1
|
Marcelino ADADL, Barbosa DD, Fernandes PD, da Silva FDA, de Albuquerque FA, Dias MDS, da Silva CRC, Dos Santos RC. Gas exchange and osmotic adjustment in cotton cultivars subjected to severe salt stress. BRAZ J BIOL 2023; 83:e274499. [PMID: 38055576 DOI: 10.1590/1519-6984.274499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023] Open
Abstract
Salinity is harmful to crops when the concentration of soluble salts overcomes the salinity threshold of the crop, causing osmotic stress and limitations in plant growth. In this scenario, adopting tolerant cultivars is the most adequate strategy to minimize agricultural losses. However, the inheritance of tolerance depends on the genotype. From this perspective, this study assessed the tolerance to severe salt stress in 11 cotton cultivars based on gas exchange parameters and the free proline content. The cultivars were grown in a greenhouse and subjected to 34 days of saline irrigation (10 dS m-1), starting 45 days after seedling emergence (B1 phase). Plant growth was monitored weekly until the end of the salt stress period. The treatments consisted of a combination of two factors: eleven cultivars associated with two electrical conductivity levels of irrigation water (ECw: 0.3 and 10.0 dS m-1). The experimental design was in randomized blocks in a 11 × 2 factorial arrangement with three replications (66 plots), with the experimental unit consisting of one plant per plot. Salinity impacted plant growth, being reflected on the gas exchange and free proline data of most cultivars. However, BRS 286, FMT 705, BRS 416, and BRS Acácia, and CNPA 7MH withstood the effects of stress and osmotically adjusted to the salt stress conditions, thus minimizing the damage to growth. Those cultivars are the most indicated for improvement programs aiming at tolerance to salt stress based on the results found in this research.
Collapse
Affiliation(s)
- A D A de L Marcelino
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias - CCA, Departamento de Fitotecnia e Ciências Ambientais - DFCA, Areia, PB, Brasil
| | - D D Barbosa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias - CCA, Departamento de Fitotecnia e Ciências Ambientais - DFCA, Areia, PB, Brasil
| | - P D Fernandes
- Universidade Federal de Campina Grande - UFCG, Centro de Tecnologia e Recursos Naturais - CTRN, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campina Grande, PB, Brasil
| | - F de A da Silva
- Universidade Federal de Campina Grande - UFCG, Centro de Tecnologia e Recursos Naturais - CTRN, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campina Grande, PB, Brasil
| | - F A de Albuquerque
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Algodão, Campina Grande, PB, Brasil
| | - M Dos S Dias
- Universidade Federal de Campina Grande - UFCG, Centro de Tecnologia e Recursos Naturais - CTRN, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campina Grande, PB, Brasil
| | - C R C da Silva
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Algodão, Campina Grande, PB, Brasil
| | - R C Dos Santos
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Algodão, Campina Grande, PB, Brasil
| |
Collapse
|
2
|
Puppala N, Nayak SN, Sanz-Saez A, Chen C, Devi MJ, Nivedita N, Bao Y, He G, Traore SM, Wright DA, Pandey MK, Sharma V. Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Front Genet 2023; 14:1121462. [PMID: 36968584 PMCID: PMC10030941 DOI: 10.3389/fgene.2023.1121462] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Climate change is significantly impacting agricultural production worldwide. Peanuts provide food and nutritional security to millions of people across the globe because of its high nutritive values. Drought and heat stress alone or in combination cause substantial yield losses to peanut production. The stress, in addition, adversely impact nutritional quality. Peanuts exposed to drought stress at reproductive stage are prone to aflatoxin contamination, which imposes a restriction on use of peanuts as health food and also adversely impact peanut trade. A comprehensive understanding of the impact of drought and heat stress at physiological and molecular levels may accelerate the development of stress tolerant productive peanut cultivars adapted to a given production system. Significant progress has been achieved towards the characterization of germplasm for drought and heat stress tolerance, unlocking the physiological and molecular basis of stress tolerance, identifying significant marker-trait associations as well major QTLs and candidate genes associated with drought tolerance, which after validation may be deployed to initiate marker-assisted breeding for abiotic stress adaptation in peanut. The proof of concept about the use of transgenic technology to add value to peanuts has been demonstrated. Advances in phenomics and artificial intelligence to accelerate the timely and cost-effective collection of phenotyping data in large germplasm/breeding populations have also been discussed. Greater focus is needed to accelerate research on heat stress tolerance in peanut. A suits of technological innovations are now available in the breeders toolbox to enhance productivity and nutritional quality of peanuts in harsh environments. A holistic breeding approach that considers drought and heat-tolerant traits to simultaneously address both stresses could be a successful strategy to produce climate-resilient peanut genotypes with improved nutritional quality.
Collapse
Affiliation(s)
- Naveen Puppala
- Agricultural Science Center at Clovis, New Mexico State University, Las Cruces, NM, United States
- *Correspondence: Naveen Puppala,
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Charles Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Mura Jyostna Devi
- USDA-ARS Vegetable Crops Research, Madison, WI, United States
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - Nivedita Nivedita
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - Yin Bao
- Biosystems Engineering Department, Auburn University, Auburn, AL, United States
| | - Guohao He
- Department of Plant and Soil Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Sy M. Traore
- Department of Plant and Soil Sciences, Tuskegee University, Tuskegee, AL, United States
| | - David A. Wright
- Department of Biotechnology, Iowa State University, Ames, IA, United States
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|
3
|
Wambulwa MC, Fan PZ, Milne R, Wu ZY, Luo YH, Wang YH, Wang H, Gao LM, Xiahou ZY, Jin YC, Ye LJ, Xu ZC, Yang ZC, Li DZ, Liu J. Genetic analysis of walnut cultivars from southwest China: Implications for germplasm improvement. PLANT DIVERSITY 2022; 44:530-541. [PMID: 36540707 PMCID: PMC9751080 DOI: 10.1016/j.pld.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 05/19/2023]
Abstract
Walnuts are highly valued for their rich nutritional profile and wide medicinal applications. This demand has led to the intensification of breeding activities in major walnut production areas such as southwest China, in order to develop more superior cultivars. With the increasing number of cultivars, accurate identification becomes fundamental to selecting the right cultivar for grafting, industrial processing or development of new cultivars. To ensure proper identification of cultivars and understand the genetic structure of wild and cultivated material, we genotyped 362 cultivated and wild individuals of walnut trees from southwest China (with two additional populations from Xinjiang, plus three cultivars from Canada, France and Belgium) using 36 polymorphic microsatellite loci. We found relatively low indices of genetic diversity (H O = 0.570, H E = 0.404, N A = 2.345) as well as a high level of clonality (>85% of cultivars), indicating reliance on genetically narrow sources of parental material for breeding. Our STRUCTURE and PCoA analyses generally delineated the two species, though considerable levels of introgression were also evident. More significantly, we detected a distinct genetic group of cultivated Juglans sigillata, which mainly comprised individuals of the popular 'Yangbidapao' landrace. Finally, a core set of 18 SSR loci was selected, which was capable of identifying 32 cultivars. In a nutshell, our results call for more utilization of genetically disparate material, including wild walnut trees, as parental sources to breed for more cultivars. The data reported herein will significantly contribute towards the genetic improvement and conservation of the walnut germplasm in southwest China.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Department of Life Sciences, South Eastern Kenya University, 170-90200, Kitui, Kenya
| | - Peng-Zhen Fan
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Zeng-Yuan Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yue-Hua Wang
- School of School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zuo-Ying Xiahou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ye-Chuan Jin
- School of School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Lin-Jiang Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zu-Chang Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zhi-Chun Yang
- Yangbi Forestry and Grassland Administration, Dali, 672500, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Corresponding author. CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
4
|
Kalve S, Gali KK, Tar’an B. Genome-wide association analysis of stress tolerance indices in an interspecific population of chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:933277. [PMID: 36061786 PMCID: PMC9437449 DOI: 10.3389/fpls.2022.933277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Chickpea is a cool season crop that is highly vulnerable to abiotic stresses such as heat and drought. High temperature during early flowering and pod development stages significantly reduces the crop yield. The wild relatives of chickpeas can be potential donors for the introgression of heat and drought tolerance into cultivated chickpeas for crop improvement. Initially, 600 interspecific lines were derived from crosses between two elite cultivars, CDC Leader (kabuli chickpea) and CDC Consul (desi chickpea), and 20 accessions of Cicer reticulatum. The F5 interspecific lines were tested for agronomic and seed quality traits including reaction to ascochyta blight disease under field conditions at two locations in 2018. A subset of 195 lines were selected based on resistance to ascochyta blight and acceptable seed quality. These lines were evaluated for their performance under suboptimal conditions at Lucky Lake (2019 and 2020) and Moose Jaw (2019), Saskatchewan, Canada, and Yuma, Arizona, United States (2019-2020). The lines were grown and evaluated at two seeding dates, normal (SD1) and late (SD2) seeding dates, at each location and year. The same lines were genotyped using Cicer60K Axiom® SNP chip. The population structure was determined based on 35,431 informative SNPs using fastStructure, and the interspecific lines were clustered at a k-value of 15. Significant marker-trait associations were identified for seed yield from SD1 and SD2 seeding dates, and stress tolerance indices (ATI, K1STI, MP, SSPI, and TOL) using phenotypic values both from individual locations and combined analyses based on BLUP values. SNP marker Ca2_34600347 was significantly associated with yield from both the seeding dates. This and other SNP markers identified in this study may be useful for marker-assisted introgression of abiotic stress tolerance in chickpea.
Collapse
|
5
|
Massarioli AP, Sartori AGDO, Juliano FF, dos Santos RC, Ramos JPC, de Lima LM, de Alencar SM. Optimizing Procedures for Antioxidant Phenolics Extraction from Skin and Kernel of Peanuts with Contrasting Levels of Drought Tolerance. Foods 2022; 11:foods11030449. [PMID: 35159599 PMCID: PMC8834250 DOI: 10.3390/foods11030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Peanut is an affordable legume known for its nutritional value and phenolic content. The kernel and skin of 14 peanut genotypes contrasting in drought tolerance had their phenolic profiles determined and reactive oxygen species (ROS) scavenging activity evaluated. Firstly, temperature and % EtOH to extract antioxidant phenolic compounds were optimized using response surface methodology (RSM). The optimized extraction conditions, 60 °C and 35% EtOH for kernels and 40 °C and 60% EtOH for skins, were further adopted, and phenolic compounds were identified and quantified using high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-QTOF-MS) and high-performance liquid chromatography with photodiode array detector (HPLC-PDA). As a result, phenolic acids and glycosidic/non-glycosidic flavonoids were found. Principal component analysis was conducted, and the pairwise score plot of the skin extracts based on individual phenolic compounds showed a trend of genotype clustering based not only on drought tolerance but also on botanical type of germplasm. Therefore, our results demonstrate the status quo for antioxidant phenolic compounds of peanut genotypes contrasting in drought tolerance grown under natural field conditions.
Collapse
Affiliation(s)
- Adna P. Massarioli
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba CEP 13418-900, Brazil; (A.P.M.); (A.G.d.O.S.); (F.F.J.)
| | - Alan G. de O. Sartori
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba CEP 13418-900, Brazil; (A.P.M.); (A.G.d.O.S.); (F.F.J.)
| | - Fernanda F. Juliano
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba CEP 13418-900, Brazil; (A.P.M.); (A.G.d.O.S.); (F.F.J.)
| | - Roseane C. dos Santos
- Brazilian Agricultural Research Corporation (Embrapa Algodão), Campina Grande CEP 58428-095, Brazil; (R.C.d.S.); (J.P.C.R.); (L.M.d.L.)
| | - Jean Pierre C. Ramos
- Brazilian Agricultural Research Corporation (Embrapa Algodão), Campina Grande CEP 58428-095, Brazil; (R.C.d.S.); (J.P.C.R.); (L.M.d.L.)
| | - Liziane Maria de Lima
- Brazilian Agricultural Research Corporation (Embrapa Algodão), Campina Grande CEP 58428-095, Brazil; (R.C.d.S.); (J.P.C.R.); (L.M.d.L.)
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba CEP 13418-900, Brazil; (A.P.M.); (A.G.d.O.S.); (F.F.J.)
- Correspondence:
| |
Collapse
|
6
|
Abady S, Shimelis H, Janila P, Yaduru S, Shayanowako AIT, Deshmukh D, Chaudhari S, Manohar SS. Assessment of the genetic diversity and population structure of groundnut germplasm collections using phenotypic traits and SNP markers: Implications for drought tolerance breeding. PLoS One 2021; 16:e0259883. [PMID: 34788339 PMCID: PMC8598071 DOI: 10.1371/journal.pone.0259883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Profiling the genetic composition and relationships among groundnut germplasm collections is essential for the breeding of new cultivars. The objectives of this study were to assess the genetic diversity and population structure among 100 improved groundnut genotypes using agronomic traits and high-density single nucleotide polymorphism (SNP) markers. The genotypes were evaluated for agronomic traits and drought tolerance at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT)/India across two seasons. Ninety-nine of the test genotypes were profiled with 16363 SNP markers. Pod yield per plant (PY), seed yield per plant (SY), and harvest index (HI) were significantly (p < 0.05) affected by genotype × environment interaction effects. Genotypes ICGV 07222, ICGV 06040, ICGV 01260, ICGV 15083, ICGV 10143, ICGV 03042, ICGV 06039, ICGV 14001, ICGV 11380, and ICGV 13200 ranked top in terms of pod yield under both drought-stressed and optimum conditions. PY exhibited a significant (p ≤ 0.05) correlation with SY, HI, and total biomass (TBM) under both test conditions. Based on the principal component (PC) analysis, PY, SY, HSW, shelling percentage (SHP), and HI were allocated in PC 1 and contributed to the maximum variability for yield under the two water regimes. Hence, selecting these traits could be successful for screening groundnut genotypes under drought-stressed and optimum conditions. The model-based population structure analysis grouped the studied genotypes into three sub-populations. Dendrogram for phenotypic and genotypic also grouped the studied 99 genotypes into three heterogeneous clusters. Analysis of molecular variance revealed that 98% of the total genetic variation was attributed to individuals, while only 2% of the total variance was due to variation among the subspecies. The genetic distance between the Spanish bunch and Virginia bunch types ranged from 0.11 to 0.52. The genotypes ICGV 13189, ICGV 95111, ICGV 14421, and ICGV 171007 were selected for further breeding based on their wide genetic divergence. Data presented in this study will guide groundnut cultivar development emphasizing economic traits and adaptation to water-limited agro-ecologies, including in Ethiopia.
Collapse
Affiliation(s)
- Seltene Abady
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Hussein Shimelis
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Shasidhar Yaduru
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Admire I. T. Shayanowako
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Dnyaneshwar Deshmukh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Sunil Chaudhari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Surendra S. Manohar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| |
Collapse
|
7
|
Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6123-6139. [PMID: 34114599 DOI: 10.1093/jxb/erab276] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| |
Collapse
|
8
|
McGale E, Valim H, Mittal D, Morales Jimenez J, Halitschke R, Schuman MC, Baldwin IT. Determining the scale at which variation in a single gene changes population yields. eLife 2020; 9:e53517. [PMID: 32057293 PMCID: PMC7136025 DOI: 10.7554/elife.53517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Plant trait diversity is known to influence population yield, but the scale at which this happens remains unknown: divergent individuals might change yields of immediate neighbors (neighbor scale) or of plants across a population (population scale). We use Nicotiana attenuata plants silenced in mitogen-activated protein kinase 4 (irMPK4) - with low water-use efficiency (WUE) - to study the scale at which water-use traits alter intraspecific population yields. In the field and glasshouse, we observed overyielding in populations with low percentages of irMPK4 plants, unrelated to water-use phenotypes. Paired-plant experiments excluded the occurrence of overyielding effects at the neighbor scale. Experimentally altering field arbuscular mycorrhizal fungal associations by silencing the Sym-pathway gene NaCCaMK did not affect reproductive overyielding, implicating an effect independent of belowground AMF interactions. Additionally, micro-grafting experiments revealed dependence on shoot-expressed MPK4 for N. attenuata to vary its yield per neighbor presence. We find that variation in a single gene, MPK4, is responsible for population overyielding through a mechanism, independent of irMPK4's WUE phenotype, at the aboveground, population scale.
Collapse
Affiliation(s)
- Erica McGale
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Henrique Valim
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Deepika Mittal
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | | | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| |
Collapse
|
9
|
Introgression of peanut smut resistance from landraces to elite peanut cultivars (Arachis hypogaea L.). PLoS One 2019; 14:e0211920. [PMID: 30735547 PMCID: PMC6368304 DOI: 10.1371/journal.pone.0211920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Smut disease caused by the fungal pathogen Thecaphora frezii Carranza & Lindquist is threatening the peanut production in Argentina. Fungicides commonly used in the peanut crop have shown little or no effect controlling the disease, making it a priority to obtain peanut varieties resistant to smut. In this study, recombinant inbred lines (RILs) were developed from three crosses between three susceptible peanut elite cultivars (Arachis hypogaea L. subsp. hypogaea) and two resistant landraces (Arachis hypogaea L. subsp. fastigiata Waldron). Parents and RILs were evaluated under high inoculum pressure (12000 teliospores g-1 of soil) over three years. Disease resistance parameters showed a broad range of variation with incidence mean values ranging from 1.0 to 35.0% and disease severity index ranging from 0.01 to 0.30. Average heritability (h2) estimates of 0.61 to 0.73 indicated that resistance in the RILs was heritable, with several lines (4 to 7 from each cross) showing a high degree of resistance and stability over three years. Evidence of genetic transfer between genetically distinguishable germplasm (introgression in a broad sense) was further supported by simple-sequence repeats (SSRs) and Insertion/Deletion (InDel) marker genotyping. This is the first report of smut genetic resistance identified in peanut landraces and its introgression into elite peanut cultivars.
Collapse
|