1
|
Rohilla M, Mazumder A, Chowdhury D, Bhardwaj R, Kumar Mondal T. Understanding natural genetic variation for nutritional quality in grain and identification of superior haplotypes in deepwater rice genotypes of Assam, India. Gene 2024; 928:148801. [PMID: 39068998 DOI: 10.1016/j.gene.2024.148801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Rice grown under deepwater ecosystem is considered to be natural farming and hence they are considered to be input efficient. Thus, to identify gene responsible for nutritional content under natural conditions, a genome-wide association study (GWAS)was performed. GWAS identified single nucleotide polymorphisms (SNPs) significantly associated with various nutritional quality traits such as Zn (mg/kg), Fe (mg/kg), Protein (%), Oil (%), Amylose (%), Starch (%), Phytic acid (%), Phenol (%) and TDF (%) in 184 deepwater rice accessions evaluated over 2 consecutive years. A total of 278 SNPs distributed across 12 chromosomes were found to be significantly associated with Zn, Oil and Phenol content. Among them, eight high confidence SNPs were significant and identified on chr1 (AX-95933712), chr7 (AX-95957036), and chr8 (AX-95965181) for Zn content. Similarly, on chr2 (AX-95945186), chr8 (AX-95964718), and chr11 (AX-95961099) have been found to be associated with Oil content and on chr3 (AX-95922121) and chr4 (AX-95963889) for Phenol content. Genomic regions of ± 220 kb flanking the three consistent lowest p value containing SNPs for each trait were considered for finding superior haplotypes. These SNPs showed significant phenotypic variations with different identified haplotype blocks. The allelic variations with phenotypes were considered to be superior haplotypes i.e., Block 1: Hap 1 (ACCC) for high Zn content, Block 2: Hap 1 (CT) for high Oil content, and Block 2: Hap 1(CGGG) for low Phenol content. The discovered superior haplotype with high nutritional content could be important for understanding the mechanisms involving nutrient use efficiency. Thus, the present study demonstrated that developing rice varieties with appropriate nutritional quality traits will be possible through the incorporation of such superior haplotypes in breeding programs.
Collapse
Affiliation(s)
- Megha Rohilla
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India
| | - Abhishek Mazumder
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India
| | - Dhiren Chowdhury
- Regional Agricultural Research Station, Assam Agricultural University, North Lakhimpur, Assam, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.
| |
Collapse
|
2
|
Calayugan MIC, Hore TK, Palanog AD, Amparado A, Inabangan-Asilo MA, Joshi G, Chintavaram B, Swamy BPM. Deciphering the genetic basis of agronomic, yield, and nutritional traits in rice (Oryza sativa L.) using a saturated GBS-based SNP linkage map. Sci Rep 2024; 14:18024. [PMID: 39098874 PMCID: PMC11298551 DOI: 10.1038/s41598-024-67543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
Developing high-yielding rice varieties that possess favorable agronomic characteristics and enhanced grain Zn content is crucial in ensuring food security and addressing nutritional needs. This research employed ICIM, IM, and multi-parent population QTL mapping methods to identify important genetic regions associated with traits such as DF, PH, NT, NP, PL, YLD, TGW, GL, GW, Zn, and Fe. Two populations of recombinant inbred lines consisting of 373 lines were phenotyped for agronomic, yield and grain micronutrient traits for three seasons at IRRI, and genotyped by sequencing. Most of the traits demonstrated moderate to high broad-sense heritability. There was a positive relationship between Zn and Fe contents. The principal components and correlation results revealed a significant negative association between YLD and Zn/Fe. ICIM identified 81 QTLs, while IM detected 36 QTLs across populations. The multi-parent population analysis detected 27 QTLs with six of them consistently detected across seasons. We shortlisted eight candidate genes associated with yield QTLs, 19 genes with QTLs for agronomic traits, and 26 genes with Zn and Fe QTLs. Notable candidate genes included CL4 and d35 for YLD, dh1 for DF, OsIRX10, HDT702, sd1 for PH, OsD27 for NP, whereas WFP and OsIPI1 were associated with PL, OsRSR1 and OsMTP1 were associated to TGW. The OsNAS1, OsRZFP34, OsHMP5, OsMTP7, OsC3H33, and OsHMA1 were associated with Fe and Zn QTLs. We identified promising RILs with acceptable yield potential and high grain Zn content from each population. The major effect QTLs, genes and high Zn RILs identified in our study are useful for efficient Zn biofortification of rice.
Collapse
Affiliation(s)
- Mark Ian C Calayugan
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
| | - Tapas Kumer Hore
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
- Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | - Alvin D Palanog
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
- PhilRice Negros, Philippine Rice Research Institute, Murcia, Negros, Philippines
| | - Amery Amparado
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Mary Ann Inabangan-Asilo
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Gaurav Joshi
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Balachiranjeevi Chintavaram
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - B P Mallikarjuna Swamy
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines.
| |
Collapse
|
3
|
Joshi G, Soe YP, Palanog A, Hore TK, Nha CT, Calayugan MI, Inabangan-Asilo MA, Amparado A, Pandey ID, Cruz PCS, Hernandez JE, Swamy BPM. Meta-QTL s and haplotypes for efficient zinc biofortification of rice. THE PLANT GENOME 2023; 16:e20315. [PMID: 36896580 DOI: 10.1002/tpg2.20315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Biofortification of rice with improved grain zinc (Zn) content is the most sustainable and cost-effective approach to address Zn malnutrition in Asia. Genomics-assisted breeding using precise and consistent Zn quantitative trait loci (QTLs), genes, and haplotypes can fast-track the development of Zn biofortified rice varieties. We conducted the meta-analysis of 155 Zn QTLs reported from 26 different studies. Results revealed 57 meta-QTLs with a significant reduction of 63.2% and 80% in the number and confidence interval of the Zn QTLs, respectively. Meta-quantitative trait loci (MQTLs) regions were found to be enriched with diverse metal homeostasis genes; at least 11 MQTLs were colocated with 20 known major genes involved in the production of root exudates, metal uptake, transport, partitioning, and loading into grains in rice. These genes were differentially expressed in vegetative and reproductive tissues, and a complex web of interactions were observed among them. We identified superior haplotypes and their combinations for nine candidate genes (CGs), and the frequency and allelic effects of superior haplotypes varied in different subgroups. The precise MQTLs with high phenotypic variance, CGs, and superior haplotypes identified in our study are useful for an efficient Zn biofortification of rice and to ensure Zn as an essential component of all the future rice varieties through mainstreaming of Zn breeding.
Collapse
Affiliation(s)
- Gaurav Joshi
- Rice Genetic Design and Validation Unit, International Rice Research Institute, Los Baños, Philippines
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | | | - Tapas Kumer Hore
- Rice Genetic Design and Validation Unit, International Rice Research Institute, Los Baños, Philippines
| | - Chau Thanh Nha
- Philippines Rice Research Institute, Muñoz, Nueva Ecija, Philippines
| | | | - Mary Ann Inabangan-Asilo
- Rice Genetic Design and Validation Unit, International Rice Research Institute, Los Baños, Philippines
| | - Amery Amparado
- Rice Genetic Design and Validation Unit, International Rice Research Institute, Los Baños, Philippines
| | - Indra Deo Pandey
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | | | - B P Mallikarjuna Swamy
- Rice Genetic Design and Validation Unit, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
4
|
Parmar S, Janila P, Gangurde SS, Variath MT, Sharma V, Bomireddy D, Manohar SS, Varshney RK, Singam P, Pandey MK. Genetic mapping identified major main-effect and three co-localized quantitative trait loci controlling high iron and zinc content in groundnut. THE PLANT GENOME 2023; 16:e20361. [PMID: 37408143 DOI: 10.1002/tpg2.20361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
Malnutrition is a major challenge globally, and groundnut is a highly nutritious self-pollinated legume crop blessed with ample genomic resources, including the routine deployment of genomic-assisted breeding. This study aimed to identify genomic regions and candidate genes for high iron (Fe) and zinc (Zn) content, utilizing a biparental mapping population (ICGV 00440 × ICGV 06040;). Genetic mapping and quantitative trait locus (QTL) analysis (474 mapped single-nucleotide polymorphism loci; 1536.33 cM) using 2 seasons of phenotypic data together with genotypic data identified 5 major main-effect QTLs for Fe content. These QTLs exhibited log-of-odds (LOD) scores ranging from 6.5 to 7.4, explaining phenotypic variation (PVE) ranging from 22% (qFe-Ah01) to 30.0% (qFe-Ah14). Likewise, four major main effect QTLs were identified for Zn content, with LOD score ranging from 4.4 to 6.8 and PVE ranging from 21.8% (qZn-Ah01) to 32.8% (qZn-Ah08). Interestingly, three co-localized major and main effect QTLs (qFe-Ah01, qZn-Ah03, and qFe-Ah11) were identified for both Fe and Zn contents. These genomic regions harbored key candidate genes, including zinc/iron permease transporter, bZIP transcription factor, and vacuolar iron transporter which likely play pivotal roles in the accumulation of Fe and Zn contents in seeds. The findings of this study hold potential for fine mapping and diagnostic marker development for high Fe and Zn contents in groundnut.
Collapse
Affiliation(s)
- Sejal Parmar
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Pasupuleti Janila
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sunil S Gangurde
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Murali T Variath
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vinay Sharma
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Deekshitha Bomireddy
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Surendra S Manohar
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K Varshney
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish K Pandey
- International, Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
5
|
Bukomarhe CB, Kimwemwe PK, Githiri SM, Mamati EG, Kimani W, Mutai C, Nganga F, Nguezet PMD, Mignouna J, Civava RM, Fofana M. Association Mapping of Candidate Genes Associated with Iron and Zinc Content in Rice ( Oryza sativa L.) Grains. Genes (Basel) 2023; 14:1815. [PMID: 37761955 PMCID: PMC10530939 DOI: 10.3390/genes14091815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Micronutrient deficiencies, particularly of iron (Fe) and zinc (Zn), in the diet contribute to health issues and hidden hunger. Enhancing the Fe and Zn content in globally staple food crops like rice is necessary to address food malnutrition. A Genome-Wide Association Study (GWAS) was conducted using 85 diverse rice accessions from the Democratic Republic of Congo (DRC) to identify genomic regions associated with grain Fe and Zn content. The Fe content ranged from 0.95 to 8.68 mg/100 g on a dry weight basis (dwb) while Zn content ranged from 0.87 to 3.8 mg/100 g (dwb). Using MLM and FarmCPU models, we found 10 significant SNPs out of which one SNP on chromosome 11 was associated with the variation in Fe content and one SNP on chromosome 4 was associated with the Zn content, and both were commonly detected by the two models. Candidate genes belonging to transcription regulator activities, including the bZIP family genes and MYB family genes, as well as transporter activities involved in Fe and Zn homeostasis were identified in the vicinity of the SNP markers and selected. The identified SNP markers hold promise for marker-assisted selection in rice breeding programs aimed at enhancing Fe and Zn content in rice. This study provides valuable insights into the genetic factors controlling Fe and Zn uptake and their transport and accumulation in rice, offering opportunities for developing biofortified rice varieties to combat malnutrition among rice consumers.
Collapse
Affiliation(s)
- Chance Bahati Bukomarhe
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi P.O. Box 62000-00200, Kenya; (P.K.K.); (S.M.G.); (E.G.M.)
- Olusegun O. Research Campus, International Institute of Tropical Agriculture (IITA), Bukavu P.O. Box 1222, Democratic Republic of the Congo; (J.M.); (M.F.)
- Institut National Pour l’Etude et la Recherche Agronomiques (INERA), Kinshasa P.O. Box 2037, Democratic Republic of the Congo;
| | - Paul Kitenge Kimwemwe
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi P.O. Box 62000-00200, Kenya; (P.K.K.); (S.M.G.); (E.G.M.)
- Olusegun O. Research Campus, International Institute of Tropical Agriculture (IITA), Bukavu P.O. Box 1222, Democratic Republic of the Congo; (J.M.); (M.F.)
- Institut National Pour l’Etude et la Recherche Agronomiques (INERA), Kinshasa P.O. Box 2037, Democratic Republic of the Congo;
- Faculty of Agriculture and Environmental Sciences, Université de Kalemie (UNIKAL), Kalemie P.O. Box 570, Democratic Republic of the Congo
| | - Stephen Mwangi Githiri
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi P.O. Box 62000-00200, Kenya; (P.K.K.); (S.M.G.); (E.G.M.)
| | - Edward George Mamati
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi P.O. Box 62000-00200, Kenya; (P.K.K.); (S.M.G.); (E.G.M.)
| | - Wilson Kimani
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709-00100, Kenya; (C.M.); (F.N.)
| | - Collins Mutai
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709-00100, Kenya; (C.M.); (F.N.)
| | - Fredrick Nganga
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709-00100, Kenya; (C.M.); (F.N.)
| | - Paul-Martin Dontsop Nguezet
- International Institute of Tropical Agriculture (IITA), Kalemie P.O. Box 570, Democratic Republic of the Congo;
| | - Jacob Mignouna
- Olusegun O. Research Campus, International Institute of Tropical Agriculture (IITA), Bukavu P.O. Box 1222, Democratic Republic of the Congo; (J.M.); (M.F.)
| | - René Mushizi Civava
- Institut National Pour l’Etude et la Recherche Agronomiques (INERA), Kinshasa P.O. Box 2037, Democratic Republic of the Congo;
- Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu P.O. Box 3323, Democratic Republic of the Congo
| | - Mamadou Fofana
- Olusegun O. Research Campus, International Institute of Tropical Agriculture (IITA), Bukavu P.O. Box 1222, Democratic Republic of the Congo; (J.M.); (M.F.)
| |
Collapse
|
6
|
Sudan J, Urwat U, Farooq A, Pakhtoon MM, Zaffar A, Naik ZA, Batool A, Bashir S, Mansoor M, Sofi PA, Sofi NUR, Shikari AB, Khan MK, Hossain MA, Henry RJ, Zargar SM. Explicating genetic architecture governing nutritional quality in pigmented rice. PeerJ 2023; 11:e15901. [PMID: 37719119 PMCID: PMC10501373 DOI: 10.7717/peerj.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Rice is one of the most important staple plant foods that provide a major source of calories and nutrients for tackling the global hunger index especially in developing countries. In terms of nutritional profile, pigmented rice grains are favoured for their nutritional and health benefits. The pigmented rice varieties are rich sources of flavonoids, anthocyanin and proanthocyanidin that can be readily incorporated into diets to help address various lifestyle diseases. However, the cultivation of pigmented rice is limited due to low productivity and unfavourable cooking qualities. With the advances in genome sequencing, molecular breeding, gene expression analysis and multi-omics approaches, various attempts have been made to explore the genetic architecture of rice grain pigmentation. In this review, we have compiled the current state of knowledge of the genetic architecture and nutritional value of pigmentation in rice based upon the available experimental evidence. Future research areas that can help to deepen our understanding and help in harnessing the economic and health benefits of pigmented rice are also explored.
Collapse
Affiliation(s)
- Jebi Sudan
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Uneeb Urwat
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asmat Farooq
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aaqif Zaffar
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Zafir Ahmad Naik
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Aneesa Batool
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Saika Bashir
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Madeeha Mansoor
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Najeebul Ul Rehman Sofi
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Jammu and Kashmir, India
| | - Asif B. Shikari
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Mohd. Kamran Khan
- Department of Soil Sciences and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, Queensland University, Brisbane, Australia
| | - Sajad Majeed Zargar
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
8
|
Palanog AD, Nha CT, Descalsota-Empleo GIL, Calayugan MI, Swe ZM, Amparado A, Inabangan-Asilo MA, Hernandez JE, Sta. Cruz PC, Borromeo TH, Lalusin AG, Mauleon R, McNally KL, Swamy BPM. Molecular dissection of connected rice populations revealed important genomic regions for agronomic and biofortification traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1157507. [PMID: 37035067 PMCID: PMC10073715 DOI: 10.3389/fpls.2023.1157507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Breeding staple crops with increased micronutrient concentration is a sustainable approach to address micronutrient malnutrition. We carried out Multi-Cross QTL analysis and Inclusive Composite Interval Mapping for 11 agronomic, yield and biofortification traits using four connected RILs populations of rice. Overall, MC-156 QTLs were detected for agronomic (115) and biofortification (41) traits, which were higher in number but smaller in effects compared to single population analysis. The MC-QTL analysis was able to detect important QTLs viz: qZn5.2, qFe7.1, qGY10.1, qDF7.1, qPH1.1, qNT4.1, qPT4.1, qPL1.2, qTGW5.1, qGL3.1 , and qGW6.1 , which can be used in rice genomics assisted breeding. A major QTL (qZn5.2 ) for grain Zn concentration has been detected on chromosome 5 that accounted for 13% of R2. In all, 26 QTL clusters were identified on different chromosomes. qPH6.1 epistatically interacted with qZn5.1 and qGY6.2 . Most of QTLs were co-located with functionally related candidate genes indicating the accuracy of QTL mapping. The genomic region of qZn5.2 was co-located with putative genes such as OsZIP5, OsZIP9, and LOC_OS05G40490 that are involved in Zn uptake. These genes included polymorphic functional SNPs, and their promoter regions were enriched with cis-regulatory elements involved in plant growth and development, and biotic and abiotic stress tolerance. Major effect QTL identified for biofortification and agronomic traits can be utilized in breeding for Zn biofortified rice varieties.
Collapse
Affiliation(s)
- Alvin D. Palanog
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
- PhilRice Negros Branch Station, Philippine Rice Research Institute, Murcia, Negros Occidental, Philippines
| | | | | | - Mark Ian Calayugan
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Zin Mar Swe
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Amery Amparado
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Mary Ann Inabangan-Asilo
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Jose E. Hernandez
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Pompe C. Sta. Cruz
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Teresita H. Borromeo
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Antonio G. Lalusin
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Ramil Mauleon
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- College of Agriculture, University of Southern Mindanao, Kabacan, North Cotabato, Philippines
| | - Kenneth L. McNally
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - B. P. Mallikarjuna Swamy
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| |
Collapse
|
9
|
Pasion EA, Misra G, Kohli A, Sreenivasulu N. Unraveling the genetics underlying micronutrient signatures of diversity panel present in brown rice through genome-ionome linkages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:749-771. [PMID: 36573652 PMCID: PMC10952705 DOI: 10.1111/tpj.16080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa) is an important staple crop to address the Hidden Hunger problem not only in Asia but also in Africa where rice is fast becoming an important source of calories. The brown rice (whole grain with bran) is known to be more nutritious due to elevated mineral composition. The genetics underlying brown rice ionome (sum total of such mineral composition) remains largely unexplored. Hence, we conducted a comprehensive study to dissect the genetic architecture of the brown rice ionome. We used genome-wide association studies, gene set analysis, and targeted association analysis for 12 micronutrients in the brown rice grains. A diverse panel of 300 resequenced indica accessions, with more than 1.02 million single nucleotide polymorphisms, was used. We identified 109 candidate genes with 5-20% phenotypic variation explained for the 12 micronutrients and identified epistatic interactions with multiple micronutrients. Pooling all candidate genes per micronutrient exhibited phenotypic variation explained values ranging from 11% to almost 40%. The key donor lines with larger concentrations for most of the micronutrients possessed superior alleles, which were absent in the breeding lines. Through gene regulatory networks we identified enriched functional pathways for central regulators that were detected as key candidate genes through genome-wide association studies. This study provided important insights on the ionome variations in rice, on the genetic basis of the genome-ionome relationships and on the molecular mechanisms underlying micronutrient signatures.
Collapse
Affiliation(s)
| | - Gopal Misra
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | - Ajay Kohli
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | | |
Collapse
|
10
|
Uttam GA, Suman K, Jaldhani V, Babu PM, Rao DS, Sundaram RM, Neeraja CN. Identification of Genomic Regions Associated with High Grain Zn Content in Polished Rice Using Genotyping-by-Sequencing (GBS). PLANTS (BASEL, SWITZERLAND) 2022; 12:144. [PMID: 36616273 PMCID: PMC9824299 DOI: 10.3390/plants12010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Globally, micronutrient (iron and zinc) enriched rice has been a sustainable and cost-effective solution to overcome malnutrition or hidden hunger. Understanding the genetic basis and identifying the genomic regions for grain zinc (Zn) across diverse genetic backgrounds is an important step to develop biofortified rice varieties. In this case, an RIL population (306 RILs) obtained from a cross between the high-yielding rice variety MTU1010 and the high-zinc rice variety Ranbir Basmati was utilized to pinpoint the genomic region(s) and QTL(s) responsible for grain zinc (Zn) content. A total of 2746 SNP markers spanning a genetic distance of 2445 cM were employed for quantitative trait loci (QTL) analysis, which resulted in the identification of 47 QTLs for mineral (Zn and Fe) and agronomic traits with 3.5-36.0% phenotypic variance explained (PVE) over the seasons. On Chr02, consistent QTLs for grain Zn polished (qZnPR.2.1) and Zn brown (qZnBR.2.2) were identified. On Chr09, two additional reliable QTLs for grain Zn brown (qZnBR.9.1 and qZnBR.9.2) were identified. The major-effect QTLs identified in this study were associated with few key genes related to Zn and Fe transporter activity. The genomic regions, candidate genes, and molecular markers associated with these major QTLs will be useful for genomic-assisted breeding for developing Zn-biofortified varieties.
Collapse
|
11
|
Muvunyi BP, Zou W, Zhan J, He S, Ye G. Multi-Trait Genomic Prediction Models Enhance the Predictive Ability of Grain Trace Elements in Rice. Front Genet 2022; 13:883853. [PMID: 35812754 PMCID: PMC9257107 DOI: 10.3389/fgene.2022.883853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-trait (MT) genomic prediction models enable breeders to save phenotyping resources and increase the prediction accuracy of unobserved target traits by exploiting available information from non-target or auxiliary traits. Our study evaluated different MT models using 250 rice accessions from Asian countries genotyped and phenotyped for grain content of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), and cadmium (Cd). The predictive performance of MT models compared to a traditional single trait (ST) model was assessed by 1) applying different cross-validation strategies (CV1, CV2, and CV3) inferring varied phenotyping patterns and budgets; 2) accounting for local epistatic effects along with the main additive effect in MT models; and 3) using a selective marker panel composed of trait-associated SNPs in MT models. MT models were not statistically significantly (p < 0.05) superior to ST model under CV1, where no phenotypic information was available for the accessions in the test set. After including phenotypes from auxiliary traits in both training and test sets (MT-CV2) or simply in the test set (MT-CV3), MT models significantly (p < 0.05) outperformed ST model for all the traits. The highest increases in the predictive ability of MT models relative to ST models were 11.1% (Mn), 11.5 (Cd), 33.3% (Fe), 95.2% (Cu) and 126% (Zn). Accounting for the local epistatic effects using a haplotype-based model further improved the predictive ability of MT models by 4.6% (Cu), 3.8% (Zn), and 3.5% (Cd) relative to MT models with only additive effects. The predictive ability of the haplotype-based model was not improved after optimizing the marker panel by only considering the markers associated with the traits. This study first assessed the local epistatic effects and marker optimization strategies in the MT genomic prediction framework and then illustrated the power of the MT model in predicting trace element traits in rice for the effective use of genetic resources to improve the nutritional quality of rice grain.
Collapse
Affiliation(s)
- Blaise Pascal Muvunyi
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenli Zou
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junhui Zhan
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sang He
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Sang He, ; Guoyou Ye,
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Philippines
- *Correspondence: Sang He, ; Guoyou Ye,
| |
Collapse
|
12
|
Transcriptomics View over the Germination Landscape in Biofortified Rice. Genes (Basel) 2021; 12:genes12122013. [PMID: 34946962 PMCID: PMC8700799 DOI: 10.3390/genes12122013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
Hidden hunger, or micronutrient deficiency, is a worldwide problem. Several approaches are employed to alleviate its effects (e.g., promoting diet diversity, use of dietary supplements, chemical fortification of processed food), and among these, biofortification is considered as one of the most cost-effective and highly sustainable. Rice is one of the best targets for biofortification since it is a staple food for almost half of the world’s population as a high-energy source but with low nutritional value. Multiple biofortified rice lines have been produced during the past decades, while few studies also reported modifications in germination behavior (in terms of enhanced or decreased germination percentage or speed). It is important to underline that rapid, uniform germination, and seedling establishment are essential prerequisites for crop productivity. Combining the two traits, biofortified, highly-nutritious seeds with improved germination behavior can be envisaged as a highly-desired target for rice breeding. To this purpose, information gathered from transcriptomics studies can reveal useful insights to unveil the molecular players governing both traits. The present review aims to provide an overview of transcriptomics studies applied at the crossroad between biofortification and seed germination, pointing out potential candidates for trait pyramiding.
Collapse
|
13
|
Verma V, Vishal B, Kohli A, Kumar PP. Systems-based rice improvement approaches for sustainable food and nutritional security. PLANT CELL REPORTS 2021; 40:2021-2036. [PMID: 34591154 DOI: 10.1007/s00299-021-02790-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
An integrated research approach to ensure sustainable rice yield increase of a crop grown by 25% of the world's farmers in 10% of cropland is essential for global food security. Rice, being a global staple crop, feeds about 56% of the world population and sustains 40% of the world's poor. At ~ $200 billion, it also accounts for 13% of the annual crop value. With hunger and malnutrition rampant among the poor, rice research for development is unique in global food and nutrition security. A systems-based, sustainable increase in rice quantity and quality is imperative for environmental and biodiversity benefits. Upstream 'discovery' through biotechnology, midstream 'development' through breeding and agronomy, downstream 'dissemination and deployment' must be 'demand-driven' for 'distinct socio-economic transformational impacts'. Local agro-ecology and livelihood nexus must drive the research agenda for targeted benefits. This necessitates sustained long-term investments by government, non-government and private sectors to secure the future food, nutrition, environment, prosperity and equity status.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| | - Bhushan Vishal
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Republic of Singapore
| | - Ajay Kohli
- Strategic Innovation Platform, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
14
|
Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, Prasad M. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3147-3165. [PMID: 34091694 DOI: 10.1007/s00122-021-03878-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement. Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hunger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.
Collapse
Affiliation(s)
- P Sushree Shyamli
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Sumi Rana
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sandhya Suranjika
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Virk PS, Andersson MS, Arcos J, Govindaraj M, Pfeiffer WH. Transition From Targeted Breeding to Mainstreaming of Biofortification Traits in Crop Improvement Programs. FRONTIERS IN PLANT SCIENCE 2021; 12:703990. [PMID: 34594348 PMCID: PMC8477801 DOI: 10.3389/fpls.2021.703990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Biofortification breeding for three important micronutrients for human health, namely, iron (Fe), zinc (Zn), and provitamin A (PVA), has gained momentum in recent years. HarvestPlus, along with its global consortium partners, enhances Fe, Zn, and PVA in staple crops. The strategic and applied research by HarvestPlus is driven by product-based impact pathway that integrates crop breeding, nutrition research, impact assessment, advocacy, and communication to implement country-specific crop delivery plans. Targeted breeding has resulted in 393 biofortified crop varieties by the end of 2020, which have been released or are in testing in 63 countries, potentially benefitting more than 48 million people. Nevertheless, to reach more than a billion people by 2030, future breeding lines that are being distributed by Consultative Group on International Agricultural Research (CGIAR) centers and submitted by National Agricultural Research System (NARS) to varietal release committees should be biofortified. It is envisaged that the mainstreaming of biofortification traits will be driven by high-throughput micronutrient phenotyping, genomic selection coupled with speed breeding for accelerating genetic gains. It is noteworthy that targeted breeding gradually leads to mainstreaming, as the latter capitalizes on the progress made in the former. Efficacy studies have revealed the nutritional significance of Fe, Zn, and PVA biofortified varieties over non-biofortified ones. Mainstreaming will ensure the integration of biofortified traits into competitive varieties and hybrids developed by private and public sectors. The mainstreaming strategy has just been initiated in select CGIAR centers, namely, International Maize and Wheat Improvement Center (CIMMYT), International Rice Research Institute (IRRI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), International Institute of Tropical Agriculture (IITA), and International Center for Tropical Agriculture (CIAT). This review will present the key successes of targeted breeding and its relevance to the mainstreaming approaches to achieve scaling of biofortification to billions sustainably.
Collapse
Affiliation(s)
- Parminder S. Virk
- HarvestPlus, International Food Policy Research Institute (IFPRI), Washington, DC, United States
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Meike S. Andersson
- HarvestPlus, International Food Policy Research Institute (IFPRI), Washington, DC, United States
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jairo Arcos
- HarvestPlus, International Food Policy Research Institute (IFPRI), Washington, DC, United States
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mahalingam Govindaraj
- HarvestPlus, International Food Policy Research Institute (IFPRI), Washington, DC, United States
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Wolfgang H. Pfeiffer
- HarvestPlus, International Food Policy Research Institute (IFPRI), Washington, DC, United States
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
16
|
Liu J, Zhan J, Chen J, Lu X, Zhi S, Ye G. Validation of Genes Affecting Rice Grain Zinc Content Through Candidate Gene-Based Association Analysis. Front Genet 2021; 12:701658. [PMID: 34434221 PMCID: PMC8381382 DOI: 10.3389/fgene.2021.701658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/27/2022] Open
Abstract
Several key genes governing Zn homeostasis and grain zinc content (GZC) have been functionally characterized. However, the effects of these genes in diverse breeding populations have not been evaluated; thus, their availability in breeding is unclear. In this study, the effects of 65 genes related to rice zinc responses on GZC were evaluated using two panels of breeding lines, and the superior haplotypes were identified. One panel consisted of mega varieties from the International Rice Research Institute (IRRI), South Asia, and Southeast Asia (SEA), and the other panel is breeding lines/varieties from South China (SC). In addition, a multiparent advanced generation intercross (MAGIC) population, named as DC1, was also employed. Three analytical methods, single-locus mixed linear model (SL-MLM), multilocus random-SNP-effect mixed linear model (mrMLM), and haplotype-based association analysis (Hap-AA), were applied. OsIDEF1 (which explained 12.3% of the phenotypic variance) and OsZIFL7 (8.3-9.1%), OsZIP7 (18.9%), and OsIRT1 (17.9%) were identified by SL-MLM in SEA and SC, respectively, whereas no gene was significantly associated with GZC in DC1. In total, five (OsNRAMP6, OsYSL15, OsIRT1, OsIDEF1, and OsZIFL7, 7.70-15.39%), three (OsFRDL1, OsIRT1, and OsZIP7, 11.87-17.99%), and two (OsYSL7 and OsZIP7, 9.85-10.57%) genes were detected to be significantly associated with GZC in SEA, SC, and DC1 by mrMLM, respectively. Hap-AA indicated that Hap1-OsNRAMP5, Hap5-OsZIP4, Hap1-OsIRT1, Hap3-OsNRAMP6, Hap6-OsMTP1, and Hap6-OsYSL15 had the largest effects for GZC in SEA, whereas Hap3-OsOPT7, Hap4-OsIRT2, Hap4-OsZIP7, Hap5-OsIRT1, and Hap5-OsSAMS1 were the most significant in the SC population. Besides, superior alleles were also identified for the significant genes. The genes significantly associated with GZC and their superior haplotypes identified in different panels could be used in enhancing GZC through molecular breeding, which could further address the problem of Zn malnutrition among rice consumers.
Collapse
Affiliation(s)
- Jindong Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junhui Zhan
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jingguang Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Xiang Lu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuai Zhi
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoyou Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Strategic Innovation Platform, International Rice Research Institute, Makati, Philippines
| |
Collapse
|
17
|
Identification and Validation of QTLs for Macronutrient Contents in Brown and Milled Rice Using Two Backcross Populations between Oryza sativa and O. rufipogon. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5561734. [PMID: 34195268 PMCID: PMC8214480 DOI: 10.1155/2021/5561734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
Mineral malnutrition as a prevalent public health issue can be alleviated by increasing the intake of dietary minerals from major staple crops, such as rice. Identification of the gene responsible for mineral contents in rice would help breed cultivars enriched with minerals through marker-assisted selection. Two segregating populations of backcross inbred lines (BIL) were employed to map quantitative trait loci (QTLs) for macronutrient contents in brown and milled rice, BC1F5, and BC2F4:5 derived from an interspecific cross of Xieqingzao B (Oryza sativa) and Dongxiang wild rice (O. rufipogon). Phenotyping the populations was conducted in multiple locations and years, and up to 169 DNA markers were used for the genotyping. A total of 17 QTLs for P, K, Na, Ca, and Mg contents in brown and milled rice distributed on eight regions were identified in the BC1F5 population, which is explained to range from 5.98% to 56.80% of phenotypic variances. Two regions controlling qCa1.1 and qCa4.1 were validated, and seven new QTLs for Ca and Mg contents were identified in the BC2F4:5 population. 18 of 24 QTLs were clustered across seven chromosomal regions, indicating that different mineral accumulation might be involved in common regulatory pathways. Of 24 QTLs identified in two populations, 16 having favorable alleles were derived from O. rufipogon and 10 were novel. These results will not only help understand the molecular mechanism of macronutrient accumulation in rice but also provide candidate QTLs for further gene cloning and grain nutrient improvement through QTL pyramiding.
Collapse
|
18
|
Swamy BPM, Marathi B, Ribeiro-Barros AIF, Calayugan MIC, Ricachenevsky FK. Iron Biofortification in Rice: An Update on Quantitative Trait Loci and Candidate Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:647341. [PMID: 34122472 PMCID: PMC8187908 DOI: 10.3389/fpls.2021.647341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
Rice is the most versatile model for cereals and also an economically relevant food crop; as a result, it is the most suitable species for molecular characterization of Fe homeostasis and biofortification. Recently there have been significant efforts to dissect genes and quantitative trait loci (QTL) associated with Fe translocation into rice grains; such information is highly useful for Fe biofortification of cereals but very limited in other species, such as maize (Zea mays) and wheat (Triticum aestivum). Given rice's centrality as a model for Poaceae species, we review the current knowledge on genes playing important roles in Fe transport, accumulation, and distribution in rice grains and QTLs that might explain the variability in Fe concentrations observed in different genotypes. More than 90 Fe QTLs have been identified over the 12 rice chromosomes. From these, 17 were recorded as stable, and 25 harbored Fe-related genes nearby or within the QTL. Among the candidate genes associated with Fe uptake, translocation, and loading into rice grains, we highlight the function of transporters from the YSL and ZIP families; transporters from metal-binding molecules, such as nicotianamine and deoxymugineic acid; vacuolar iron transporters; citrate efflux transporters; and others that were shown to play a role in steps leading to Fe delivery to seeds. Finally, we discuss the application of these QTLs and genes in genomics assisted breeding for fast-tracking Fe biofortification in rice and other cereals in the near future.
Collapse
Affiliation(s)
| | - Balram Marathi
- Agricultural College, Warangal, Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Ana I. F. Ribeiro-Barros
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Mark Ian C. Calayugan
- Institute of Crop Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Felipe Klein Ricachenevsky
- Departamento de Botânica, Instituto de Biociências, e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Jiang Y, Han J, Xue W, Wang J, Wang B, Liu L, Zou J. Overexpression of SmZIP plays important roles in Cd accumulation and translocation, subcellular distribution, and chemical forms in transgenic tobacco under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112097. [PMID: 33667736 DOI: 10.1016/j.ecoenv.2021.112097] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Plant ZIP genes represent an important transporter family and may be involved in cadmium (Cd) accumulation and Cd resistance. In order to explore the function of SmZIP isolated from Salix matsudana, the roles of SmZIP in Cd tolerance, uptake, translocation, and distribution were determined in the present investigation. The transgenic SmZIP tobacco was found to respond to external Cd stress differently from WT tobacco by exhibiting a higher growth rate and more vigorous phenotype. The overexpression of SmZIP in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects. Compared to WT tobacco, the Cd content of the root, stem, and leaf in the transgenic tobacco increased, and the zinc, iron, copper, and manganese contents also increased. The assimilation factor, translocation factor and bioconcentration factor of Cd were improved. The scanning electron microscopy and energy dispersive X-ray analysis results of the root maturation zone exposed to Cd for 24 h showed that Cd was transferred through the root epidermis, cortex, and vascular cylinder and migrated to the aboveground parts via the vascular cylinder, resulting in the transgenic tobacco accumulating more Cd than the WT plants. Based on the transverse section of the leaf main vein and leaf blade, Cd was transported through the vascular tissues to the leaves and accumulated more greatly in the leaf epidermis, but less in the leaf mesophyll cells, following the overexpression of SmZIP to reduce the photosynthetic toxicity. The overexpression of SmZIP resulted in the redistribution of Cd at the subcellular level, a decrease in the percentage of Cd in the cell wall, and an increase of the Cd in the soluble fraction in both the roots and leaves. It also changed the percentage composition of different Cd chemical forms by elevating the proportion of Cd extracted using 2% HAc and 0.6 mol/L HCl, but lowering that of the Cd extracted using 1 mol/L NaCl in both the leaves and roots under 10 and 100 μmol/L Cd stress for 28 d. The results implied that SmZIP played important roles in advancing Cd uptake, accumulation, and translocation, as well as in enhancing Cd resistance by altering the Cd subcellular distribution and chemical forms in the transgenic tobacco. The study will be useful for future phytoremediation applications to clean up Cd-contaminated soil.
Collapse
Affiliation(s)
- Yi Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Jiahui Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Wenxiu Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Jiayue Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China; Tianjin Wutong Middle School, China
| | - Binghan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Liangjing Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Jinhua Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China.
| |
Collapse
|
20
|
Suman K, Neeraja CN, Madhubabu P, Rathod S, Bej S, Jadhav KP, Kumar JA, Chaitanya U, Pawar SC, Rani SH, Subbarao LV, Voleti SR. Identification of Promising RILs for High Grain Zinc Through Genotype × Environment Analysis and Stable Grain Zinc QTL Using SSRs and SNPs in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:587482. [PMID: 33679823 PMCID: PMC7930840 DOI: 10.3389/fpls.2021.587482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/06/2021] [Indexed: 05/09/2023]
Abstract
Polished rice is one of the commonly consumed staple foods across the world. However, it contains limited nutrients especially iron (Fe) and zinc (Zn). To identify promising recombinant inbred lines (RILs) for grain Zn and single plant yield, 190 RILs developed from PR116 and Ranbir Basmati were evaluated in two environments (E1 and E2). A subset of 44 contrasting RILs for grain Zn was screened in another two environments (E3 and E4). Phenotypic data was collected for 10 traits, viz., days to 50% flowering, plant height, panicle length, number of tillers, single plant yield (SPY), test weight, Fe and Zn in brown (IBR, ZBR), and polished rice (IPR, ZPR). Stepwise regression analysis of trait data in 190 RILs and a subset of 44 RILs revealed the interdependence of ZPR, ZBR, IPR, and IBR and the negative association of grain Zn with single plant yield. Based on the additive main effect and multiplicative interaction (AMMI) and genotype and genotype × environment interaction (GGE) analyses of the subset of 44 RILs across four environments (E1-E4), six promising RILs were identified for ZPR with >28 ppm. Mapping of 190 RILs with 102 simple sequence repeats (SSRs) resulted in 13 QTLs for best linear unbiased estimates (BLUEs) of traits including advantage over check (AOC). Using genotype-based sequencing (GBS), the subset of 44 RILs was mapped with 1035 single-nucleotide polymorphisms (SNPs) and 21 QTLs were identified. More than 100 epistatic interactions were observed. A major QTL qZPR.1.1 (PV 37.84%) and another QTL qZPR.11.1 (PV 15.47%) were identified for grain Zn in polished rice. A common major QTL (qZBR.2.1 and qZPR.2.1) was also identified on chromosome 2 for grain Zn content across SSR and SNP maps. Two potential candidate genes related to transporters were identified based on network analyses in the genomic regions of QTL < 3 Mb. The RILs identified for grain Zn and SPY were nominated for national evaluation as under rice biofortification, and two QTLs identified based on BLUEs could be used in the rice biofortification breeding programs.
Collapse
Affiliation(s)
- K. Suman
- ICAR–Indian Institute of Rice Research, Hyderabad, India
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, India
| | - C. N. Neeraja
- ICAR–Indian Institute of Rice Research, Hyderabad, India
- *Correspondence: C. N. Neeraja,
| | - P. Madhubabu
- ICAR–Indian Institute of Rice Research, Hyderabad, India
| | | | - Sonali Bej
- ICAR–Indian Institute of Rice Research, Hyderabad, India
| | - K. P. Jadhav
- ICAR–Indian Institute of Rice Research, Hyderabad, India
| | | | - U. Chaitanya
- ICAR–Indian Institute of Rice Research, Hyderabad, India
| | - Smita C. Pawar
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, India
| | - Surekha H. Rani
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, India
| | | | | |
Collapse
|
21
|
Woods BJ, Gallego-Castillo S, Talsma EF, Álvarez D. The acceptance of zinc biofortified rice in Latin America: A consumer sensory study and grain quality characterization. PLoS One 2020; 15:e0242202. [PMID: 33175890 PMCID: PMC7657500 DOI: 10.1371/journal.pone.0242202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023] Open
Abstract
Zinc deficiency is a major public health problem in vulnerable populations of Latin America and the Caribbean. Biofortification of rice (Oryza sativa L.) with zinc has the potential to alleviate zinc deficiencies. However, as plant breeding processes can alter grain culinary quality and favorable sensory attributes, grain quality and consumer acceptability need to be assessed prior to releasing a variety to the public. A grain quality characterization and a sensory acceptability analysis were carried out with two varieties of zinc biofortified rice and a local control both in Bolivia and Colombia. The aim of this study was to evaluate the physicochemical parameters that are significant in consumer acceptance and to determine the acceptability of zinc biofortified rice by consumers. Results of physicochemical parameters were analyzed using ANOVA. The sensory acceptability was evaluated in 243 adults utilizing a 7-point hedonic scale and a Wilcoxon's signed rank test was used to determine the overall acceptability of the varieties. Biofortified rice variety T2-11 and MAC-18 -control 1- were equally accepted by consumers in Bolivia with no significant differences (p<0.05). The grain quality analysis reported that both presented long and slender rice grains (L>7.5 mm and L/B>3), an intermediate to high amylose content (>25%) and a similar level of chalkiness. In Colombia, the biofortified variety 035 presented a higher score in overall acceptance in comparison to biofortified variety 021 and the local variety CICA4 -control 2-. However, no significant differences were observed (p<0.05). Conversely to the other two varieties, the biofortified variety 035 presented the largest size grain (L/B = 2.97), a lower chalkiness and an amylose content above 25%. This study shows that the grain quality properties of rice have an influence on acceptability and that zinc biofortified rice varieties are accepted by consumers.
Collapse
Affiliation(s)
- Bo-Jane Woods
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Sonia Gallego-Castillo
- HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Elise F. Talsma
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Daniel Álvarez
- HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
- * E-mail:
| |
Collapse
|
22
|
Das P, Adak S, Lahiri Majumder A. Genetic Manipulation for Improved Nutritional Quality in Rice. Front Genet 2020; 11:776. [PMID: 32793287 PMCID: PMC7393646 DOI: 10.3389/fgene.2020.00776] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Food with higher nutritional value is always desired for human health. Rice is the prime staple food in more than thirty developing countries, providing at least 20% of dietary protein, 3% of dietary fat and other essential nutrients. Several factors influence the nutrient content of rice which includes agricultural practices, post-harvest processing, cultivar type as well as manipulations followed by selection through breeding and genetic means. In addition to mutation breeding, genetic engineering approach also contributed significantly for the generation of nutrition added varieties of rice in the last decade or so. In the present review, we summarize the research update on improving the nutritional characteristics of rice by using genetic engineering and mutation breeding approach. We also compare the conventional breeding techniques of rice with modern molecular breeding techniques toward the generation of nutritionally improved rice variety as compared to other cereals in areas of micronutrients and availability of essential nutrients such as folate and iron. In addition to biofortification, our focus will be on the efforts to generate low phytate in seeds, increase in essential fatty acids or addition of vitamins (as in golden rice) all leading to the achievements in rice nutrition science. The superiority of biotechnology over conventional breeding being already established, it is essential to ascertain that there are no serious negative agronomic consequences for consumers with any difference in grain size or color or texture, when a nutritionally improved variety of rice is generated through genetic engineering technology.
Collapse
|
23
|
Ram H, Gandass N, Sharma A, Singh A, Sonah H, Deshmukh R, Pandey AK, Sharma TR. Spatio-temporal distribution of micronutrients in rice grains and its regulation. Crit Rev Biotechnol 2020; 40:490-507. [DOI: 10.1080/07388551.2020.1742647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hasthi Ram
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nishu Gandass
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Ankita Sharma
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anmol Singh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Humira Sonah
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rupesh Deshmukh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Ajay Kumar Pandey
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Tilak Raj Sharma
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
24
|
Qu P, Shi J, Chen T, Chen K, Shen C, Wang J, Zhao X, Ye G, Xu J, Zhang L. Construction and integration of genetic linkage maps from three multi-parent advanced generation inter-cross populations in rice. RICE (NEW YORK, N.Y.) 2020; 13:13. [PMID: 32060661 PMCID: PMC7021868 DOI: 10.1186/s12284-020-0373-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/04/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The construction of genetic maps based on molecular markers is a crucial step in rice genetic and genomic studies. Pure lines derived from multiple parents provide more abundant genetic variation than those from bi-parent populations. Two four-parent pure-line populations (4PL1 and 4PL2) and one eight-parent pure-line population (8PL) were developed from eight homozygous indica varieties of rice by the International Rice Research Institute (IRRI). To the best of our knowledge, there have been no reports on linkage map construction and their integration in multi-parent populations of rice. RESULTS We constructed linkage maps for the three multi-parent populations and conducted quantitative trait locus (QTL) mapping for heading date (HD) and plant height (PH) based on the three maps by inclusive composite interval mapping (ICIM). An integrated map was built from the three individual maps and used for QTL projection and meta-analysis. QTL mapping of the three populations was also conducted based on the integrated map, and the mapping results were compared with those from meta-analysis. The three linkage maps developed for 8PL, 4PL1 and 4PL2 had 5905, 4354 and 5464 bins and were 1290.16, 1720.01 and 1560.30 cM in length, respectively. The integrated map was 3022.08 cM in length and contained 10,033 bins. Based on the three linkage maps, 3, 7 and 9 QTLs were detected for HD while 6, 9 and 10 QTLs were detected for PH in 8PL, 4PL1 and 4PL2, respectively. In contrast, 19 and 25 QTLs were identified for HD and PH by meta-analysis using the integrated map, respectively. Based on the integrated map, 5, 9, and 10 QTLs were detected for HD while 3, 10, and 12 QTLs were detected for PH in 8PL, 4PL1 and 4PL2, respectively. Eleven of these 49 QTLs coincided with those from the meta-analysis. CONCLUSIONS In this study, we reported the first rice linkage map constructed from one eight-parent recombinant inbred line (RIL) population and the first integrated map from three multi-parent populations, which provide essential information for QTL linkage mapping, meta-analysis, and map-based cloning in rice genetics and breeding.
Collapse
Affiliation(s)
| | | | - Tianxiao Chen
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518210, China
| | - Kai Chen
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518210, China
| | - Congcong Shen
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518210, China
| | - Jiankang Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangqian Zhao
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Guoyou Ye
- Genetics and Biotechnology Division, International Rice Research Institute, Baños, Laguna, Philippines
| | - Jianlong Xu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Luyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
Calayugan MIC, Formantes AK, Amparado A, Descalsota-Empleo GI, Nha CT, Inabangan-Asilo MA, Swe ZM, Hernandez JE, Borromeo TH, Lalusin AG, Mendioro MS, Diaz MGQ, Viña CBD, Reinke R, Swamy BPM. Genetic Analysis of Agronomic Traits and Grain Iron and Zinc Concentrations in a Doubled Haploid Population of Rice (Oryza sativa L.). Sci Rep 2020; 10:2283. [PMID: 32042046 PMCID: PMC7010768 DOI: 10.1038/s41598-020-59184-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022] Open
Abstract
The development of micronutrient dense rice varieties with good agronomic traits is one of the sustainable and cost-effective approaches for reducing malnutrition. Identification of QTLs for high grain Fe and Zn, yield and yield components helps in precise and faster development of high Fe and Zn rice. We carried out a three-season evaluation using IR05F102 x IR69428 derived doubled-haploid population at IRRI. Inclusive composite interval mapping was carried out using SNP markers and Best Linear Unbiased Estimates of the phenotypic traits. A total of 23 QTLs were identified for eight agronomic traits and grain Fe and Zn concentration that explained 7.2 to 22.0% PV. A QTL by environment interaction analysis confirmed the stability of nine QTLs, including two QTLs for Zn on chromosomes 5 and 12. One epistatic interaction for plant height was significant with 28.4% PVE. Moreover, five QTLs were identified for Fe and Zn that harbor several candidate genes, e.g. OsZIP6 on QTL qZn5.1. A number of QTLs were associated with a combination of greater yield and increased grain Zn levels. These results are useful for development of new rice varieties with good agronomic traits and high grain Zn using MAS, and identification of genetic resources with the novel QTLs for grain Zn.
Collapse
Affiliation(s)
- Mark Ian C Calayugan
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.,University of the Philippines Los Baños, Laguna, 4031, Philippines
| | - Andrea Kariza Formantes
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.,University of the Philippines Los Baños, Laguna, 4031, Philippines
| | - Amery Amparado
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Gwen Iris Descalsota-Empleo
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.,University of the Philippines Los Baños, Laguna, 4031, Philippines.,University of the Southern Mindanao, Kabacan, Cotabato, 9407, Philippines
| | - Chau Thanh Nha
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.,Cuu Long Delta Rice Research Institute (CLRRI), Cần Thơ, Vietnam
| | | | - Zin Mar Swe
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.,Department of Agriculture, Yezin, Myanmar
| | - Jose E Hernandez
- University of the Philippines Los Baños, Laguna, 4031, Philippines
| | | | | | | | | | | | - Russell Reinke
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | | |
Collapse
|
26
|
Tan Y, Sun L, Song Q, Mao D, Zhou J, Jiang Y, Wang J, Fan T, Zhu Q, Huang D, Xiao H, Chen C. Genetic architecture of subspecies divergence in trace mineral accumulation and elemental correlations in the rice grain. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:529-545. [PMID: 31734869 DOI: 10.1007/s00122-019-03485-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/11/2019] [Indexed: 05/12/2023]
Abstract
Genome differentiation has shaped the divergence in element concentration between rice subspecies and contributed to the correlation among trace minerals in the rice grain. The balance between trace minerals in rice, a staple food for more than half of the world's population, is crucial for human health. However, the genetic basis underlying the correlation between trace minerals has not been fully elucidated. To address this issue, we first quantified the concentrations of 11 trace minerals in the grains of a diversity panel of 575 rice cultivars. We found that eight elements were accumulated at significantly different levels between the indica and japonica subspecies, and we also observed significant correlation patterns among a number of elements. Further, using a genome-wide association study, we identified a total of 96 significant association loci (SALs). The differentiation of the major-effect SALs along with the different number of high-concentration alleles present in the two subspecies shaped the different element performance in indica and japonica varieties. Only a few SALs located in clusters and the majority of SALs showed subspecies/subgroup differentiation, indicating that the correlations between elements in the diversity panel were mainly caused by genome differentiation instead of shared genetic basis. The genetic architecture unveiled in this study will facilitate improvement in breeding for trace mineral content.
Collapse
Affiliation(s)
- Yongjun Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Qingnan Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jieqiang Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Youru Jiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Tony Fan
- University of Toronto, Toronto, M5S2E5, Canada
| | - Qihong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
27
|
Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population. Sci Rep 2019; 9:19605. [PMID: 31862941 PMCID: PMC6925145 DOI: 10.1038/s41598-019-55357-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
Identification of Quantitative Trait Loci (QTL) has been a challenge for complex traits due to the use of populations with narrow genetic base. Most of QTL mapping studies were carried out from crosses made within the subspecies, either indica × indica or japonica × japonica. In this study we report advantages of using Multi-parent Advanced Generation Inter-Crosses global population, derived from a combination of eight indica and eight japonica elite parents, in QTL discovery for yield and grain quality traits. Genome-wide association study and interval mapping identified 38 and 34 QTLs whereas Bayesian networking detected 60 QTLs with 22 marker-marker associations, 32 trait-trait associations and 65 marker-trait associations. Notably, nine known QTLs/genes qPH1/OsGA20ox2, qDF3/OsMADS50, PL, QDg1, qGW-5b, grb7-2, qGL3/GS3, Amy6/Wx gene and OsNAS3 were consistently identified by all approaches for nine traits whereas qDF3/OsMADS50 was co-located for both yield and days-to-flowering traits on chromosome 3. Moreover, we identified a number of candidate QTLs in either one or two analyses but further validations will be needed. The results indicate that this new population has enabled identifications of significant QTLs and interactions for 16 traits through multiple approaches. Pyramided recombinant inbred lines provide a valuable source for integration into future breeding programs.
Collapse
|
28
|
Rana N, Rahim MS, Kaur G, Bansal R, Kumawat S, Roy J, Deshmukh R, Sonah H, Sharma TR. Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Crit Rev Food Sci Nutr 2019; 60:3304-3320. [DOI: 10.1080/10408398.2019.1685454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | | | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
29
|
Raza Q, Riaz A, Sabar M, Atif RM, Bashir K. Meta-analysis of grain iron and zinc associated QTLs identified hotspot chromosomal regions and positional candidate genes for breeding biofortified rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110214. [PMID: 31521222 DOI: 10.1016/j.plantsci.2019.110214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/13/2019] [Accepted: 08/06/2019] [Indexed: 05/09/2023]
Abstract
Biofortification of staple crops with essential micronutrients is the sustainable way to overcome the hidden hunger. A large number of quantitative trait loci (QTL) linked with grain micronutrient contents have been reported in different mapping studies. Identification of consistent QTLs across diverse genetic backgrounds is useful for candidate gene analysis and marker assisted selection of target traits. In this study, an up to date meta-analysis of grain iron and zinc associated QTLs was performed and 48 meta-QTLs (MQTLs) distributed across 12 rice chromosomes were identified. The 95% confidence intervals of identified genomic regions were significantly narrower than the average of their corresponding original QTLs. A total of 9308 genes/transcripts physically located within or near MQTL regions were retrieved and through prioritization of candidate genes (CGs) 663 non-redundant iron and zinc CGs were selected and studied in detailed. Several functionally characterized iron and zinc homoeostasis related genes e.g OsATM3, OsDMAS1, OsFRO2, OsNAS1-3, OsVIT2, OsYSL16, OsZIP3 and OsZIP7 were also included in our MQTL analysis. More than 64% genes were enriched with zinc and iron binding gene ontology terms and were involved in oxidation reduction process, carbohydrate metabolic process, regulation of transcription, trans-membrane transport, response to oxidative stress, cell redox homeostasis and proteolysis etc. In-silico transcriptomic analysis of rice identified 260 CGs which were regulated in response to iron and zinc stresses. We also identified at least 37 genes which were differentially expressed under both stress conditions and majority of these have not been studied in detailed before. Our results strongly indicate that majority of the MQTLs identified in this study are hotspots for grain iron and zinc concentration and are worth of intensive functional studies in near future.
Collapse
Affiliation(s)
- Qasim Raza
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Pakistan.
| | - Awais Riaz
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Pakistan
| | - Muhammad Sabar
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan; US-Pak Centre for Advanced Studies in Food and Agricultural Security, University of Agriculture Faisalabad, Pakistan
| | - Khurram Bashir
- Plant Genomic Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, Yokohama, Japan.
| |
Collapse
|
30
|
Descalsota-Empleo GI, Noraziyah AAS, Navea IP, Chung C, Dwiyanti MS, Labios RJD, Ikmal AM, Juanillas VM, Inabangan-Asilo MA, Amparado A, Reinke R, Cruz CMV, Chin JH, Swamy BPM. Genetic Dissection of Grain Nutritional Traits and Leaf Blight Resistance in Rice. Genes (Basel) 2019; 10:E30. [PMID: 30626141 PMCID: PMC6356647 DOI: 10.3390/genes10010030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022] Open
Abstract
Colored rice is rich in nutrition and also a good source of valuable genes/quantitative trait loci (QTL) for nutrition, grain quality, and pest and disease resistance traits for use in rice breeding. Genome-wide association analysis using high-density single nucleotide polymorphism (SNP) is useful in precisely detecting QTLs and genes. We carried out genome-wide association analysis in 152 colored rice accessions, using 22,112 SNPs to map QTLs for nutritional, agronomic, and bacterial leaf blight (BLB) resistance traits. Wide variations and normal frequency distributions were observed for most of the traits except anthocyanin content and BLB resistance. The structural and principal component analysis revealed two subgroups. The linkage disequilibrium (LD) analysis showed 74.3% of the marker pairs in complete LD, with an average LD distance of 1000 kb and, interestingly, 36% of the LD pairs were less than 5 Kb, indicating high recombination in the panel. In total, 57 QTLs were identified for ten traits at p < 0.0001, and the phenotypic variance explained (PVE) by these QTLs varied from 9% to 18%. Interestingly, 30 (53%) QTLs were co-located with known or functionally-related genes. Some of the important candidate genes for grain Zinc (Zn) and BLB resistance were OsHMA9, OsMAPK6, OsNRAMP7, OsMADS13, and OsZFP252, and Xa1, Xa3, xa5, xa13 and xa26, respectively. Red rice genotype, Sayllebon, which is high in both Zn and anthocyanin content, could be a valuable material for a breeding program for nutritious rice. Overall, the QTLs identified in our study can be used for QTL pyramiding as well as genomic selection. Some of the novel QTLs can be further validated by fine mapping and functional characterization. The results show that pigmented rice is a valuable resource for mineral elements and antioxidant compounds; it can also provide novel alleles for disease resistance as well as for yield component traits. Therefore, large opportunities exist to further explore and exploit more colored rice accessions for use in breeding.
Collapse
Affiliation(s)
- Gwen Iris Descalsota-Empleo
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- University of the Southern Mindanao, Kabacan, Cotabato 9407, Philippines.
| | | | - Ian Paul Navea
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Nousbo Corp. #4-107, 89 Seohoro, Gwonsun, Suwon 16614, Gyeonggi, Korea.
| | - Chongtae Chung
- Chungcheongnam-do Agricultural Research and Extension Services, 167, Chusa-ro, Shinam-myeon, Yesan-gun 32418, Chungcheongnam-do, Korea.
| | - Maria Stefanie Dwiyanti
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Applied Plant Genome Laboratory, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan.
| | | | - Asmuni Mohd Ikmal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | | | | | - Amery Amparado
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | - Russell Reinke
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | | | - Joong Hyoun Chin
- Department of Integrative Bio-Industrial Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | | |
Collapse
|