation seroconverters'), and nine (6.6%) became anti-D2R-positive at post-exacerbation ('late peri-exacerbation seroconverters'). The anti-D2R antibodies were significantly associated with exacerbations when compared to baseline (McNemar's odds ratio=11, p=0.003) and conditional logistic regression confirmed this association (Z=3.49, p<0.001) after adjustment for demographic and clinical data and use of psychotropic drugs. INTERPRETATION There is a potential association between immune mechanisms and the severity course of tics in adolescents with CTDs.
Collapse
Affiliation(s)
- Francesco Addabbo
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Baglioni
- Department of Human Neurosciences, Sapienza University of Rome, Institute of Child and Adolescent Neurology and Psychiatry, Rome, Italy
| | - Anette Schrag
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| | - Markus J Schwarz
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Health Sciences Centre, Calgary, AB, Canada
| | - Maura Buttiglione
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
10
|
Abstract
Tics are sudden, rapid, recurrent, nonrhythmic motor movements or vocalizations (phonic productions) that are commonly present in children and are required symptoms for the diagnosis of Tourette syndrome. Despite their frequency, the underlying pathophysiology of tics/Tourette syndrome remains unknown. In this review, we discuss a variety of controversies surrounding the pathophysiology of tics, including the following: Are tics voluntary or involuntary? What is the role of the premonitory urge? Are tics due to excess excitatory or deficient inhibition? Is it time to adopt the contemporary version of the cortico-basal ganglia-thalamocortical (CBGTC) circuit? and Do we know the primary abnormal neurotransmitter in Tourette syndrome? Data from convergent clinical and animal model studies support complex interactions among the various CBGTC sites and neurotransmitters. Advances are being made; however, numerous pathophysiologic questions persist.
Collapse
Affiliation(s)
- Harvey S Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
11
|
Lin L, Yu L, Xiang H, Hu X, Yuan X, Zhu H, Li H, Zhang H, Hou T, Cao J, Wu S, Su W, Li M. Effects of Acupuncture on Behavioral Stereotypies and Brain Dopamine System in Mice as a Model of Tourette Syndrome. Front Behav Neurosci 2019; 13:239. [PMID: 31680895 PMCID: PMC6803462 DOI: 10.3389/fnbeh.2019.00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Tourette syndrome (TS), a developmental neurobehavioral disorder, is characterized by involuntary behavioral stereotypies. Clinical studies have confirmed the positive effect of acupuncture on treating TS, but the underlying mechanisms are not fully understood. In the present study, we used behavioral tests, Western blotting, double-immunofluorescence labeling, and fluorescence spectrophotometry to investigate whether acupuncture performed at acupoints "Baihui" (GV20) and "Yintang" (GV29) affected behavioral stereotypies and regulated the dopamine (DA) system in three different brain regions in Balb/c mice injected with 3,3'-iminodipropionitrile (IDPN) as a model for TS. We found that acupuncture alleviated behavioral stereotypies, down-regulated the expression of D1R and D2R in the striatum (STR) and substantia nigra pars compacta (SNpc), and decreased the concentration of DA in the STR, SNpc, and prefrontal cortex (PFC) as well. Moreover, acupuncture reduced the expression of tyrosine hydroxylase (TH) in the SNpc. Conclusively, acupuncture ameliorated behavioral stereotypies by regulating the DA system in the STR, SNpc, and PFC. Our findings provide novel evidence for the therapeutic effect of acupuncture on TS.
Collapse
Affiliation(s)
- Lixue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongchun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocui Yuan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Su
- Department of Pediatrics, Wuhan No. 1 Hospital, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Abstract
This is the fifth yearly article in the Tourette Syndrome Research Highlights series, summarizing research from 2018 relevant to Tourette syndrome and other tic disorders. The authors briefly summarize reports they consider most important or interesting. The highlights from 2019 article is being drafted on the Authorea online authoring platform, and readers are encouraged to add references or give feedback on our selections using the comments feature on that page. After the calendar year ends, the article is submitted as the annual update for the Tics collection on F1000Research.
Collapse
Affiliation(s)
- Olivia Rose
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andreas Hartmann
- Sorbonne University, National Reference Centre for Tourette Disorder, Pitié-Salpêtrière Hospital, Paris, France
| | - Yulia Worbe
- Sorbonne University, National Reference Centre for Tourette Disorder, Pitié-Salpêtrière Hospital, Paris, France
| | - Jeremiah M. Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin J. Black
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Psychiatry, Neurology, and Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
13
|
Ricketts EJ, Wu MS, Leman T, Piacentini J. A Review of Tics Presenting Subsequent to Traumatic Brain Injury. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019; 6:145-158. [PMID: 31984203 DOI: 10.1007/s40474-019-00167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review This review summarizes case reports of patients with tics emerging subsequent to traumatic brain injury (TBI), with respect to demographics, post-TBI symptoms, tic onset latency and topography, clinical history, neuroimaging results and treatment outcome. Recent findings Patients were 22 adults and 3 youth. Trauma onset appeared to fall mostly in adulthood. Two-thirds of patients were male and head trauma was related to motor vehicle accidents in most cases. Loss of consciousness was reported in just below half (48.0%) of cases. Associated physical and cognitive symptoms (e.g., impaired memory, reduced sensory perception, poor balance, muscle weakness, attention problems, aggression/impulsivity, obsessions and compulsions, depression and anxiety) were commonly reported. The latency between head trauma and tic onset varied, but generally ranged from one day post-trauma to approximately one year post-trauma. Sole presentation of motor tics was common, with rostral to caudal development of motor tics in other cases. Simple and/or complex vocal tics were present in several cases, often emerging after motor tics. Post-trauma obsessive-compulsive symptoms were noted in five cases (20.0%). A personal or family history of tics was reported in four cases. Damage to the basal ganglia, ventricular system, and temporal region was observed across ten patients (40.0%). Pharmacological intervention varied, with tic symptoms deemed to have significantly or somewhat improved in 12 cases (48.0%). A comparison of post-TBI symptoms in youth with head trauma history relative to those with peripheral injury suggests tic symptoms are not a common post-TBI symptom in youth. Summary Ultimately, there has been limited study on the link between traumatic brain injury and tic expression, and methodological issues preclude the ability to draw definitive conclusions regarding this relationship. Nevertheless, findings do suggest there may be heterogeneity in brain dysfunction associated with tic expression. Future case reports should utilize more systematic and thorough assessment of TBI and tics using validated measures, evaluate medication effects using single-case designs, and perform more longitudinal follow-up of cases with repeated neuroimaging.
Collapse
Affiliation(s)
- Emily J Ricketts
- Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, 90024
| | - Monica S Wu
- Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, 90024
| | - Talia Leman
- Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, 90024
| | - John Piacentini
- Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, 90024
| |
Collapse
|
14
|
de Avila RCS, do Nascimento LG, Porto RLDM, Fontenelle L, Filho ECM, Brakoulias V, Ferrão YA. Level of Insight in Patients With Obsessive-Compulsive Disorder: An Exploratory Comparative Study Between Patients With "Good Insight" and "Poor Insight". Front Psychiatry 2019; 10:413. [PMID: 31333508 PMCID: PMC6619338 DOI: 10.3389/fpsyt.2019.00413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: Insight may be defined as the ability to perceive and evaluate external reality and to separate it from its subjective aspects. It also refers to the ability to self-assess difficulties and personal qualities. Insight may be a predictor of success in the treatment of obsessive-compulsive disorder (OCD), so that individuals with poor insight tend to become refractory to treatment. The objective of this study is to investigate factors associated with poor insight in individuals with OCD. Methods: This cross-sectional exploratory study used the Brown Belief Assessment Scale as a parameter for the creation of the comparison groups: individuals who obtained null scores (zero) composed the group with preserved or good insight (n = 148), and those with scores above the 75% percentile composed the group with poor insight (n = 124); those with intermediate scores were excluded. Sociodemographic characteristics and clinical and psychopathological aspects, intrinsic and extrinsic to the typical symptoms of OCD, were compared in a univariate analysis. A logistic regression was used to determine which factors associated with critical judgment remained significant. Results: Individuals in the poor insight group differed from those with good insight in regard to: more prevalent use of neuroleptics (p = 0.05); higher untreated time interval (p < 0.001); higher total Yale-Brown obsessive-compulsive scale score and the obsessions and compulsions factors (all factors with p < 0.001); higher dimensional Yale-Brown obsessive-compulsive scale total and dimensional scores (p from 0.04 to 0.001); higher prevalence of contamination/cleaning (p = 0.006) and hoarding (p < 0.001) symptoms dimensions; more prevalent sensory phenomena (p = 0.023); higher levels of depression (p = 0.007); and more prevalent comorbidity with bipolar affective disorder (p = 0.05) and post-traumatic stress disorder (PTSD) (p = 0.04). After analyzing the logistic regression, we conclude that the most important factors associated with poor insight are: the presence of any sensory phenomena (OR: 2.24), use of neuroleptics (OR: 1.66), and hoarding symptoms (OR: 1.15). Conclusion: The variability of insight in patients with OCD seems to be an important psychopathological characteristic in the differentiation of possible subtypes of OCD, since the poor insight is associated with sensory phenomena and greater use of neuroleptics, which makes it possible to conjecture the role of dopaminergic neurocircuits in the neurobiology of this disorder. In addition, there is also an association with the symptoms of hoarding content, admittedly one of the symptomatic contents with less response to conventional OCD treatments. Studies based on neurobiological aspects such as neuroimaging and neuropsychology may help to elucidate more consistently the role of insight in patients with OCD and the repercussions concerning available treatments.
Collapse
Affiliation(s)
- Richard Chuquel Silveira de Avila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Laura Gratsch do Nascimento
- Departamento de Psicologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Rafaella Landell de Moura Porto
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Leonardo Fontenelle
- Departamento de Psiquiatria, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vlasios Brakoulias
- School of Medicine of Western Sydney University, University of Sydney, Sydney, NSW, Australia
| | - Ygor Arzeno Ferrão
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
15
|
Blum K, Gondré-Lewis MC, Baron D, Thanos PK, Braverman ER, Neary J, Elman I, Badgaiyan RD. Introducing Precision Addiction Management of Reward Deficiency Syndrome, the Construct That Underpins All Addictive Behaviors. Front Psychiatry 2018; 9:548. [PMID: 30542299 PMCID: PMC6277779 DOI: 10.3389/fpsyt.2018.00548] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kenneth Blum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States.,Department of Psychiatry, Boonshoft School of Medicine, Dayton VA Medical Center, Wright State University, Dayton, OH, United States.,University of Vermont College of Medicine, Burlington, VM, United States.,Division of Addictive Services, Dominion Diagnostics, LLC, North Kingston, RI, United States.,Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States.,Institute of Psychology, University of Eötvös Loránd, Budapest, Hungary.,Department of Clinical Neurology, Path Foundation, New York, NY, United States.,Division of Neuroscience and Addiction Therapy, Summit Estate Recovery Center, Los Gatos, CA, United States.,Department of Neurogenetics Research and Addiction Therapy, The Florida House Experience, Deerfield Beach, FL, United States.,National Human Genome Center, Howard University, Washington, DC, United States
| | - Marjorie C Gondré-Lewis
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States.,Department of Anatomy, Howard University College of Medicine, Washington, DC, United States.,Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - David Baron
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States.,Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
| | - Panayotis K Thanos
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States.,Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Department of Psychology, University at Buffalo, Buffalo, NY, United States
| | - Eric R Braverman
- Department of Clinical Neurology, Path Foundation, New York, NY, United States
| | - Jennifer Neary
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
| | - Igor Elman
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States.,Department of Psychiatry, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Rajendra D Badgaiyan
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|